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Abstract

Previous research has shown that interacting with natural environments vs. more

urban or built environments can have salubrious psychological effects, such as

improvements in attention and memory. Even viewing pictures of nature vs. pictures

of built environments can produce similar effects. A major question is: What is it

about natural environments that produces these benefits? Problematically, there

are many differing qualities between natural and urban environments, making it

difficult to narrow down the dimensions of nature that may lead to these benefits. In

this study, we set out to uncover visual features that related to individuals’

perceptions of naturalness in images. We quantified naturalness in two ways: first,

implicitly using a multidimensional scaling analysis and second, explicitly with direct

naturalness ratings. Features that seemed most related to perceptions of

naturalness were related to the density of contrast changes in the scene, the

density of straight lines in the scene, the average color saturation in the scene and

the average hue diversity in the scene. We then trained a machine-learning

algorithm to predict whether a scene was perceived as being natural or not based

on these low-level visual features and we could do so with 81% accuracy. As such

we were able to reliably predict subjective perceptions of naturalness with objective

low-level visual features. Our results can be used in future studies to determine if

these features, which are related to naturalness, may also lead to the benefits

attained from interacting with nature.
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Introduction

Research has demonstrated that interacting with natural environments can have

beneficial effects on memory and attention for healthy individuals [1–3] and for

patient populations [4–6]. In addition, views of natural settings have been found

to reduce crime and aggression [7, 8] and also improve recovery from surgery [9].

All of this evidence points to the importance of interacting with natural

environments to promote mental and physical health. Yet, it is not clear exactly

what it is about natural environments compared to urban or built environments

that leads to these benefits. Problematically, there are numerous dimensions that

differentiate natural from urban environments, so uncovering the most salient

features that define natural environments would seem important given that there

is something about natural environments that leads to salubrious effects for both

cognitive and affective processing.

While there are a number of theories that posit why nature is restorative [2, 10–

14], it would be difficult to use these theories to inform the design of green spaces

because these theories tend not to outline in a prescriptive way how to design a

natural space to obtain the most benefit. In his seminal 1995 paper, Kaplan does

list some criteria that would appear to be important for a natural environment

being restorative: the environment must have sufficient extent, the environment

must be compatible with one’s goals, the environment must give people the sense

of being away, and the environment must be fascinating[10]. For the most part, it

is currently not known how some of these concepts could be used to design a

greenspace in a way to optimize psychological functioning.

The purpose of this research is to define low-level visual features that define

objective and subjective measures of naturalness. We are not the first to examine

how objective measures may characterize classes of natural and urban scenes as

this has been done with great success and sophistication in the context of

computer vision [15–19], and mammalian vision [20–23]. However, the purpose

of those studies was to classify/categorize scene types or to relate the biology of

primary vision to statistical regularities of natural scenes. Here our purpose was

not the classification of scenes, but rather identifying simple, low-level visual

features that related to subjective perceptions of naturalness and could be readily

manipulated in visual stimuli. Future research could then use such features, which

can be easily manipulated, to test and design new environments in ways that may

improve psychological functioning.

We accomplished this in three experiments. In the first experiment we had

participants rate the similarity of images of parks that had varied natural and built

content. Afterwards we examined these similarity data using a multidimensional

scaling analysis (MDS; [24, 25]). This technique was used to identify the

underlying featural dimensions that participants relied on when making their

similarity estimates (similar procedures have been utilized by Ward and

colleagues: [26–28]. To obtain explicit labels for the uncovered dimensions from

MDS (the makeup of MDS dimensions must be inferred from the organization of

the space), we conducted a second experiment in which naïve participants
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examined the MDS output, and labeled the dimensions according to their

subjective impression of how the space was organized.

The most common label for the first dimension, i.e., the dimension that

explained the most variance in similarity, was naturalness. Importantly, these

dimension weights correlated strongly with direct measures of naturalness on each

of the images as determined by a second group of independent raters (Experiment

3). Finally, we quantified low-level visual features for all of our images and were

able to relate some of these low-level visual features to direct measures of

naturalness and also to the first MDS dimension that represented a latent measure

of naturalness.

Importantly, it has not been determined the degree of correspondence between

subjective and objective measures of ‘naturalness’ and this study addresses this

point head on. Our results show a strong correspondence. Another equally

important point is that by uncovering the features that are most related to

perceived naturalness, or defining what a natural environment is, these features

may be found to be causal in producing the positive effects of interacting with

natural environments. The features that define perceived naturalness could then

be manipulated in future work to determine how they impact the restorativeness

of natural environments.

Experiment 1: Spatial Multidimensional Scaling (MDS)

Materials and Methods

Participants

Twenty participants from the University of Michigan took part in this study

(mean age519.8; # female520). This research was approved by the Institutional

Review Board of the University of Michigan (IRB #HUM00006681). All

participants provided written informed consent as administered by the

Institutional Review Board of the University of Michigan (IRB# HUM00006681).

Participants were compensated $10/hour for their participation.

Materials

The stimuli used in this study were photographs (.BMP format) taken from parks

built by the TKF Foundation, a private foundation based in Annapolis, MD. The

parks were from a range of locations around the Baltimore, Washington D.C. and

Annapolis area. The photographs were resized to a maximum of 200 pixels along

either dimension, maintaining the original aspect ratio, and assuring that the

images were large enough so that the visual information in the images was easily

detectable. They were shown on monitor that was 41 cm630 cm, at a resolution

of 128061024.

Procedure

In order to assess the dimensions that characterized the TKF sites we composed a

paradigm to compare images from 70 different TKF sites. We performed this

experiment twice using different images of each site for each iteration of the
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experiment. We did so to ensure that our results were not idiosyncratic to the

particular pictures that were selected; 62 sites had multiple pictures, but the other

sites did not. Therefore, we used pictures from 16 additional TKF sites that only

had single images (8 for each set). One set of images we labeled set 1 and the other

set of images was labeled set 2.

On each trial, fifteen different pictures (pulled from a set of seventy total

pictures) were shown to the participant, arranged in 3 discrete rows, with random

item placement. Fifteen images was the largest set of images that could be

displayed simultaneously to the participants without overcrowding the display.

Participants were instructed to drag and drop the images in order to organize the

space such that the distance among items was proportional to each pair’s

similarity (with closer in space denoting greater similarity). Participants were

given as much time as they needed to scale each set; typically, trials lasted between

2 and 5 minutes. The x- and y-coordinates of each image was then recorded and

the Euclidean distance between each pair of stimuli was calculated (for 15 stimuli

there are 105 pairwise Euclidean distances). This procedure was performed

repeatedly (over 29 trials), but with different image sets on each trial, so that all

pairwise comparisons among the 70 total images were recorded. Thus, this

provided a full similarity matrix comparing the ratings of each image to all of the

other images (i.e., all 2415 comparisons) for each participant. This took

participants about an hour to complete; similar rating procedures have been used

by other researchers [29–31].

We controlled the selection of images on each trial by employing a Steiner

System [32]; these are mathematical tools that can be used to ensure that each

item in a pool is paired with every other item (across subsets/trials) at least once.

A Steiner System is denoted S(v, k, t), where ‘‘v’’ is the total number of stimuli,

‘‘k’’ is the number of items in each subset, and ‘‘t’’ is the number of items that

need to occur together. Thus for us, v, k, and t, are 70 (total images), 15 (images

per trial), and 2 (denoting pairwise comparisons), respectively. Simply put, the

Steiner System provides a list of subsets (i.e., trials) identifying which items should

be presented together on each trial. For some combinations of v and k, there may

exist a Steiner set the does not repeat pairwise comparisons (i.e., each pair of items

is shown together once and only once). For other combinations (including ours),

some stimuli must be shown with others more than once. Because this leads to

multiple observations per ‘‘cell’’, we simply took the average of the ratings for the

pairs that were shown together more than once. Across participants, images were

randomly assigned to numerical identifiers in the Steiner System, which ensured

that each participant saw each pair of images together at least once, but that

different people received different redundant pairings.

MDS Analysis

After the similarity matrices were composed, we performed multidimensional

scaling [25] on the pairwise Euclidean distances using PROXSCAL [33],

implemented in SPSS. PROXSCAL allows for both metric and non-metric MDS

and we chose the metric version since pixel distances should be equivalent across
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the screen (i.e., the distance between 10 and 15 pixels should be psychologically

the same as the distance between 30 and 35 pixels). We did not rotate the spaces

because the group plots in MDS utilize orthogonal dimensions.

To determine the appropriate dimensionality for our data, we created Scree

plots for each MDS space, plotting the model’s stress against the number of

dimensions used in the space. Stress functions vary across scaling algorithms

(PROXSCAL uses ‘‘normalized raw stress’’), but all are designed to measure the

agreement between the estimated distances provided by the MDS output and the

raw input proximities themselves (lower stress values indicate a better model fit).

Scree plots are often used to determine the ideal dimensionality of the data by

identifying the point at which added dimensions fail to improve the model fit

substantially [34]. For all four datasets, we found that stress levels plateaued at 4

dimensions (see Fig. 1); thus, the data were analyzed in 4 dimensions.

Experiment 1 Results

The results of the MDS analysis on the first set and the second set are displayed in

Figs. 2 and 3. In those figures the scenes are superimposed on the resulting MDS

plot so that the images are plotted based on their weights on dimension 1 and

dimension 2. The data were scaled in 4 dimensions, as previously stated, in order

to obtain the most appropriate organization of the space overall. However, we

limited our forthcoming analyses on the weightings of dimensions 1 and 2, as

those were the dimensions that explained the most variance in similarity.

To our eye, dimension 1 seemed to code for the naturalness of the images, with

more ‘natural’ images having smaller/negative weights on dimension 1 and ‘built’

images having larger weights on dimension 1. It should be noted that the

particular orientation of the dimensions is unimportant; what matters is the

placement of items relative to other items. Thus, if the poles were reversed (i.e.,

‘natural images had larger weights and ‘built’ images had smaller weights), the

interpretation of a ‘‘naturalness’’ dimension would be unchanged.

Dimension 2 was a bit more difficult to characterize. Importantly, dimension 1

appeared to be similar for both the first set and second sets, suggesting that there

was not something idiosyncratic about one set of images that produced these

results. To validate that dimension 1 was coding for the naturalness of the scenes

we conducted a second experiment.

Experiment 2: Subjective Labeling of Dimensions

Materials and Methods

To validate that dimension 1 (in both spaces) represented naturalness, we had

naïve participants label dimensions 1 and 2 for the first set and the second set of

images to identify what the most commonly composed labels were.
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Participants

Fifty-seven participants from students from the University of Michigan and the

University of South Carolina participated in our study (Michigan: 43 participants

from two samples: Sample 1 Michigan 20 total, # female515; mean age519.95;

Sample 2 Michigan 23 total, # female514, mean age5,24 (The ages were not

recorded, but these were masters students so that mean age should be around 24);

South Carolina: 14 participants, # female59, mean age520; note: the ages and

gender of the participants were not recorded, but these were undergraduate

students that matched the typical demographics from the experimental pool at the

University of South Carolina). This research was approved by the Institutional

Review Board of the University of Michigan (IRB #HUM00006681) and the

Institutional Review Board of the University of South Carolina (IRB

#Pro00028529). All participants provided written informed consent as adminis-

tered by the institutional review board of the University of Michigan (IRB#

HUM00006681) and the University of South Carolina (IRB# Pro00028529).

Procedure

We had participants provide subjective labels for dimensions 1 and 2 from the

first set of images and from the second set images. Participants viewed posters of

Figure 1 and 2 and were instructed to: ‘‘Come up with a single word or phrase

that best describes to you what the difference is between the left and right of each

poster, and what the difference is between the top and bottom of each poster. This

means that you will be coming up with two labels for each poster, one for left/

right, and one for top/bottom.’’ Participants then told an experimenter their labels

Fig. 1. Scree plots for the First set (left) and the Second set (right) of images. Stress values are plotted as a function of the dimensionality in which the
MDS data were scaled.

doi:10.1371/journal.pone.0114572.g001
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Fig. 2. Plotted results of MDS dimensions 1 (X-axis) and 2 (Y-axis) for the first set, with pictures superimposed. The pictures are placed in the image
based on their weights on dimension 1 and 2. A subset of the 70 images is plotted here because there are too many images to make this plot readable.

doi:10.1371/journal.pone.0114572.g002
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Fig. 3. Plotted results of MDS dimensions 1 (X-axis) and 2 (Y-axis) for the second set, with pictures superimposed. The pictures are placed in the
image based on their weights on dimension 1 and 2. A subset of the 70 images is plotted here because there are too many images to make this plot
readable.

doi:10.1371/journal.pone.0114572.g003
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for dimensions 1 and 2 for the first and second posters. These labels were then

aggregated for analysis.

Analysis

From our reading of the generated labels, it appeared that the words nature or

natural occurred frequently as descriptions of dimension 1. We performed a

simple analysis where we counted the number of words that were repeated for the

labels for the first dimension for the first and second sets of images. In addition,

we removed preposition words from the labels, such as ‘to’ and ‘left’, to restrict

the analysis to words with semantic content.

Experiment 2 Results

Some of the most common themes that were uncovered from our analysis were:

buildings (10 times listed), nature (9 times listed), space (8 times listed), paths (7

times listed), pathways (7 times listed), path (6 times listed), natural (5 times

listed), gardens (5 times listed), manmade (4 times listed), organic (4 times

listed), softscape hardscape (3 times listed) and difference (3 times listed). No

other word was listed more than once. From this analysis it appeared that naïve

participants were seeing what we were seeing, i.e., that dimension 1 seemed to be

coding for something more vs. less natural or more built vs. more organic.

Experiment 3: Rating the Perceived Naturalness of the Images

Based on the results of the poster labeling experiment, it appeared that MDS

dimension 1 was coding for naturalness (low-scores) vs. manmadeness (high-

scores). To test this directly, we had participants rate the perceived naturalness of

each image.

Materials and Methods

Participants

Fourteen participants from the University of Michigan participated in our study

(mean age519.2; # female57). This research was approved by the Institutional

Review Board of the University of Michigan (IRB #HUM00006681). All

participants provided written informed consent as administered by the

institutional review board of the University of Michigan (IRB# HUM00006681).

Materials

For this experiment, we added 50 high-natural and 50 low-natural images that

were used in [1]. These include scenery of Nova Scotia and pictures of Ann Arbor,

Detroit and Chicago. We added these images to 207 images that were from 87

TKF sites (images from 87 areas in urban parks from Annapolis, Baltimore and

Washington), giving us a total of 307 images. These TKF images were all used in

Experiment 1, but we included additional TKF images here that were not in
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Experiment 1 to have participants’ rate naturalness on a larger set of data. In

addition, in Experiment 1 the images were re-sized to be smaller, but the images

in this experiment were shown in their native resolution and were in three

different sizes: 512*384, 685*465, and 1024*680 pixels. Importantly, all image

features were normalized to the size of the images.

Procedure

Participants provided their ratings of naturalness on all 307 images. Participants

were shown a single image at a time and rated it on a scale of 1 to 7 for how

natural they considered the image to be. A ‘1’ indicated that the participants

considered the image to be very manmade and ‘7’ indicated that participants

considered the image to be very natural. A ‘4’ indicated that the image was not

judged to be very natural or manmade (therefore anything below 4 was judged to

be more manmade and anything above 4 was judged as being more natural). We

then correlated these values with the weights on dimension 1 to check for

correspondence between the ratings of naturalness and the latent variable

‘naturalness’ as revealed in the MDS analysis.

Results

Significant correlations were found between perceived naturalness ratings and

weights on dimension 1 for both the first set, r(70)52.84, p,.0001 and the

second set, r(70)52.75, p,.0001. The scatter plots can be seen in Fig. 4. The

correlations are negative because negative weights on dimension 1 indicate more

‘naturalness.’

The significant correlation between weights on dimension 1 from MDS and the

direct naturalness ratings suggests that MDS dimension 1 is coding for

naturalness. In many respects, weights on dimension 1 can be interpreted as

representing latent naturalness as participants were simply rating the similarity of

the images, and naturalness could have been one of many factors that was used to

rate similarity. Taken together, this suggests that the MDS analysis produced

highly interpretable and reliable dimensions.

Classifying Naturalness with Low-level Visual Features

The analyses thus far have established that individuals have consistent perceptions

of what they consider to be natural images and that this dimension explains a

good deal of variance in people’s ratings of similarity of urban parks. Another

question that we asked is whether low-level, objective visual features were related

to subjective measures of naturalness. If we can find significant relationships

between visual features and perceived naturalness, then it is possible that those

features most related to naturalness may produce the positive psychological

benefits that are attained from interactions with natural environments.
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Low-Level Visual Features

Ten low-level visual features were used in our analysis and were correlated with

the perceived naturalness ratings to see if any low-level visual features were related

to perceived naturalness. These features were divided into color properties and

spatial properties.

Color properties

Color properties of the images were calculated based on the standard HSV model

(Hue, Saturation, and Value) using the MATLAB image processing toolbox built-

in functions (MATLAB and Image Processing Toolbox Release 2012b, The

MathWorks, Inc., Natick, Massachusetts, United States). 1) Hue is the degree to

which a stimulus can be described as similar to or different from stimuli that are

described as red, green, or blue. Hue describes a dimension of color that is readily

experienced (i.e., the dominant wavelength in the color). We calculated the

average hue across all image pixels and the average standard deviation of hue

across all of an image’s pixels for each image. The average hue represents the hue

level of the image and the 2) standard deviation of hue (SDhue) represents the

Fig. 4. Correlation of Perceived Naturalness with weights on Dimension 1 for the first set and second
sets of images.

doi:10.1371/journal.pone.0114572.g004
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degree of diversity in the image’s hue. 3) Saturation (Sat) is the degree of

dominance of hue mixed in the color, or the ratio of the dominant wavelength to

other wavelengths in the color. We calculated the average saturation of each image

across all image pixels, as well as the 4) standard deviation of saturation for each

image (SDsat). We also measured the overall darkness-to-lightness of a pixel’s

color depending on the brightness of the pixel. This dimension of color is called 5)

Brightness (Bright) or the value of the color. We computed the average brightness

of all pixels for each image, as well as the 6) standard deviation of brightness in

each image (SDbright). Fig. 5 shows hue, saturation, and brightness maps of a

sample image in our experiment, and Fig. 6 compares two images in terms of

their color diversity (SDHue, SDSat and SDbright).

Spatial Properties

In this section we describe how we calculated the spatial features of our images. A

greyscale histogram of an image shows the distribution of intensity values of pixels

that construct an image. Each pixel could have an intensity value of 0 to 255 (8-bit

grayscale) and for a histogram with 256 bins, the probability value of the nth bin

of the histogram (%%) shows the number of pixels in the image that have an

intensity value of n-1 over the total number of pixels in the image. 7) Entropy of a

grey scale image is a statistical measure of randomness that can be used to

characterize part of the texture of an image using the intensity histogram. We used

Fig. 5. a) A sample image (b) Image’s saturation map (c) Image’s hue map (d) Image’s brightness map.

doi:10.1371/journal.pone.0114572.g005
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a simple definition of Entropy:

Entropy~{
X256

n~1

pn � log2pn
� �

ðEq:1Þ

Where pn is the probability value of the nth bin of the histogram. Entropy shows

the average ‘‘information’’ content of an image. The more the intensity histogram

resembles a uniform distribution (all intensity values occur with the same

probability in the image), the greater the entropy value becomes in the image. We

calculated the entropy of the images as a measure of uncertainty or ‘‘information’’

content (versus redundancy) in the image’s intensity values. More comprehensive

and sophisticated definitions of image entropy have previously been applied for

natural images, but those are out of the scope of this study. Here we aim to define

simple features that are not computationally intensive to calculate and can be

readily manipulated in visual stimuli ([35, 36]. Fig. 7 shows a comparison of high

vs. low entropy in two images.

Another image feature that we calculated in this study concerned the spatial or

structural properties of images provided by image gradients. An image gradient is

a map of the image’s brightness intensity or color changes in a given direction.

The points of discontinuity in brightness (rapid brightness or color changes)

mainly consisted of object, surface, or scene boundaries and fine details of texture

in an image and are called edges. Images in this study (especially the more natural

scenery) contain complex detailed texture and fragmentations, which could lead

to some complexities in edge detection.

The most commonly used method for edge detection is the Canny edge

detection algorithm [37]. This usually consists of five stages: first, blurring (or

smoothing) an image with a Gaussian filter to reduce noise; second, finding the

Fig. 6. Comparison of two images in their color diversity properties. a) SDHue 50.11, SDSat50.22,
SDbright50.21 b) SDHue50.19, SDSat50.26, SDbright50.26.

doi:10.1371/journal.pone.0114572.g006
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image gradients using derivatives of Gaussian operators; third, suppressing non-

maximum gradient values; fourth, double thresholding weak and strong edges;

and finally, edge tracking of weak or disconnected edges by hysteresis. This

method is therefore less likely than the others to be influenced by noise, and more

likely to detect true weak edges [38]. We used MATLAB’s built in function ‘edge’

and set the method to ‘canny’ to calculate lower and upper thresholds to be used

by the canny edge detection for each image. Then, the same function was used for

each image with the determined sensitivity thresholds multiplied by either 0.8

(high sensitivity threshold) or 1.6 (low sensitivity threshold). We weighted faint

and salient edges differently, so that each pixel could have a value of 0, 1, and 2

depending on how sharp of an edge it belonged to. Pixels assigned values of ‘0’

were not identified as edges by the canny edge detection algorithm at high

sensitivity thresholds; pixels assigned values of ‘1’ were only detected as edges

when using the high sensitivity threshold and not when using the less sensitive

threshold (and therefore were less salient edges); finally, pixels assigned values of

‘2’ were detected as edges with the lower sensitivity threshold and therefore were

the most salient.

Next, we quantified the pixels belonging to straight lines (horizontal, vertical

and oblique lines) so that straight edge density and non-straight edge (curved or

fragmented edges) density of images could be quantified and separated. Because of

the complexity of the images, a typical Hough transform-based method could not

detect straight lines accurately. Instead, we used a simple gradient-based

connected component algorithm to detect straight lines in the images.

First, the images were convolved with the derivative of a Gaussian filter in the X

and the Y directions to compute the gradient directions for Canny edges. Then

each edge was assigned to one of 8 directions based on its value of tan{1 Gy
�
Gx

� �

where Gy and Gx are the y and x gradients. Then the connected components for

the edge pixels in each direction were determined and labeled using MATLAB’s

‘bwconncomp’ function. Finally, the Eigenvalues of the covariance matrix of the X

and the Y coordinates of points for each connected component (i.e., edge) were

used to compute the direction (i.e., the direction of the first principal component

vector) and the straightness of the components. The first PC of the edges’

coordinates should be parallel to the edge’s direction and the second PC captures

the variability of the edge’s coordinates perpendicular to its direction. Pixels of a

Fig. 7. Comparison of two images in their Entropy a) Entropy57.63 b) Entropy57.10.

doi:10.1371/journal.pone.0114572.g007
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connected component above a threshold of straightness (i.e., the singular value for

the first principle component needed to be greater than 104 times larger than the

singular value for second component) met the criterion of a ‘‘straight edge.’’

The number of pixels on straight edges and those on non-straight edges were

divided by total number of pixels in the image to create 8) Straight Edge Density

(SED), and 9) None-straight edge density (NSED). Fig. 8 shows maps of detected

edges and straight edges in a sample image. Importantly, all of these features were

normalized to the number of pixels in the image.

Results

Fig. 9 displays the correlation of the low-level visual features with perceived

naturalness ratings. Hue, NSED, SED, SDhue, and SDsat all significantly

correlated with naturalness. These data suggest that low-level visual features

(objective measures) can be used to predict individuals’ perceptions of

naturalness. To test this more directly, we trained a linear discriminant

classification algorithm to predict whether an image was rated as natural or not

based on these low-level visual features.

Linear and Quadratic Discriminant Classification of Perceived

Naturalness

To examine how reliably these low-level visual image features predicted the

perceived naturalness of the images, we trained two multivariate machine-learning

algorithms, the linear discriminant classifier and the quadratic discriminant

classifier, utilizing the low-level visual features to predict the perceived naturalness

Fig. 8. (a) Sample image, (b) the detected straight edges of the sample image(c) the edge density map of the
sample image.

doi:10.1371/journal.pone.0114572.g008
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of the images. Utilizing a leave-one-out framework we could test how well each

classifier could accurately predict the perceived naturalness of the image.

Methods

We implemented two multivariate machine-learning algorithms to classify

individual’s perceptions of naturalness of images based on low-level visual

features of the images. The first classifier that we used was a Linear Discriminant

(LD) classification algorithm that attempts to define a plane that separates two

classes. Implementation of LD classification was performed using the ‘classify’

function in the Statistics toolbox in Matlab (the classifier type was set to ‘linear’).

LD classifiers use a multivariate Gaussian distribution to model the classes and

classify a vector by assigning it to the most probable class. The linear discriminant

classification model contains an assumption of homoscedasticity, i.e., that all

classes are sampled from populations with the same covariance matrix. For our

Fig. 9. Correlation Matrix of low-level visual features with perceived naturalness. The color bar indicates the strength of the correlation from -.8 to 1.

doi:10.1371/journal.pone.0114572.g009
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purposes, this assumption means that (a) the variance of each low-level visual

feature does not change for high vs. low natural images and (b) the correlation

between each pair of features is the same for high and low natural images.

Importantly, the assumption of homoscedasticity is equivalent to separating the

two classes, (high and low natural images), with a linear plane in feature space.

The plane is defined as a linear combination of features; the weight of each feature

reflects the contribution of this feature to classification (that is, most relevant

features have the highest absolute value of weight).

The second classification algorithm that we implemented was a Quadratic

Discriminant (QD). Implementation of QD classification was performed using

the ‘classify’ function in the Statistics toolbox in Matlab (the classifier type was set

to ‘quadratic’). Like the LD classifier the QD classifier uses a multivariate

Gaussian distribution to model the classes and classify a vector by assigning it to

the most probable class. However, the QD model contains no assumption of

homoscedasticity, and instead estimates the covariance matrices separately for

each class (that is, the variances of and the correlations between features are

allowed to differ across high vs. low-natural images). This indicates that when

implementing QD the two classes are separated by a non-linear curved surface.

Both LD and QD algorithms have been implemented with great success to classify

brain states and participants brain activity patterns [39–41].

We evaluated the success of each classifier using a cross-validation approach. A

subset of images was used to train the classifier, and the image type (high natural

vs. low natural) was predicted for the images that were not included in the

training set. At each iteration, two images (1 high-natural and 1 low-natural) were

held out for testing, and the remaining 305 were used to train the classifier; this

process was repeated so that all combinations of high and low natural images were

determined by classification.

For each combination of left-out high- and low-natural image we computed

whether the image type was predicted accurately. The proportion of images that

were accurately predicted was our metric of prediction accuracy, our main

measure of the efficacy of the classifier.

Results

The LD classifier was able to successfully predict whether an image was perceived

as high- vs. low-natural with 79% accuracy. This prediction accuracy is well above

chance performance (50%) and suggests that these low-level visual features

reliably predict individuals’ perceptions of naturalness. When we examined the

features that appear most critical to classification, we found that edge density, the

number of straight edges, and the standard deviation of hue were the most critical

features. These feature weights are displayed in Fig. 10. More edge density, fewer

straight edges and lower standard deviations in hue (less hue diversity) were all

related to greater perceived naturalness.

In addition, we noticed that some features, such as the number of curved edges,

had a non-linear relationship with ratings of naturalness. Therefore, we ran the

classification analysis a second time, but using a non-linear classifier, i.e. the
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quadratic discriminant, which would capitalize on these non-linear relationships,

as well as the interactions of them. When doing so classification accuracy

increased to 81%.

Researchers have shown that the principle components of natural images from

their frequency spectral maps could be sensitive in capturing some of the

systematic properties of natural versus man-made scenery [16, 42, 43]. In order to

find out how the visual features used in this study correlate with the spectral

principal components of the images, we ran a principal component analysis on the

images similar to that of [16]. We resized each image to 256*256 pixels and did a

discrete Fourier transform on each image, and then reshaped it to a single column

vector (65536*1). All 307 spectral images were then aggregated into a 65536*307

matrix and a principal component analysis was performed on the concatenated

image matrix.

Fig. 10. Feature weights for the LD classification algorithm in predicting high- vs. low- perceived naturalness of the images. A high absolute value
of the weight indicates that that feature is important for classification. A positive weight indicates that that increasing this feature would lead to increased
perceived naturalness; a negative weight indicates that increasing this feature would lead to a decrease in perceived naturalness. Error bars reflect 2
standard deviations from the mean.

doi:10.1371/journal.pone.0114572.g010
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The first 4 principal components explained 95% of the variability in the

magnitude of Fourier coefficients between images and were correlated with the

low-level visual features. Fig. 11 shows the correlation matrix of these PC’s with

the simple image features. The PCs did correlate significantly with some of our

features such as many of the color features, entropy, SED and NSED. As such, we

performed another classification analysis utilizing these 4 principal components to

predict perceived naturalness. When doing so we obtained above chance accuracy

for both LD (prediction accuracy560.4%) and QD (prediction accuracy564.0%).

However, classification with these PCs was not as strong as the classification

accuracy calculated with the derived low-level features. In summary, these features

significantly predicted ratings of perceived naturalness, linking low-level objective

measures to subjective measures of naturalness.

To further inspect the relation of these visual features with the naturalness

dimension we previously obtained from the MDS analysis, we also regressed the

weights on dimension 1 on the image features for both the first set and second set

of stimuli. The results show that these features explain a significant amount of

variance in dimension 1 weights (40% for first set and 35% for odd set; p,1026

and p,1025, respectively). The results for the regressions are shown in Tables 1

and 2. These results complement the results from the classification analysis and

show that low-level features do reliably predict subjective perceptions of

naturalness.

Discussion

Previous research has shown that interacting with natural environments can have

a salubrious effect on cognitive and affective processing compared to interacting

Figure 11. Correlation Matrix of low-level visual features with the first 4 Principal Components across the 307 images. The color bar indicates the
strength of the correlation from -.4 to +.4

doi:10.1371/journal.pone.0114572.g011
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with more urban/manmade environments [1, 3, 5]. This suggests that there is

something about natural environments that differs from urban environments that

could improve psychological functioning.

The problem is that finding such features is difficult given how many features

differ between these two environments. In this work, we found that individuals’

perceptions of naturalness are quite consistent. This is corroborated by the fact

that in the MDS analysis, the dimension that explained the most variance in

individuals’ perceptions of similarity in scenes was strongly related to direct

ratings of naturalness. To take this one step further, we were able to link

perceptions of naturalness with objective low-level visual features such as the

density of edges, straight lines and hue diversity. This means that we have

objective measures that significantly predict perceived naturalness and therefore

may also be features that could be manipulated to improve psychological

functioning.

Notably, our work replicates important previous research by Ward and

colleagues. In that work, a sample of 20 photographs was used with more extreme

Table 1. Regression of Dimension 1 on features from the First set experiment.

Measure b SE CI t-value

SDhue 0.16* 0.04 [0.08, 0.24] 3.21

Entropy 0.14* 0.04 [0.06, 0.22] 3.30

NSED 20.19* 0.04 [20.27, 20.11] 24.64

SED 0.15* 0.04 [0.07, 0.24] 3.06

Saturation 0.01 0.04 [20.07, 0.09] 0.28

Brightness 20.05 0.04 [20.13, 0.03] 21.22

Hue 20.08 0.05 [20.18, 0.02] 21.54

SDbright 0.05 0.04 [20.03, 0.13] 1.47

Note. Adjusted R250.40, F (8, 61)56.66.
*P,0.05, CI 5 Confidence interval for a50.05, SE5Standard error.

doi:10.1371/journal.pone.0114572.t001

Table 2. Regression of dimension 1 on features from the Second set experiment.

Measure b SE CI t-value

SDhue 0.11* 0.04 [0.04, 0.18] 2.53

Entropy 0.06 0.04 [20.02, 0.14] 1.28

NSED 20.13* 0.04 [20.27, 20.11] 22.88

SED 0.08* 0.04 [0.01, 0.15] 2.00

Saturation 0.03 0.05 [20.07, 0.13] 0.70

Brightness 20.01 0.04 [20.09, 0.07] 20.26

Hue 20.05 0.04 [20.13, 0.03] 21.38

SDbright 0.06 0.04 [20.02, 0.14] 1.62

Adjusted R250.34, F (8, 61)55.86.
Note. *P,0.05, CI 5 Confidence interval for a50.05, SE5Standard error.

doi:10.1371/journal.pone.0114572.t002
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levels of natural content (e.g., inside a rainforest, the Grand Canyon) and urban

content (e.g., an aerial view of San Francisco, an smoggy freeway). With these

images, Ward and colleagues had participants make pairwise similarity judgments

between the 20 images (i.e., 190 pairs) and then ran an MDS analysis.

Importantly, the first dimension that was uncovered from those experiments

coded for the naturalness vs. constructed character of the images[26, 28]. In

another study naturalness was also correlated with dimension 1 weights, but was

confounded with the openness vs. enclosedness of the images [27]; it is also worth

noting that the number of significant dimensions in those studies was also around

4–5, which is similar to our study). The results presented here replicate this earlier

work on a much larger set of images and with less variability in image content

(i.e., our images were not just at the extremes of naturalness vs. manmadeness, but

had a large distribution with many intermediately rated images). Therefore, our

more restricted range of environments may better represent the types of

environments encountered in daily life. In addition, the results also demonstrate

that the phenomena are measurable even across a more subtle range of

naturalness.

Importantly, this work extends upon the previous findings by identifying low-

level visuals features that could be manipulated to uncover if any of these features

may improve psychological outcomes (i.e., attention and mood). Without

identifying the features that are related to naturalness, it would be difficult to

construct an experiment aimed at uncovering physical features of the

environment that may lead to improvements in psychological functioning, and

even more difficult to design a future built environment to improve psychological

functioning. Our work helps to provide a foundation and methods for classifying

and quantifying our physical environment in psychologically and behaviorally

meaningful ways [26, 44].

Additionally, many researchers have achieved great success in training machine-

learning algorithms on low-level features to classify natural vs. man-made

environments using sophisticated analyses [16, 17]. Here we utilized simpler

metrics to link with subjective measures of perceived naturalness, because our goal

was to define simple, objective measures that could be easily manipulated (e.g.,

the number of curved and fragmented edges, average color diversity or the

number of straight lines) to study if those features may improve psychological

functioning.

One limitation of this study is the fact that we used images of natural and urban

environments, which are by definition abstractions of the true environment. More

specifically, JPEG and other lossy image compression schemes can alter spatial and

color image statistics [45]. One could draw conclusions about human perceptions

of naturalness for compressed scenes in terms of their statistics, but this may not

capture human perception of natural scenes and urban scenes in the ‘‘wild.’’

However, the fact that [1]used some of the images that were also used here and

found restorative effects (i.e., improvements in memory and attention) after

exposure to those natural images suggests that compressed images do preserve at

least some of the visual properties of scenes that lead to psychological benefits.
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Additionally, there are practical considerations when performing such studies and

it would be difficult to quantify many of these low-level features in the wild.

Another potential limitation is that one may be able to create abstract images

that contain many of the features of nature, but are not perceived as being natural

(e.g., a Jackson Pollock painting). This would make classifying those images

difficult, but it is possible that exposure to abstract art that contains many of the

low-level features of nature could be restorative and is a topic that we plan to

pursue in the future, i.e., whether the low-level features on there own are

restorative or if the semantic meaning of nature is necessary for restoration.

Along these same lines, it is not clear if the low-level visual features used in our

study objectively measure naturalness. For example, our data suggest that

environments perceived as more natural contain more non-straight edges, fewer

straight edges, and less color saturation, but it could be that other non-natural

environments could also be found to share some of these distributional properties

that we are finding for our natural environments (e.g., some of Antoni Gaudi’s

architecture in Barcelona). As such it is not necessarily the case that these low-

level visual features define naturalness per se. However, based on the success of

our algorithms in predicting the perceptions of naturalness, we are confident that

these low-level features are related to naturalness, but may not be exclusive to

natural environments. More images and scene-types would be needed to draw

more definitive conclusions.

In his seminal 1995 paper, Kaplan lists some criteria that would appear to be

important for a natural environment to be restorative: The environment must

have sufficient extent; the environment must be compatible with one’s goals; the

environment must give people the sense of being away; and the environment must

be fascinating [10]. We have attempted to take the work of Kaplan one step

farther by defining the low-level visual features that may drive perceptions of

naturalness with the hope that these features may be causal to the beneficial effects

of interacting with natural environments. It is our hope that in future work we can

more fully identify the features of nature that may lead to psychological benefits so

that those features can be utilized in future designs of the built environment.
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