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Abstract—We present a composable design scheme
for the development of hybrid quantum/classical al-
gorithms and workflows for applications of quantum
simulation. Our object-oriented approach is based on
constructing an expressive set of common data struc-
tures and methods that enable programming of a broad
variety of complex hybrid quantum simulation appli-
cations. The abstract core of our scheme is distilled
from the analysis of the current quantum simulation
algorithms. Subsequently, it allows a synthesis of new
hybrid algorithms and workflows via the extension,
specialization, and dynamic customization of the ab-
stract core classes defined by our design. We imple-
ment our design scheme using the hardware-agnostic
programming language QCOR into the QuaSiMo library.
To validate our implementation, we test and show its
utility on commercial quantum processors from IBM,
running some prototypical quantum simulations.

Index Terms—quantum computing, quantum pro-
gramming, programming languages

I. Introduction

Quantum simulation is an important use case of
quantum computing for scientific computing applica-
tions. Whereas numerical calculations of quantum dy-
namics and structure are staples of modern scientific
computing, quantum simulation represents the anal-
ogous computation based on the principles of quan-
tum physics. Specific applications are wide-ranging
and include calculations of electronic structure [1]–[4],
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scattering [5], dissociation [6], thermal rate constants
[7], materials dynamics [8], and response functions [9].

Presently, this diversity of quantum simulation ap-
plications is being explored with quantum computing
despite the limitations on the fidelity and capacity of
quantum hardware [10]–[12]. These applications are
tailored to such limitations by designing algorithms
that can be tuned and optimized in the presence
of noise or model representations that can be re-
duced in dimensionality. Examples include variational
methods such as the variational quantum eigensolver
(VQE) [13]–[16], quantum approximate optimization
algorithm (QAOA), quantum imaginary time evolution
(QITE) [17], and quantum machine learning (QML)
among others.

The varied use of quantum simulation raises con-
cerns for efficient and effective programming of these
applications. The current diversity in quantum com-
puting hardware and low-level, hardware-specific lan-
guages imposes a significant burden on the application
user. The lack of a common workflow for applications
of quantum simulation hinders broader progress in
testing and evaluation of such hardware. A common,
reusable and extensible programming workflow for
quantum simulation would enable broader adoption of
these applications and support more robust testing by
the quantum computing community.

In this contribution, we address development of
common workflows to unify applications of quantum
simulation. Our approach constructs common data
structures and methods to program varying quantum
simulation applications, and we leverage the hardware-
agnostic language QCOR and programming framework
XACC to implement these ideas. We demonstrate these
methods with example applications from materials sci-
ence and chemistry, and we discuss how to extend
these workflows to experimental validation of quantum



computation advantage, in which numerical simula-
tions can benchmark programs for small-sized models
[12], [18]–[21].

II. Software Architecture

Cloud-based access to quantum computing natu-
rally differentiates programming into conventional and
quantum tasks [22], [23]. The resulting hybrid exe-
cution model yields a loosely integrated computing
system by which common methods have emerged for
programming and data flow. We emphasize this con-
cept of workflow to organize programming applications
for quantum simulation. Figure 1 shows the blueprint
of our Quantum Simulation Modeling (QuaSiMo) li-
brary. The programming workflow is defined by a
QuantumSimulationWorkflow concept which encapsu-
lates the hybrid quantum-classical procedures perti-
nent to a quantum simulation, e.g., VQE, QAOA, or
dynamical quantum simulation. A quantum simulation
workflow exposes an execute method taking as in-
put a QuantumSimulationModel object representing
the quantum model that needs to be simulated. This
model captures quantum mechanical observables, such
as energy, spin magnetization, etc., that we want the
workflow to solve or simulate for. In addition, informa-
tion about the system Hamiltonian, if different from the
observable operator of interest, and customized initial
quantum state preparation can also be specified in the
QuantumSimulationModel.

By separating the quantum simulation model from
the simulation workflow, our object-oriented design
allows the concrete simulation workflow to simulate
rather generic quantum models. This design lever-
ages the ModelFactory utility, implementing the object-
oriented factory method pattern. A broad variety of
input mechanisms, such as those provided by the QCOR
infrastructure or based on custom interoperability
wrappers for quantum-chemistry software, can thus be
covered by a single customizable polymorphic model.
For additional flexibility, the last createModel factory
method overload accepts a polymorphic builder inter-
face ModelBuilder the implementations of which can
build arbitrarily composed QuantumSimulationModel
objects.
QuantumSimulationWorkflow is the main exten-

sion point of our QuaSiMo library. Built upon the
CppMicroServices framework conforming to the Open
Services Gateway Initiative (OSGi) standard [25],
QuaSiMo allows implementation of a new quan-
tum workflow as a plugin loadable at runtime. At
the time of this writing, we have developed the
QuantumSimulationWorkflow plugins for the VQE,
QAOA, QITE, and time-dependent simulation algo-

rithms, as depicted in Fig. 1. All these plugins are
implemented in the QCOR language [26], [27] using
the externally-provided library routines.

At its core, a hybrid quantum-classical workflow
is a procedural description of the quantum cir-
cuit composition, pre-processing, execution (on hard-
ware or simulators), and post-processing. To facilitate
modularity and reusability in workflow development,
we put forward two concepts, AnsatzGenerator and
CostFunctionEvaluator. AnsatzGenerator is a helper
utility used to generate quantum circuits based on
a predefined method such as the Trotter decomposi-
tion [28], [29] or the unitary coupled-cluster (UCC)
ansatz [30]. CostFunctionEvaluator automates the
process of calculating the expectation value of an ob-
servable operator. For example, a common approach
is to use the partial state tomography method of
adding change-of-basis gates to compute the oper-
ator expectation value in the Z basis. Given the
CostFunctionEvaluator interface, quantum workflow
instances can abstract away the quantum backend
execution and the corresponding post-processing of the
results. This functional decomposition is particularly
advantageous in the NISQ regime since one can easily
integrate the noise-mitigation techniques, e.g., the ver-
ified quantum phase estimation protocol [31], into the
QuaSiMo library, which can then be used interchange-
ably by all existing workflows.

Finally, our abstract QuantumSimulationWorkflow
class also exposes a public validate method ac-
cepting a variety of concrete implementations of
the abstract QuantumValidationModel class via a
polymorphic interface. Given the quantum simula-
tion results produced by the execute method of
QuantumSimulationWorkflow, the concrete implemen-
tations of QuantumValidationModel must implement
its accept_results method based on different vali-
dation protocols and acceptance criteria. For exam-
ple, the acceptance criteria can consist of distance
measures of the results from previously validated val-
ues, or from the results of validated simulators. The
measure may also be taken relative to experimen-
tally obtained data, which, with sufficient error anal-
ysis to bound confidence in its accuracy, can serve
as a ground truth for validation. A more concrete
example in a NISQ workflow includes the use of
the QuantumSimulationWorkflow class to instantiate a
variational quantum eigensolver simulator, followed by
the use of validate to instantiate a state vector sim-
ulator. Results from both simulators can be passed to
the QuantumValidationModel accept_results method
which evaluates a distance measure method and op-
tionally calls a decision method which returns a binary



Fig. 1: The class UML diagram of the quantum simulation application. The fully typed version is provided
separately (see [24]).

answer. Other acceptance criteria include evaluation
of formulae with input data, application of curve fits,
and user-defined criteria provided in the concrete im-
plementation of the abstract QuantumValidationModel
class. The validation workflow relies on the modular
architecture of our approach, which effectively means
that writing custom validation methods and construct-
ing user-defined validation workflows is achieved by
extending the abstract QuantumValidationModel class.

In our opinion, the proposed object-oriented design
is well-suited to serve as a pattern for implementing
diverse hybrid quantum-classical simulation algorithms
and workflows which can then be aggregated inside a
library under a unified object-oriented interface. Im-
portantly, our standardized polymorphic design with a
clear separation of concerns and multiple extension
points provides a high level of composability to de-
velopers interested in implementing rather complex
quantum simulation workflows.

III. Testing and Evaluation

Our implementation of the programming workflow
for applications of quantum simulation is available
online [32]. We have tested this implementation against

several of the original use cases to validate the cor-
rectness of the implementation and to evaluate perfor-
mance considerations.

A. Dynamical Simulation

As a first sample use case, we consider a non-
equilibrium dynamics simulation of the Heisenberg
model in the form of a quantum quench. A quench of a
quantum system is generally carried out by initializing
the system in the ground state of some initial Hamil-
tonian, Hi, and then evolving the system through time
under a final Hamiltonian, Hf . Here, we demonstrate a
simulation of a quantum quench of a one-dimensional
(1D) antiferromagnetic (AF) Heisenberg model using
the QCOR library to design and execute the quantum
circuits.

Our AF Heisenberg Hamiltonian of interest is given
by

H = J
∑
〈i,j〉

{σxi σxj + σyi σ
y
j + gσzi σ

z
j } (1)

where J > 0 gives the strength of the exchange
couplings between nearest neighbor spins pairs 〈i, j〉,
g > 0 defines the anisotropy in the system, and
σαi is the α-th Pauli operator acting on qubit i. We



choose our initial Hamiltonian to be the Hamiltonian
in equation 1 in the limit of g → ∞. Thus, setting
J = 1, Hi = C

∑
σzi σ

z
i+1, where C is an arbitrarily

large constant. The ground state of Hi is the Néel
state, given by |ψ0〉 = | ↑↓↑ ... ↓〉, which is simple
to prepare on the quantum computer. We choose our
final Hamiltonian to have a finite, positive value of g, so
Hf =

∑
i{σxi σxi+1 + σyi σ

y
i+1 + gσzi σ

z
i+1}. Our observable

of interest is the staggered magnetization [33], which
is related to the AF order parameter and is defined as

ms(t) =
1

N

∑
i

(−1)i〈σzi (t)〉 (2)

where N is the number of spins in the system.
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Fig. 2: Simulation results of staggered magnetization
for an Heisenberg model with nine spins after a quan-
tum quench. The Trotter step size (dt) is 0.05.

Fig. 2 shows sample results for N = 9 spins for a
three different values for g in Hf . The qualitatively
different behaviours of the staggered magnetization
after the quench for g < 1 and g > 1 are apparent, and
agree with previous studies [33]. We present a listing
of the code expressing this implementation in Fig. 3.

We develop QuaSiMo on top of the QCOR infrastruc-
ture, as shown in Fig. 1; thus, any quantum simulation
workflows constructed in QuaSiMo are retargetable to
a broad range of quantum backends. The results that
we have demonstrated in Fig. 2 are from a simulator
backend. The same code as shown in Fig. 3 can also
be recompiled with a -qpu flag to target a cloud-
based quantum processor, such as those available in
the IBMQ network.

Currently available quantum processors, known as
noisy intermediate-scale quantum (NISQ) computers

using namespace QuaSiMo;
// AF Heisenberg model
auto problemModel = ModelFactory::createModel(

"Heisenberg", {{"Jx", 1.0},
{"Jy", 1.0},
// Jz == g parameter
{"Jz", g},
// No external field
{"h_ext", 0.0},
{"num_spins", n_spins},
{"initial_spins",
initial_spins},
{"observable",
"staggered_magnetization"}});

// Time-dependent simulation workflow
auto workflow = getWorkflow("td-evolution",

{{"dt", dt},
{"steps", n_steps}});

// Execute the workflow
auto result = workflow->execute(problemModel);
// Get the observable values
// (staggered magnetization)
auto obsVals = result.get<std::vector<double>>(
"exp-vals");

Fig. 3: Defining the AF Heisenberg problem model
and simulating its dynamics with QuaSiMo. In this
example, g is the anisotropy parameter, as shown in
equation 1, and n_spins is the number of spins/qubits.
initial_spins is an array of 0 or 1 values denoting the
initial spin state. initial_spins was initialized (not
shown here) to a vector of alternating 0 and 1 values
(Néel state). dt and n_steps are Trotter step size and
number of steps, respectively.

[34], have relatively high gate-error rates and small
qubit decoherence times, which limit the depth of
quantum circuits that can be executed with high-
fidelity. As a result, long-time dynamic simulations are
challenging for NISQ devices as current algorithms
produce quantum circuits that increase in depth with
increasing numbers of time-steps [35]. To limit the cir-
cuit size, we simulated a small AF Heisenberg model,
eq. 1, with only three spins on the IBM’s Yorktown
(ibmqx2) and Casablanca (ibmq_casablanca) devices.

The simulation results from real quantum hardware
for g values of 0.0 and 4.0 are shown in Fig. 4, where
we can see the effects of gate-errors and qubit de-
coherence leading to a significant impairment of the
measured staggered magnetization (circles) compared
to the theoretical values (solid lines). In particular,



1 5 10 15 20
Simulation Timestep

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

St
ag

ge
re

d 
M

ag
ne

tiz
at

io
n 

(m
s

)
AF Heisenberg Model with 3 Spins

g = 0.0, Simulator
g = 4.0, Simulator
g = 0.0, Yorktown
g = 4.0, Yorktown

(a) IBMQ Yorktown device

1 5 10 15 20
Simulation Timestep

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

St
ag

ge
re

d 
M

ag
ne

tiz
at

io
n 

(m
s

)

AF Heisenberg Model with 3 Spins

g = 0.0, Simulator
g = 4.0, Simulator
g = 0.0, Casablanca
g = 4.0, Casablanca

(b) IBMQ Casablanca device

Fig. 4: Results of simulation an AF model (eq. 1) for a system with three spins using the code snippet in Fig. 3
targeting the IBMQ’s Yorktown (a) and Casablanca (b) devices. Each data point is an average of five runs of 8192
measurement shots each. The circuits are compiled and optimized using the QCOR compiler before submitting
for execution. The Trotter time-step (dt) is 0.05.

Fig. 4 demonstrates how the quality of the quantum
hardware can affect simulation performance. The York-
town backend has considerably worse performance
metrics than the Casablanca backend 1. Specifically,
compared to the Casablanca backend, Yorktown has a
slightly higher two-qubit gate-error rate, nearly double
the read-out error rate, and substantially lower qubit
decoherence times. While identical quantum circuits
were run on the two machines, we see much better
distinguishability between the results for the two val-
ues of g in the results from Casablanca than those from
Yorktown.

The staggered magnetization response to a quench
for a simple three-qubit AF Heisenberg model in Fig. 4,
albeit noisy, illustrates non-trivial dynamics beyond
that of decoherence (decaying to zero). Improvements
in circuit construction (Trotter decomposition) and
optimization, noise mitigation, and, most importantly,
hardware performance (gate fidelity and qubit coher-
ence) are required to scale up this time-domain simu-
lation workflow for large quantum systems.

B. Variational Quantum Eigensolver

As a second use case demonstration, we apply the
Variational Quantum Eigensolver (VQE) to find the
ground state energy of H2. The VQE is a quantum-
classic hybrid algorithm used to find a Hamiltonian’s

1Calibration data:
IBMQ Casablanca: Avg. CNOT Error: 1.165e-2, Avg. Readout Error:
2.069e-2, Avg. T1: 85.68 µs, Avg. T2: 78.5 µs.
IBMQ Yorktown: Avg. CNOT Error: 1.644e-2, Avg. Readout Error:
4.440e-2, Avg. T1: 50.95 µs, Avg. T2: 34.3 µs.

eigenvalues, where the quantum process side is rep-
resented by a parametrized quantum circuit whose
parameters are updated by a classical optimization pro-
cess [36]. The algorithm updates the quantum circuit
parameters θ to minimize the Hamiltonian’s expecta-
tion value Eθ until it converges.

The performance of the VQE algorithm, as any other
quantum-classical variational algorithms, [37] depends
on the selection of the classical optimizer and the
circuit ansatz. The design scheme implemented in this
work allows us to tune the VQE components to pursue
better performance. We present a listing of the code
expressing this implementation in Fig. 5, in which we
define the different parameters of the VQE algorithm
in a custom-tailored way. In the code snippet, @qjit is
a directive to activate the QCOR just-in-time compiler,
which compiles the kernel body into the intermedi-
ate representation. In Fig. 6, we present simulations
considering different classical optimizers for ansatz
updating. From those simulations, we can infer the
quality of the chosen ansatz and the classical optimizer,
when after a few quantum circuits, the prepared state’s
energy approaches the exact value E∗.

An important feature included in the QCOR compiler
is the fermion-to-qubit mapping that facilitates the
quantum state searching in VQE. In Fig. 7, we present
an example of how to use OpenFermion operators [39]
in the VQE workflow. In that implementation, we define
the ansatz by using Scipy and OpenFermion, the QCOR
compiler decomposes the ansatz into quantum gates;
we follow the same structure presented in Fig. 5 for



from qcor import *
# Hamiltonian for H2
H = −0.22278593024287607*Z(3) + · · · + \

0.04532220205777769*X(0)*X(1)*Y(2)*Y(3) − \
0.09886396978427353

# Defining the ansatz
@qjit
def ansatz (q : qreg , params : List [ f loat ] ) :

X(q[0])
...
Rz(q[1] ,params[0])
Rz(q[3] ,params[1])
...
Rz(q[3] ,params[2])
...
H(q[3])
Rx(q[0] , 1.57079)

# variational parameters
n_params = 3
# Create the problem model
problemModel =

QuaSiMo.ModelFactory . createModel(ansatz ,
H,
n_params)

# Create the NLOpt derivative free optimizer
optimizer = createOptimizer (’nlopt’)
# Create the VQE workflow
workflow = QuaSiMo.getWorkflow(’vqe’ ,

{’optimizer’ : optimizer})
# Execute
result = workflow . execute(problemModel)
# Get the result
energy = result [’energy’]

Fig. 5: Code snippet to learn the ground state energy
of H2 by the VQE. For the sake of simplicity, we have
omitted most of the terms in the Hamiltonian and
ansatz.

the VQE workflow.

IV. Conclusions

We have presented and demonstrated a program-
ming workflow for applications of quantum simulation
that promotes common, reusable methods and data
structures for scientific applications.

We note that while the framework presented here is
readily applicable to use cases in the NISQ era - with
the QuantumSimulationWorkflow in particular being
extendable to NISQ simulation algorithms such as VQE

Fig. 6: Energy ground state estimation for H2 using
VQE. We consider three different classical optimizers,
Nelder-Mead, COBYLA, and L-BFGS-B, to update the
quantum circuit parameters. This plot shows how the
energy Eθ approaches to the exact value E∗ as the
optimizer defines new quantum circuits, following the
variational principle.

- the workflow is also extendable to universal algo-
rithms. Further, simulators which rely on fault tolerant
(FT) methods can be built by abstracting stabilizer
code or other quantum error correction code classes
and by providing polymorphs of the simulator execute
method, which implements the necessary rules and ma-
chinery of FT algorithms during execution. In this man-
ner, an FT simulation workflow can be implemented
with an abstracted FT backend, such that simulators
written with the original QuantumSimulationWorkflow
class can be called with a FT execute method. There-
fore, we expect the framework to be extendable and
to find use in workflows involving universal or FT
applications in the future.
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