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Abstract

The gene-regulatory landscape of the brain is highly dynamic in health and disease, coordinating a
menagerie of biological processes across distinct cell-types. Here, we present a multi-omic single-
nucleus study of 191,890 nuclei in late-stage Alzheimer’s Disease (AD), accessible through our
web portal, profiling chromatin accessibility and gene expression in the same biological samples
and uncovering vast cellular heterogeneity. We identified cell-type specific, disease-associated
candidate cis-regulatory elements and their candidate target genes, including an oligodendrocyte-
associated regulatory module containing links to APOE and CLU. We describe cis-regulatory
relationships in specific cell-types at a subset of AD risk loci defined by genome wide association
studies (GWAS), demonstrating the utility of this multi-omic single-nucleus approach. Trajectory
analysis of glial populations identified disease-relevant transcription factors, like SREBF1, and
their regulatory targets. Finally, we introduce sScWGCNA, a co-expression network analysis
strategy robust to sparse single-cell data, and perform a systems-level analysis of the AD
transcriptome.

The human brain is composed of multiple heterogeneous subsets of cells; both neuronal
and nonneuronal cells work in concert to perform simple and higher-order tasks. Recent
studies have provided more precise molecular characterization and identification of
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neuronal and nonneuronal cell populations in the cognitively normal brainl4. However,

our understanding of heterogeneous cell populations within the diseased brain is still
largely limited, hindering our understanding of the biological processes underlying disease.
Neurodegenerative disorders, like Alzheimer’s disease (AD), are marked with massive
neuronal loss, accompanied by gliosis, and the role of specific neuronal and glial cell
populations in AD pathophysiology remains unclear. Several single-cell and single-nucleus
RNA-sequencing (snRNA-seq) studies have been performed on both mouse and human
tissue to study AD, revealing cell-type specific transcriptional changes®®, but the regulators
of these disease-associated cell subtypes have yet to be defined.

Moreover, a slew of genetic studies have been performed on AD, identifying multiple
associated genetic risk variants10-16, Genome-wide association studies (GWAS) of complex
diseases such as AD show that a substantial proportion of genetic risk from common
variants partitions to distal regulatory elements, which are often cell-type specific regions

in disease-relevant tissues. While much work has gone into intersecting GWAS signals

with functional genomics assays, including bulk-tissue RNA-seq and assay for transposase
accessible-chromatin with high-throughput sequencing (ATAC-seq)!’, the resolution of such
studies is noticeably limited by cell-type heterogeneity. A prerequisite for linking GWAS
hits to cell-types is a map that links distal regulatory elements with their target genes.

ATAC-seq profiles the open chromatin regions within a tissue and has recently been adapted
for single cell resolutionl8. To date, single-cell chromatin accessibility techniques, such

as single-nucleus ATAC-seq (SNATAC-seq) have been seldom used in primary samples of
diseased tissues, with only two published studies of single-cell chromatin accessibility in the
cognitively normal human brain1220, Therefore, we performed snATAC-seq and snRNA-seq
in the same AD postmortem human brain tissue samples to define AD-associated gene
regulatory programs at the epigenomic and transcriptomic level, providing a powerful lens
into the cellular heterogeneity of the brain and allowing us to unravel novel biological
pathways underlying neurodegeneration in specific cell populations.

Here, we present a multi-omic analysis of 191,890 nuclei from postmortem human brain
tissue of AD and cognitively healthy controls at the single-nucleus resolution, in which we
directly integrated snRNA-seq and snATAC-seq datasets, thus providing a more complete
understanding of the molecular changes in AD. We identified cell-type specific candidate
cis-regulatory elements (CCRES) based on chromatin accessibility and found disease-
associated cell subpopulation-specific transcriptomic changes. We identified transcription
factors (TFs) that may be regulating AD gene expression changes. Further, we applied
pseudotime trajectory analysis on our integrated dataset to extensively characterize disease-
associated glial cell states at the epigenomic and transcriptomic level, expanding on previous
work exploring gene expression in diverse glial subtypes. We integrated fine-mapped GWAS
signals at selected AD risk loci with our sSnATAC-seq data to link AD risk signals to the
specific cell-types in which they are accessible and defined the cis-regulatory chromatin
accessibility networks at these loci. Moreover, since network analysis has been effective

at clarifying disease transcriptomic signatures in tissue-level RNA-seq data, we designed

a co-expression network analysis pipeline, integrating single-cell and bulk-tissue RNA-seq
datasets, that robustly identified AD-associated co-expression networks within each cell-
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type. Altogether, we have clarified the gene regulatory landscape of AD, highlighting

the role of glia in AD pathophysiology and identify several genes, namely SREBFL1 in
oligodendrocytes, for further study in the context of AD. Finally, we provide an online
interface for exploration of these datasets (https://swaruplab.bio.uci.edu/singlenucleiAD).

Multi-omic analysis of the human prefrontal cortex

We performed both snATAC-seq (10x Genomics; n=12 late-stage AD; n=8 control) and
snRNA-seq (10x Genomics v3; n=11 late-stage AD; n=7 control) on nuclei isolated

from the prefrontal cortex (PFC) using postmortem human tissue from late-stage AD

and age-matched cognitively healthy controls (74-90+ years old, Fig. 1a). We defined
late-stage AD and controls based on both Braak and plaque staging (Supplementary Tables
1-2). We specifically aimed to generate both transcriptomic and epigenetic data from

the same tissue sample (aliquots of samples from the same dissection, see Methods) to
minimize differences in cell-type composition between the two methods, thus allowing

for meaningful downstream integrated analysis. After quality control filtering, we retained
a total of 130,418 nuclei for snATAC-seq and 61,472 nuclei for snRNA-seq (Methods,
Supplementary Fig. 1-2, Supplementary Table 3, Supplementary Note). To ensure the
rigor of our study, we applied batch correction methods to the data from both assays,

since library preparation limitations required multiple batches. For snATAC-seq, we used
mutual nearest neighbors (MNN)?Z! to correct the Latent Semantic Indexing (LSI) reduced
chromatin accessibility matrix, and for snRNA-seq we used integrative Non-negative
Matrix Factorization (iNMF)22 to reduce dimensionality while simultaneously eliminating
batch effects (Methods, Extended Data Fig. 1, Supplementary Note). We applied Uniform
Manifold Approximation and Projection (UMAP)23 dimensionality reduction and Leiden
clustering4 to the batch-corrected epigenomic and transcriptomic datasets, identifying
distinct cell-type clusters in ShATAC-seq (35) and snRNA-seq (34, Fig. 1b-c). With
SnATAC-seq, we profiled all major cell-types of the brain—excitatory neurons (24,076
nuclei, EX.a-¢), inhibitory neurons (9,644 nuclei, INH.a-d), astrocytes (15,399 nuclei,
ASC.a-f), microglia (12,232 nuclei, MG.a-e), oligodendrocytes (62,253 nuclei, ODC.a-m),
and oligodendrocyte progenitor cells (4,869 nuclei, OPC.a)—annotated based on chromatin
accessibility at the promoter regions of known marker genes (Fig. 1d, Extended Data Fig.
2). We used chromVARZ to compute TF motif variability in single nuclei by estimating
the enrichment of TF binding motifs in accessible chromatin regions (Methods) and
examined the enrichment of TF motifs by cell-type in respect to diagnosis, identifying
several TF motifs with increased enrichment with disease in astrocytes, excitatory neurons,
and microglia (Supplementary Fig. 3, Supplementary Data 1). Moreover, we performed
TF footprinting analysis to further clarify cell-type-specific TF regulation, highlighting the
SOX9 TF footprint in oligodendrocytes. Interestingly, we noticed TF motif enrichment of
oligodendrocyte-related TFs in excitatory neurons. Likewise, we detected similar cell-types
using snRNA-seq— excitatory neurons (6,369 nuclei, EX1-5), inhibitory neurons (5,962
nuclei, INH1-4), astrocytes (4,756 nuclei, ASC1-4), microglia (4,126 nuclei, MG1-3),
oligodendrocytes (37,052 nuclei, ODC1-13), and oligodendrocyte progenitor cells (2,740
nuclei, OPC1-2)—classified by the gene expression of cell-type markers (Fig. 1¢). In both
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assays, oligodendrocytes were the most commonly profiled cell-type (Supplementary Fig.
3). Additionally, while many differentially expressed genes (DEGS) in each major cell-type
agreed with previous literature, we also found cluster-specific genes previously established
as neuronal or glial subtype markers, such as L/NC00507 for L2-3 excitatory neurons
(EX1)4, Sv2cfor L3 interneurons (INH4)1, and CX3CR1 for homeostatic microglia
(MG2)28 (Fig. 1h, Supplementary Fig. 3-4, Supplementary Data 1).

Since the epigenomic landscape is deeply intertwined with downstream gene expression
signatures, we integrated our sSnATAC-seq and sSnRNA-seq datasets using Seurat’s
integration platform?7:28 (Methods, Fig. 1f, Extended Data Fig. 3, Supplementary Fig. 3).
Cell-types that were independently classified using chromatin data or transcriptome data
overwhelmingly grouped together in the integrated UMAP space (Fig. 19, Supplementary
Fig. 3). Using the same biological samples in snATAC-seq and snRNA-seq resulted in a high
degree of overlap between nuclei from these two data modalities in the jointly constructed
space. Additionally, we confirmed cell-type identities by gene activity and gene expression
in a panel of canonical cell-type marker genes (Supplementary Fig. 3) and used Seurat’s
label transfer algorithm to verify cell-type annotations in the SnATAC-seq dataset using the
snRNA-seq dataset as a reference (Supplementary Fig. 5).

Multi-omic characterization of AD cellular heterogeneity

In both sSnATAC-seq and snRNA-seq, we discovered multiple neuronal and glial
subpopulations, and we annotated the subpopulations from snRNA-seq based on previously
identified marker genes* (Fig. 2, Supplementary Fig. 6-7, Supplementary Note). For our
SNATAC-seq clusters, we used Seurat label transfer to calculate cluster prediction scores
allowing for supervised annotation of our cell clusters, in which we mapped EX.a to EX1
and ASC.b to ASC2, for example (Supplementary Fig. 6-7). We examined the composition
of each cluster in the context of disease and found several that are significantly over- or
under-represented in late-stage AD compared to control, in both data modalities (Fig. 2d-g,
Methods). ASC3 (GFAP CHI3L*) significantly increased in proportion with disease
(bootstrapped cluster proportion analysis using a two-sided Wilcoxon rank sum test, FDR
= 8.63 x 107°), whereas ASC4 (GFAPW WIFI'| ADAMTS17) significantly decreased
(FDR = 4.68 x 1077), consistent with a recent sSnRNA-seq study of the 5XFAD mouse
model of AD2°. We also found that the proportion of MG.a. and MG.b was increased in
late-stage AD (FDR =9.82 x 1077, 8.88 x 10719), both of which mapped to the activated
snRNA-seq cluster MG1 (SPPIN9"/ CD163"), which was also increased with disease (FDR
=6.32 x 10~7). Additionally, we found that immune oligodendrocyte cluster ODC13 was
significantly increased in late-stage AD (FDR = 1.62 x 1074).

Further, we identified both differentially accessible chromatin regions (DARs) and
differentially expressed genes (DEGS) in late-stage AD for each cell cluster and found
high cluster specificity for GO term enrichment of distal and proximal DARs, as well as
DEGs (Methods, Supplementary Fig. 7-9, Supplementary Data 1-6, Supplementary Note).
For example, we identified NEAT as upregulated in astrocytes and oligodendrocytes,

in agreement with previous findings in the entorhinal cortex’, and we confirmed AD
upregulation of NEAT1 with /n situhybridization ( Extended Data Fig. 4). Altogether, we
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found cluster-specific epigenetic and transcriptomic changes in late-stage AD, which may
underlie the dysregulation of distinct biological pathways in different cell subpopulations in
neurodegeneration.

Cell-type-specific cis-gene regulation in late-stage AD

Based on our experimental design utilizing both snATAC-seq and sSnRNA-seq in the same
samples, we reasoned that we could identify the target genes of cCREs in specific cell
populations (Extended Data Fig. 5a, Methods). To this end, we sought to elucidate the
cis-regulatory architecture of the PFC in late-stage AD by constructing cis co-accessibility
networks30 (CCANS) separately for late-stage AD and control in each cell-type (Methods).
To identify target genes of cCREs, we focused on the subset of co-accessible peaks where
one of the peaks lies in a promoter element, yielding a set of cCRESs and candidate target
genes. For this set of co-accessible links, we correlated the expression of the candidate target
gene to the chromatin accessibility of the cCRE, strengthening the evidence of a potential
regulatory relationship beyond co-accessibility alone. Finally, we used NMF to analyze and
cluster these gene-linked cCREs (gl-cCRES) based on their chromatin accessibility in each
cell cluster. In sum, this process results in a set of candidate enhancer elements (gl-cCRES)
grouped into functional modules, as well as a set of cCCRE-linked genes, for each major
cell-type in late-stage AD and control.

In total, using this approach we identified 56,552 gl-cCREs and 11,440 cCRE-linked genes,
with a median of 4 cCREs linked to each of these genes (Fig. 3a, Supplementary Tables
4-5). By examining the overlap between sets of cCRE-linked genes identified in each
cell-type, we observed a substantial number of genes with linked cCREs that are shared
across multiple cell-types, in addition to those that are cell-type specific (Fig. 3b). For
several cell-types, we found a significant overlap between the set of cCRE-linked genes

and cell-type marker DEGs, as well as genes that are upregulated in AD within that cell-
type, highlighting a critical role of cCREs in disease-related gene expression changes (Fig.
3c). We also investigated the chromatin accessibility in each snATAC-seq cluster for these
gl-cCREs and noted a high degree of cell-type and cluster specificity (Fig. 3d). The majority
of the gl-cCREs mapped to intronic regions (58.35%) (Fig. 3e). Moreover, by inspecting

the NMF coefficient matrix (H), we were able to identify which cluster or cell-type each
NMF module corresponds to, and we annotated several modules that are specific to control
or late-stage AD nuclei within a given cluster (Fig. 3f-g, Supplementary Note). Additionally,
we found that some of the cCRE target genes that are common to more than one cell-type
are regulated by different cCREs in each cell-type.

Cell-type-specific transcription factors in late-stage AD

To complement our analysis of cis-regulatory elements, we sought to identify cell-type
specific trans-regulatory elements in late-stage AD. TFs tightly control cell fate in
neurodevelopment and have been implicated in neurodegenerative processes. We examined
the regulatory role of microglial TF SPI1 (also known as PU.1) and nuclear respiratory
factor 1 (NRF1) in oligodendrocytes (Figure 4a-f, Supplementary Fig. 10, Supplementary
Note). SPI1 motif variability in our sSnATAC-seq microglia clusters was significantly
increased in only upregulated clusters MG.a and MG.b, but SPI1's targets were significantly
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downregulated in only MG1 (Fig. 4a-b, Supplementary Fig. 10). We also identified
NRF1 is dysregulated in select oligodendrocyte clusters (Fig. 4d-f, Supplementary Fig.
10). These results indicate that SPI1 acts as a transcriptional repressor in late-stage AD,
providing insight into how SPI1 contributes to AD pathophysiology. Additionally, NRF1
has previously been associated with mitochondrial function, and impaired mitochondrial
function3!, mediated by NRF1 dysregulation, may contribute to neuronal dysfunction in
late-stage AD through the disruption of myelination. TF analyses in neuronal populations
and Fos related antigen 2 (FOSL2) in astrocytes are shown in Extended Data Fig. 4 and
Supplementary Fig. 10.

To gain further insight into TF-mediated gene regulation in late-stage AD, we constructed
cell-type specific TF regulatory networks. For a given TF, we identified candidate target
genes as those whose promoters or linked cCREs are accessible and contain the TF’s
binding motif in the cell-type of interest, and we repeated this for several select TFs,
generating microglia-specific and oligodendrocyte-specific TF regulatory networks (Fig.
4g-h, Extended Data Fig. 5b, Supplementary Note). Within these networks we identified
multiple AD DEGs, in addition to genes located at known AD GWAS loci, regulated by
SPI1 in microglia and NRF1 in oligodendrocytes.

Integrated trajectory analysis of disease-associated glia

To further uncover molecular mechanisms driving glial heterogeneity in AD, we performed
pseudotime trajectory analysis using monocle332-34 on the integrated snATAC-seq and
snRNA-seq data in oligodendrocytes, microglia, and astrocytes (Supplementary Note).
Multi-omic trajectory analysis allows us to investigate the dynamics of gene expression,
chromatin accessibility, and TF motif variability throughout a continuum of cell-state
transitions. We modeled gene expression and chromatin accessibility dynamics using a
recurrent variational autoencoder (RVAE)33. Briefly, RVAE is an encoder-decoder neural
network framework that uses long short-term memory (LSTM) units to effectively model
temporal biological data, yielding a two-dimensional latent representation of the input
features as well as a de-noised reconstructed version of the original input (Supplementary
Note). For each cell-type, we identified genes that are differentially expressed along the
trajectory (t-DEGs, Supplementary Data 7) and used these genes as features to train the
RVAE until the loss function converged (Supplementary Note, Extended Data Fig. 6).

Oligodendrocyte trajectory reveals SREBF1 dysregulation

We constructed an integrated oligodendrocyte trajectory using 58,221 nuclei from snATAC-
seq and 36,773 nuclei from snRNA-seq (Fig. 5a), noting that the proportion of nuclei from
late-stage AD samples appears to increase along the trajectory (Fig. 5b, Pearson correlation
R =0.32, p-value = 0.022). To clarify the functional state of oligodendrocytes associated
with late-stage AD, we examined the gene expression signatures3®:37 of newly formed
oligodendrocytes (NF-ODC), myelin-forming oligodendrocytes (MF-ODC), and mature
oligodendrocytes (mature ODC) (Fig. 5¢c, see Supplementary Note for gene signature lists).
Interestingly, we found that the mature oligodendrocyte gene expression signature increased
at the end of the trajectory, whereas the myelin-forming oligodendrocyte gene signature
decreased. In addition, the newly formed oligodendrocyte gene signature decreased
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throughout the trajectory, altogether suggesting that the oligodendrocyte pseudotime
trajectory appears to recapitulate oligodendrocyte maturation. Chromatin accessibility of
9,231 oligodendrocyte gl-cCREs and gene expression of 1,563 oligodendrocyte t-DEGs
reconstructed with RVAE showcases the vast amount of chromatin remodeling and
transcriptional reprogramming that may be underlying oligodendrocyte maturation (Fig. 5d).

Additionally, the latent feature space (Z) learned by the RVAE provides further biological
insight into the pseudotime trajectory and gene regulation in disease (Fig. 5¢). Here, each
dot represents a single feature (gene or chromatin region), and they are organized in 2D
space based on their pseudotemporal dynamics learned by the RVAE. We ranked each
feature based on the point in the trajectory that it reaches 75% of its maximum value,
which we termed as the feature’s “trajectory rank”. We then correlated the reconstructed
feature trajectories, as in Fig. 5d, to the proportion of late-stage AD nuclei, as in Fig. 5b,

to see which features consistently change with AD. For both genes (t-DEGs) and chromatin
regions (gl-cCRES), the latent space clearly groups features together that are positively

or negatively correlated with the proportion of late-stage AD nuclei and groups features
together with similar trajectory ranks, demonstrating the power of this RVAE model for the
analysis and interpretation of multi-omic pseudotemporal dynamics.

We showcase two key TFs in oligodendrocytes: NRF1 and sterol regulatory element
binding transcription factor 1 (SREBF1). SREBF1 is critical in regulating the expression

of genes involved in cholesterol and fatty acid homeostasis®®, and it is proposed that Ap
inhibits SREBF1 activation3?. We found that NRF1 motif variability is upregulated in
oligodendrocytes in late-stage AD (Bonferroni adjusted p-value = 5.13 x 10729, Fig. 4g), and
SREBF1 motif variability is downregulated with disease in oligodendrocytes (Bonferroni
adjusted p-value = 2.67 x 1071°1 Extended Data Fig. 4). We correlated TF motif variability
trajectories (Extended Data Fig. 6) with the reconstructed t-DEG expression trajectories
and visualized the correlation between the TF and each gene within the 2D latent space,
identifying candidate target genes activated or repressed by TF binding events (positive or
negative trajectory correlation, respectively) (Fig. 5f, Supplementary Note). We found that
NRF1 is negatively correlated with target genes at the end of the trajectory, while SREBF1
is positively correlated with target genes at both the beginning and the end of the trajectory,
indicating that SREBF1 acts as a transcriptional activator throughout the trajectory.

Microglia trajectory to define disease-associated microglia

Using the same analytical approach as our oligodendrocyte trajectory analysis, we
constructed an integrated microglia trajectory using 10,768 nuclei from snATAC-seq and
4,119 nuclei from snRNA-seq (Fig. 6a). The proportion of nuclei from late-stage AD
samples significantly increased throughout the microglia trajectory (Fig. 6b, Pearson
correlation R = 0.53, p-value = 6.9 x 107°). We next sought to investigate gene signatures
of disease-associated microglia (DAMSs), which were introduced in Keren-Shaul ef al.’s
single-cell transcriptomic study*C of 5XFAD mice and are highly debated in the field of AD
genomics. DAMs are described as AD associated phagocytic microglia that are sequentially
activated in TREMZ-independent and -dependent stages (stage 1 and stage 2, respectively).
We found that the integrated microglia trajectory follows a decrease in the homeostatic
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signature, an increase in the stage 1 DAM signature, and a distinct global depletion of

the stage 2 TREMZ2-dependent DAM signature (Fig. 6¢, see Supplementary Note for gene
signature lists), suggesting that this microglia trajectory describes the transcriptional and
epigenetic changes during the transition from a homeostatic to disease-associated cell-state.

To further dissect the microglia trajectory, we modeled the chromatin accessibility and
gene expression dynamics of 9,163 microglia gl-cCREs and 2,138 microglia t-DEGs,
respectively, using RVAE (Fig. 6d-e). We highlight two ETS family TFs, SPI1 and ETS
variant 5 (ETV5), both of which showing upregulated motif variability in late-stage AD
(Bonferroni adjusted p-values 1.19 x 10720, 6.68 x 10719 respectively), and their candidate
target genes along the trajectory (Fig. 6f, Supplementary Note). We observed that the SP11
motif trajectory is negatively correlated with genes at the end of the trajectory, supporting
our previous findings that SPI1 acts as a repressor in late-stage AD

Disease-associated astrocytes in human AD

We also constructed an integrated astrocyte trajectory using 12,112 nuclei from snATAC-seq
and 4,704 nuclei from snRNA-seq (Fig. 6g), and we again found that the proportion of
late-stage AD nuclei significantly increases throughout the trajectory (Fig. 6h, Pearson
correlation R = 0.57, p-value = 1.9 x 107°). In a similar fashion to our analysis of the DAM
signature in the microglia trajectory, we investigated the gene signature of disease-associated
astrocytes (DAAS), described in a recent sSnRNA-seq study of the hippocampus in 5XFAD
mice?? as an AD-specific GRAPMIN astrocyte subpopulation that is distinct from another
GFAP9N astrocyte subpopulation found in aged wild-type and 5XFAD (GFAP-high). Based
on DAA gene signature analysis, we reasoned that this trajectory follows a trend from a
GFAP-low state to GFAP-high and DAA-like states (Fig. 6i, see Supplementary Note for
gene signature lists).

RVAE modeling of 12,487 astrocyte gl-cCREs and 1,797 astrocyte t-DEGs revealed rich
gene-regulatory dynamics across the trajectory (Fig. 6j-k). We investigated the relationship
between astrocyte t-DEGs and two TFs: CCCTC-binding factor (CTCF) and FOSL2, whose
motif variability we have found to be downregulated and upregulated in late-stage AD,
respectively (Bonferroni adjusted p-values 6.45 x10717, 5.65 x10~99 respectively). CTCF

is known as a master chromatin regulator*:42, and we observed that the CTCF motif
variability trajectory is anti-correlated with the DAA and GFAP-high signatures (end of the
trajectory, Extended Data Fig. 6) and positively correlated with t-DEGs in the GFAP-low
phase of the trajectory (Fig. 61). Alternatively, we found a positive correlation between the
motif variability trajectory of FOSL2 with the GFAP-high and DAA gene signatures and a
positive correlation with genes at the end of the trajectory (Fig. 61, Supplementary Note).
These findings suggest that FOSL2 may be an activator of the disease-associated astrocyte
signature, whereas CTCF may promote a more homeostatic or non-diseased astrocyte state.
By relating gene expression with TF motif enrichment, TF binding site accessibility, and
using the temporal information learned by the RVAE, we begin to unravel the role of TFs in
regulating cell states, such as disease-associated astrocytes.
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Cell-type-specific cis-regulation at AD genetic risk loci

To further our understanding of AD genetic risk signals, we performed cell-type-specific
linkage-disequilibrium score regression#3 (LDSC) analysis in our snATAC-seq clusters using
GWAS summary statistics in AD1911 and other relevant traits#*4-59 (Methods, Supplementary
Table 6, Supplementary Note). Microglia clusters MG.b and MG.c showed a significant
enrichment (FDR < 0.05) for AD GWAS SNPs from the Kunkle et a/. study, and all five
microglia clusters showed a significant enrichment (MG.a, MG.e FDR < 0.005; MG.b,
MG.c, MG.d FDR < 0.0005) for GWAS SNPs from the Jansen et a/. study, which included
familial AD-by-proxy samples in addition to AD patient data (Fig. 7a). The results of

this GWAS heritability analysis supports previous findings in non-diseased humanZ° and
mouse>! snATAC-seq data. We further investigated AD risk signals in microglia using
gchromVAR®2 to compute the enrichment of fine-mapped AD-associated polymorphisms
from Jansen ef al. along the microglia pseudotime trajectory and observed a significant
increase (Pearson correlation, p-value = 0.0048, Methods, Fig. 7b-c) in the gchromVAR
deviation score in distal peaks throughout the microglia trajectory, in stark contrast

with a significant decrease in the deviation score for the analogous gene-proximal peak
analysis (Pearson correlation, p-value = 0.0053), highlighting AD-associated SNPs at distal
enhancers in disease-associated microglia. By overlaying the co-accessibility map with
chromatin accessibility signal and GWAS statistics along the genomic axis, we unraveled the
potential cis-regulatory relationships disrupted by causal disease variants in GWAS genes,
such as BINI, ADAM10, APOE and SCL24A4 (Fig. 7d-i). We found that the APOE locus,
which harbors the main determinants of AD heritability and is one of the best studied

AD risk loci, has cis-regulatory chromatin networks altered in disease in microglia and
astrocytes, highlighting cCREs that are prime candidates for further study using genome
editing technologies.

Single-cell co-expression networks using sCWGNCA

To recontextualize snRNA-seq data in systems-level framework, we sought to develop

a gene co-expression network analysis approach for single-cell data based on weighted

gene co-expression analysis (WGCNA)>3:24 a powerful analytical approach for identifying
disease-associated gene modules®®28 originally designed for bulk gene expression data. Our
revised approach uses aggregated expression profiles in place of potentially sparse single
cells, where metacells are constructed from specific cell populations by computing the
mean expression from 50 neighboring cells using k-nearest neighbors (Methods, Extended
Data Fig. 7, Supplementary Note). We re-processed published AD snRNA-seq data from
Mathys et a/° and used iINMF to integrate with our sSnRNA-seq data (Methods, Extended
Data Fig. 8). Additionally, we performed bulk RNA-seq in early- and late-stage AD cases,
as well as pathological controls and curated additional AD bulk-tissue RNA-seq samples
from ROSMAP®’. Finally, we used consensus WGCNADS8, a meta-analytical approach, to
jointly form co-expression networks in metacells constructed from the integrated sSnRNA-seq
dataset and bulk-tissue RNA-seq data of the human PFC from two distinct cohorts. We

call this approach Single-nucleus Consensus WGCNA (scWGCNA; Extended Data Fig.
1,7,9,10; Supplementary Data 7), performed iteratively for each cell-type, where each edge
in a co-expressed module is supported by both bulk-tissue RNA-seq data (this study and
ROSMAP57) and aggregated snRNA-seq data (this study and Mathys et af.).
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We specifically highlight our sScW GCNA analysis for oligodendrocytes; we found four
co-expression modules significantly correlated with AD diagnosis—OM1, OM2, OM4, and
OMS5 (Fig. 8a-b, Supplementary Data 7). For example, hub genes of the AD-downregulated
module OM1 encode ribosomal subunits (RPSI5A, RPL30, RPLZ3A, etc.), consistent with
its enrichment of GO terms related to protein synthesis and sorting (Supplementary Fig. 11).
OM2 gene members MAG, CNP, and PLPI are known to be involved in myelination, and
unsurprisingly we found OM2 downregulated with disease.

Additionally, we examined SREBF1’s downstream regulatory targets in the context of
co-expression networks (Methods). Notably, we found that three of the oligodendrocyte
modules were significantly enriched for targets of SREBF1, indicating the importance of
SREBF1 in regulating gene expression in these modules (Fig. 8c). Using a multi-scale
dataset of bulk-tissue RNA-seq, high-throughput proteomics®®, and SREBF1 ChlIP-seq data
(ENCODE), we defined a protein-protein interaction (PPI) network of SREBF1 target genes
(Extended Data Fig. 7). Additionally, we found module eigengene expression of SREBF1
targets downregulated in early- and late-pathology AD cases at the level of proteins®® and
RNA (Fig. 8d), corroborated by downregulation of SREBF1 motif variability in sSnATAC-seq
data (Extended Data Fig. 4). We also validated the downregulation of SREBF1 in late-stage
AD through RNA /n situ hybridization and immunohistochemistry and found a decrease

in ACSL4 expression, one of SREBF1’s targets identified in ENCODE ChlP-seq data, in
late-stage AD (Fig. 8e-g, Extended Data Fig. 7). Overall, our co-expression network analysis
approach facilitates the identification of cell-type-specific disease biology, and we have
highlighted TF SREBF1, largely unstudied in the context of AD, in oligodendrocytes to
demonstrate our approach’s ability to yield novel disease insights.

Discussion

Our integrated multi-omic analysis of late-stage AD provides a unique lens into the
continuum of cellular heterogeneity underlying disease pathogenesis. Pinpointing causal
mechanisms of complex diseases requires a rigorous understanding of cell population
specific gene regulatory systems at both the epigenomic and transcriptomic level. While
single-cell chromatin accessibility can provide important insights into disease, it is a
challenging data modality to work with due to its inherent sparsity. We circumvented

the issue of sparsity by integrating single-nucleus open-chromatin and single-nucleus
transcriptomes from the same samples, in addition to using aggregation methods for
pseudo-bulk accessibility profiling and co-accessibility analysis. Taking these considerations
into account, our multi-omic analysis enabled us to analyze cell-type-specific epigenomic
dysregulation in neurodegeneration and expands on previous work to decipher the
transcriptomes of single nuclei in human AD.

A major contribution of our study is that we identified cell-type specific gl-cCREs, which
may be mediating gene regulatory changes in late-stage AD, along with TFs that may

be binding to these gl-cCREs within the given cell-type. While cCREs can be identified
with epigenetic data alone, our analysis is substantiated by integrating single-nucleus
transcriptomic data, as we link the gene expression of candidate target genes with cCRE
chromatin accessibility. Previous studies of AD have not explored cis-gene regulation at a
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cell-type or cell subpopulation level. We have highlighted both cis- and trans-gene regulation
disrupted in late-stage AD, providing potential targets for further study into AD, like NRF1
in oligodendrocytes and FOSL 2 in astrocytes and their corresponding gl-cCREs. Further,

we examined cis-regulatory interactions in our multi-omic dataset to elucidate cell-type

and disease specific patterns of genes implicated in inherited AD risk by GWAS, which

are of particular interest as candidate therapeutic targets. For a subset of AD GWAS loci,

we compared cis-regulatory networks between AD and control cell populations to identify
interactions that are uniquely found in disease. Thus, this study serves as a resource for the
broader AD community to explore cell-type and cell-state-specific regulatory landscapes of
genes and genomic regions that may be of particular interest, such as AD GWAS loci.

Moreover, independent and joint analyses of the transcriptome and chromatin profiles

of oligodendrocytes revealed disrupted gene regulation and biological pathways in AD
(Supplementary Note). We described a multi-omic oligodendrocyte trajectory and evaluated
gene expression signatures in the transition from newly formed to mature oligodendrocytes,
observing that the trajectory seemed to follow oligodendrocyte maturation. Notably, we
analyzed the trajectory dynamics of SREBF1, a TF involved in regulation of cholesterol
and lipid metabolism that has been shown to be involved in AB-related processes3®. We
found that SREBF1 motif variability was decreased in late-stage AD, indicating that fewer
SREBF1 binding sites are accessible in disease, and SREBF1 gene expression is also
downregulated in AD oligodendrocytes. Trajectory analysis revealed that SREBF1 motif
variability is positively correlated with t-DEGs throughout the trajectory, suggesting that it
acts as a transcriptional activator in oligodendrocytes.

Co-expression network analysis methods like WGCNA have been widely used for discovery
of disease-associated gene modules in bulk gene expression data®0.61; however, these
approaches are rarely used in single-cell transcriptomics, with some exceptions®2 due to
challenges in network construction from noisy data. Here we introduced ScWGCNA, a
method for interrogation of cell population-specific co-expression networks that leverages
aggregated metacells to combat the sparsity of single-cell gene expression. Using
SCWGCNA, we found gene co-expression networks in human AD by jointly analyzing

our sSnRNA-seq and bulk RNA-seq with additional SnRNA-seq and bulk RNA-seq samples
from the ROSMAP cohort®57. This meta-analytical approach ensured robustness of our
network analysis and allowed us to evaluate the resulting gene modules in early-stage

AD (Supplementary Note). Notably, SSsWGCNA identified three oligodendrocyte modules
that were enriched for target genes of SREBF1 and showed that the gene and protein
expression of these targets were decreased in late-stage AD. With our co-expression and
trajectory analysis of SREBFL1 in oligodendrocytes, SREBFL1 is clearly a gene to prioritize
for follow-up studies as a candidate target for AD therapeutics, demonstrating the utility of
our approach in identifying novel gene targets for disease.

While the causative molecular mechanisms of sporadic AD remain unknown, our work
offers new insights which assist in unraveling the nature of gene regulation in AD, especially
in regard to genomic loci with well-described heritable disease risk. Additional work is
needed to spatially resolve the complexity of gene expression and epigenomics in AD

and neurodegeneration in general. The data presented here are a valuable resource for
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understanding regulatory relationships in the diseased brain, and our analysis framework
serves as a blueprint for making discoveries in complex traits using single-cell multi-omic
data. Finally, our intuitive web portal for exploring single nuclei in the human brain allows
for the accessibility of our results to anyone with an internet-equipped device.

Human Samples

Human prefrontal cortex brain samples were obtained from UCI MIND’s Alzheimer’s
Disease Research Center (ADRC) tissue repository and under UCI’s Institutional Review
Board (IRB). Postmortem human brain tissue from the Religious Orders Study and Memory
and Aging Project (ROSMAP) study was obtained under the IRB of Rush University
Medical Center. Informed consent was obtained for all human participants. Samples were
dissected, homogenized on a dry ice pre-chilled isolating platform and aliquoted for sSnRNA-
and snATAC-seq. For details on human samples used in this study (AD n = 6 males

and 6 females, controls n = 5 males and 3 females, all 74-90+ years old), please see
Supplementary Tables 1-2. ROSMAP RNA-seq data and details can be found on synapse.org
website using corresponding synapse (syn) 1D syn3219045.

Bulk RNA-seq

Total RNA was isolated from human prefrontal cortex using Mini Nucleospin RNA kit (Cat
#740955.250, Takarabio). RNA integrity was assessed using 2100 Bioanalyzer (Agilent).
Total RNA was quantified using Qubit RNA HS assay kit (Cat# Q32852, Invitrogen).
~500ng total RNA was used to prepare the cDNA library using SMARTer Stranded Total
RNA Sample Prep kit-HI Mammalian (Cat#634874, Takarabio). cDNA library concentration
was calculated using Qubit dsDNA HS assay kit (Cat#Q32851, Invitrogen). Library quality
was assessed using either High sensitivity DNA assay kit (Cat# 5067-4626) on 2100
Bioanalyzer or D5000 HS kit (Cat#5067-5589, 5067-5588) on 4200 Tapestation (Agilent).
Libraries were multiplexed with 96 and 95 samples in 2 lanes on an Illumina Novaseq S4 for
100-bp paired-end reads.

Single-nucleus RNA-seq

Single nucleus suspensions were isolated from ~ 50mg frozen human prefrontal cortex.
Samples were homogenized in Nuclei EZ Lysis buffer (Cat#NUC101-1KT, Sigma-Aldrich)
and incubated for 5 min. Samples were passed through a 70um filter and incubated in
additional lysis buffer for 5 min and centrifuged at 500 g for 5 min at 4°C before

two washes in Nuclei Wash and Resuspension buffer (1xPBS, 1% BSA, 0.2U/ul RNase
inhibitor). Nuclei were FACS sorted with DAPI (NucBlue Fixed Cell ReadyProbe Reagent,
Cat#R37606, Thermo) before running on the 10x Chromium™ Single Cell 3' v3 platform.
cDNA library quantification and quality were assessed as in bulk RNA-seq. Libraries were
sequenced using Illumina Novaseq 6000 S4 platform at the New York Genome Centre, using
100bp paired-end sequencing.
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Single-nucleus ATAC-seq

Single nucleus suspensions were isolated from ~ 50mg frozen human prefrontal cortex
according to the 10x Genomics Nuclei Isolation from Mouse Brain Tissue protocol
(CG000212, Rev A) with an additional sucrose purification step. Before resuspending our
nuclei in Diluted Nuclei Buffer, we removed cellular debris by preparing a sucrose gradient
(Nuclei PURE Prep Nuclei Isolation Kit, Cat#NUC201-1KT, Sigma). Nuclei were spun

at 13,000 g for 45 minutes at 4°C and then washed once and filtered before running on

the 10x Chromium™ Single Cell ATAC platform. Library quantification and quality check
were performed according to manufacturer’s recommendations. Libraries were sequenced
using lllumina Novaseq 6000 S4 platform at the UCI Genomics core facility, using 100bp
paired-end sequencing.

RNAscope (fluorescent in situ hybridization)

Fresh frozen human postmortem tissue was sectioned at 20um on a cryostat at —20°C. Slides
were stored airtight at —80°C until use. Immediately after removing from -80°C, slides
were dried for 20 minutes at room temperature and then fixed in 4% paraformaldehyde/PBS
for 15 minutes at 4°C. Slides were then washed in RNase-free PBS for 5 minutes at

room temperature 3 times. For single labeling experiments, slides were incubated in

PBS with an LED light for 96 hours at 4°C to quench autofluorescence 62, and for

dual labeling, autofluorescence was quenched with TrueBlack (Biotium) for 30 seconds
before coverslipping. Slides were processed following the RNAscope Multiplex Fluorescent
Reagent Kit v2 Assay (ACD) instructions for fresh frozen tissue, except protease IV
incubation was 15 minutes. Probes used were NEAT1 (Cat#411531), PLP1 (Cat#499271),
CNP (Cat#509131-C2), SREBF1 (Cat#469871), ACSL4 (Cat#408301), MOG (Cat#543181-
C2), and AQP4 (Cat#482441-C2). Fluorophores used were TSA Plus Cy5 (1:200, Perkin
Elmer) and Opal 570 (1:200, Perkin Elmer) to avoid autofluorescence. Images were taken
on ZEISS Axio Scan.Z1 at 20x magnification. Four regions per section were analyzed using
QuPath. We used a trained object classifier to identify MOG+ or AQP4+ nuclei, except for
ASCL4/MOG dual staining, which required manual assignment of MOG+ nuclei due to high
background. Subcellular detection was used to count RNA punctae. We used linear mixed
effects model to account for random effects (age, sex) and fixed effects (multiple regions
from the same individual).

Immunofluorescence

Fixed and cryoprotected human postmortem tissue was sectioned at 40um using a cryotome
(Leica). For 6E10, Iba-1, MAP2, and GFAP, brain sections were treated with 90% formic
acid for 4 min. For PDGFRA and Olig2, sections in sodium citrate buffer were heated at
80°C in a bead bath for 30 min. Sections were then washed before blocking (PBS with

5% goat or donkey normal serum, respective to the antibodies, and 0.2% TritonX-100)

for 1 hour at room temperature. Primary antibodies were incubated at 4°C overnight
(6E10-1:1000, Cat#803001, Biolegend; Iba-1-1:1000, Cat#019-19741, Wako; MAP2-1:500,
Cat#ab32454, Abcam; GFAP-1:500, Cat#G3893, Sigma; PDGFRA-1:50, Cat#AF-307,
R&D Systems; Olig2-1:200, Cat#ab109186, Abcam). Secondary antibodies (Goat anti-
mouse 555, Cat#A-21422; Goat anti-rabbit 488, Cat#A11034; Goat anti-rabbit 488,
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Cat#A11034; Goat anti-mouse 555, Cat#A-21422; Donkey anti-goat 488, Cat#A-11055;
Donkey anti rabbit 555, Cat#A31572; all from ThermoFisher) were diluted 1:200 and
incubated for 1 hour. Slides were treated with 0.3% Sudan Black in 70% EtOH for 4 min
to reduce autofluorescence and imaged on a confocal microscope (Leica). Images from 3
randomly selected areas were used for volume analysis of amyloid plaques using IMARIS.
We used linear mixed effects model as previously stated.

Annotation of major cell-types

Major cell-type annotations were assigned to UMAP partitions and initial clusters in
SnATAC-seq and snRNA-seq datasets respectively through manual inspection of canonical
marker gene signals. ‘Pseudo-bulk’ chromatin accessibility coverage profiles of gene body
and upstream promoter regions were visualized using the Signac® (v0.2.0) function
CoveragePlot, while gene expression signals were visualized using Seurat?7:28 (v3.1.2)
snRNA-seq cell type assignments were further validated by integration with the Mathys et
al® dataset.

Integrated analysis of snRNA-seq and snATAC-seq data

A unified dataset of both chromatin accessibility and gene expression was constructed
using Seurat’s integration framework. Canonical Correlation Analysis (CCA) was used to
generate a shared dimensionality reduction of the ‘query’ snATAC-seq gene activity and
the ‘reference’ snRNA-seq gene expression. MNNs were then identified in this shared
space, effectively identifying pairs of corresponding cells that anchor the two datasets
together. To confirm major cell-type annotations in sSnATAC-seq cell populations, we used
Seurat’s label transfer algorithm, which leverages these anchors to predict cell-types in
SnATAC-seq data, with cell type annotations in SnRNA-seq cells as the reference and LSI
reduced chromatin accessibility as the weights. We achieved a max prediction score >=
0.5 in 94% of cells, demonstrating high correspondence between the two data modalities.
Next, we used these shared anchors to impute gene expression signals in SnATAC-seq
data. Following imputation, we merged gene expression in cells from the shnRNA-seq
dataset with snATAC-seq cells whose max prediction score >= 0.5. The merged dataset
was then centered, dimensionally reduced with PCA using 30 dimensions, batch corrected
with MNN (monocle3, v0.2.0) and embedded with UMAP. Clusters and UMAP partitions
were identified using Leiden clustering (monocle3). We visualized correspondence of major
cell-types from their dataset of origin to their joint UMAP partitions using ggalluvial (v
0.11.1).

Cell-type specific dimensionality reduction and cluster analysis

Cell-type specific analyses were performed for snATAC-seq and sSnRNA-seq by subsetting
each major cell-type from the fully processed dataset followed by re-embedding with
UMAP. Subpopulations of each cell-type used for all downstream analysis were then
identified using Leiden clustering (monocle3). Clusters smaller than 100 cells were removed
as outliers. We then used the addReproduciblePeakSet function from the R package

ArchR (v1.0.0)%° with default parameters to call accessible chromatin peaks using MACS2
(v2.2.7.1) in each cell-type subcluster. For snRNA-seq and snATAC-seq clusters, we
performed a bootstrapped cluster composition analysis to robustly assess the composition
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of each cluster with respect to AD diagnosis. Over 25 iterations, 20% of cells were sampled
from the whole dataset, and the proportion of cells from AD or control samples were
computed for each cluster. A two-sided Wilcoxon rank sum test was used to compare the
proportion of AD and control samples in each cluster using the wilcox.test R (v3.6.1)
function with default parameters and Benjamini-Hochberg multiple testing correction.

Annotation of cell subpopulations

snRNA-seq subpopulations for astrocytes, microglia, neurons, and oligodendrocyte
progenitors were annotated in a similar way to the major cell-types, using canonical marker
gene signals as well as differentially expressed genes. SnATAC-seq subpopulations for
astrocytes, microglia, neurons, and oligodendrocyte progenitors were annotated using Seurat
label transfer prediction scores with the SnRNA-seq clusters as a reference annotation. We
annotated the sSnRNA-seq oligodendrocytes by hierarchically clustering oligodendrocyte and
oligodendrocyte progenitor clusters based on the gene expression matrix of the top 25
DEGs (by average log fold-change) from each oligodendrocyte subpopulation, grouping
oligodendrocytes into major lineage classes such as progenitor, intermediate, and mature.
We used the same approach to annotate the sSnATAC-seq oligodendrocytes, hierarchically
clustering the gene activity matrix using the same DEGs. The R package ComplexHeatmap
(v 2.7.6.1010)56 was used for hierarchical clustering and visualization of these gene
expression and gene activity matrices.

Single-nucleus Transcription Factor (TF) binding motif analysis

Single-nucleus TF motif enrichment was computed for a set of 452 TFs from the

JASPAR 2018 database87 using the Signac wrapper for chromVAR (v 1.12.0)2°. The motif
accessibility matrix was first computed, describing the number of peaks that contain each TF
motif for all cells. chromVAR then uses this motif accessibility matrix to compute deviation
Z-scores for each motif by comparing the number of peaks containing the motif to the
expected number of fragments in a background set that accounts for confounding technical
factors such as GC content bias, PCR amplification, and variable Tn5 tagmentation. To
further analyze specific TFs of interest, we used the getFootprints function in ArchR

to perform TF footprinting analysis in pseudo-bulk aggregates of single nuclei in the

same cluster or cell-type, splitting nuclei from control or late-stage AD samples where
appropriate.

Chromatin Cis Co-Accessibility Network (CCAN) analysis

The correlation structure of chromatin accessibility data was analyzed using the R package
cicero30 (v1.3.4.7). Briefly, cicero quantifies ‘co-accessibility’ between pairs of genomic
regions in a population of cells by correlating accessibility signals aggregated from

several cells at a time, penalizing for distance between regions using a graphical LASSO
with a maximum interaction constraint of 500 kb. Importantly, prior to correlation and
regularization, a bootstrap approach was used to generate metacells by aggregating 50 cells
at a time using k-nearest neighbors, circumventing the sparsity of single-cell chromatin data.
Finally, networks of cis co-accessible regions (CCANSs) were identified through community
detection. We applied this procedure in each major cell-type as well as splitting each
cell-type into control and AD cells for CCAN analysis.
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Analysis of gene-linked candidate cis-regulatory elements (gl-cCRES)

We sought to further contextualize co-accessible chromatin regions by linking them to

likely target genes using an accessibility-expression correlation strategy stratified by major
cell-type and disease status of each sample. First, we identified pairs of co-accessible peaks
where one of the peaks overlaps a gene’s promoter, which serves as a candidate target

gene for that particular cCRE. We then computed the Pearson correlation between the
expression of the candidate target gene from snRNA-seq with the chromatin accessibility

of the linked cCRE from snATAC-seq, where expression and accessibility values have been
averaged for all cells within a given cell population. This correlation analysis was performed
iteratively across all promoter-cCRE co-accessible links identified separately in each major
cell with regard to AD diagnosis status. Retaining links with Pearson correlation coefficient
in the 95! percentile and p-value <= 0.01, we defined gene-linked candidate cis-regulatory
elements (gl-cCRESs) as genomic regions with a significant correlation to at least one target
gene, and we defined cCRE-linked genes as genes with a significant correlation to at least
one cCRE. We used non-negative matrix factorization (NMF v 0.23.0) as implemented

in the R NMF package®8 using k=30 matrix factors on the gl-cCRE accessibility matrix
averaged by each snATAC-seq cluster split by cells from control and AD samples, yielding
30 gl-cCRE modules. The NMF basis matrix (W) was used to assign each gl-cCRE to its top
associated module, and the NMF coefficient matrix (H) was used to determine which cell
cluster that each module was most associated to. To identify biological process associated
with these gl-cCRE modules, we used the enrichR89:70 (v 3.0) package to query enriched
GO terms for the set of target genes in each gl-cCRE module in the GO Biological Processes
2018, GO Cellular Component 2018, and GO Molecular Function 2018 databases.

TF regulatory network construction

Using snATAC-seq and snRNA-seq data in one cell-type, we identified candidate TF
regulatory target genes and used this information to construct cell-type specific TF
regulatory networks. We used the same set of TF binding motifs as in our single-cell TF
motif enrichment analysis (JASPAR 2018 motifs). For a given TF, we defined candidate
target genes as those with an accessible promoter containing the TF binding motif, or

an accessible gl-cCRE linked to the target gene’s promoter, allowing us to distinguish
between TFs that regulate genes through promoter or enhancer binding events. We used
this information to construct a directed TF regulatory network using the R package igraph
(v 1.2.6), where each vertex represents a TF or target gene, and each edge represents a
promoter or linked-cCRE binding event, overlaying additional information onto the network
such as DEG or AD GWAS gene status.

Estimating GWAS enrichment using cluster specific accessible chromatin regions

To estimate heritability of a variety of complex traits, we used LDSC (v 1.0.1)*3. GWAS
summary statistics were input to LDSC, which then computes enrichment of heritability for
an annotated set of SNPs conditioned on a baseline model in order to account for genomic
features that influence heritability, and jointly modeling multiple annotations together. Sets
of cluster specific peaks were constructed by extending peaks up and down stream by 2000
bp, identifying peaks that are accessible in 1% of all cells within each cluster, and removing
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all peaks that are accessible in more than one other cell type. Cluster specific peaks were
formatted for LDSC using the make_annotation.py script, and LD scores were computed for
each set using the Idsc.py script. Publicly available GWAS summary statistics were collected
for AD10:11 Schizophrenia®® , Frontotemporal Dementia (FTD)*4, Progressive Supranuclear
Palsy (PSP)#5, Multiple Sclerosis (MS)#7, Inflammatory Bowel Disease (IBD)*8, height4°,
and cholesterol®9. Next, summary statistics were converted to hg38 coordinates using the
UCSC liftover tool (v377) and formatted for LDSC using the munge_sumstats python script.
We followed the recommended guidelines for cell-type specific partitioned heritability
analysis, using HapMap3 SNPs and their provided hg38 baseline model (v2.2). The Idsc.py
script was then used to compute cluster specific enrichments of GWAS heritability, with
Benjamini-Hochberg multiple testing correction applied to enrichment p-values.

Single-nucleus Consensus Weighted Gene Co-expression Network Analysis (SCWGCNA)

We developed a novel co-expression network analysis approach to single-cell data

by integrating sSnRNA-seq and bulk-tissue RNA-seq datasets and called this approach
Single-nucleus Consensus Weighted Gene Co-expression Network Analysis (SCWGCNA).
SCWGCNA is based on a co-expression network analysis approach called Weighted Gene
Co-expression Network Analysis (WGCNA), implemented using the WGCNA R package
(v1.69)3354, For scWGCNA, we used multiple transcriptomic datasets comprising of

our sSnRNA-seq data, Mathys et al. ShRNA-seq data, bulk-tissue RNA-seq data from

our UCI cohort and bulk tissue RNA-seq data from ROSMAP cohort®’. First, we

integrated our snRNA-seq and Mathys et al. SnRNA-seq datasets using iNMF approach,
and then constructed metacells in a fashion similar to our CCAN analysis of chromatin
accessibility data, in which we apply a bootstrapped aggregation process to single-nucleus
transcriptomes. During metacell computation, we only pool cells within the same cell-type,
and within the same AD diagnosis stage, in order to retain these metadata for ScWGCNA.
We then employed a signed consensus WGCNA approach®8 within a given cell-type,

by calculating component-wise values for topological overlap for each dataset. First, bi-
weighted mid-correlations were calculated for all pairs of genes, and then a signed similarity
matrix was created. In the signed network, the similarity between genes reflects the sign

of the correlation of their expression profiles. The signed similarity matrix was then raised
to power B, varies between cell-types, to emphasize strong correlations and reduce the
emphasis of weak correlations on an exponential scale. The resulting adjacency matrix was
then transformed into a topological overlap matrix. Modules were defined using specific
module cutting parameters which included minimum module size of 100 genes, deepSplit =
4 and threshold of correlation = 0.2. Modules with correlation greater than 0.8 were merged
together. We used first principal component of the module, called the module eigengene, to
correlate with diagnosis and other variables. Hub genes were defined using intra-modular
connectivity (KME) parameter of the WGCNA package. Gene-set enrichment analysis was
done using EnrichR.

Analysis of regulatory targets of SREBP

We downloaded a dataset of ENCODE ChlP-seq validated TF target genes from EnrichR,
containing regulatory targets of SREBP. Fisher’s enrichment tests were performed with
the R function fisher.test to test whether oligodendrocyte modules were significantly
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over-represented with SREBP target genes, inferring which modules are regulated by
SREBP. Module eigengenes were computed for the set of SREBP target genes, and the
RNA expression as well as protein expression data from Inweb’! and Biogrid’2 was also

to analyze SREBP targets throughout the course of AD progression. A protein-protein
interaction (PPI) network of SREBP target genes was constructed using SREBF1 ChIP-seq
data from ENCODE and visualized using the STRING database’3, restricting the edges

to known protein-protein interactions. In addition to bulk RNA-seq, we used a proteomics
dataset from our group’s previous study>® of 685 samples representing AD, asymptomatic
AD, and controls from the human PFC to interrogate the levels of SREBF1 target genes and
target proteins in AD.

All statistical methods and tests used in the manuscript were described in the figure legends,
Methods, Supplementary Note, or main text as appropriate.

Data availability

All the multi-omics raw and processed data are available here: https://www.synapse.org/
#1Synapse:syn22079621/. Raw sequencing data have been deposited into the National
Center for Biotechnology Information Gene Expression Omnibus with accession numbers
GSE174367. Additionally, the data can be accessed through our online web app: http://
swaruplab.bio.uci.edu/singlenucleiAD/ .

Code availability

The custom code used for this manuscript is available on GitHub™*
(doi: 10.5281/zenodo.4681643): https://github.com/swaruplab/Single-nuclei-epigenomic-
and-transcriptomic-landscape-in-Alzheimer-disease
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Extended Data Figure 1: Batch correction of sSnATAC-seq, snRNA-seq, and merged datasets.
a, SnRNA-seq UMAPs before (left) and after iNMF batch correction (right), colored by
sequencing batch. b, snATAC-seq UMAPs before (left) and after MNN batch correction
(right), colored by sequencing batch. c, Dot plot of iNMF metagene expression in each
snRNA-seq cluster. d, snRNA-seq UMAPs colored by metagene expression of selected
iNMF metagenes. e, Dot plots showing the iINMF loading for the top 30 genes for the same
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Extended Data Figure 2: Cell-typeimmunostaining and in situ hybridization.
a-d, Representative immunofluorescence images from postmortem human brain tissue from

control and late-stage AD cases for Iba-1 (a), GFAP (b) MAP2 (c), and 6E10 (d). e,
Quantification of 6E10-positive amyloid plaques. n = 3 cognitively healthy controls, 3
late-stage AD. Data is presented as the average of three different sections per sample.
Linear mixed-effects model **** p < 0.0001. Box boundaries and line correspond to

the interquartile range (IQR) and median respectively. Whiskers extend to the lowest or
highest data points that are no further than 1.5 times the IQR from the box boundaries.

f, Representative immunofluorescence images from postmortem human brain tissue from
control and late-stage AD cases for OLIG2 with PDGFRA co-labeling. g, h, Representative
RNAscope images from postmortem human brain tissue from control and late-stage AD
cases for CNP (g) and PLP1 (h) with DAPI counterstain.
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Extended Data Figure 3: Comparison of gene expression and gene activity.
a, Scatter plot comparing average gene activity from snATAC-seq and average gene

expression from snRNA-seq by each major cell-type, with accompanying Pearson
correlation statistics and linear regression lines. b, Donut chart showing the percent of genes
with high chromatin accessibility and low gene expression in grey for each major cell-type.

High chromatin accessibility was defined as genes in the top 20% of gene activity, while low
gene expression was defined as genes in the bottom 20% of gene expression. Percent of all
other genes are colored by the cell-type.
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Extended Data Figure 4: NEAT 1 validation and neuronal TFs.
a, b, Representative RNAscope images from postmortem human brain tissue for NEAT1

and AQP4 staining (a) and NEATI and MOG staining (b) with DAPI nuclear counterstain.
¢, Boxplots showing quantification of NEATI puncta per AQP4+astrocyte asina.n=4
cognitively healthy controls, 5 late-stage AD. d, Boxplots showing quantification of NEAT
puncta per MOG+ oligodendrocyte as in b. n = 4 cognitively healthy controls, 4 late-stage
AD. Data is represented as the mean of four equally sized regions per sample. Linear
mixed-effects model e, Tn5 bias subtracted TF footprinting for JUN by snATAC-seq neuron
cluster (top) and by AD diagnosis (bottom), with TF binding motif logo above and Tn5

bias insertions below. f, Left: Co-embedding UMAP colored by JUN motif variability (top)
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and JUN target gene score (bottom). Right: Violin plots of JUN motif variability (top) and
JUN target gene score (bottom) in excitatory neuron clusters, split by diagnosis. Wilcoxon
test (ns: p > 0.05, *: p <= 0.05, **: p <= 0.01, ***: p <= 0.001, ****: p <= 0.0001). g,

Tnb5 bias subtracted TF footprinting for EGR1 by snATAC-seq neuron cluster (top) and by
AD diagnosis (bottom), as in e. h, Left: Co-embedding UMAP colored by EGR1 motif
variability (top) and EGR1 target gene score (bottom). Right: Violin plots of EGR1 motif
variability (top) and £GR1 target gene score (bottom) in excitatory neuron clusters, split by
diagnosis, as in f. i, Violin plots of SREBF1 motif variability in oligodendrocyte snATAC-
seq clusters, as in f. j, Violin plots of SREBF1 gene expression in oligodendrocyte SnRNA-
seq clusters, as in i. For boxplots, box boundaries and line correspond to the interquartile
range (IQR) and median respectively. Whiskers extend to the lowest or highest data points
that are no further than 1.5 times the IQR from the box boundaries.
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Extended Data Figure 5: Schematics of analyses.
a, Schematic diagram linking cCREs to target genes and downstream analysis. First, we

identify co-accessible chromatin peaks in each cell-type for control and late-stage AD.
Second, we identify pairs of co-accessible peaks where one peak overlaps a gene promoter
and correlate the expression of that gene with the chromatin accessibility of the other
peak. Third, NMF is used to group gl-cCREs into functional modules. b, Schematic of
construction of TF regulatory networks for each cell-type. c, Schematic representation

of scWGCNA analysis, including iNMF integration with the Mathys et a/. 2019 dataset,
metacell aggregation, construction of co-expression networks, and downstream analysis of
gene modules.
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Extended Data Figure 6: Pseudotimetrajectory analysisto identify dysregulated TFsand gene

expression in glia.

a, Line plot showing the RVAgene training loss at each epoch for oligodendrocyte (ODC),
microglia (MG), and astrocyte (ASC) RVAE models. b-d, Heatmaps showing TF motif

variability smoothed using loess regression and scaled to minimum and maximum values
for TFs up- and down-regulated in AD as well as cell-type marker TFs along the
oligodendrocyte trajectory (b), microglia trajectory (c), and astrocyte trajectory (d). TFs

are ordered by trajectory rank (point in trajectory where of 75% maximum value is reached).

e-g, Dot plot showing the enrichR combined score for the top enriched GO terms in
oligodendrocyte (e), microglia (f), and astrocyte (g) t-DEGs.
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Extended Data Figure 7: Metacell aggregation and SREBP.
a, Heatmap showing the enrichment of cell-type marker genes in standard WGCNA modules

constructed from our snRNA-seq data. b, Schematic showing generation of 30,218 metacells
from the integrated transcriptomic dataset of 132,106 nuclei from our snRNA-seq and
Mathys et al. c-e, Heatmap showing enrichment of oligodendrocyte (c), microglia (d),

and astrocyte () ScWGCNA modules constructed with 12 metacells, 25 metacells, 100
metacells, and 200 metacells in the SSWGCNA modules constructed with 50 metacells, as
shown in Fig. 7 and Supplementary Fig. 15-16. f, SREBP protein-protein interaction (PPI)
network. Green circle denotes proteins involved in ribosome processing and transcription
pathway, cyan circle for mTOR pathway, and red circle for lipid processing pathway. g,

Left: Representative immunohistochemistry images from postmortem human brain tissue

for SREBP with nuclear counterstain. Right: Quantification of SREBP staining. n = 4
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pathological controls, 3 late-stage AD. Data is represented as the mean of four equally

sized regions per sample. Scale bar represents 100 um. Linear mixed-effects model ** p

< 0.01. Box boundaries and line correspond to the interquartile range (IQR) and median
respectively. Whiskers extend to the lowest or highest data points that are no further than 1.5

times the IQR from the box boundaries.
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Extended Data Figure 8: iINMF integration of snRNA-seq with Mathys et al. SnRNA-seq.
a, Schematic representation of INMF integration of sSnRNA-seq with Mathys et al. SnARNA-

seq. UMAP plots are colored by cell-type assignments. b, Dot plot of iINMF metagene
expression in each cell-type, split by dataset of origin. ¢, UMAP plots of the integrated
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dataset colored by selected iNMF metagenes. d, Dot plots showing the iNMF loading for the
top 30 genes for the same metagenes in c.
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showing row-normalized Seurat module scores of microglia modules in sSnRNA-seq (left)

and snATAC-seq (right) microglia clusters.
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Extended Data Figure 10: sScW GCNA in neurons.
a, Signed correlation of excitatory neuron modules to AD diagnosis. b-e, Co-expression

plots for modules EM1 (b), EM2 (c), EMS5 (d), and EM7 (€). f, GO term enrichment of
excitatory neuron modules. g, Heatmaps showing row-normalized Seurat module scores of
excitatory neuron modules in SnRNA-seq (left) and SnATAC-seq (right) excitatory neuron
clusters. h, Signed correlation of inhibitory neuron modules to AD diagnosis. i-n, Co-
expression plots for modules IM1 (i), IM2 (j), IM3 (k), IM4 (1), IM5 (m), and IM6 (n). o,
GO term enrichment of inhibitory neuron modules. p, Heatmaps showing row-normalized
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Seurat module scores of inhibitory neuron modules in sSnRNA-seq (left) and snATAC-seq
(right) inhibitory neuron clusters.
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Figure 1: Single-nucleus ATAC-seq and single-nucleus RNA-seq to study cellular diversity in the

diseased brain

a, Schematic representation of the samples used in this study, sequencing experiments,
and downstream bioinformatic analyses, created with BioRender.com. b, ¢, UMAP
visualizations where dots correspond to individual nuclei for 130,418 nuclei profiled
with snATAC-seq (b) and 61,472 nuclei profiled with snRNA-seq (c), colored by Leiden
cluster assignment and cell-type (ASC = astrocytes, EX = excitatory neurons, INH =
inhibitory neurons, MG = microglia, ODC = oligodendrocytes, OPC = oligodendrocyte
progenitor cells, PER/END = pericytes/endothelial cells). d, Pseudo-bulk chromatin
accessibility profiles for each cell-type at canonical cell-type marker genes. For each
gene, 1kb upstream and downstream are shown. Promoter/TSS highlighted in grey

with gene model and chromosome position shown below. Chromosome coordinates are
the following: GFAP chrl7:44904008-44919937; SLC17A7chrl19:49428401-49445360;
GADZ2chr10:26213307-26305558; CSFIR chr5:150052291-150116372; MBP
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chr18:76977827-77136683; PDGFRA chrd:54226097-54299247. e, Row-normalized single-
nucleus gene expression heatmap of cell-type marker genes. f, UMAP plot of 186,167

nuclei from a jointly learned subspace of SnATAC-seq and snRNA-seq, colored by cell-type
assignment. g, Integrated UMAP as in f, colored by originating dataset. Smaller gray dots
represent nuclei from the other data modality. A consistent coloring scheme for each cell-
type and cluster is used throughout the manuscript.
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Figure 2: Epigenetically and transcriptionally distinct cell subpopulationsin human AD
prefrontal cortex

a,b, Hierarchically clustered heatmaps of row-normalized gene expression in ShRNA-

seq OPC and oligodendrocyte clusters (a) and gene activity in SnATAC-seq OPC

and oligodendrocyte clusters (b) for the top 25 upregulated DEGs (sorted by

average log fold change) identified in each oligodendrocyte subpopulation. c, Pseudo-
bulk chromatin accessibility coverage profiles for OPC (progenitor), intermediate
oligodendrocyte and mature oligodendrocyte snATAC-seq clusters, assignments as in b.
Promoter/TSS highlighted in grey with gene model and chromosome position shown
below. Chromosome coordinates are the following: VCAN chr5: 83468465-83583303;
ITPRZ2chrl2: 26335515-26836198; CD74 chr5: 150400637-150415929; APOLD1
chrl2: 12722917-12830975; OPAL/N chrl0: 96342216-96362365; CAPchrl7:
41963741-41978731; MOG chr6é: 29653981-29673372. d,e, SNnATAC-seq (d) and snRNA-
seq (e) UMAPs as in Fig. 1, where nuclei are colored by AD diagnosis. Clusters annotated
by cell type. f,g, Box and whisker plots showing the proportion of nuclei mapping to

each cluster for each sample, split by control and late-stage AD samples for snATAC-seq
(i) and snRNA-seq (j) clusters, with measures of significance from bootstrapped cluster
composition analysis (Wilcoxon test, see Methods, *** FDR <= 0.001, ** FDR <= 0.01,
*0.01 <FDR <= 0.05) and n as in Supplementary Tables 7-9. For box and whisker plots,
box boundaries and line correspond to the interquartile range (IQR) and median respectively.
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Whiskers extend to the lowest or highest data points that are no further than 1.5 times the
IQR from the box boundaries.
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Figure 3: Linking cis-regulatory elementsto downstream target genesin specific cell-types
a, Histogram showing the number of genes that have 1 through 25 linked cCREs. b, Upset

plot showing the size of overlaps between the sets of cCRE-linked genes identified in each
cell-type. The barplot on the left shows the set size of cCRE-linked genes for each cell-type,
and the barplot on the top shows the number of overlapping genes between two sets, or

the number of unique genes in one set. ¢, Venn diagrams for each major cell-type showing
the overlaps between the set of cCRE-linked genes and genes upregulated in that cell-type
(celltype DEGS) and genes upregulated in AD within this cell-type (diagnosis DEGSs). A
one-sided Fisher’s exact test was used for gene set overlap significance (*** p <= 0.001,
**p<=0.01, * p <0.05). d, Heatmap showing row-normalized pseudo-bulk chromatin
accessibility in each snATAC-seq cluster split by nuclei from control and late-stage AD
samples. Rows (cCRES) are organized based on NMF module assignment. Annotations
correspond to genes from DGE analysis that are upregulated in AD in at least one cell-type.
e, Donut chart showing the percentage of gl-cCREs that map to intronic, exonic, or distal
regions. f, Heatmap showing NMF coefficients in each sSnATAC-seq cluster split by nuclei
from control and late-stage AD samples. g, Heatmap showing log transformed enrichR
combined scores for GO terms for gene sets of selected NMF modules.
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Figure 4: Cell subpopulation-specific transcription factor regulation in late-stage AD
a, Left: snATAC-seq and snRNA-seq integrated UMAP colored by SPI1 motif variability
with microglia circled. Right: Violin plots of SP11 motif variability in significant SnATAC-
seq microglia clusters, split by diagnosis. b, Left: Integrated UMAP colored by SPI1
target gene score with microglia circled. Right: Violin plots of SPI1 target gene score in
significant SnRNA-seq microglia clusters, split by diagnosis as in a. ¢, Tn5 bias subtracted
TF footprinting for SP11 by snATAC-seq microglia cluster (top) and by AD diagnosis
(bottom). TF binding motif shown as motif logo above. d, Left: Integrated UMAP colored
by NRF1 motif variability with oligodendrocytes circled. Right: Violin plots of NRF1 motif
variability in significant snATAC-seq oligodendrocyte clusters, split by diagnosis as in a. e,
Left: Integrated UMAP colored by NRF1 target gene score with oligodendrocyte circled.
Right: Violin plots of NRF1 target gene score in significant sSnRNA-seq oligodendrocyte
clusters, split by diagnosis as in a. f, Tn5 bias subtracted TF footprinting for NRF1 by
SnATAC-seq oligodendrocyte cluster (top) and by AD diagnosis (bottom) as in b. g, h, TF
regulatory networks showing the predicted candidate target genes for the following TFs:
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ELF5, ETS1, ETVS5, SPIC, and SPI1 in microglia (g); SOX9, SOX13, SREBF1, SREBF2,
OLIG1, and NRF1 in oligodendrocytes (h). For violin plots, two-sided Wilcoxon test was
used to compare control versus AD, ns: p > 0.05, *: p <= 0.05, **: p <=0.01, ***: p <=
0.001, ****: p <= 0.0001.
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Figure 5: Multi-omic oligodendrocytetrajectory analysis

a, UMAP dimensionality reduction of oligodendrocytes from the integrated SnATAC-seq
(n=58,221 nuclei) and snRNA-seq (n=36,773 nuclei) analysis. Each cell is colored by its
pseudotime trajectory assignment. b, Scatter plot showing the proportion of oligodendrocyte
nuclei from AD samples at 50 evenly sized bins across the trajectory. The black line shows
a linear regression, and the gray outline represents the 95% confidence interval. Pearson
correlation coefficient and p-value from two-sided test are shown. ¢, Scatter plot of module
scores for newly formed oligodendrocyte (NF-ODC), myelin forming oligodendrocyte
(MF-ODC) and mature oligodendrocyte gene signatures36:37 (see Supplementary Note

for full gene lists) averaged for nuclei in each of the 50 trajectory bins. Solid colored

lines represent loess regressions for each signature, and the gray outlines represent 95%
confidence intervals. d, Left: heatmap of chromatin accessibility at 9,231 oligodendrocyte
gl-cCREs reconstructed using RVAE. Right: heatmap of gene expression for 1,563
oligodendrocyte trajectory DEGs (t-DEGS) reconstructed using RVAE. Annotated genes
are DEGs in oligodendrocytes, in respect to other cell-types, or AD upregulated genes

in oligodendrocytes. e, 2D latent space learned by RVAE modeling of oligodendrocyte
t-DEGs (left) and gl-cCREs (right), where each dot represents one gene. Left: genes
colored by trajectory rank, the point in the trajectory where the gene reaches 75% of max
expression. Right: genes colored by correlation of RVAE reconstructed expression with AD
diagnosis proportion as in b. f, Oligodendrocyte t-DEG latent space colored by correlation
of reconstructed gene expression to NRF1 (left) and SREBF1 (right) motif variability. The
shape of each point represents the regulatory relationship between the TF and each gene,
while genes without regulatory evidence are shown as small gray dots. Annotated genes are
AD upregulated genes in oligodendrocytes (AD DEGS). TF binding motifs are shown as
motif logos.
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Figure 6: Multi-omic microglia and astrocyte trajectory analyses
a, UMAP dimensionality reduction of microglia from the integrated sSnATAC-seq (n=10,768

nuclei) and snRNA-seq (n=4,119 nuclei) analysis. b, Scatter plot of the proportion of AD
microglia nuclei as in Fig. 5b. ¢, Scatter plot of module scores as in Fig. 5¢ for gene
signatures from Keren-Shaul et a#%: homeostatic microglia, Stage 1 disease-associated
microglia (DAM), and Stage 2 DAM (see Supplementary Note for full gene lists). d,
Heatmaps of RVAE reconstructed chromatin accessibility and gene expression as in Fig.
5d, for 9,163 microglia gl-cCREs (left) and 2,138 microglia t-DEGs (right). e, 2D latent
space learned by RVAE modeling of microglia t-DEGs (left) and gl-cCREs (right), as in
Fig. 5e. f, Microglia t-DEG latent space colored by correlation of gene expression to SPI1
(left) and ETV5 (right) motif variability, as in Fig. 5f. g, UMAP dimensionality reduction
of astrocytes from the integrated SNnATAC-seq (n=12,112 nuclei) and SnRNA-seq (n=4,704
nuclei) analysis. h, Scatter plot of the proportion of AD astrocyte nuclei as in b. i, Scatter
plot of module scores as in ¢ for gene signatures from Habib et al. 20202%: GFAP-low,
GFAP-high, and Disease Associated Astrocytes (DAA, see Supplementary Note for full
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gene lists). j, Heatmaps of RVAE reconstructed chromatin accessibility and gene expression
as in d for 12,487 astrocyte gl-cCREs (left) and 1,797 astrocyte t-DEGs (right). k, 2D latent
space learned by RVAE modeling of astrocyte t-DEGs (left) and gl-cCREs (right), asine. |,
Astrocyte t-DEG latent space colored by correlation of gene expression to CTCF (left) and
ETVS5 (right) motif variability, as in f.
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Figure 7: Cell-type specific regulatory landscapes of GWAS loci in the AD brain
a, Heatmap showing LDSC enrichment of GWAS traits and disorders in SnATAC-seq

clusters. P-values are derived from LDSC enrichment tests, and FDR corrected p-values

are overlaid on the heatmap (*: FDR < 0.05, **: FDR < 0.005, ***: FDR < 0.0005). b, c,
Scatter plots showing gchromVAR enrichments along the microglia pseudotime trajectory
in distal peaks (b) and gene-proximal peaks (c) averaged for nuclei in each of the 50
trajectory bins. The black line shows a linear regression, and the gray outline represents

the 95% confidence interval. Pearson correlation coefficient and p-value are shown. d-i, Cis-
regulatory architecture at the following GWAS loci and cell-types: B/N1 (d) and ADAM10
(e) in oligodendrocytes; BINI (f) and APOE (g) in microglia; SLC24A4 (h) and APOE
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(i) in astrocytes. Co-accessible links for late-stage AD and control are shown separately,
with the line height and opacity corresponding to the co-accessibility score; links with a
score below the gray dotted line are removed for visualization purposes. Genomic coverage
plots for AD and control are shown separately. Jansen ef al. AD GWAS statistics for

SNPs at each locus are shown. Lead SNPs are shown as diamonds, and SNPs in 99%
credible set are shown as triangles. Chromosome ideogram indicates genomic coordinates

in a 500 kilobase radius centered at each GWAS gene. Chromosome coordinates are the
following: B/NI chr2:127047027-127110355; ADAM10chr15:58587807-58752978; APOE
chr19:44902754-44910393; SLC24A4 chr14:92319581-92502483.
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Gene co-expression networks in oligodendrocytes
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Figure 8: Robust co-expression modulesrevealed using integrated bulk and single cell co-
expression network analysis
a, Co-expression plots for modules OM1, OM2, OM4, and OM5. b, Signed correlation

oligodendrocyte co-expression modules with AD diagnosis. ¢, Enrichment of SREBF1
target genes in oligodendrocyte co-expression modules. d, Boxplots showing RNA (top)
and protein expression® (bottom; n = 98 controls, 76 early-pathology, 101 late-pathology)
of SREBF1’s targets with AD pathological staging. Two-sided Wilcoxon test. e, Boxplots
showing quantification of SREBFI puncta per MOG™ oligodendrocyte. n = 3 cognitively
healthy controls, 5 late-stage AD. Data is represented as the mean of four equally sized
regions per sample. Linear mixed-effects model. f, Boxplots showing quantification of
ACSL 4 puncta per MOG” oligodendrocyte. n = 4 cognitively healthy controls, 4 late-stage
AD. Data is represented as the mean of four equally sized regions per sample. Linear
mixed-effects model. g, Representative RNA fluorescence in situ hybridization (RNAscope)
images from postmortem human brain tissue for combined SREBF1 and MOG staining as
in e (left) and ACSL4and MOG staining as in f (right) with DAPI nuclear counterstain. For
box and whisker plots, box boundaries and line correspond to the interquartile range (IQR)
and median respectively. Whiskers extend to the lowest or highest data points that are no
further than 1.5 times the IQR from the box boundaries.
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