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Integrated circuit (IC) design at the scale of billions of circuit elements would be unimag-

inable without the software and services from the Electronic Design Automation (EDA) industry.

However, today, the designers using these EDA tools and flows are confronted by long runtimes,

high design costs and low power, performance, and area (PPA) gains when transitioning to the

latest process nodes. The long tool-runtimes and high tool-license costs make it prohibitively

expensive for a thorough design-space exploration. Furthermore, pessimistic margins introduced

at various stages of the EDA flow, to balance the accuracy-runtime tradeoff, can result in sub-

xx



optimal design implementations. To counter these issues and keep up with the pace of PPA

expectations from the market, the dissertation contributes to two promising opportunities at the

top of the compute stack: (1) algorithmic improvements and (2) domain-specialized hardware.

For algorithmic contributions, we exploit AI-based techniques (i) to reduce the design

and schedule costs of advanced node IC design, and (ii) to efficiently search for optimal design

implementations. A significant portion of the design cycle is spent on the static timing analysis

(STA) at multiple corners and multiple modes (MCMM). To address the schedule costs of STA

engines, we propose a learning model to accurately predict expensive path-based analysis (PBA)

results from pessimistic graph-based analysis (GBA). We also devise a MCMM timing model

using learning-based techniques, to predict accurate timing results at unobserved signoff corners,

using timing results from a small subset of corners. Our PBA-GBA model reduces the maximum

PBA-GBA divergence from 50.78ps to 39.46ps, for a 350K-instance design in 28nm FDSOI

foundry. Our MCMM timing prediction model uses timing results from 10 observed corners, to

predict timing results at the remaining 48 unobserved corners with less than 0.5% relative root

mean squared error (RMSE), for a 1M-instance design in 16nm enablement. Besides STA, the

two most important and critical phases of the IC design cycle are the placement of standard cells,

and the routing tasks at various abstraction levels. To demonstrate the use of learning-based

models for efficient search of optimal placement implementation, we propose a reinforcement

learning (RL)-based framework RLPlace for the task of detailed placement optimization. With

the global placement output of two critical IPs as the start point, RLPlace achieves up to 1.35%

half-perimeter wirelength (HPWL) improvement as compared to the commercial tool’s detailed

placement results. To efficiently search for optimal routing solutions in network-based commu-

nication systems, we propose a SMT-based framework to jointly determine routing and virtual

channel (VC) assignment solutions in network-on-chip (NOC) design. Our novel formulation

enables better deadlock-free performance, achieving up to 30% better performance than the

state-of-the-art application-aware oblivious routing algorithms.
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To keep up with the PPA expectations as we navigate towards the post-Moore world, we

also propose two novel hardware accelerators for image classification tasks, that exemplify the

performance and energy benefits of domain-specialized hardware. To alleviate the computation

and energy burden of neural network inference, we focus on two key areas: (i) skipping unneces-

sary computations, and (i) maximizing the reuse of redundant computations. Our TermiNETor

framework skips ineffectual computations during the inference of image classification tasks.

TermiNETor relies on bit-serial weight processing, to dynamically predict and skip the com-

putations that are unnecessary for downstream computations. The TermiNETor framework

achieves up to 1.7× reduction of operation count compared to non-skipping baseline without

accuracy degradation, and the hardware implementation of TermiNETor framework improves

the average energy efficiency by 3.84× over SCNN [6], and by 1.98× over FuseKNA [7]. Our

second accelerator PatterNet demonstrates the performance and energy benefits of reusing re-

dundant computations during the inference phase of image classification. PatterNet is based on

patterned neural networks for computation reuse, and supported with a novel pattern-stationary

architecture. With similar accuracy results, our PatterNet accelerator reduces the memory

and operation count up to 80.2% and 73.1%, respectively, and 107× more energy efficient

compared to Nvidia 1080 GTX. We demonstrate the silicon implementation of PatterNet and

TermiNETor accelerators in TSMC40nm foundry enablement.
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Chapter 1

Introduction

A modern integrated circuit (IC) consists of billions of densely packed transistors and

convoluted metal tracks that connect these transistors. Electronic Design Automation (EDA)

automates the tasks of design definition, planning, implementation, optimization, analysis,

and validation. Integrated circuit design at the scale of billions of circuit elements would be

unimaginable without the software and services from the EDA industry.

Figure 1.1. A major portion of the IC design cost is invested in the software tools that automate
the design process [1]. Also, the software cost for a 5nm is nearly 100% larger than a 7nm chip.

However, the automation of integrated circuits comes at a cost. As shown in Figure 1.1,

the majority of the advanced-node IC design cost is spent on the licenses of automation tools,

making chip design very expensive. For example, the cost of designing a 3nm IC design ranges

from $500 million to $1.5 billion [1]. The expensive tool licenses along with the long runtimes

1



[9] makes it prohibitively expensive for a rigorous design-space exploration.

Figure 1.2. The reduction of minimum metal pitch (MMP) in recent years, indicates slowing of
the regular doubling of integration density (Moore’s law).

On the other hand, as miniaturization started to saturate [10] (Figure 1.2 shows the

device scaling of Samsung foundry), the industry started to focus more on the innovations at

the top of computing stack [11], such as assisting EDA algorithms with AI-based models and

domain-specialized hardware architecture. In what follows, we discuss some of the promising

opportunities within the algorithmic and hardware innovation areas. We explore and validate the

extent of improvements available in these areas, using problems in the areas of IC design and

neural-network acceleration. We argue that even if saturation of device scaling is stalling the

performance gains, the innovations in algorithmic and specialized hardware architecture would

continue to offer a viable way to deliver performance gains.

1.1 Machine Learning for Physical Design

Today, the two most important challenges in IC design are low PPA benefits when moving

to newer nodes, and high design costs. While the stalling of Moore’s Law manifests as reduced

PPA gains at the bottom of the stack, the expensive per-launch tool license model limits the

number of simultaneous tool launches, leading to limited design space exploration, which further
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impacts the design quality. With complex heuristics developed over three decades, the existing

EDA algorithms (logic synthesis, placement, clock tree synthesis, and routing) have reached a

point, where they are extremely mature and difficult to improve purely from the perspective of

classical algorithmic techniques [12]. Machine learning has been proven to be commercially

successful in areas of computer vision [13], robotics [14], finance [15], speech detection [16],

video understanding [17] and anomaly detection [18]. We investigate the applications of machine

learning for the challenging task of the physical design flow [19], as a powerful lever to extend

the saturation of Moore’s law. In particular, we focus on two key areas in which physical design

subflows can benefit from the existing machine learning techniques: (a) estimators to predict the

outcomes of timing analysis, and (b) active learning for improved placement quality.

1.1.1 Estimators for Timing Outcomes

The goal of learning-based estimators in EDA is to quickly predict tool outcomes and

enable designers to drop unqualified designs. Dropping less-promising flow trajectories preserves

compute resources and tool licenses, that can be spent elsewhere. For example, predicting

downstream outcomes has proven to be useful in several phases [20] of the EDA flow; high-level

synthesis [21], design verification [22, 23], wirelength [24], routing congestion [25], power,

timing [26], voltage drop [27] [28], gate sizing [29, 30, 31] and lithography [32].

We develop learning-based techniques to predict STA tool outcomes. A significant

portion of physical design runtime is spent on the analysis of timing across multiple process,

voltage, and temperature (PVT) corners. At the same time, accurate, signoff-quality timing

analysis is essential during place-and-route and optimization steps, to avoid loops in the flow as

well as overdesign that wastes area and power.

1.1.2 Active Learning for Improved Placement Quality

Many problems in EDA are instances of design space explorations, where the goal is to

search for an optimal (single- or multi-objective) design point in a design space. Reinforcement
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Learning (RL) has proven to be a successful paradigm for exploratory learning, in performing a

sequence of decisions to achieve goals, without the need for explicit training data.

Recent work has demonstrated the potential of learning-based methods for solving

discrete optimization problems involving large solution spaces. Though some of the optimization

problems in EDA can be modeled as a sequence of decisions, the underlying solution space

is typically much larger than the traditional application domains of machine learning. For

example, the solution space of the detailed placement problem involving 1000 standard cells and

a placement canvas with 1000 sites is of the order 102500, whereas Alpha-Go [33] has a state

space of 10360. Prior work [34] has demonstrated the feasibility of applying RL to the placement

problem, and the capability of deep networks to generalize representations across different

designs. However, based on related works in RL for solving Combinatorial Optimization (CO)

problems similar to placement [35, 36, 37], combining RL with existing combinatorial search

algorithms has demonstrated promising results. These techniques leverage deep RL’s ability to

recover reasonable rough solution fast, and the ability of heuristics to realize greedy improvement

via local refinement.

Markov Decision Process (MDP) describes a formal environment for RL. In MDP, there

is an agent, capable of making choices of actions and these actions that lead to a state and reward

outcome from the environment. Imagine having an explicit interaction between the agent and the

environment that does not lead to a deterministic outcome of the state and reward. Meaning, the

state transitions are stochastic, and the rewards are dependent on the state that the agent ends

up in. Formally, MDP is a discrete-time state-transition system. It can be described with four

components, (i) States (ii) Actions (iii) Transition model and (iv) Rewards. The accompanied

examples refer to the standard cell placement task, which is central to the physical design flow.

• States: The states are necessary for choosing possible actions. For the chip placement

task, the state could be the current locations of placed cells on a canvas.

• Actions: Next, we have a set of actions. These are chosen, in the simple case, from a small
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finite set. In the placement example, actions can be selecting the next cell to place, and

choosing a location on the canvas, to place the next cell.

• Markovian Transition model: The transition probabilities describe the dynamics of

the world. In scenarios, where it is difficult to represent the transition probability model

explicitly, a simulator (or an EDA tool for the physical design sub flows) can be used to

model the MDP implicitly by providing samples from the transition distributions.

• Reward: Reward is a short-term utility function that represents the goodness value of a

state, from the agent’s perspective. For the placement problem, reward could be a measure

of wirelength and placement density.

Policy: A policy π : S→ A is a global mapping or function from states to actions. In MDP, we

are looking for one best policy among all possible solutions of policies.

Value: MDP can be expressed a huge tree. A value of a state keeps track of the expected

discounted (with a discount factor γ < 1) long-term rewards of the state.

V π(s) = Eπ

( ∞

∑
i=0

γ
i ∗R(s)

)
(1.1)

Placement as a Markov Process: The vanilla formulation of placement of rectangular cells

on a rectangular, single-layer chip can be formalized as embedding the nodes of a graph -

corresponding to a netlist - in the plane such that edge-lengths are minimized and nodes (cell

instances) are subject to non-overlapping constraints. This can be concisely expressed as

the following optimization problem over cell instance positions (xi,yi) given the netlist-graph

connectivity - a set of edges E - and edge-length parameters of the cells and chip - li and (bx,by)

respectively:

min
x,y ∑

i, j∈E
|xi− x j|+ |yi− y j|

s.t. min(
li + l j

2
−|xi− x j|,

li + l j

2
−|yi− y j|)≤ 0

|xi| ≤ (bx− li)/2, |yi| ≤ (by− li)/2

(1.2)
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(a) Binary neural networks. (b) Boolean constraint satisfaction.

Figure 1.3. Relationship between the SAT problem and binary neural networks.

1.2 Boolean Satisfiability as a Function Fitting Problem

In the previous sections, we discussed machine learning algorithms for design analysis

and optimization problems in IC design. Another important algorithmic paradigm is the domain

of Boolean Satisfiability (SAT) solvers. The goal of Boolean Satisfiability, or the SAT problem,

is to determine the ‘satisfiability’ of a Boolean set of equations for a set of inputs. The SAT

problem can be extended to optimization problems, where the solvers find global optima without

relying on gradients like the machine learning algorithms. Though the SAT solvers do not rely

on gradients, these solvers can be imagined as a form of a complex function fitting exercise

(similar to the machine learning tasks). Similar to binary neural networks, where weights and

activations are Boolean values, the SAT solvers fit a model in which the model parameters are

unknown variables and the training data represents a constraint on the values those parameters

can possibly take.

In addition to the features of a SAT solver, the Satisfiability Modulo Theories (SMT)

offer the option of optimizing one or more objective functions. In addition, the SMT frameworks

support non-Boolean variables, various data structures, and predicate logic, thereby improving

the richness of constraint and objective expression. SMT is well-suited to formulate joint

optimization problems involving Boolean variables, integer variables, and real variables. In
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particular, complex conditional constraints can be succinctly and readily expressed in SMT.

For example, an At-Most-One” (AMO) constraint over a set of Boolean variables imposes the

requirement that at most one of the Boolean variables can be true (set to 1), and an “Exactly-

One” (EO) constraint over a set of Boolean variables imposes the requirement that exactly one

of the Boolean variables is true (set to 1). Another useful type of logical constraints is the

predicate “If-Then-Else” (ITE(a,b,c)) constraint, which returns b if a is true and c otherwise.

Logical operations like conjunctions, disjunctions, or implications can be readily specified as

well. Similar to the growth of machine learning libraries, the SAT competitions [38] alleviate the

burden on the users of implementing their own search algorithm, thereby exploiting open-source

SAT solvers that have shown tremendous progress over the last decade.

SMT for Network-On-Chip Routing: The routing problem is common at various levels of

abstraction in the IC Design, from cell-routing inside the standard cells to network-routing of

communication subsystems. In this thesis, we focus on the application-specific routing problem

for network-on-chip (NOC). The routing canvas is represented as a grid, and the routing process

is formulated using a multicommodity flow theory. Broadly speaking, the objective of any

routing task is to find optimal source-destination routing paths on a routing grid, satisfying a set

of constraints or rules. The built-in Boolean cardinality functions such as EO and AMO make it

possible to succinctly capture flow conservation constraints and other logical implications. The

built-in ITE function makes it possible to succinctly capture constraints like routing congestion

on each routing link. These expressive modeling capabilities are essential in modeling our joint

routing and VC assignment problem. Further, because modern SMT solvers like Z3 [39] are

built on top of a Boolean satisfiability (SAT) solver, they are particularly good at navigating

through search problems that are dominated by Boolean variables.
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1.3 Domain Specialized Hardware

To fight the slowing of Moore’s law, the computer architects have gradually shifted

away from general purpose computing towards the new frontier of domain-specific hardware.

Significant funding (> $ 5B) has been invested in the field of designing domain-specific AI

hardware, to accelerate the performance and reduce the power consumption. Figure 1.4 shows

the funding for 20 AI acceleration startups with more than $20M funding.

Figure 1.4. AI acceleration startups [2] with more than $50M funding as of November 2022.

1.3.1 Machine Learning Acceleration

Deep neural networks (DNN) are the state-of-the-art methods [40] for many real-world

learning tasks, such as computer vision [13], natural language processing [41], and speech

recognition [16]. The underlying learning algorithms are composed of two phases: training and

inference. In the training phase, the training data is consumed by the network, and individual

neurons assign a weighting to the input based on the task being performed (for example, edge

detection in images). In the inference phase, the model uses the learned weights, to make

predictions based on test data, eventually producing actionable results.

A key component of both the training and inference phases is matrix multiplication, that

typically involves very large matrices. However, general purpose computing systems are far
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from optimal for this task of heavy-duty matrix multiplications. As compared to CPU and GPU,

Google’s ASIC TPU has far more multiplier units and more on-chip memory to store intermediate

results. Figure 1.5 compares the performance of CPU, GPU and ASIC across six neural network

applications [3]. The plot indicates rooflines for CPU and GPU are consistently below their

ceilings than was the TPU. In this dissertation, we focus on accelerating the inference phase

of neural network based image classification tasks. To alleviate the computational and energy

burden of neural network inference, we propose two accelerators TermiNETor and PatterNet

to exploit (i) reuse of computations, and (ii) skipping of ineffectual computations. To fully

exploit the available compute resources, an overarching goal of the ASIC-based accelerators

[42, 43] is to keep the compute units in constant use. Therefore, we propose data flows and the

supporting hardware for efficient data reuse of weights and activations, and thereby exploiting

the full potential of our AI accelerators. We also demonstrate the silicon implementation of our

accelerators in TSMC 40nm foundry enablement.

Figure 1.5. The Roofline model for TPU ASIC (blue) has much longer slanted line as compared
to NVIDIA K80 GPU (red) and Intel Haswell CPU (yellow) [3].
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1.4 Thesis Outline

To fight the stalling of performance gains from device scaling, the dissertation explores

innovations at the top of the computing stack. To quantify the performance gains, we use

some of the promising problems in physical design, communication-subsystem networks, and

domain-specialized hardware. The interactions between AI, EDA and ASIC Design worlds is

neatly summarized in Figure 1.6. To elaborate, AI has proven its success in multiple applications,

of which EDA is an important specialty. Similarly, ASIC Design serves multiple applications,

of which AI is a key area of interest today. The trivial usecase of EDA flows for ASIC Design

forms a cyclic dependency between the three worlds.

EDA

AI
ASIC 

Design

Figure 1.6. Dependencies between AI, EDA and ASIC Design. Inspired from Roger Penrose’s
metaphysical framework [4].

The contributions of this thesis are summarized as follows:

• In Chapter 2, we explore the applications of machine learning to predict timing outcomes

in the physical design flow. We propose a learning model to predict expensive PBA

results from GBA results, essentially predicting PBA results for “free”. Also, we present

another learning model, to accurately capture and exploit the physics of multi-corner

timing correlation, to improve design convergence, and reduce design cost.
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• In Chapter 3, we formulate the placement problem as a Markov Decision Process at a

coarse-level (cell-clusters), to find optimal sequences of cell-cluster movements. The idea

is to leverage deep RL’s ability to determine the cluster positions reasonably fast, and

exploit the ability of SAT solvers for further local refinement.

• In Chapter 4, we use SMT to jointly solve the routing and static virtual channel allocation

in network-based communication systems, to enable better deadlock-free performance of

the network. Considering both the routing and VC allocation simultaneously allows for

greater flexibility in channel selection compared to prior state-of-the-art application-aware

oblivious routing algorithms, which ultimately leads to better performance.

• In Chapter 5, we propose a novel neural network accelerator TermiNETor to dynamically

predict and terminate ineffectual computations during the inference phase of image classifi-

cation tasks, thereby alleviating the computation and energy burden. The early termination

of ineffectual computations in TermiNETor framework leads to better energy efficiency as

compared to the GPU and other state-of-the-art sparsity-aware accelerators.

• In Chapter 6, we present another neural network accelerator PatterNet that is based on

optimizing computation reuse during the inference phase of image classification tasks. The

sharing of cluster topologies between filters in the proposed PatterNet framework results

in better reuse of computations and reduced memory footprint, eventually translating in to

area, performance and energy benefits as compared to the state-of-the-art accelerators.

• Chapter 7 summarizes the contributions of this dissertation, and presents possible directions

for future work.
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Chapter 2

AI for EDA: Design Analysis

2.1 Introduction

Long runtimes of modern Electronic Design Automation (EDA) tools for designs with

over a million instances and many multi-corner multi-mode (MCMM) timing scenarios block

quick turnaround time in system-on-chip (SOC) design. A significant portion of runtime is

spent on analysis of timing across multiple process, voltage and temperature (PVT) corners.

At the same time, accurate, signoff-quality timing analysis is essential during place-and-route

and optimization steps, to avoid loops in the flow as well as overdesign that wastes area and power.

Graph-based and Path-based Tradeoff: To support PBA-GBA tradeoff, STA tools such as

[44] and [45] support graph-based (GBA) and path-based (PBA) modes in static timing analysis

(STA), enabling a tradeoff of accuracy versus turnaround time. In GBA mode, pessimistic

transition time is propagated at each node of the timing graph. Figure 2.1(a) illustrates transition

propagation from launch flip-flop L2 to capture flip-flop C1. At instance A1, the worst of its

input transition times is propagated from input to output. However, the worst transition time

happens to be on the pin that is not part of the L2-C1 timing path. Since cell delay estimation is a

function of input transition time, the GBA-mode delay calculation for instance A2 is performed

using a pessimistic transition time. This pessimism accumulates along the timing path, leading

to pessimistic arrival time calculation at the endpoint. Further, the transition time at the endpoint
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influences the setup requirement of flip-flop C1, adding further pessimism to the reported slack

of the timing path.

(a) (b)

Figure 2.1. Transition propagation in (a) GBA mode and (b) PBA mode.

In PBA mode, path-specific transition time is propagated at each node of the timing

graph. Figure 2.1(b) illustrates transition propagation for the L2-C1 timing path in PBA mode.

For instance A1, actual path-specific transition time is propagated, and is therefore used in the

cell delay calculation for A2. As the number of timing paths to an endpoint increases, there is an

exponential increase in possibilities of transition propagation and delay calculation at each node.1

The path-specific transition propagation and arrival time estimation at each node is runtime-

intensive. Figure 2.2 shows that for public benchmark designs [46] [47] [48] implemented in a

28nm FDSOI foundry enablement, a commercial signoff STA tool exhibits slowdowns (PBA

runtime, relative to GBA runtime) as high as 15X for leon3mp [48] (108K flip-flops, 450K signal

nets), and 150X for megaboom [47] (350K flip-flops, 960K signal nets).2 The need for faster

path-based analysis is called out in, e.g., Molina [9]; Kahng [49] names prediction of PBA slacks

from GBA analyses as a key near-term challenge for machine learning in IC implementation.

Modern IC implementation in advanced nodes relies on the expensive PBA mode for

signoff. Thus, if PBA were to be “free” (i.e., without any runtime or other overheads) relative

1Details of PBA are given in proprietary tool documentation of major EDA vendors, and analysis outcomes
typically have subtle differences across tools.

2This slowdown is seen with “exhaustive” and “slack greater than -1” PBA, which assures accuracy in the
path-based analysis and provides the least pessimistic basis for optimization. Because runtimes are so long with
exhaustive mode, users must typically use “path” mode in which path-specific timing recalculation is performed
only for some set of timing paths. Analysis using path mode does not guarantee to report worst possible paths to a
given endpoint of interest, but can have as little as 2X runtime overhead (pba mode path and nworst 1) versus GBA.
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Figure 2.2. Ratio of PBA runtime to GBA runtime on log scale (commercial signoff STA tool;
28nm FDSOI foundry enablement) for public-domain design examples (see Table 2.5 for details)
ranging in size from 530 flip-flops and 11K signal nets to 350K flip-flops and 960K signal nets.

to GBA, then only PBA would be used. Unfortunately, today’s PBA runtime overheads force

the design methodology to make difficult accuracy-runtime tradeoff choices. If there is a high

timing violation count in early phases of physical implementation, timing analysis accuracy

may not be a primary concern. Hence, designers will typically use less-accurate but relatively

inexpensive GBA mode in the early stages of design. Later in the design cycle, as the design

converges towards fewer violations, designers must enable PBA mode, at a minimum for timing

paths which fail in GBA mode, so as to obtain less-pessimistic, path-specific timing slacks and

prevent over-fixing.3 However, by this time, damage has already been done to the design’s power

and area metrics, as a result of performing GBA-driven optimizations.

Figure 2.3 illustrates the magnitude of PBA-GBA divergence using a commercial signoff

timer, for the megaboom testcase implemented in 28nm FDSOI. One worst GBA path is extracted

per endpoint (corresponding to “nworst 1” in commonly-used STA tool Tcl), and the top 15K

timing paths are plotted in decreasing order of PBA-GBA divergence (by the nature of PBA and

GBA, the latter is always pessimistic with respect to the former). The maximum PBA-GBA

divergence of 110ps means that the GBA can be pessimistic by 110ps as compared to PBA, for

this testcase. Predicting PBA “for free” can enable improvement of design quality and schedule,

3The turnaround time overheads of PBA are compounded by having many MCMM scenarios in timing closure
during final stages of implementation, especially for low-power, high-performance designs in advanced nodes.
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independent of timing slack value. This strongly motivates our present work to develop a fast

predictor of PBA from GBA analysis.

Figure 2.3. PBA-GBA divergence for the megaboom design (350K flip-flops, 960K signal nets)
signed off at 1.2ns clock period in 28nm FDSOI technology.

Unobserved Corner Prediction: A substantial amount of tool runtime, as well as overall

compute and license resources, must be spent to obtain analysis of timing across multiple

process, voltage and temperature (PVT) analysis corners. All else being equal, design teams

would like to always have accurate analyses at all signoff corners: this helps avoid expensive

loops in the place-and-route and optimization steps of the flow, and also helps avoid overdesign

that wastes area and power. However, with well over 100 signoff analysis corners in advanced-

node IC design, as a practical matter designers can analyze timing at only a small number of

corners during most of the design steps leading up to final signoff. This potentially masks many

real violations, since PVT effects on signal arrival time at a given timing endpoint will depend on

the combination of gates and wires in any given timing path. To reduce the risk of masking real

violations that are realized only in final timing signoff runs, designers add flat timing margins or

increase the target clock period. However, there is no canonical methodology of determining the

best mix of analyzed corners, padding by flat margins, relaxation of frequency targets, etc. – all

of which eventually result in overdesign.

If golden timing analysis across all signoff corners were to be “super-fast”, with minimal

schedule and compute resource overheads, designers would be able to reduce overdesign, and
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detect and fix real timing violations much earlier in the design cycle. Our present work pursues

a data-driven approach to this challenge of reducing timing analysis effort in advanced-node

IC design, with the aim of enabling faster design convergence. A motivating observation is

that path delays at different corners are strongly correlated, with correlations dependent on the

topology and structure of the timing path. Our work seeks to accurately capture and exploit this

correlation, to improve design convergence and reduce schedule cost.

2.2 Related Work

Recent works such as [20, 49] highlight the potential use of machine learning to achieve

faster design convergence. Speed, accuracy and scalability of STA has for decades been a focus

of industry R&D attention; see, e.g., TAU Workshop [50], [51] and [52]. Prior works on the

use of machine learning to reduce miscorrelation between STA engines or long optimization

runtimes are given by [53], [54], [55], and [56] seeks to reduce STA runtime itself through

distributed computing. Kahng et al. [57] provide methodology to model signal integrity (SI)

effects on path arrival time, using machine learning. Since their model [57] predicts SI from

non-SI, the degree of pessimism in SI prediction is not a primary concern. However, as noted

above, model prediction is a serious concern when predicting PBA from GBA, since an optimistic

PBA prediction might mask a real timing violation. A quick predictor of PBA from GBA can

potentially reduce the overdesign and the design schedule cost.

On the other hand, learning-based STA prediction has been previously studied by [58]

and [59], e.g., the latter uses linear regression, SVM and random forest models to account for

dynamic NBTI aging and other correlated on-chip variations. Methods that determine a smaller

subset of analysis corners, to improve STA runtimes, have been actively pursued. An important

work of Onaissi et al. [60] focuses on hold time analysis and determining a minimum set of

dominant corners (whose satisfaction will result in timing feasibility at all other corners); the

authors apply an additional dominance margin to reduce the size of this dominance set. Silva et
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(a) (b)

Figure 2.4. PBA-GBA divergence for a design signed off at 1.2ns ( 990K standard cells) in
28nm FDSOI technology. Shown: timing analysis for the same path in (a) GBA mode and (b)
PBA mode.

al. [61] give a branch-and-bound methodology for identifying exactly a single corner that has

worst delay. To avoid the analysis corner explosion entirely, Onaissi and Najm [62] propose what

is effectively a “cornerless” approach that uses a single run of STA, with propagation of delay

and slew models that are linear functions of process parameters, to cover all process corners.

A large literature (e.g., [63]) has investigated statistical STA, which can effectively mitigate

both corner explosion and the increasingly dominant impacts of manufacturing variability and

low-voltage operating modes. We seek to evaluate the feasibility of learning-based prediction of

timing results at many unknown corners, based on timing results from comparatively few known

corners.

2.3 PBA-GBA: Preliminaries

Table 2.1 lists terms and definitions used for the PBA-GBA modeling framework. For-

mally, our problem is: Given a training set N of (PBA-GBA) path-consistent path analysis pairs,

such as the pair shown in Figure 2.4, use N to train a learning model that predicts PBA-GBA

divergence for a set T (where T ∩N = /0) of paths that are analyzed in only GBA mode.
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Table 2.1. Terms and definitions for PBA-GBA.

Term Definition
Bigram or bigram unit Two consecutive (cell) stages in a timing path
AT Arrival time
T R Transition time
PD Propagation delay
SL Timing slack
CL[ j] Load capacitance of a driving instance (cell) j
FO[ j] Fanout of driver cell j
DR[ j] Drive strength of instance j
Nm Number of stages in a timing path
Ns[ j] Stage depth of instance j relative to launch flop
Nbg Number of bigrams in a timing path
G[ j] (Logical) functionality of an instance j
ATgba[i, j] (ATpba[i, j]) AT of instance j, pin i in GBA (PBA) mode
T Rgba[i, j] (T Rpba[i, j]) TR of instance j, pin i in GBA (PBA) mode
T R MAXgba[ j] maxi{T Rgba[i, j]}
∆T R[i, j] T Rgba[i, j]−T Rpba[i, j]

T R ratgba[i, j] 1− T Rgba[i, j]
T R MAXgba[i, j]

(TR ratio)

Acc T R ratgba[i, j] ∑
Ns [ j]
0 T R ratgba[i, j] (accum. TR ratio)

PDgba[ j] (PDpba[ j]) PD of an instance j in GBA (PBA) mode
SLgba[ j] (SLpba[ j]) SL of an endpoint j in GBA (PBA) mode
∆PD[ j] PDgba[ j]−PDpba[ j]
∆AT [i, j] ATgba[i, j]−ATpba[i, j]
∆SL[ j] SLgba[ j]−SLpba[ j]

2.3.1 Intuition for Bigram-Based Modeling

PBA-GBA divergence of a timing path can be estimated either stage-wise or path-wise.

We refer to the latter approach as lumped path modeling. For stage-wise modeling, n ≥ 1

consecutive stages in a timing path are termed an n-gram or n-gram unit within the path. As n

increases, stage-wise modeling (by n-gram units) approaches lumped modeling. The definitions

of PBA-GBA divergence in Section 5.1 straightforwardly extend to stage-wise modeling. The

accumulation of PBA-GBA divergence over the n-grams in a path leads to a path-specific PBA-

GBA divergence. Figure 2.5 shows a bigram-based (n = 2) representation of a timing path from

launch flip-flop L1 to capture flip-flop C1.

Based on numerous preliminary studies, we have chosen stage bigrams as the fundamental

unit for our modeling approach. We observe that lumped modeling shields stage-specific details

and inter-stage variations, and is prone to large optimistic errors (in our attempts). The lumped

approach has a very large space of parameters (which can grow with the number of stages)

available to characterize a given path. In addition, it is difficult to locate outlier stages that
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Figure 2.5. Bigram-based model of a timing path. The timing path is represented as a series of
four bigram units.

are the “root causes” of misprediction. By contrast, stage-based modeling ensures a fine-grain

modeling for each stage and accounts for inter-stage variation of circuit parameters. Since path

prediction is an accumulation of stage predictions, bounding stage-wise errors helps limit path

mispredictions. (Practically, it is also easier to identify and diagnose outliers in a stage-based

model, and to improve the model by added features that reduce mispredictions for these outliers.)

We also observe that PBA-GBA divergence arises from the existence of ‘competing’

transition values at inputs of a cell. However, this will be translated into arrival time divergence

only for the next stage in a given timing path. This naturally motivates use of a bigram as the

basic modeling unit to capture PBA-GBA divergence. We find that the training of n-gram models

for n > 2 is hampered by the combinatorial explosion of possible n-grams (e.g., over a given cell

library), while training of bigram models to achieve accurate prediction is computationally more

tractable.

2.3.2 Selection of Features

We have evaluated a comprehensive set of electrical and physical parameters of a bigram

unit that can affect PBA-GBA divergence. Our analyses indicate that transition time in GBA

mode T Rgba at the primary input of a bigram unit, and transition time ratio in GBA mode

T R ratgba, are two mandatory parameters that strongly impact PBA-GBA divergence of the
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bigram unit. However, these two parameters alone are insufficient for accurate prediction of PBA-

GBA divergence. Parameters such as cell drive strength and gate type influence the transition

time variation at the input cell which is reflected at the bigram output pin. In addition, arrival time

of the bigram unit is an indicator of the positioning of the bigram unit along the timing path: the

arrival time reflects topological distance from the launch flip-flop, as well as parametric on-chip

variation (POCV) derating and error propagation along the timing path. Other layout-dependent

electrical parameters such as output load capacitance and fanouts of the cells in the bigram unit

are also found to be useful in predicting PBA-GBA divergence. In total, the bigram-based model

for which we report results below uses the following 13 parameters extracted from GBA analysis:

1. transition time of the first cell in the bigram unit;

2. transition time of the second cell in the bigram unit;

3. arrival time of first cell in bigram unit;

4. transition time ratio (TR) of first cell in the bigram unit;

5. arrival time of second cell in bigram unit;

6. drive strength of first cell in bigram unit;

7. drive strength of second cell in bigram unit;

8. functionality of first cell in bigram unit;

9. functionality of second cell in bigram unit;

10. fanout of first cell in bigram unit;

11. load capacitance of first cell in bigram unit;

12. accumulated transition time ratio of first cell in bigram unit;

13. propagation delay of second cell in bigram unit.
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Our studies indicate that dropping any one of these parameters reduces absolute model

accuracy by at least 2%, and dropping any two parameters at a time reduces the model accuracy

by at least 4%. Here, we define the mean initial accuracy as the mean of absolute (Predicted −

Actual) arrival times, with all 13 parameters (features) used. The mean reduced accuracy is the

mean of absolute (Predicted New− Actual) arrival times, with reduced features. Then, we define

the model accuracy reduction (%) as (mean reduced − mean initial) × 100 / (mean initial).

Figures 2.6(a) and (b) illustrate the sensitivity of accuracy reduction to particular parameters.

Accuracy with none of the features dropped is used as baseline for comparison. Dropping

T R ratgba alone reduces the model accuracy by 27%, and dropping any pair combination that

includes T R ratgba corresponds to the largest accuracy reductions in Figure 2.6(b).

(a) (b)
Figure 2.6. The impact of (a) Dropping any single one of the 13 parameters (indexed as above);
the peak loss of accuracy corresponds to T R retgba. (b) Dropping any pair of the 13 parameters
at a time; the x-axis gives, from left to right, C(13,2) = 78 pairs (1,2), (1,3), ..., (12,13).

Last, since PBA-GBA divergence depends on the incremental transition time for each

bigram unit, we find that it is necessary to implement a two-phase modeling strategy: (i) Phase 1

predicts incremental transition time gain in PBA mode, and (ii) Phase 2 uses predictions from

Phase 1 along with other features from GBA mode analysis to predict PBA-GBA divergence for

the bigram unit. We give more details of this two-phase strategy in the next section.

2.3.3 Classification and regression trees

Classification and regression trees (CART) [64] are nonlinear techniques for constructing
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predictive models from data. The models are obtained by recursively partitioning the data space

into feature space and fitting a simple predictive model within each partition. This recursive

partitioning can model a data set with complex feature interactions. In the context of PBA-GBA

prediction, regression trees can be used to predict PBA arrival time for each bigram unit, i.e., we

use features of the test data (GBA analysis results) to predict PBA arrival time for each data point.

Classification trees can predict PBA-GBA divergence (incremental arrival time gain) where the

model uses features of the test data to predict PBA-GBA divergence for each data point.

An important realization is that since regression tree-based modeling is limited by the

span of PBA arrival time values in the training data, testing is always constrained by the range

of arrival time values covered in training phase. On the other hand, classification tree-based

modeling is limited by the range of PBA-GBA arrival time increments used in training data.

During testing, if a data point exceeds the class value used in training data, the model is

constrained by the span of increments in the training data.

As an example, consider a training data set with GBA and PBA arrival time ranges of

24ps to 345ps, and 14ps to 326ps, respectively, along with PBA-GBA divergence range of 0ps

to 40ps. In regression-based modeling, a test data point with GBA arrival time of 560ps is

constrained by the span of training data, which is 345ps in this case. In classification-based

modeling, predicted PBA-GBA divergence will be from one of the values in the range of 0ps

to 40ps. If we ensure that the span of possible PBA-GBA divergence values are covered in the

training data, mispredictions can be reduced. In addition, having positive class values gives us

“sensibility by construction” in our predictions, since actual PBA-GBA divergence can never be

negative. Our preliminary studies, summarized in Table 2.2 for the netcard testcase, lead us to

use the classification tree approach for PBA-GBA divergence prediction.
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Table 2.2. Regression versus classification trees (netcard).

Metric Regression Classification
model optpath 18.65ps 8.21ps
model 99ppath 12.96ps 6.44ps

2.4 PBA-GBA: Modeling Methodology

After selection of parameters, our modeling methodology includes application of machine

learning techniques that capture complex interactions of the parameters and their impact on

PBA-GBA divergence. We find that linear regression techniques fail to capture nonlinearity of

predictions and complex interactions between parameters. For example, interaction of parameters

such as input transition, output load and cell drive strength influence PBA-GBA divergence.

We have also evaluated nonlinear modeling techniques such as multivariate adaptive regression

splines (MARS) [65] which suffer from two-sided distribution of error. Since PBA is always

optimistic as compared to GBA, a pessimistic prediction (i.e., prediction of less timing slack

than the given GBA slack) is incorrect. With bigram-based modeling, as the number of data

points used for modeling increases (1M+), our results indicate that MARS is not scalable when

higher-order effects are introduced. Ultimately, for improved accuracy, reduced variance and

faster runtimes, we have focused our efforts on tree ensemble methods. Random forests of

classification trees give the best results so far, and Figure 2.7 illustrates the visual aid inherent

in tree-based modeling, which helps to better understand feature importance and classification

criteria. We discuss more about classification and regression trees in Section 2.3.3.

2.4.1 Reporting Metrics

PBA-GBA divergence signifies the pessimism in GBA mode. Therefore, reduction in

this pessimism is an appropriate metric to evaluate the predictive model. Figure 2.8 shows a

path-consistent plot of actual GBA versus PBA path arrival times. The maximum PBA-GBA
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Figure 2.7. Tree-based classification with 1.7M training samples and 13 parameters. Parameter
X[4], which corresponds to T R ratgba, splits the data space into 75% and 25% with a split value
of 0.493, indicating its importance in classifying input data.

divergence is 110ps. The blue band signifies the pessimism in GBA mode as compared to PBA

mode. The intent of machine learning-based PBA prediction is to reduce width of the blue band

in a predicted PBA versus actual PBA plot. Ideally, the plot of predicted PBA versus actual PBA

would be the straight orange line Y = X , i.e., zero pessimism in the prediction.

Table 2.3 shows actual PBA-GBA divergence metrics from a commercial signoff timer

that we use as the reference to quantify the accuracy of our predictive model.

Table 2.3. PBA-GBA divergence metric.

Notation Meaning
actual maxpath Upper bound of actual PBA-GBA divergence
actual 99ppath 99th percentile value of sorted PBA-GBA divergence

(in ascending order)
actual meanpath Mean absolute value of actual PBA-GBA divergence

Table 2.12 explains path-consistent and endpoint-consistent divergence metrics that we

define for model predictions. The extent of reduction of these metrics, as compared to reference

PBA-GBA divergence metrics, signifies the reduction of pessimism as compared to GBA of a

commercial timer.
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Table 2.4. Model prediction-based divergence metrics.

Notation Meaning
Path-consistent prediction metrics

model maxpath Worst-case pessimistic prediction divergence
model optpath Worst-case optimistic prediction divergence
model 99ppath 99th percentile value of absolute prediction divergence

values (in ascending order)
model meanpath Mean absolute value of prediction divergence values

Endpoint-consistent prediction metrics
model maxend Worst-case pessimistic prediction divergence
model optend Worst-case optimistic prediction divergence
model 99pend 99th percentile value of absolute prediction divergence

values (in ascending order)
model meanend Mean absolute value of prediction divergence values

Figure 2.8. PBA versus GBA path-consistent arrival time plots using a commercial timer in
28nm FDSOI technology.

2.4.2 Model Definition

For Phase 1 and Phase 2 of our modeling, equations 2.1 and 2.2 capture PBA-GBA

divergence in transition time and arrival time respectively, for each bigram unit.

∆T Rbg = f (CL,DR,G,FO,T Rgba,ATgba,T R ratgba,Acc T R ratgba) (2.1)
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∆ATbg = f (CL,DR,G,FO,T Rgba,ATgba,T R ratgba,Acc T R ratgba,∆T Rbg) (2.2)

PBA-GBA divergence for a timing path is estimated by cumulative addition of bigram

PBA-GBA divergence values in the timing path. This is explained in Equation 3.2

∆ATpath =
Nbg

∑
1

∆ATbg (2.3)

2.4.3 Modeling Flow

We propose a modeling flow as illustrated in Figure 5.8. During the model training, both

GBA and PBA path-consistent timing reports are used as inputs. We then extract parameters

required to model PBA-GBA divergence for each bigram pair. During the model testing, the

model predicts PBA-GBA divergence for any unseen (i.e., new) GBA timing path. Predicted PBA

timing results that are output by our model can subsequently serve as, e.g., inputs to optimization

and sizing steps of the physical implementation flow.

Figure 2.9. Our modeling flow.
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2.5 PBA-GBA: Experimental Validation

We now describe our design of experiments to validate the predictive model. For each of

these experiments, we discuss our modeling results.

2.5.1 Design of Experiments

In our experiments, we use in-house developed artificial designs and five real designs as

listed in Table 2.5. We use 28nm FDSOI foundry technology libraries for all our experiments.

The training time for our model on an Intel Xeon 2.6 GHz server is 219 seconds, for a training

data set with 2.44M bigrams and time for testing phase is 17 seconds for test data with 1.04M

bigrams.

Table 2.5. Design data used for experiments.

Design # Instances # Flip-Flops # Bigrams
jpeg 40K 4K 60K
dec viterbi 61K 26K 200K
netcard 303K 66K 856K
leon3mp 450K 100K 1.8M
megaboom 990K 350K 3.4M
artificial 2.4M 400K 1.3M

We conduct three experiments to demonstrate accuracy and robustness of our predic-

tive model. We also propose another experiment to generate endpoint-consistent PBA-GBA

divergence.

• Experiment 1. (Accuracy): The goal of this experiment is to validate our modeling

accuracy. Model is trained with 70% data points of a real design and tested on unseen 30%

data points of the same design.

• Experiment 2. (Robustness): The goal of this experiment is to validate our modeling

robustness. Model is trained with data points from post-CTS database of a real design and
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tested on unseen post-routed implementation of the same design.

• Experiment 3. (Robustness): The goal of this experiment is to validate the span of our

artificial testcase development methodology. Model is trained with artificially generated

testcases along with a sample of data points (30%) from a real design and tested on unseen

70% data points of the same real design.

• Experiment 4. (Endpoint Slack): The goal of this experiment is to translate path-

consistent PBA-GBA divergence predictions to endpoint-consistent PBA-GBA divergence

values.

2.5.2 Results

In our results, we first compare model predicted PBA arrival time values with reference

PBA results using a commercial timer, while maintaining path consistency. Reduction of model

prediction divergence metrics as compared to reference divergence metrics signify the reduction

of PBA-GBA divergence and availability of timing slack for design optimization.

Results of Experiment 1: We use 70% of the timing paths for training and test on 30% of

the timing paths of the same design. Figure 2.10 illustrates the results for Experiment 1. As

described in Table 2.6, mean, 99th percentile and max divergence metrics reduce by at least

61.7%, 15.9% and 47.5%, respectively as compared to reference divergence metrics.

Table 2.6. Model divergence improvement in Experiment 1.

Mean 99p Max
Design actual model actual model actual model
megaboom 2.59ps 0.99ps 43.95ps 23.05ps 110ps 78ps
leon3mp 10.55ps 2.14ps 30.29ps 7.45ps 50.78ps 42.70ps
netcard 6.70ps 1.52ps 22.62ps 8.52ps 39.59ps 19.90ps

Results of Experiment 2: We use timing report from post-CTS database as input for training

and test the model on post-routed database of the same design. This model is particularly

helpful to set realistic optimization criterion during routing. Figure 2.11 illustrates the results
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for Experiment 2. As explained in Table 2.7, mean, 99th percentile and max model divergence

metrics reduce by at least 26.6%, 11.7% and 26.3%, respectively as compared to reference

divergence metrics.

Table 2.7. Model divergence improvement in Experiment 2.
Mean 99p Max

Design actual model actual model actual model
megaboom 4.51ps 3.31ps 53ps 36.62ps 119.24ps 89.65ps
leon3mp 9.43ps 6.06ps 26.79ps 19.72ps 50.78ps 39.46ps
netcard 4.29ps 2.49ps 17.20ps 9.78ps 33.56ps 29.63ps

Results of Experiment 3: We use in-house developed artificial designs and a sample from real

design (30% data points) for training and predict PBA-GBA divergence on the same real design

(70% data points). This is an idealistic goal, where we develop artificial testcases that can span

the entire space of real designs. Figure 2.12 illustrates results from experiment 3. As described

in Table 2.8, mean, 99th percentile and max model divergence metrics reduce by at least 27.1%,

13.4% and 13.5%, respectively as compared to reference divergence metrics.

Table 2.8. Model divergence improvement in Experiment 3.
Mean 99p Max

Design actual model actual model actual model
megaboom 3.06ps 2.23ps 41.14ps 31.04ps 119.24ps 103.21ps
leon3mp 9.07ps 4.50ps 22.59ps 19.55ps 46.46ps 33.96ps
netcard 7.21ps 2.78ps 21.84ps 9.58ps 46.25ps 31.24ps

Figure 2.10. Results of Experiment 1 for actual GBA path arrival time (top row) and predicted
PBA path arrival time (bottom row) versus actual PBA path arrival time for megaboom (left),
leon3mp (middle) and netcard (right).
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Figure 2.11. Results of Experiment 2 for actual GBA path arrival time (top row) and predicted
PBA path arrival time (bottom row) versus actual PBA path arrival time for megaboom (left),
leon3mp (middle) and netcard (right).

Figure 2.12. Results of Experiment 3 for actual GBA path arrival time (top row) and predicted
PBA path arrival time (bottom row) versus actual PBA path arrival time for megaboom (left),
leon3mp (middle) and netcard (right).

2.6 Unobserved Corner Prediction: Preliminaries

For the unobserved corner prediction task, Table 2.9 defines the notation that we use; see

also Figure 2.13. We use N to denote the total number of analysis corners and n < N to denote

the number of corners whose path delay values are known. We denote the set of known corners

by {Tknown}. Our goal is to accurately predict N−n unknown path delay values from n known

path delay values. We use {Tunknown} to denote the set of unknown corners. As seen in Figure

2.13, timing results can be viewed as elements in a large matrix whose rows represent timing
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paths and whose columns represent corners.4 We use Rtrain and Rtest to denote the numbers of

timing paths that are used, respectively, in training and testing (i.e., inference) of our model.

Thus, in the figure, the entire top portion of the matrix represents the training data that is used to

train a predictive model. We refer to this matrix of training data as M1.

A trained predictive model is used to infer the unknown elements in the bottom, testing

(or, inference) matrix, which we refer to as M2. Finally, we use Xtrain and Xtest to respectively

denote the matrix blocks of known corners that serve as inputs to our predictive model, and we

use Ytrain and Ytest to respectively denote the matrix blocks of unknown corners that our model is

designed to predict.

Table 2.9. Terms and definitions for Unobserved Corner Prediction.

Term Definition
N Total number of columns in the matrix (= analysis corners)
n Number of known (i.e., analyzed) columns
N−n Number of unknown (i.e., to be predicted) columns
{Tknown} Set of known columns
{Tunknown} Set of unknown columns
R Total number of rows in the matrix (= timing paths)
Rtrain Total number of complete rows (training)
Rtest Total number of rows with missing columns (testing/inference)
Xtrain Matrix of known columns, used in model training
Xtest Matrix of known columns, used in model testing/inference
Ytrain Matrix of known columns, used in model training
Ytest Matrix of unknown columns, used in model testing/inference
W Model weight vector output by model training
M1 Matrix of size Rtrain×N
M2 Matrix of size Rtest×N
LRM Linear regression model

Problem Statement. We formally state our problem, which is a form of matrix completion, as

follows.

Given: (i) a complete matrix M1 split into n column vectors {Xtrain}n
1 and N−n column vectors

4Our discussion will generally use the terms corner and column interchangeably. We also use both testing and
inference to refer to evaluation of model accuracy on a set of unknown data.
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{Ytrain}N
n , and containing Rtrain rows of timing paths, along with (ii) an incomplete matrix M2

split into n known column vectors {Xtest}n
1 and N−n unknown column vectors {Ytest}N

n , contain-

ing Rtest rows of timing paths.

Use: {Xtrain}n
1 and {Ytrain}N

n to learn a model that can predict the unknown N − n columns

{Ytest}N
n of M2 from the known n columns {Xtest}n

1 of M2.

This is a problem in multivariate regression. The simplest models for this purpose, which we

report on in this paper, are linear regressors that attempt to minimize the mean squared error

of predicted values (even as other metrics may be more meaningful for real-world evaluation).

Experiments to evaluate and validate our models are described in Section 2.8.

Figure 2.13. Visualization of timing prediction as a problem in matrix completion.

2.6.1 Intuition for Multivariate Linear Regression

Our overall approach is based on the premise that the path delay values at different

analysis corners are strongly correlated. Intuitively, such correlations are a consequence of the

underlying physics of devices, interconnects, and signal delay propagation along timing paths.

Though it may be difficult to model the detailed physics that produce these correlations, we can
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measure and exploit these correlations to predict large numbers of unknown path delay values

from smaller numbers of known ones. A useful exercise is to imagine the path delay values at

different analysis corners as the coordinates of points in a high-dimensional space. Repeated

analyses of these path values generate empirical distributions over this space; when we say that

these values are strongly correlated, we mean that these distributions of points are far from

uniform. Indeed, as we show later, the main support of these distributions is heavily concentrated

in a much lower dimensional subspace. An equivalent observation is that the large data matrix,

shown in Fig 2.13, can be very well approximated by a matrix of much lower rank: i.e., many

of the columns of this matrix are either linearly dependent or very nearly so. For this reason,

we might expect even simple linear methods in multivariate regression to excel at the task of

predicting certain columns from collections of others. This is the hypothesis we investigate in

this paper.

2.7 Unobserved Corner Prediction: Modeling Methodology

In this section, we describe our procedure for model definition, and our modeling flow.

Our modeling procedure has three phases: subset selection, training, and testing.

(i) Subset Selection. In the context of our application, for a fixed value of n, the problem of subset

selection is to determine which n corners are most predictive of the remaining N−n corners. For

even moderately large values of n and N, the number of possible subsets is prohibitively large

to perform an exhaustive search. A common approach is to adopt a greedy strategy [66]; for

our problem we use the simple strategy of greedy deletion (also known as backward elimination

[67]).5 The outcome of this procedure is an array sequence [predict corners] of length N−1

whose order tells us (for any value of n) which n corners should be used to predict the remaining

N−n corners.
5Our separate studies indicate that greedy addition results in worse model quality, especially for the small values

of n that are of interest.
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(ii) Model Training. Once n and corresponding {Tknown} are determined, the training phase finds

model parameters W ∗ for each n, such that the mean squared error of predictions is minimum.

This is a one-time training investment.

W ∗ = argmin
W
||Ytrain−Xtrain ∗W ||22

(iii) Model Testing/Inference. The training phase generates optimal model parameters W ∗ for

each value of n. Each model parameter set W ∗ has an associated error value. The cardinality of

{Tknown} is chosen using an error budget that the user finds tolerable. The subset {Tknown} is then

derived from the [predict corners] array found by greedy deletion. Using the corresponding W ∗,

the model predicts timing at unobserved corners {Tunknown} from observed corners {Tknown}.

Ytest = Xtest ∗W ∗

Modeling Flow. We study the modeling flow illustrated in Figure 2.14. As we have noted, we

first determine optimal model parameters W ∗ for each value of n. The Inference phase predicts

timing results of a test matrix with n known columns. Use cases for our model are elaborated

in Section 2.8. An important capability in practice will be to incrementally train models by

including outliers found from inference results, e.g., at every k executions of the model inference

phase. This would allow the model to learn from outliers, such that subsequent mispredictions

can be contained. Such a methodology might follow the feedback loop (blue) indicated in Figure

2.14.6

6In a typical SOC physical implementation methodology, a given block (hard macro) may go through SP&R&Opt
steps many times, over the course of several months, each time with slightly different constraints or floorplan. We
believe that our modeling approach can naturally exploit such a design process context and timeline.
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Model Results for N-n

Determine “n” corners
that best predicts

“N –n” corners

Figure 2.14. Our modeling flow. The potential feedback loop (blue arrows) is discussed in
Sections VI below.

2.7.1 Data Generation

Recall that timing results are represented using matrices that can be fed into our models.

We now describe our data generation, including design data and analysis conditions used in our

experiments, followed by flows for our artificial circuit generation and matrix generation.7

Table 2.10 describes the data used in our modeling experiments. We use four public

designs obtained from [46] [47] [48] along with in-house developed artificial circuits. We also

evaluate our model on timing path data from three industrial designs (prod1, prod2 and prod3)

in sub-14nm technology nodes. Table 2.11 describes the space of analysis corners for our

experiments in 28nm FDSOI (Experiments 1-4 below); an analogous space is used for 16nm

experiments, and we have only limited insight into the sub-14nm test data obtained from our

industry collaborator.

Artificial Circuits Generation. We have evaluated the potential benefit of artificial circuits (i.e.,

7We do not separately present data preparation for inference. Reprising previous discussion, the data flow for
model inference is as follows. Recall that some number of known corners n has been determined. Given n, we
generate the test matrix, Xtest , from timing results at n known corners. Then, using the trained model parameters W ∗

for the n = |{Tknown}| corners, we predict timing results in unknown corners {Tunknown} of the test matrix.
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Table 2.10. Design data used for experiments.

Design # Instances # Flip-Flops # Data points
dec viterbi 61K 26K 168K
netcard 303K 66K 186K
leon3mp 450K 100K 744K
megaboom 990K 350K 510K
artificial 2.4M 400K 746K
prod1 - - 21K
prod2 - - 111K
prod3 - - 27K

Table 2.11. Space of 28nm FDSOI analysis corners (Expts 1-4).

Parameter Values
Process SS, TT, FF

Voltage (V) 0.6, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 1.00,
1.05, 1.10, 1.15, 1.30

Temperature
(C) -40, 125

BEOL corner RCWORST

small timing paths) used during an initial, “bootstrap” training phase of modeling. Algorithm

1 describes our artificial circuit generation flow. Input to this flow is a configuration file that

contains circuit variables such as the number of stages in a timing path, {num stages}; standard

cell types in the path defined by {Cell1}, {Cell2}, {Cell3} and {Sink}; launch and capture

flop-types defined by {LFlop} and {CFlop}; aggressor cell types defined by {Agg Cell}; load

cap range defined by CLrange; transition (slew) time values defined by T Rrange; and clock period

values defined by {Period}. The circuit generation sweeps through defined values for each

variable; random values are generated between 0 and CLrange, and between 0 and T Rrange, for

these two variables. For each combination of the above-defined configuration variables, our

flow generates a gate-level netlist (doe.v) (which comprises a collection of paths), along with an

associated parasitic file (doe.spef), a transition annotation file (doe.timing) and a constraints file

(doe.sdc).

Figure 2.15 shows a schematic of a timing path in our artificial netlist. The path has three

stages between a launch flop and a capture flop. Our circuits capture a wide range of coupling
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Algorithm 1. Artificial circuit generation.
Input: Configuration file containing {num stages}, {Cell1}, {Cell2}, {Cell3}, {Sink}, {LFlop},
{CFlop}, {Agg Cell}, CLrange, T Rrange, {Period}
Output: Design data for timing analysis
Sol = {doe.v, doe.spe f , doe.sdc, doe.timing }
for i in {num stages} do

for j in {LFlop} do
for k in {CFlop} do

for c1 in {Cell1} do
for c2 in {Cell2} do

for c3 in {Cell3} do
for s1 in {Sink} do

for p1 in {Period} do
doe.v← genVerilog () // netlist generation
doe.spef← genSpef () // spef generation
doe.timing← genTiming () // slew annotation
doe.sdc← genSDC () // constraints generation

end for
end for

end for
end for

end for
end for

end for
end for
Sol ← {doe.v, doe.spe f , doe.sdc, doe.timing }
return Sol =0

capacitance, wire capacitance and input transition values along with various combinations of

standard cells.

Matrix Generation Flow. Once we have design data and corresponding timing graphs for

various analysis corners, we translate these timing results into an equivalent matrix in which

rows represent delay values of timing paths (i.e., a single, fixed path per row), and columns

represent corners. In anticipated usage, this matrix would be input to model training.

We have considered two methods of matrix generation.

(1) Our Endpoint method finds {Pend point} timing paths covering the worst timing paths across

all endpoints in one corner. It then evaluates timing for these {Pend point} paths in the rest of the

N−1 corners. This ensures that all endpoints are covered, but the collection of paths can be
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Figure 2.15. Illustration of artificial circuits.

biased toward worst paths of a single corner. Algorithm 2 details the matrix generation flow

using the Endpoint method. Inputs are timing database sessions at N corners; the flow generates

an {Rtrain × N} matrix with path delay values.

(2) Our Union method finds {Pi} timing paths (one for each endpoint) from each corner’s timing

session dbi. It then collects the union of timing paths {Punion} across all corners. Timing is

evaluated for each unique path in {Punion}, in all corners. Since the cardinality of {Punion} is high,

we restrict the number of endpoints to a tractable number, num. This approach avoids the corner

bias of the Endpoint method and ensures that the generated matrix is richer in terms of coverage

of timing paths. Algorithm 3 details the matrix generation flow using the Union method. Again,

inputs to this flow are timing database sessions at N corners, and an {Rtrain × N} matrix with

path delay values is produced. We have evaluated both methods and observe only negligible

differences in our inference results. Since the Union method is general and is less susceptible to

corner bias, we use the Union method for all experimental validations reported below.

2.8 Unobserved Corner Prediction: Experimental Valida-
tion

As noted in the introduction, our simple, regression-based modeling approach is premised

on the fact that the path delay values at different analysis corners are strongly correlated. One
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Algorithm 2. Matrix generation by Endpoint method.
Input: Timing database sessions at N corners DB = {db1, db2, ..., dbN}
Output: Matrix with path delay values

Sol = Matrix M1 {Rtrain × N} =0
1: {Pend point} ← getTimingPaths(db1, nworst = 1)

// list of timing paths in corner1.
2: for j in DB do
3: for k in {Pend point} do
4: M1[k][ j]← evalTiming( j, k)

// estimate delay for kth path in db j

5: end for
6: end for
7: Sol ← M1

// Delay matrix Rtrain×N.
8: return Sol =0

way to exhibit these correlations is to perform a principal component analysis [68] of the data.

Figure 2.16 plots the eigenvalues (normalized by the leading eigenvalue) of the covariance

matrices for the data sets of the first four public benchmark designs listed in Table II. The relative

magnitudes of these eigenvalues measure the relative variance captured by different principal

components of the data. Note that while the data for each design consists of path delay values at

44 different analysis corners, the variance of the data is concentrated in a much lower dimensional

subspace. In particular, several orders of magnitude separate the leading eigenvalues in these

covariance matrices from those at the middle or bottom of the spectrum.

In the remainder of this section, we first describe our reporting metrics, and then describe

the design of experiments to validate our predictive modeling approach. For each of these

experiments, we discuss our modeling results.

2.8.1 Reporting Metrics

During the inference phase, we predict elements in the Ytest region of Figure 2.13. This

region has Rtest data points and N−n columns. For each such element (ith row and jth column)

of Ytest , we define dm
i j as the predicted path delay and da

i j as the corresponding actual path delay

from golden timing analysis. We also define εabs
i j as the absolute error for each element of Ytest .
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Algorithm 3. Matrix generation by Union method.
Input: Timing database sessions at N corners DB = {db1, db2, ..., dbN}, number of endpoints num
Output: Matrix with path delay values

Sol = Matrix M1 {Rtrain × N} =0
1: for i in DB do
2: {Pi}← getTimingPaths(i, num, nworst = 1)

// List of timing paths, num endpoints per endpoint
3: end for
4: if True then
5: {Punion}← {P1} U {P2} U {P3} .. U {PN}

// union of paths across all corners
6: {Punique}← uniquePaths({Punion})

// unique paths from union of timing paths
7: end if
8: for i in DB do
9: for j in {Punique} do
10: M1[ j][i]← evalTiming( j, i)

// estimate delay for path j in i
11: end for
12: end for
13: Sol ← M1

// Delay matrix Rtrain×N
14: return Sol =0

Though our model aims at reducing the square of absolute mispredictions, we understand

from industry collaborators that relative delay prediction error is a valuable criterion. Intuitively,

a timing path with larger path delay value can afford larger misprediction, compared to a timing

path with smaller path delay. This is because the former has scope to fix violations with data

path optimizations, even with a misprediction; the latter, having less implementation flexibility,

cannot afford misprediction as easily (hence, cost of model misprediction is higher). With this in

mind, we also report relative errors εrel
i j.

To quantify the model accuracy for the entire Ytest region of the matrix using a single

value, we report three lumped metrics, namely, mean, 99thpercentile and 99.99thpercentile values

denoted by εmse, ε99p and ε99p99. Table 2.12 explains our model accuracy metrics.

2.8.2 Design of Experiments

In our experiments, we use in-house developed artificial designs and four public bench-

mark designs, listed in Table 2.10. We use 28nm FDSOI and 16nm foundry enablements for our

model evaluation. We also use sub-14nm foundry enablement on three industrial designs for our

model evaluation.
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Figure 2.16. Relative variance captured by successive principal components of the first four
data sets in Table 2.10 (44 analysis corners). In each data set, the variance is concentrated in a
subspace of much lower dimensionality than the total number of analysis corners.

For the inference phase, we study two possible testing conditions. (i) Matched testing

conditions hold when the data points in the inference phase match very closely to the data points

of the training phase in their feature space. Such a condition implies structural similarity of

timing paths in training and test data points. (ii) Mismatched testing conditions hold when data

points in the training phase do not necessarily span the data points from the inference phase.

We demonstrate our model usage for both data and clock path delay predictions. For data

path delay predictions, we conduct Experiments 1 and 2 in Mismatched testing conditions. For

clock path delay prediction, we conduct Experiment 3 in Matched testing conditions, to demon-

strate our model’s applicability in predicting clock insertion delay. We conduct Experiment 4 in

Matched testing conditions to assess whether the number of corners required to accurately predict

unknown corners increases with growth of the total number of timing corners. This experiment

demonstrates the scalability of our model. We propose Experiments 5 and 6 in Matched testing

conditions to demonstrate our model usage in advanced technology nodes (16nm and sub-14nm

foundry enablements, respectively).
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Table 2.12. Model accuracy metrics.

Notation Meaning
dm

i j Model predicted delay (ith row and jth column of Ytest)
da

i j Actual delay corresponding to ith row and jth column of Ytest
εabs

i j |dm
i j−da

i j| (Absolute error)
εrel

i j εabs
i j

da
i j (Absolute relative error)

εmse
√

1
Rtest

∑i j(εrel
i j)2 (Root of mean squared relative errors)

εw maxi j{εrel} (Max of all absolute relative error values)
ε99p 99th percentile value of {εrel} (when sorted in ascending order)
ε99p99 99.99th percentile value of {εrel} (when sorted in ascending order)

Data Path Delay Model: Experiment 1. The goal of this experiment is to validate our model’s

usefulness in Mismatched testing conditions. The model is trained with data points from post-

routed implementation of a real design and tested on an unseen post-routed implementation of

the same design. Since the timing paths are from two different physical implementations, we

include this use case in Mismatched testing conditions. This use case is relevant to exploring

multiple physical implementations of the same design (or, re-analyzing implementations through

the months-long physical design process) without having to analyze timing in all corners.

Data Path Delay Model: Experiment 2. The goal of this experiment is to assess potential

benefits of our artificial testcase development methodology. This reflects a hypothetical “ideal

scenario”, wherein we have the capability to produce artificial testcases that span the entire

space of real designs. Though the intent of artificial circuits is to eventually be able to span the

entire space of (likely) real designs, the current state of our artificial circuits can be treated as

Mismatched testing condition since we observe real timing structures poorly covered by our

artificial circuits. In this experiment, our model is trained with artificial testcases and tested on

unseen real designs. The motivating scenario: a one-time trained model using artificial circuits

can predict timing analysis in unknown corners of any real design, using timing analysis in few

known corners of the same real design.

42



Clock Insertion Delay Model: Experiment 3. Accurate clock network synthesis and optimiza-

tion are essential for advanced-node IC design. The goal of this experiment is to demonstrate

the usefulness of our model in predicting clock insertion delay at unknown corners {Tunknown}

using clock insertion delay at known corners {Tknown}. This ensures that the clock network is

synthesized considering its delay values at all timing corners, without overdesigning the clock

tree or leaving violations unattended till very late in the design cycle.

Corner Scalability: Experiment 4. In Experiments 1-3, we use N = 44 corners, and results

(see next Subsection) indicate that a small subset of corners can accurately predict the rest of

the unknown corners. Since design methodologies in advanced nodes require timing analysis at

N≫ 44 corners, this experiment aims to discover whether increasing the number of corners N

demands an increase of n on the same scale. We increase the number of corners from 44 to 82

and use Matched testing conditions to perform this experiment.

Technology Independence: Experiments 5 and 6. All of Experiments 1-4 use 28nm foundry

enablement. Experiments 5 and 6 seek to confirm the utility of our modeling in more advanced

technology nodes, specifically, 16nm and sub-14nm foundry enablements. We use Matched

testing conditions for our validation.

2.8.3 Experimental Results

In all of our results, shown in the plots below, we report (y-axis) values of mean,

99th percentile and 99.99th percentile metrics, denoted as εmse, ε99p and ε99p99 (see Table 2.12).

On the x-axis of each plot, we show n (number of known corners), ranging from 1 to N− 1.

Thus, for example, n = 4 on the x-axis of any given plot indicates that the model is predicting

N−4 corners using n = 4 observed corners. Throughout our experimental results, it is evident

that error metric generally reduces as more corners are included in {Tknown}.

To recap analysis corners and technology enablements in our experiments: (i) we use

N = 44 corners for Experiments 1, 2, 3 and 5, and N = 82 corners for Experiment 4; (ii) we

use 28nm FDSOI libraries for Experiments 1, 2, 3 and 4, and 16nm libraries for Experiment

43



5; and (iii) for Experiment 6, we use three industrial designs with N = 42, N = 58 and N = 29,

respectively, in sub-14nm foundry enablement.

Results of Experiment 1. For this experiment, we use timing paths from a physical

implementation (0.85 utilization, aspect ratio 1) for training, and test on an unseen physical

implementation (0.75 utilization, aspect ratio 0.9) of the same design. The plots in Row 1 of

Figure 2.17 show that εmse ≤ 0.005 (0.5% error) for n = 4, ε99p ≤ 0.01 (1% error) for n = 5 and

ε99p99 ≤ 0.01 (1% error) for n = 14.

Results of Experiment 2. For this experiment, we use timing paths from in-house

developed artificial designs for training, and test on unseen real designs. The plots in Row 2

of Figure 2.17 show that εmse ≤ 0.01 for n = 18, ε99p ≤ 0.01 for n = 23 and ε99p99 ≤ 0.01 for

n = 32. We believe that the non-monotonicity of the curves is a consequence of the Mismatched

testing conditions. Also, the larger n value to predict timing at unobserved corners also suggests

the need for improvement of our artificial circuit generation methodology.

Results of Experiment 3. We use 10% of clock paths for training, and test on unseen

90% clock paths of the same design. Such a use case can bring the best of both accuracy and

runtime worlds during synthesis and optimization of the clock network. The plots in Row 3 of

Figure 2.17 show that εmse ≤ 0.005 for n = 3, ε99p ≤ 0.01 for n = 4 and ε99p99 ≤ 0.01 for n = 6.

Results of Experiment 4. We use 10% of data paths for training and test on unseen

90% data paths of the same design. The plots in Row 4 of Figure 2.17 show that εmse ≤ 0.005

for n = 4, ε99p ≤ 0.01 for n = 6 and ε99p99 ≤ 0.01 for n = 23. The fact that small values of n

achieve good model accuracy supports our initial hypothesis that the distribution of delays across

different corners is highly concentrated in a low-dimensional subspace. Further, these results

suggest that a small number of known analysis corners n can suffice to accurately predict timing

analyses at unknown corners, even as N grows large.

Results of Experiment 5 and 6. We use 10% of data points from a real design, for

training and test on unseen 90% data points of the same design. We use N = 58 for experiments

using 16nm foundry enablement. The plots in Row 5 of Figure 2.17 show that εmse ≤ 0.005 for
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n = 11, ε99p ≤ 0.01 for n = 6 and ε99p99 ≤ 0.01 for n = 21.

Figure 3.11 shows results using sub-14nm technology libraries on industrial designs

prod1, prod2 and prod3. The plots in Figure 3.11 show that εmse ≤ 0.005 for n = 5, n = 7 and

n = 9 for designs prod1, prod2 and prod3 respectively. ε99p ≤ 0.02 for n = 6, n = 9 and n = 12

for designs prod1, prod2 and prod3 respectively. ε99p99 ≤ 0.03 for n = 8, n = 21 and n = 15 for

designs prod1, prod2 and prod3 respectively.

Worst-case Errors and Outliers. The results of Experiment 6 show that improved accuracy

in sub-14nm nodes is an important direction for our future work. Furthermore, in each of our

experiments, we see a handful of data points that fail to be reconstructed to their high-dimensional

space accurately, even with large values of n. (In the industry datasets studied with Experiment

6, we understand that outliers are unsurprising for reasons such as (i) existence rare path types

(e.g., memory as opposed to reg-to-reg) with limited training examples, and (ii) existence of

isolated corners with no similar corners in the provided dataset.) While root-cause analysis and

improvement of outlier (high εw) predictions is another important direction for our future work,

we note that industry design methodology teams consider such outliers to be expected, and that

effects of a few mispredictions are insignificant relative to (i) the analysis improvement and

design convergence benefits from a predictive model, and (ii) analysis inaccuracies that exist in

current methods.8

2.9 Conclusion

To address the accuracy-runtime [9] [49] tradeoff of STA engines, we apply machine

learning techniques to model PBA-GBA divergence in endpoint arrival times. We propose a

model based on decision trees along with electrical and physical parameters of stage bigrams in

timing paths. We assess potential benefits of our model using 28nm FDSOI foundry technology,
8Our industry collaborator indicates that minor violations must be dealt with at the end of timing closure anyway,

hence worst-case outliers even with 10% or greater prediction error would not cause concern. If deemed necessary,
such outliers could be caught up front by an STA run covering all corners, incurring a one-time cost. Incremental
model training, as suggested in the blue arrows of Figure 2, could also help cure outliers through iterations of the
physical design process.
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Figure 2.17. Results of Experiments 1, 2, 3, 4 and 5 (top to bottom): Plots of εmse (red), ε99p
(blue) and ε99p99 (green) versus n, for designs dec viterbi, netcard, leon3mp and megaboom (left
to right).

a leading commercial signoff STA tool, and implementations of public testcase designs up to 1M+

instances. We measure the decrease of PBA-GBA divergence obtained by the model, according to

several metrics and in several usage scenarios. In our experiments, model-predicted PBA arrival

times reduce mean, 99th percentile and max divergence metrics by at least 26.6%, 13.4% and

11.7%, respectively as compared to reference PBA-GBA divergence metrics. Such reductions

can help avoid over-fixing and achieve improved power and area outcomes during optimization.

In addition, both model training and inference are efficient, with a training time of 219 seconds

and testing time of 17 seconds for a test dataset with 1.04M bigrams. A number of ongoing and

future works remain. Chiefly, we are seeking to integrate our predictive models with an academic

sizer and optimizer, to explore the benefit from reduced pessimism in MCMM timing closure

and sizing for leakage and total power reduction. As shown by Experiment 3, significant work

remains toward design of artificial testcases that can train well-performing models for a given
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(a) (b) (c)

Figure 2.18. Results of Experiment 6 using sub-14nm technology libraries. Plots of εmse (red),
ε99p (blue) and ε99p99 (green) versus n for industrial designs (a) prod1 (b) prod2 and (c) prod3.

design enablement, independent of any actual designs. Reduction or elimination of remaining

optimism in PBA slack prediction, as well as endpoint-consistent pessimism reduction, present

additional challenges for future research.

A significant portion of the design cycle is spent on the static timing analysis (STA) at

multiple corners and multiple modes (MCMM). For applying learning-based models for timing

delay prediction at unobserved corners, we have taken a data-driven approach to model the

physics of timing delays across multiple timing corners. Our approach is based on the premise

that the path delay values at different analysis corners are strongly correlated. In particular,

viewing these path delay values as the coordinates of points in a high-dimensional space, we

have observed that the main support of their distribution is heavily concentrated in a much

lower dimensional subspace. As a consequence, we have shown that simple linear methods in

multivariate regression can accurately predict a large set of unknown corners from a smaller set

of known ones. For example, with a 1M-instance example in foundry 16nm enablement (10%

training, 90% testing), we obtain a model based on 10 observed corners that predicts timing

results at the remaining 48 unobserved corners with less than 0.5% relative root mean squared

error, and 99th percentile relative prediction error less than 0.6%. We are currently exploring

numerous other directions to address further challenges. With large data sets, for example, it

is possible to learn more flexible statistical models that do not make strong assumptions of

linearity. Also, to handle outliers, it is possible to optimize more robust criteria in our statistical
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fits. So far these approaches have yielded incremental benefits, but it remains to find the optimal

combination of strategies for the problem of timing analysis in advanced-node IC design. These

and other issues are the subject of our ongoing and future work.

Chapter 2 contains material from “Using machine learning to predict path-based slack

from graph-based timing analysis”, by Andrew B. Kahng, Uday Mallappa and Lawrence Saul,

which appears in International Conference on Computer Design, October 2018; “Unobserved

Corner Prediction: Reducing Timing Analysis Effort for Faster Design Convergence in Advanced-

Node Design”, Andrew B. Kahng, Uday Mallappa, Lawrence Saul and Shangyuan Tong, which

appears in Design, Automation and Test in Europe Conference & Exhibition, March 2019. The

dissertation author was the primary investigator and author of these papers.
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Chapter 3

AI for EDA: Design Optimization

The solution space of detailed placement becomes intractable with increase in thenumber

of placeable cells and their possible locations. So, the existing works either focus on the sliding

window-based optimization or row-based optimization. Though these region-based methods

enable us to use linear-programming, pseudo-greedy or dynamic-programming algorithms,

locally optimal solutions from these methods are globally sub-optimal with inherent heuristics.

The heuristics such as the order in which we choose these local problems or size of each sliding

window (runtime vs. optimality tradeoff) account for the degradation of solution quality. Our

hypothesis is that learning-based techniques (with their richer representation ability) have shown

a great success in problems with huge solution spaces, and can offer an alternative to the existing

rudimentary heuristics. We propose a two-stage detailed-placement algorithm RLPlace that

uses reinforcement learning (RL) for coarse re-arrangement and Satisfiability Modulo Theories

(SMT) for fine-grain refinement. With global placement output of two critical IPs as the start

point, RLPlace achieves upto 1.35% HPWL improvement as compared to the commercial tool’s

detailed-placement result. In addition, RLPlace shows at least 1.2% HPWL improvement over

highly optimized detailed-placement variants of the two IPs.
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3.1 Introduction

In the physical design flow, the detailed placement step follows the global placement step.

The job of the detailed placer is to legalize the cells in valid placement sites. While doing this,

several objective functions such as wirelength, power, timing, area, etc. are used to improve the

solution quality. Since the design is already optimized for one of the above cost metrics before

the detailed placement step, the cost improvement during the detailed placement is incremental

and low in magnitude as compared to the optimization of global placement step; thus making

it a difficult problem. As the number of placeable cells and their possible placement locations

increase, heuristic-based solvers serve as a good alternative for the detailed placement problem.

Region-wise optimization involves dividing the layout into multiple smaller and tractable regions

and work on each of these small local regions in some sequence. The inherent heuristics such as

order of selecting the regions plays an important role in the final solution quality. Our hypothesis

is that Reinforcement Learning (RL) techniques can help us in determining the optimal sequence

of choosing the regions for such region-based optimizations. The most important feature of a such

a learning-based placer is its ability to learn from past experience and improve its performance

over training. Besides the learning ability, there are also two other promising properties of

learning-based placers. Firstly, the trial-and-error mechanism of RL makes it easier to deal

with lack of data training data. Secondly, the machine learning models in general, tend to have

a better state representation ability with flexible representation forms such as image (matrix),

vector and graph, which is usually not available for heuristics-based methods. Recent works

in RL for solving Combinatorial Optimization (CO) problems [69] combine RL with existing

combinatorial search algorithms and demonstrate promising results. These techniques leverage

deep RL’s ability to recover reasonable rough solution fast, and then exploit the ability of exact

solvers to incrementally improve via local refinement.

Problem Statement: Given a global placement solution, we divide the layout into

multiple grids (a set of grids form a window or a region). The goal of sliding-window based
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RLPlace algorithm is to determine optimal arrangement of grids in each window and distribute

the cells within each grid such that the resulting overlap-free solution is optimal in terms of total

wirelength.

Figure 3.1. The problem instances of RLPlace , shown on a blurred layout of our design.

3.2 Related Work

The proliferation of machine learning algorithms coalesced with GPU acceleration

offer an alternative to solve existing EDA problems [70] with huge solution space, along with

generalization to unseen problems. Many previous works use supervised learning techniques

for various VLSI optimization problems; [71], [72] for prediction of congestion and DRC

violations, [73, 74] for predictions associated with static timing analysis, [27] for power-delivery

network synthesis and [29] for leakage power optimization. In active learning category, deep

RL [69, 75] has proven its success in problems formulated as MDP. Previous works [76, 77, 78,

34, 79] demonstrate the efficacy of deep learning-driven prediction problems and reward-driven

optimization tasks such as macro-placement, transistor sizing, tool parameter optimization.

Recently, Lin et al. [80] propose batch-based concurrent algorithms ABCDPlace that exploits

GPU acceleration.

Our Contribution: Though previous works use RL for macro-placement (piggybacked by
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forced directed standard-cell placement), we are the first to formulate the standard-cell detailed-

placement as MDP and solve it using RL.

3.3 Placement as MDP

3.3.1 Markov Decision Process (MDP)

Optimization problems such as VLSI placement can be viewed as a sequence of decisions;

decisions to gain some long-term reward such as wirelength, area, performance or power. Markov

Decision Process (MDP) gives us a formal way to solve these sequential decision making

processes. Formally, MDP is a discrete-time state-transition system that can be described with

four components (i) States (s ∈ S) that are necessary for choosing possible actions (ii) Actions

a ∈ A that are chosen from a policy π : S→ A (iii) Transition Model P(s′|s,a) that describe the

dynamics of the world and (iv) Reward that is a real-valued function R(s) on states representing

the goodness of a state, from the agent’s perspective. The value of a state V π(s) keeps track of

the expected long-term discounted rewards of the state. The discount factor γ < 1 guarantees

the convergence of expected reward. Practically, this makes sense in the placement problem,

because we are not certain of long-term future and is rational to weigh them less as compared to

immediate rewards.

V π(s0) = Eπ

( ∞

∑
i=0

γ
iR(s)

)
=

∞

∑
i=0

γ
i ∗R(s)≤ Rmax

1− γ
(3.1)

3.3.2 Reinforcement Learning

The value function for every state has an interesting local recursive relationship, repre-

sented by ”Bellman Expectation” Equation 3.2. The first term R(s) is deterministic, given the

state. The second term is a distribution over all possible next-state transition probabilities.
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V π(s) = R(s)+ γ ∗∑
s′

P
(
s′|s,π(s)

)
V π(s′) (3.2)

For every state, we are interested in the optimal value function V ∗(s) and then derive the

corresponding policy.

V ∗(s) = max
π

(
V π(s)

)
= R(s)+ max

a∈A(s)

(
∑
s′

P
(
s′|s,a

)
V ∗(s′)

)
(3.3)

In the absence of transition probabilities of the environment, learning from simulated

experiences a powerful method to determine the value function. The action-value states denoted

by Q states help us to overcome the sampling issue associated with the max operator of Equation

3.3. Intuitively, imagine taking an action a and then following the default policy thereafter.

Q(s,a) = R(s,a)+ γ

(
∑
s′

P
(
s′|s,a

)
max

a′
Q(s′,a)

)
(3.4)

We can use the Temporal Difference (TD) update rule of Equation 3.5, to incrementally

improve the Q value estimates as we get more and more samples. Once the Q values converge,

the best value of a state can be obtained by Equation 3.6.

Q(s,a)← Q(s,a)+α

(
R(s)+ γ max

a′
Q(s′,a′)−Q(s,a)

)
(3.5)

V ∗(s) = max
a

Q(s,a) (3.6)

53



3.3.3 Deep Q Learning

To derive the optimal policy, we can either maintain a table of Q values for all state-action

(s,a) pairs or use a function approximator (using a neural network). For both the methods, the

idea is to iteratively improve the stored current Q values using the TD update. The obvious

advantage of having a function approximator is the scalability (without having to deal with large

tables), along with generalizability.

Figure 3.2. Neural network takes state of the window as the input and learns to distinguish good
actions (grid swaps) against the bad actions.

3.3.4 Satisfiability Modulo Theories (SMT)

For optimization problems such as placement, in addition to satisfiability, we also need

to support for predicate logic along with an ability to systematically search for the optimal

solution. To solve such Boolean Optimization problems, Satisfiability Modulo Theories-based

framework (SMT) often termed as the generalization of Boolean SAT solvers offer a richer

modeling language and framework; AND, OR, at-most-1 (AMO), at-least-1 (ALO), exactly-1

(EO), if-then-else (ITE), BitVector (BV) representations and lexicographic objective functions.

In our flow, once we determine optimal sequence of grid-swaps of each window, we use the SMT

framework for fine-grain refinement.
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3.4 RL for Detailed Placement

In this work, we follow a two-stage hierarchical approach to solve the problem of detailed

placement optimization. We divide the layout into windows or regions (2D space); similar to the

sliding window approach. Each window is further partitioned into grids that contain many cells.

In Stage 1, instead of working at the cell-level, we work on rearranging these coarse grids that

contain one or more cells. When we rearrange the grids inside each window, the cells associated

with the grid move along with the grid. It is important to observe that any possible arrangement

of the grids in the window can be obtained by a sequence of grid-swaps. Therefore, the eventual

goal of Stage 1 is to determine the optimal sequence of these grid swaps and handover to Stage

2 to perform the fine-grain overlap-free redistribution. Figure 3.1 summarizes our RL model

training and the two-stage RLPlace flow-deployment.

Figure 3.3. The flow on the left shows the learning phase of our RL framework and the right is
model deployment.

3.4.1 Stage 1 (coarse-grained placement)

We work on a window of the layout at a time, in the pursuit of generating an optimal

grid arrangement in the window. Even a 5×5 window results in 25! possible grid arrangements,

indicating the complexity of the problem. As this window is swept across the layout, the exercise
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of grid re-arrangement needs to be performed multiple times. We observe that any re-arrangement

of grids in a window can be realized using a sequence of grid swaps. This results in a simple and

finite action-space. By formulating this re-arrangement task as an MDP (states, actions, rewards

and state-transitions), existing RL algorithms can help us in finding optimal sequence of swaps.

The advantage of such a learning-based sliding window approach is that the past experiences

can be generalized and used to solve new windows. Figure 3.4 summarizes the state, action and

reward representations used in this work.

Figure 3.4. The components of MDP (left). As the window is slided across the layout, RL agent
finds the optimal grid arrangement in each window.

States

Since Graph Convolution Networks (GCN) adds a layer of approximation and needs

to learn the optimal embedding, we use a simple adjacency matrix of the window for the state

representation. The elements of the matrix comprehend the connectivity information between

the grids of the window; normalized (for generalizability) summation of pin-pin net connections

between the grids. For a window with k× k grids, the size of adjacency matrix C is k2× k2,

where an element Ci j indicates the number of pin-pin connections (normalized in 0-1 range)

between grid i and grid j.
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s =Ck2×k2, Ci j =
∑Connections(i, j)

max(C)

Actions

We represent the action using ai j = Swap(i, j) indicating the swap of grid i and grid j. In

a window with k× k grids, number of actions |A| can be obtained using the following equation.

|A|=
(

k2

2

)

Rewards

For minimal wirelength as the objective, one possibility for the reward function is the

inverse of wirelength of the associated cells in the window. Since we do not care about absolute

goodness while generating the sequence of swaps, we define reward as the HPWL (Half-Perimeter

Wire Length) difference of the current state s (in an episode) as compared to the initial state of

the episode s0 (from where we initiated the episode). In this milieu, an episode is just a sequence

of actions between an initial and terminal state.

R(s) = HPWL(s)−HPWL(s0)

3.4.2 Stage 2 (fine-grained placement)

During Stage 1, movement of associated cells in these grids could result in cell overlaps.

Figure 3.5 show the overlap-free placement problem-instance to the SMT Solver [39]. Formally,

given placement site coordinates (sx,sy) and grids to be swapped g1,g2; with grid origins

(Xg1,Yg1) and (Xg2,Yg2), grid dimensions (Wg1Hg1) and (Wg2,Hg2), the goal is to determine

optimal overlap-free locations (xi,yi) for the cells of these two grids. The binary auxiliary

variables li j,ri j,ui j,di j represent the relative placement between cells i, j.
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Figure 3.5. Stage 2 involves re-arrangement of cells within grids of the window.

Cell-overlap constraint:

ITE
(

li j,(xi +wi ≤ x j),True
)
,ITE

(
ri j,(xi−w j ≤ x j),True

)

ITE
(

ui j,(yi−h j ≤ y j),True
)
,ITE

(
di j,(yi +hi ≤ y j),True

)
AMO(li j,ri j,ui j,di j)

Boundary conditions:

∨{{
(xi ≥ Xg1)

∧
(xi ≤ Xg1 +Wg1)

}
,

{
(xi ≥ Xg2)

∧
(xi ≤ Xg2 +Wg2)

}}

Legal placement (snap to grids):

{
(xi mod sx = 0)

∧
(yi mod sy = 0)

}
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Net connectivity (bounding box):

For every net n ∈ N, connecting a set of pins P(n), associated with cells c ∈C in grids g1,g2; the

location of a pin p connected by net n is approximated by (xn
p,y

n
p) = (xn

c +0.5∗wc,yn
c +0.5∗hc),

where (xn
c , yn

c) are the lower-left coordinates of the associated cell c, and (wc, hc) are the cell

dimensions. The upper-right and lower-left xy coordinates of a net n’s bounding box urn
x , urn

y ,

lln
x and lln

y can be expressed as:

urn
x ≥ xn

p ,urn
y ≥ yn

p ∀p ∈ P(n),n ∈ N

lln
x ≤ xn

p , lln
y ≤ yn

p ∀p ∈ P(n),n ∈ N

Objective: Half-perimeter wire length (HPWL)

min ∑
n∈N

{
(urn

x − lln
x )+(urn

y − lln
y )

}

3.5 Experimental Setup

For our policy network, we use Deep Neural Network (DNN + Q Learing) to approximate

the Q values. The network takes the adjacency matrix of the window as the input and predicts the

Q values for each grid-swap action. To train the DNN, we simulate and generate sets of (State,

Action, Reward, Next state, Next Action) with an ε-greedy strategy.

Development Framework: We use our in-house python-based tool that stores the

physical-design database and supports various utilities of a typical RL framework. Since the

neural-network libraries and SMT solver is python-based, it offers a single development frame-

work mitigating various tool/data hand-shakes. We perform search over the hyper-parameter

space to determine modeling parameters; a fully-connected 300×600×600×300 neural net-

work, a learning rate of 0.001, discount factor of 0.92, εinitial of 0.5 and εdecay of 0.85, replay

buffer size of 1000, training batch size of 128, 1000 training episodes and 200 iterations per each
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Figure 3.6. Optimal re-arrangement problem is analogous to the Rubik’s cube problem, with an
added complexity of net connectivity between the miniature cubes.

episode.

Training Setup: Using the TD update, the policy network is trained to minimize the mean

squared loss error (MSE). Each episode of the training process contains a simulated state-

transition trajectory, generated with an ε-greedy strategy. The MSE decrease during the training

process, the cumulative reward at the end of each training episode and the cumulative reward

of the final episode is shown in Figure 3.7. It is important to observe that the model initially

explores and eventually learns to exploit good trajectories.

Inference: Once the optimal sequence of grid-swaps is determined, we use SMT solver on-the-

fly, to assign each cell within the grid to a legal location, without overlaps. To reduce the problem

complexity, SMT solver does not disturb the boundary cells since they will be accounted for, as

the sliding windows moves over the layout.

60



Figure 3.7. The MSE of the policy network (left), reward improvement as a function of training
episodes (middle) and the final episode’s cumulative reward (right).

Designs: For our experiments, we use two critical IPs (up to 22K cells) Multiplier Unit 1

and Multiplier Unit 2. In our SOC, we replicate 1000s of these two critical IPs. The improvement

in each of these IPs can be scaled by the number of instantiations, to get an estimated improvement

on the full-system. We perform two experiments (a) Four optimized global-placement variants

of each IP (by varying a combination of physical and logical constraints) serve as the start point.

With the same start point, we compare the performance (HPWL) of RLPlace with a commercial

detailed placer’s result. (b) In addition, we also validate if RLPlace can improve over two

highly-optimized detailed-placement variants resulting from several iterations of tool and manual

detailed-placement optimizations.

3.6 Experiments

3.6.1 Improvement over Global-Placement

As shown in Figure 3.8, we start with a global-placement database from a commercial

tool and track the HPWL improvement as the RLPlace algorithm is executed. In the plot, X-axis

indicates iterations that are ”action sequences” (determined by our RL sequence) in each window

along with SMT-based refinement. Once we span the entire layout by window sweeping, we

repeat the process of sweeping again (within our runtime budget or till the cost metric saturates).

The wirelength results of RLPlace as compared to the results of a commercial tool’s detailed-
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Table 3.1. Wirelength (um) comparison of RLPlace with a commercial tool; optimized output
from global placement (Baseline) as the start point for both.

Design Baseline Innovus RLPlace Delta (%)
Multiplier Unit 1

design1 11900 11520 11390 1.12%
design2 12350 11900 11780 1.01%
design3 13460 12410 12280 1.04%
design4 14250 12520 12350 1.35%

Multiplier Unit 2
design1 133820 126290 124810 1.19%
design2 135790 128500 126940 1.23%
design3 139530 131540 130050 1.15%
design4 142680 134610 133210 1.05%

placement are summarized in Table 3.1. With the same baseline start point, we observe up to

1.35% HPWL improvement as compared to the results of a commercial tool.

Figure 3.8. HPWL improvement of RLPlace , with global-placement of Multiplier Unit 1 as the
start point.

.

We generate four variants of both IPs, design1 and design2. These variants are generated

by using a combination of design logical constraints (such as utilization, aspect ratio and clock

period) while generating the placement data from a commercial tool. We then use the output
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of commercial tool as the start point for our RLPlace. In our plots shown in Figure 3.8 and

Figure 3.9, we observe STWL (in um) improvement as a function of iterations (during the first

few iterations). When run for sufficiently longer number of iterations, Figure 3.10 shows STWL

improvement for a variant of design1. This is just a validation of our model’s usefulness on

unoptimized designs.

Figure 3.9. HPWL improvement during the first 4K iterations (for four variants of design2).
.

3.6.2 Improvement over Commercial Detailed-Placement Flow

We let the design undergo a commercial tool’s detailed-placement optimization, followed

by a sequence of manual optimizations. This is used as the start point for our RLPlace algorithm.

As shown in plots of Figure 3.11, the resulting solution from RLPlace shows at least 1.2%

HPWL improvement over the heavily optimized design implementations. As shown in Figure

5.10, the end result of RLPlace is overlap-free.
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Figure 3.10. Plots showing substantial STWL improvement (over 35%) for a variant of design1,
when run for sufficiently longer number of iterations (we run for 100K iterations for this variant).

.

3.7 Conclusion

We use active learning to improve the heuristics of the region-based detailed-placement

optimization. With global placement as the start point, we achieve up to 1.35% improvement

as compared to commercial tool’s detailed-placement. With heavily optimized (commercial

tool and manual) detailed-placement as the start point, we achieve 1̃.2% HPWL improvement.

As part of our future work, we seek to use several interesting state-action representations and

simultaneously optimize for multiple rewards (routability, power and performance). We would

like to thank Zeki Bozkus, Ghasem Pasandi and James Forsyth of Nvidia Corporation, for their

valuable contributions to this work.

Chapter 3 contains materials from “RLPlace: deep RL guided heuristics for detailed
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Figure 3.11. Plots showing HPWL improvement over highly-optimized design variants of our
IPs

.

Figure 3.12. Overlap-free layout (blurred) of our designs, generated from the RLPlace algorithm.
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Figure 3.13. Plots showing the benefit of SMT/SAT based cell distribution with greedy-swap
(Stage 2), and comparison of RL-based heuristic with random heuristics (Stage 1).

placement optimization”, by Uday Mallappa, Sreedhar Pratty and David Brown, which appears in

Design, Automation and Test in Europe Conference & Exhibition, March 2022. The dissertation

author was the primary investigator and author of this paper.
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Chapter 4

AI for EDA: Network-on-Chip Routing

Application-aware oblivious routing that supports flow-specific routing and static virtual

channel assignments can achieve better performance than conventional oblivious routing by

accounting for application traffic demands. However, because these prior approaches consider

the application-aware routing and static virtual channel assignment steps separately, they unnec-

essarily impose routing restrictions to avoid deadlocks. We propose a joint application-aware

oblivious routing and static virtual channel allocation framework, JARVA that optimally solves

both problems together to enable better deadlock-free performance. Our approach can achieve

up to 30% better performance than the state-of-the-art application-aware oblivious routing

algorithms and substantially better still in comparison with conventional oblivious routing.

4.1 Introduction

On-chip interconnection networks are widely used in systems-on-chips and multiproces-

sor designs. Routing algorithms for on-chip interconnection networks can either be oblivious

or adaptive. In oblivious routing, the routing path is determined entirely by the source and

destination. Oblivious routing is attractive due to its simplicity, which enables simple and

fast router implementations. However, conventional oblivious routing can have difficulty with

certain communication patterns, especially since routing decisions are made independent of the

different flow bandwidth demands for different applications. On the other hand, adaptive routing
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aims to take into account the network state (e.g., network congestion) when making routing

decisions dynamically. Although adaptive routing can in theory achieve better performance if

routers can obtain a global and instantaneous view of the network in real-time, it typically relies

instead primarily on local information due to speed and complexity limitations, which limits the

effectiveness of adaptive routing.

Application-aware oblivious routing [81] is an alternative routing approach to conven-

tional oblivious and adaptive routing. It is particularly well-suited for long-running to sustained

applications with predictable traffic patterns. Rather than taking into account the dynamic state

of the network, as in the case of adaptive routing, application-aware oblivious routing takes

into account the traffic characteristics of an application to pre-compute routes for the different

flows so that network performance is optimized, while ensuring deadlock avoidance. The routers

in the network are then statically configured with flow-based routing information prior to the

execution of the application. In other words, JARVA is an “offline” bandwidth-sensitive routing

and VC assignment algorithm that optimizes the network performance for a specific application

profile, while ensuring deadlock freedom. This approach can achieve better performance than

conventional oblivious routing because global knowledge of traffic demands is used to find

optimized routing paths. At the same time, routers remain simple because routes are configured

statically and remain unchanged at run-time. This approach can achieve better performance than

conventional oblivious routing algorithms because routes are optimized with global knowledge

of bandwidth demands. At the same time, routers remain simple because routes are configured

statically and remain unchanged at run-time.

While pre-computing static flow-specific routes that are optimized for the traffic charac-

teristics of an application can achieve better performance than conventional routing approaches,

the chosen routes must also be deadlock free. Previous work on application-aware oblivious

routing [81] has considered the application-aware routing and virtual channel (VC) assignment

steps separately. To ensure deadlock freedom, Kinsy et al. [81] proposed two approaches. In

the first approach called BSOR, Kinsy et al. proposed to restrict the routes in conformance with
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one of the turn models described in [5]. For a two-dimensional mesh topology, there are 12

possible turn restrictions. BSOR can be enumerated over all 12 possible turn restrictions to pick

the best set of routes. In a second approach called BSORM, Kinsy et al. proposed to restrict

routes to minimal paths, where deadlock freedom can be ensured by partitioning any arbitrary

set of minimal routes into 2 sets of VCs. In both cases, the approaches unnecessarily impose

routing restrictions to ensure deadlock avoidance, which significantly limits the design space.

Lysne et al. introduced the idea of layered routing [82] to avoid deadlocks: it first generates

packet-wise minimal routes and then iteratively performs routing changes while assigning VCs

(along the routes) to layers such that the resulting layered dependency graph is acyclic. However,

this greedy approach does not provide a global view of the problem.

In this paper, we propose a joint application-aware oblivious routing and static virtual

channel allocation framework that optimally solves both steps together to enable better deadlock-

free performance. By solving both problems jointly, we do not unnecessarily impose routing

restrictions – any route can be selected as long as there is a corresponding VC assignment

that avoids deadlocks. Our proposed framework is based on a satisfiability modulo theories

(SMT) formulation that enables the succinct capture of complex conditional constraints that are

needed to model our joint optimization problem, especially the complex interactions between

demand-sensitive routing and deadlock free VC assignment. Our SMT framework can support

various optimization cost functions, including maximizing the satisfaction of flow demands

or minimizing the maximum channel load, while ensuring deadlock avoidance. We evaluate

our framework on both synthetic benchmarks and a real-world case study. The experimental

results show that our approach can achieve up to 30% better performance than the state-of-the-art

application-aware oblivious routing algorithms and substantially better still in comparison with

conventional oblivious routing approaches.

The remainder of this paper is organized as follows: Section 4.2 summarizes related

work. Section 4.3 describes our SMT-based formulation for our joint application-aware obliv-

ious routing and static virtual channel allocation problem. Section 4.4 compares benchmark
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performance using our joint routing and VC allocation approach to existing application-aware

and deterministic oblivious routing algorithms. Finally, Section 4.5 concludes the paper.

4.2 Related Work

Dimension-order routing [83] is one of the deterministic routing methods that manifests

into XY or YX routing in a 2D network grid. Necessary and sufficient conditions for a deadlock-

free deterministic routing were given in [84] in scenarios where there are no false resource

dependencies. We use this condition to determine if a set of routes is deadlock-free in our

oblivious routing scheme. In addition to XY or YX routing, ROMM [85] and Valiant [86]

use randomized intermediate node selection, to improve the load distribution. In O1TURN

routing algorithm [87], Seo et al showed that simply balancing traffic between XY and YX

routing can guarantee near-optimal worst-case throughput. These application independent

oblivious routing algorithms are indifferent to the traffic pattern. On the other hand, application-

aware oblivious routing [81] is concerned with optimizing throughput for specific (possibly

long-running) applications by considering application-specific traffic patterns and bandwidth

requirements.

Given an application, existing methods to obtain deadlock free routes can be divided into

heuristic and exact methods. For the specific problem of application-specific oblivious routing,

Kinsy et al [81] propose to first solve the routing task using MILP. However, due to its scalability

issues, they propose BSOR (single virtual channel or multiple virtual channels with dynamic VC

allocation) and BSORM (multiple virtual channels with minimal routes and therefore making

static virtual channel allocation) to determine the lower bound of edge residual capacity. The

routing scheme in BSOR and BSORM relies on the order of flow routes chosen during their

sequential flow routing process and makes it a tedious process, when the gap between upper

(usually chosen from XY or YX routing results) and the lower bound of residual edge capacity

is very large. In addition, when virtual channels ≥ 2, BSORM-based routing lifts flow-turn
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restrictions, but at the cost of restricting to minimal routes (to ensure deadlock-freedom). Unlike

previous works for oblivious routing which either solve for exact solutions in networks with

smaller complexities or use heuristics at the cost of optimality, we propose SMT-based exact

solver to solve for deadlock-free routing and VC assignment simultaneously.

4.3 Joint Application-Aware Oblivious Routing and Static
VC Assignment (JARVA)

In this section, we first summarize the notations for a 2D mesh network model. We

then outline how deadlocks can be avoided in a 2D mesh in the case of wormhole routing

(the case with no virtual channels) based on a turn restriction model [5]. We next extend the

conditions to sufficiently guarantee deadlock freedom in the case of static VC assignment. Based

on these conditions, we provide an SMT formulation of our joint application-aware oblivious

routing and static VC assignment problem, which captures complex conditional constraints

that are needed to model our joint optimization problem, especially the complex interactions

between demand-sensitive routing and deadlock free VC assignment. We conclude this section

by discussing extensions to the router implementation to support application-aware oblivious

routing and static VC assignment.

4.3.1 Network Model

An M×N 2D mesh network can be represented by a directed graph G = (V,E), where

each node u ∈ V corresponds to a processing core and an associated router. Each node has a

location coordinate (m,n), where m is the row number and n is the column number with the

origin (0,0) at lower-left node of the network. In general, a node u at location (m,n) has a

directed link (u,v) ∈ E to an adjacent node v at location (p,q) as long as 0≤ p≤ (M−1) and

0≤ q≤ (N−1).

For the application-aware oblivious routing problem and static VC assignment problem

considered in this paper, application requirements are given as a set of K flows, indexed by
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(a) (b) (c)

Figure 4.1. The turns (clockwise and counter-clockwise) that are allowed (solid lines) and
prohibited (dashed lines) under (a) the West-First turn model, (b) the North-Last turn model, and
(c) the Negative-First turn model, each with four rotations (steps of 90 degrees), for a total of 12
different turn models [5].

i = 1,2, . . . ,K. Each flow i is defined by (si, ti,di), where si and ti are the source and destination,

respectively, and di is the demand. We assume si ̸= ti and multiple flows may have the same

source and destination. A route for a flow i is a path from si to ti.

4.3.2 Deadlock Avoidance in a 2D Mesh in Wormhole Routing

For deadlock avoidance, [5] showed that deadlocks can be avoided in wormhole routing

(the case with no virtual channels) by restricting the turns that a flow can take in its routing

path. Fig. 4.1 shows three types of turn models that can ensure deadlock avoidance in wormhole

routing. Fig. 4.1a illustrates one turn model called West-First in which all turns in the West

direction are prohibited in either the counter-clockwise or clockwise direction. The other two

types of turn models called North-Last and Negative-First are similarly depicted in Fig. 4.1b and

Fig. 4.1c, respectively. These turn models are explained in depth in [5]. As each turn model type

can be rotated four different ways, there are in effect 12 different turn models.

Proposition 1 For any of the 12 possible turn restriction models, any set of routes that obey the

chosen turn restriction model is deadlock free for wormhole routing.

The proofs were given in [5] for each of the West-First, North-Last, and Negative-First turn

model, which also apply to the corresponding four possible rotations (steps of 90 degrees) of

each model, for a total of 12 possible turn restriction models. The proofs were derived from

a key result from Dally and Seitz [84] that showed any routing algorithm is deadlock free if
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the channels in the network can be numbered so that the algorithm routes every packet along

channels with strictly increasing (or decreasing) numbers. In [5], Glass and Ni showed how the

channels in a 2D-mesh can be numbered for each of the turn models so that the channels would

be strictly increasing (or decreasing) as long as the consecutive links obey the corresponding

turn restrictions. In particular, in [5], Glass and Ni assumed wormhole routing, where each

channel has a one-to-one correspondence to a link. In this case, the numbering scheme is such

that the corresponding channels on two adjacent links are numbered in strictly increasing (or

decreasing) order, except for the prohibited turns, which would have decreasing (or increasing)

numberings. We refer the interested reader to [84] and [5] for details1. Note that [5] assumes

wormhole routing (the case with no virtual channels). Therefore, each channel has a one-to-one

correspondence with a link in the 2D mesh.

The application-aware oblivious routing approach in [81] called BSOR adopts this turn

model approach by restricting the routing of flows in conformance with one of these 12 turn

models. BSOR can be enumerated over all 12 possible turn restrictions to pick the best set

of routes. BSOR imposes routing restrictions on flows because it performs the application-

aware oblivious routing step and the static VC assignment step separately. Therefore, it has

to perform the routing assignment of flows as if deadlocks could not be resolved by virtual

channel assignments. In our work, we do not impose turn restrictions on flows. Rather, the key

idea in our approach is that we allow flows to make such restricted turns as long as the VCs

statically assigned to the flow on the two links corresponding to the restricted turn (dotted lines

in Figure 4.1) are strictly increasing with respect to the indices assigned to the VCs (see the next

section).
1In [5], the channels were numbered in decreasing order and the turn restrictions ensured that consecutive links

(channels) on a route were strictly decreasing, but exactly the same analysis applies with the channels numbered in
increasing order and consecutive links (channels) were required to be in strictly increasing order.
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4.3.3 Deadlock Avoidance in a 2D Mesh with Static VC Assignment

In this section, we extend the turn model restrictions in [5] for the case where each link

has H virtual channels, for any H ≥ 2. We first define the following.

Definition 1 A channel dependency graph (CDG) is a directed graph D = (C,A), where the

vertex set C corresponds to a set of channels in a network and the arc set A consists of pairs of

channels (ci,c j), ci,c j ∈C, such that there is a direct dependency from ci to c j if there is routing

of a flow that transitions from channel ci to c j.

Definition 2 A layered channel dependency graph (L-CDG) for a 2D mesh G = (V,E) with

H virtual channels per link is a channel dependency graph D = (C,A), with the following

properties:

1. Each link e ∈ E in the 2D mesh G = (V,E) has exactly H virtual channels, indexed

h = 1,2, . . . ,H.

2. The vertex set C in the L-CDG has exactly |E|×H channels in the network, where the

channels are disjointly partitioned into H layers, L1,L2, . . . ,LH , and where each layer

Lh = {ch
1,c

h
2, . . . ,c

h
|E|} comprises the virtual channels with index h for all |E| links in

G = (V,E) such that ch
e is a virtual channel on link e with VC index h.

3. There is a direct dependency in the arc set A from cg
i to ch

j if there is a routing of a flow

that transitions along two consecutive links from channel cg
i to ch

j , where g and h could be

on the same layer (i.e., g = h).

The key idea in our approach is to extend the turn restriction framework in [5] to allow

flows to make restricted turns as long as the VCs statically assigned to the flow on the two links

corresponding to the restricted turn (dotted lines in Figure 4.1) are always strictly increasing
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with respect to the indices assigned to the VCs. That is, we perform application-aware oblivious

routing and static VC assignment jointly to ensure the following conditions are satisfied2:

Condition 1 If a route on two consecutive links correspond to a restricted turn, the VC index

assigned to the second link must be strictly increasing.

Condition 2 If a route on two consecutive links does not correspond to a restricted turn, the VC

index assigned to the second link can remain the same or be strictly increasing.

Proposition 2 If a joint application-aware oblivious routing and static VC assignment for a set

of flows satisfies the above conditions for a 2D mesh with H virtual channels per link, then the

corresponding solution is deadlock free.

As defined in Definition 2, the channels in an L-CDG D = (C,A) are organized into H layers,

L1,L2, . . . ,LH . Conceptually, we can view an L-CDG as being three-dimensional, with all virtual

channels having the same index h grouped on to the same layer Lh. As stated in Conditions 1

and 2, when a VC assignment is changed on two consecutive links of a route, the VC index

assigned to the second link must be strictly increasing. A change in the VC assignment is only

required on a restricted turn; otherwise, it is optional .

Intuitively, deadlocks are avoided on a VC layer by requiring the VC assignment to go

up to a higher indexed VC layer on restricted turns, thereby making it impossible to have cyclic

dependencies on a layer. That is, it has already been shown in [5] that cyclic dependencies cannot

occur if restricted turns are prohibited. In our L-CDG case, cyclic dependencies cannot occur

among the channels on the same layer since we require the VC assigned to the second link on a

restricted turn to transition to a strictly higher VC index (see Condition 1).
2In these conditions, the VCs are assumed to be indexed as h = 1,2, . . . ,H: strictly increasing means for example,

if the first link is assigned h = 1, then the second link must be assigned h≥ 2. The conditions could also be defined
so that when the VC index of the second link is changed, the new VC index must be strictly decreasing. This
is equivalent to strictly increasing if we simply reverse the numbering of the VCs. Similarly, the VCs can be
renumbered under any permutation, and the notion of strictly increasing applies accordingly. Therefore, for the
remainder of the paper, we will simply assume the new VC index must be strictly increasing when the VC index of
the second link is changed, but any permutation of the ordering would also ensure deadlock freedom under the same
conditions.
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Table 4.1. Terms and Definitions.

Term Definition
αi(u,v) A Boolean (0/1) variable indicating if flow i is assigned to link (u,v)
β c

i (u,v) A Boolean (0/1) variable indicating if flow i is assigned to link (u,v)
using VC with index c

load(u,v) Total load on link (u,v)
MCL The maximum channel load

Next, we have to consider if cyclic dependencies can occur among the channels on

different layers. Both Conditions 1 and 2 allow for link transitions to a strictly higher VC index.

Because the VC assignments for consecutive links must always go up to a higher VC layer when

changed, deadlocks also cannot occur between layers since the VC assignments for consecutive

links can never go back down to a lower layer, thereby making it impossible to have cyclic

dependencies between layers.

Therefore, the resulting L-CDG is guaranteed to be acyclic, which guarantees the corre-

sponding routing and static VC assignment is also deadlock free.

Based on the above conditions, we provide in the next section a novel SMT formulation

that jointly performs application-aware oblivious routing and static virtual channel allocation as

a global optimization problem. The formulation considers all flows simultaneously to enable

better deadlock-free performance and allows us to capture complex conditional constraints that

are needed to model our joint optimization problem, especially the complex interactions between

demand-sensitive routing and deadlock free VC assignment.

4.3.4 SMT Formulation

SMT is well-suited to formulate our joint optimization problem as constraints and

optimization criteria involving Boolean variables, integer variables, and real variables can be

readily expressed. As described below, an At-Most-One” (AMO) constraint over a set of Boolean

variables imposes the requirement that at most one of the Boolean variables can be true (set to 1),

and an “Exactly-One” (EO) constraint over a set of Boolean variables imposes the requirement
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that exactly one of the Boolean variables is true (set to 1). Another useful type of logical

constraints is the “If-Then-Else” (ITE(a,b,c)) constraint, which returns b if a is true and c

otherwise. Logical operations like conjunctions, disjunctions, or implications can be readily

specified as well. Table 4.1 summarizes the notation that we use in our formulation, and the

SMT formulae are given below.

Flow conservation: For source and destination nodes, each flow i should be assigned to exactly

one outgoing link (si,v) emanating from source si and exactly one incoming link (w, ti) going

into destination ti.

∀i, EO
(si,v)∈E

{
αi(si,v)

}
∀i, EO

(w,ti)∈E

{
αi(w, ti)

}
(4.1)

For a non-source or a non-destination node u, each flow i should be assigned to at most one link

among all links (v,u) going into u, and each flow i should be assigned to at most one link among

all links (u,w) emanating from u. If flow i is assigned to a link going into u, then flow i should

also be assigned to a corresponding outgoing link from u, and vice versa.

∀i, ∀u ̸= si, ti, AMO
(v,u)∈E

{
αi(v,u)

}
& AMO

(u,w)∈E

{
αi(u,w)

}
(4.2)

∀u ̸= si, ti,
∨

(v,u)∈E

αi(v,u) =
∨

(u,w)∈E

αi(u,w) (4.3)

The per-flow constraints in Equations 4.1-4.3 together ensure that every flow is connected from

its source to destination without loops and routed along a single path as an unsplittable flow and

that every route is possible, including non-minimal paths.

Static VC assignment: If flow i is assigned to a link (u,v), then it must also be statically

assigned to exactly one of its VCs.

∀(u,v) ∈ E, αi(u,v)⇒ EO
∀c

{
β

c
i (u,v)

}
(4.4)
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∀(u,v) ∈ E, ¬αi(u,v)⇒¬
∨
∀c

{
β

c
i (u,v)

}
(4.5)

VC constraints to ensure deadlock avoidance: As explained in Section 4.3.2 and Fig. 4.1,

there are three different turn models, West-First, North-Last, and Negative-First, each with four

rotations, for a total of 12 different turn models [5]. Any of these 12 turn models can be used to

ensure deadlock avoidance. T denotes the chosen turn model for the entire system, and each pair

of links {(v,u),(u,w)} ∈ T denotes a turn that is disallowed under that turn model. However,

unlike [81], we do not impose turn restrictions on flows, which limits the search space of possible

routing of flows. Rather, the key idea in our approach is that we allow flows to make such turns

as long as the VC assigned to the flow transitions from a lower-indexed VC to a higher-indexed

VC (increasing) at the restricted turn (Equation 4.6). Also, at every non-sink and non-source

node, the VC transition is always non-decreasing (Equation 4.7), meaning that the VCs assigned

on two consecutive links for a flow can remain the same or change to a higher-indexed VC.

This way, we do not impose any restriction on the routes that a flow can take, but instead, we

appropriately perform simultaneous VC assignment during the routing process. This key idea

enables our approach to achieve significantly better results.

∀i, ∀{(v,u),(u,w)} ∈ T,∧
∀(c1,c2), c2≤c1

AMO
{

β
c1
i (v,u),β c2

i (u,w)
} (4.6)

∀i,∀u ̸= si, ti∧
∀(c1,c2), c2<c1

AMO
{ ∨

(v,u)∈E
β

c1
i (v,u),

∨
(u,w)∈E

β
c2
i (u,w)

} (4.7)

Load on each link: The load on each link is the sum total of the demands of flows assigned to it –
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i.e., if flow i is assigned to link (u,v), then the corresponding demand di gets added to load(u,v).

∀(u,v) ∈ E, load(u,v) =
K

∑
i=1

ITE
(

αi(u,v),di,0
)

(4.8)

Maximum channel load: The maximum channel load (MCL) corresponds to the highest

load(u,v) among all links.

∀(u,v) ∈ E, MCL≥ load(u,v) (4.9)

minMCL (4.10)

Like [81], we focus in this work on finding the minimum maximum channel load because, as

shown in [81], minimizing the MCL correlates well with optimizing for network throughput and

network latency. In particular, the injection rate is inversely proportional to MCL with respect to

the link capacity: i.e., the injection rate as a multiple of flow demands is λ = link capacity/MCL.

The above SMT formulation can be enumerated over all 12 possible turn models at the

VC level to pick the best set of routes. It should be noted SMT [39] provides a much more

expressive modeling language than would be possible with ILP or MILP formulas. Built-in

Boolean cardinality functions such as EO and AMO make it possible to succinctly capture

constraints like Equations 4.1, 4.2 and 4.4, and logical implications and the built-in ITE function

make it possible to succinctly capture constraints like Equation 4.8. These expressive modeling

capabilities are essential in modeling our joint routing and VC assignment problem. Further,

because modern SMT solvers like Z3 [39] are built on top of a Boolean satisfiability (SAT)

solver, they are particularly good at navigating through search problems that are dominated by

Boolean variables.

Alternative Objectives: In addition to the MCL objective of Equation 4.10, we consider several

alternative objectives here. In particular, SMT solvers [39] support lexicographic priority of
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objectives, where the solver first optimizes for the objective that is declared first, and then

incrementally (without degrading the prior objectives) optimizes the objectives that are declared

later. For example, Equation 4.11 favors minimal paths or minimal network-resource paths.

Furthermore, we can prioritize minimal routes for flows with larger demand using Equation 4.12

or favor routes with larger source-destination distance using Equation 4.13. In Equation 4.13,

distancei refers to the Manhattan distance between the source-destination pair (si, ti) of flow i.

min
K

∑
i=1

∑
(u,v)∈E

αi(u,v) (4.11)

min
K

∑
i=1

∑
(u,v)∈E

αi(u,v)∗di (4.12)

min
K

∑
i=1

∑
(u,v)∈E

αi(u,v)∗distancei (4.13)

Formulation Complexity: Table 4.2 presents the formulation complexity of JARVA using the

SMT framework for a 2D Mesh. The number of constraints and literals are related to the number

of nodes in the network |V |, the number of edges in the network |E|, the number of flows |K| and

the number of virtual channels |C| in the network. Recall that the concise representation in SMT

gets rid of auxiliary variables and therefore reducing the formulation complexity. As can be seen

in Section 4.4, our formulation can successfully solve a number of widely used benchmarks and

a real-life camcorder application on a practical 2D-mesh configuration.

Table 4.2. JARVA ’s formulation complexity.

Constraint Definition # Constraints # Literals per constraint
Flow conservation 2∗ |V | ∗ |K| 8

Static VC assignment 2∗ |E| ∗ |K| |C|
Deadlock-freedom |V | ∗ |K| |C|2

Load constraint |E| |K|
Load bound |E| 1
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4.3.5 Router Implementation

To support arbitrary routes for different flows and static VC assignment, typical VC-based

router microarchitectures [88] can be extended. In particular, previous work [81] showed that

typical VC-based routers [88] can be readily extended to support arbitrary per-flow oblivious

routing by using a programmable table-based routing mechanism where pre-computed routes

between pairs of nodes are stored in a routing table. Further, static VC assignments can be

readily implemented by specifying the VC assignment in the same routing table. This static

VC assignment approach can improve router performance as the latency of a pipelined virtual-

channel router is often dominated by VC allocation when performed dynamically [88]. We refer

the reader to [81] for router extensions to support arbitrary routing and static VC assignments.

As mentioned above, the key difference with our approach is that we perform application-aware

oblivious routing jointly with static VC assignment, which eliminates unnecessary restrictions

on the search space of routing choices, leading to better results.

4.4 Evaluation

4.4.1 Experimental Setup

We evaluate the performance of our joint optimization approach JARVA against several

conventional oblivious routing algorithms, including XY and YX dimension ordered routing [83],

ROMM [85], Valiant (VAL) [86], and O1TURN [87]. We evaluate both XY and YX separately as

the results are different for asymmetric traffic patterns. We also compare with the state-of-the-art

application-aware oblivious routing algorithms BSOR and BSORM [81]. As ROMM, VAL,

O1TURN, BSORM all require 2 VCs to ensure deadlock avoidance, we also set the number

of VCs to 2 VCs for JARVA and for XY or YX routing. For BSOR, we enumerate it over all

12 possible turn models shown in Fig. 4.1 at the flow level and report the best results. We also

enumerate JARVA over all 12 possible turn models, but we do not impose turn restrictions on

flows. As explained in Section 4.3, JARVA avoids deadlocks via constraints on the joint static
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Table 4.3. Synthetic Traffic Patterns

Transpose Packets at (m,n) sent to (n,m)
Bitcomp Packets at (m,n) sent to (M−m−1,N−n−1)
Shuffle Left rotate entire bit-vector representation. e.g., packets at (011,100) sent to

(111,000).
Hotspot1 Packets at a black (red) node sent to green (blue) node chosen at uniform

random.
Hotspot2 Packets at a black node sent to a green node chosen at uniform random.
P-Transpose Packets at a green node (m,n) sent to (n,m).

VC assignments. For our evaluations, we use both synthetic benchmarks as well as a real-life

camcorder application [89], as detailed below.

4.4.2 Synthetic Traffic

We first evaluate the different algorithms using the synthetic traffic patterns shown in

Table 4.3, including Transpose, Bitcomp (bit-complement), and Shuffle. In addition, we use the

three synthetic patterns depicted in Fig. 4.4. The first two are hotspot traffic patterns, whereas the

third one is a variant of the Transpose pattern in which some nodes (in white) do not send traffic.

To provide a more realistic setting, we vary packet sizes between 1-6 flits per packet, chosen

at uniform random, and we perform the evaluation on an 8×8 mesh. The results are shown in

Table 4.5. In all cases, JARVA achieves the best results (*), by as much as 30% better than the

state-of-the-art application-aware oblivious routing algorithms and substantially better still in

comparison with conventional oblivious routing algorithms.

Interpretation of Results: Table 4.5 presents the maximum channel load of the network for

various combinations of routing algorithms and traffic patterns. We start with a hypothesis that

the routing algorithm with lower maximum channel load can withstand higher injection rates

before reaching network saturation. Quantitatively, with a single VC, a routing algorithm with

a maximum channel load of “6” can withstand a traffic injection rate of 1/6 as compared to

routing algorithm with a maximum load of “7” (corresponding to traffic injection rate of 1/7).

Our hypothesis is validated with flit-level simulation results discussed in Section 4.4.
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(a) Hotspot1. (b) Hotspot2. (c) P-Transpose.

Figure 4.2. Synthetic traffic patterns. See Table 4.3 for descriptions.

Table 4.4. Comparison of Maximum Channel Load on Synthetic Benchmarks.

Traffic XY YX ROMM VAL O1TURN BSOR BSORM JARVA ∆

Transpose 17 16 14 17 13 8 7 6* 14.28%
Bitcomp 10 10 19 16 14 11 12 8* 20.00%
Shuffle 16 15 17 27 16 11 10 7* 30.00%
Hotspot1 29 30 26 53 23 17 20 15* 11.76%
Hotspot2 36 43 30 35 27 15 21 13* 13.33%
P-Transpose 19 17 16 16 13 7 8 6* 14.28%

Table 4.5. MCL Comparison on Synthetic Benchmarks.

Traffic TP BC SF H1 H2 PT
XY 17 10 16 29 36 19
YX 16 10 15 30 43 17

ROMM 14 19 17 26 30 16
VAL 17 16 27 53 35 16

O1TURN 13 14 16 23 27 13
BSOR 8 11 11 17 15 7

BSORM 7 12 10 20 21 8
JARVA 6* 8* 7* 15* 13* 6*

∆ 14.28% 20% 30% 11.76% 13.33% 14.28%
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4.4.3 Camcorder Scenarios

We next consider a real-life camcorder application studied in [89], where they considered

a 2D mesh network architecture with heterogeneous cores for a mobile processor design. In

addition to a CPU core, the heterogeneous processor architecture integrates multiple multimedia

cores (shown in orange in Fig. 4.5), such as GPU, DSP, video codecs, JPEG encoders, and

camera modules, and multiple system cores (shown in blue in Fig. 4.5), such as a USB controller,

a WiFi modem, and a GPS module. The network traffic is dominated by memory traffic to

external memory via the memory controller (MC). The bandwidth requirements vary from

33 MB/s to 3.93 GB/s (flow demands are scaled such that 33 MB corresponds to 1 unit of

flow). We refer the reader to [89] for a detailed discussion regarding the characteristics of the

camcorder application, the heterogeneous cores, and the memory traffic model. Following [89],

we also consider four different 5×5 network configurations, as depicted in Fig. 4.5. The first

three configurations, as depicted in Fig. 4.5a-Fig. 4.5c, correspond to different symmetric mesh

configurations. The last one depicted in Fig. 4.5d corresponds to an asymmetric configuration in

which some routers are used to clustered together multiple cores based on their functions. As

shown in Table 4.6, JARVA achieves the best results (*), with 8-21.29% improvements over the

state-of-the-art application-aware oblivious routing algorithms and substantially better still in

comparison with conventional oblivious routing algorithms.

Interpretation of Results: Table 4.6 shows the reduced maximum channel load values of JARVA

(for example, 207 vs BSORM’s 263), indicating that the network with JARVA ’s solution can

withstand a higher injection rate before reaching network saturation. Intuitively, ∆ improvements

indicate the magnitude of tolerable minimum injection rate increase as compared with previous

works.

4.4.4 Detailed Flit-Level Simulations
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(a) (b)

(c) (d)

Figure 4.3. Summary of heterogeneous cores arranged in different 2D network configurations
for a Camcorder application.

Table 4.6. Comparison of Maximum Channel Load on a Camcorder Application.

Traffic XY YX ROMM VAL O1TURN BSOR BSORM JARVA ∆

Camcorder(a) 407 404 357 486 322 277 263 207* 21.29%
Camcorder(b) 241 294 233 476 264 241 259 207* 11.16%
Camcorder(c) 608 555 483 493 400 225 287 207* 8.00%
Camcorder(d) 553 681 500 614 424 258 447 219* 14.70%
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In this section, we present detailed flit-level simulations of the synthetic traffic and

camcorder benchmarks described in Sections 4.4.2 and 4.4.3, respectively. We use the NOXIM

[90] simulator, a flexible, highly configurable and a cycle-accurate network-on-chip simulator.

We estimate the latency statistics of the injected flows for various oblivious routing algorithms

discussed in Sections 4.4.2 and 4.4.3. The simulator is configured to have a per-hop latency of

one cycle, four virtual channels (VC) per port, and the buffer depth of 16. We configure the

simulator with an 8×8 2D mesh network for the synthetic benchmarks and a 5×5 2D mesh

network for the camcorder benchmarks. The packet sizes (number of flits) for each source

destination pair are consistent with our experimental settings of Table 3 and Table 4. To measure

the latency statistics, we inject the packets using the injection rate parameter. For each simulation,

the network is warmed for 10,000 cycles and the latency statistics are collected for 500,000

cycles after the warm-up. In our latency curves, the injection rate on the horizontal axis indicates

the likelihood of packet injection per clock for each source node. For example, when we set

the injection rate to 0.01, a packet (from a source node) is injected every clock cycle with a

probability of 0.01. For a reasonably large simulation time (500,000 cycles in our experiments),

this corresponds to an average of one packet for every 100 cycles. As the injection rate is

increased, the network is expected to reach a saturation point and the latency shoots up. We seek

to validate if lower MCL values of JARVA can push the saturation point rightwards, indicating

that the network can withstand higher injection rates as compared to the previous works. The

plots in Figure 4.4 support our hypothesis that smaller MCL of JARVA pushes the latency curves

rightwards. Similarly, the plot of Figure 4.5 demonstrate the latency statistics for camcorder

applications. Improved injection rates (for network saturation) are a manifestation of improved

MCL from our JARVA formulation.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4. Latency as a function of injection rate for various routing algorithms on (a) Transpose
(b) Shuffle (c) BitComp (d) Hotspot1 (e) Hotspot2 and (f) Hotspot3 patterns.
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(a) (b)

(c) (d)

Figure 4.5. Latency as a function of injection rate for various routing algorithms on the
camcorder(a-d) applications.
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4.5 Conclusion

In this paper, we propose an SMT-based framework for joint application-aware oblivious

routing and static virtual channel allocation JARVA. By jointly solving both problems together,

we avoid unnecessary routing restrictions imposed by previous work. In our joint optimization

approach, any path can be used to route a flow as long as there is a corresponding VC assignment

that avoids deadlocks. Our SMT formulation of the problem allows us to succinctly capture

the complex interactions between demand-sensitive routing and deadlock free VC assignment.

Our evaluations show that our approach can achieve up to 30% better performance than the

state-of-the-art application-aware oblivious routing algorithms and substantially better still in

comparison with conventional oblivious routing approaches.

Chapter 4 contains materials from “Joint Application-Aware Oblivious Routing and

Static Virtual Channel Allocation”, by Uday Mallappa, Chung-Kuan Cheng and Bill Lin, which

appears in IEEE Embedded Systems Letters, May 2022. The dissertation author was the primary

investigator and author of this paper.
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Chapter 5

AI Acceleration: Skipping Ineffectual
Computations

5.1 Introduction

A plethora of studies have aimed to alleviate the computation and energy cost of deep

neural networks (DNNs) by hardware-friendly algorithmic innovations such as weight or filter

pruning [91, 92, 8], and weight or activation quantization [93, 94, 95, 96, 97]. Some hardware

techniques skip the operations with ineffectual operands, i.e., zero weights and/or input activa-

tions1 [6, 43, 98]. Other studies even exploit bit-granular sparsity in the weights or inputs by

breaking the operations into bit level and skipping if either operands’ bit is zero [99, 100].

The sparsity-aware accelerators aim to skip the zero weights and/or inputs, where the zero

inputs are produced by the preceding ReLU layer (Fig. 5.1). Skipping the ineffectual outputs

is more beneficial than the ineffectual inputs as the number of zero outputs is more than zero

inputs (most of the zero outputs are naturally discarded from the next layer’s inputs after passing

through the pooling). Several studies opt to skip the computation of negative outputs. The

majority of these works split the input or weight bits into two significant and insignificant parts

[101, 102, 103, 104]. The result of computation using the significant bits creates a mask that

reveals which outputs need full-bit computation. Instead of splitting into bits, the work in [105]

partitions the sorted weights into small groups and selects a representative weight from each one.

1We will refer to input activations as inputs, and output activations as outputs.
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Figure 5.1. Ineffectual outputs due to ReLU and max pooling.

The result of convolution (dot-product) with these select weights and the corresponding inputs

determines the potentially negative outputs.

In these studies, the prediction procedure, i.e., splitting of bits or partitioning the weights,

is determined statically while the inputs’ statistics can vary significantly from image to image

(e.g., [97] points out this observation and proposes dynamic quantization based on input sensitiv-

ity). Thus, such prediction approaches have to be pessimistic to retain the accuracy, which results

in low performance gain, e.g., ≤ 30% in relatively complex networks [105, 103, 104]. Better

improvement (∼60%) is reported in [102]. However, [102] uses non-complex networks as well as

high bitwidth for the weights and activations, which make the negative output prediction simpler.

Also, when the bitwidths are already low, the impact of LSB bits becomes substantial, i.e., the

likelihood of output sign change (misprediction) by continuing the operation on the four LSB

bits of 8-bits weights is higher than eight LSB bits of 16-bits weights (as 2−5 + · · ·> 2−9 + · · · ).

In this work, we propose algorithmic innovation and hardware support, TermiNETor for

dynamically predicting and skipping the ineffectual outputs, including negative outputs preceding

the ReLU layers and non-max outputs preceding the max-pooling layers. To this end, we leverage

bit-serial operation whereby a convolution, represented as dot-product of flattened activations

and weights ′A ·W ′, is split to ∑A·(Wi×2i) over the weight bits Wi. After processing an ith bit of
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the weight vector, TermiNETor checks if the partial output2 falls behind a designated threshold.

This threshold varies for bit indexes; partial output produced using the initial (MSB) weight

bits needs a more conservative threshold to ensure safe termination since the probability of a

negative-to-positive flip of the output is higher as we move from MSB towards the LSB. The

threshold also varies between the layers of a network.

There are three principal differences between TermiNETor and previous works: (i)

TermiNETor uses bit-slicing and can flexibly terminate the operations at any index upon predic-

tion, and notably, (ii) TermiNETor operates in the granularity of output level, meaning that it

can terminate the operations for a small group of output pixels independent of the others, and

(iii) Computations used for mask generation are reused for effective or useful convolutions;

obliterating the computation overhead of standalone mask generation. Nevertheless, realizing a

non-pessimistic threshold mechanism that universally works for various inputs is challenging.

The algorithmic contribution of TermiNETor is to make such a partial-output-based prediction

mechanism viable. Moreover, architectural support to take utmost performance and energy gain

of these fine-grained terminations with high resource utilization is as critical, which is the focus

of TermiNETor’s hardware novelty.

In the rest of this paper, in Section 5.2 we elaborate the TermiNETor algorithm for

ineffectual output skipping preceding the ReLU and max-pooling layers as well as calibrating the

model to avoid accuracy loss. In Section 6.3, we expound TermiNETor architecture to implement

bit-serial-based output prediction and effectively utilize the terminated processing elements to

improve the performance. In Section 6.4, we extensively evaluate TermiNETor’s algorithm and

hardware by comparing with related works in terms of effective operation reduction (algorithm)

and performance/energy (hardware). Finally, we conclude the paper in Section 7.1.

2A partial output is the dot-product of the whole activation vector and sub-bits of the whole weight vector (while
a partial sum refers to sub-vectors dot-product result).
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5.2 Ineffectual Output Skipping

Convolutional layers are the core building block of DNNs and contribute to > 99%

of these networks computations [106]. These layers are followed by a nonlinear activation

function, which has significant impact on the accuracy of these networks. The rectified linear unit

(ReLU), simply defined as f (a) = max(0,a), is the widely-used and most successful activation

function and yields better and more consistent performance than others such as hyperbolic

tangent or augmented alternatives like leaky ReLU [107]. The ReLU function introduces sparse

representations, i.e., zero output activation values, into the network and steers the observation

that computations spent for the convolutions that generate negative outputs are unnecessary or

ineffectual.

Besides the convolution and nonlinear activation layers, a downsampling operation is

used intermittently to reduce the dimensionality of the output activation map. The downsampling

is achieved via either a patch-wise (or window-wise) max-pooling or an average-pooling layer. In

the former case, the pooled activation map highlights the largest feature of the patch and has been

found to work better than average pooling for computer vision tasks like image classification

[108]. In a 2× 2 patch, three out of the four activations are discarded through the pooling

operation. Therefore, another key observation is that 75% of the computations spent for the

convolution operations that are preceded by a max-pooling layer are ineffectual.

Fig. 5.2 shows the percentage of ineffectual outputs for different layers of the VGG16 net-

work on CIFAR-100 images. In this case, ineffectual outputs account for 61.8% of the produced

outputs. The figure also shows the number of predicted ineffectual outputs by TermiNETor after

using the first three bits (towards MSB) of the weight. Certain convolution layers are followed

by a max-pooling layer, wherein > 80% of the layer outputs become ineffectual. The percentage

of ineffectual outputs increases with the image size since a major portion of such images consists

of a background, which is filtered out by the convolution. For instance, in the same VGG16

network, 77.4% of the outputs become ineffectual for 224× 224 ILSVRC-2012 images. We

93



0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13

In
ef

fe
ct

u
al

 O
u

tp
u

ts

Layer

Actual Predicted

Figure 5.2. Ineffectual outputs of VGG16 on CIFAR-100 images.

exploit the presence of ineffectual outputs which are useless for the next layer’s operations

to improve the inference performance by skipping the computations that lead to such outputs.

This is accomplished by predicting the ineffectual outputs using the proposed weight-bit-serial

TermiNETor framework and architectural support to skip them with the fine granularity for

maximal performance gain.

5.2.1 Inference Framework

In TermiNETor, the weights and input activations are quantized to standard 8-bits INT8

representation, bit 7 (MSB or sign) to bit 0 (LSB). Nevertheless, our bitwise prediction can

be indeed employed with any > 1-bit quantized model (though the efficiency gain will vary).

Note that previous work such as [102] use over-provisioned bitwidths (e.g., 16) which makes

the prediction much simpler. For instance, they can split the activations and/or weights into

two 8-bits pieces and accurately predict the output sign by using 8-bits of each (75% effective

operation reduction) since the lower 8-bits, in most cases, only adjusts the precision of the output

rather than flipping the sign. In contrast, TermiNETor operates on the weights bit by bit and uses

the complete 8-bit activations for each weight bit. Generating one convolution output begins

with the MSB weight bit (bit 7) and continues till bit 0 of the weight.

Since only one bit of weights are processed at a time, the partial output is computed using
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the typical shift-and-add multiplication similar to bit-serial-based works [99, 100]. Regardless

of output skipping, an advantage of such an architecture over conventional fixed-point designs

is supporting arbitrary and layer-wise weight quantization [109]. A typical convolution takes

eight iterations. The key idea is to use the partially computed outputs after C cycles of the

bitwise shift-and-add operations and predict (i) if the final output activation is leaning towards

a negative value, and (ii) if the convolution output ends up unused because of a succeeding

2× 2 max-pooling window. Accordingly, if we predict an ineffectual output at the C = 3rd

cycle (i.e., after bit index 5), we can save five cycles by terminating the subsequent bitwise

computations. Note that consuming three bits for prediction is principally different from 3-bits

weight quantization. Unlike quantization, here, the model still operates with 8-bits weights

for useful outputs and fewer bits are only used for ineffectual outputs. Our bitwise prediction

can be employed with any > 1-bit quantized model (though the efficiency gain will vary). Fig.

5.3 depicts TermiNETor’s inference scheme. TermiNETor uses a masking operator to skip

the convolutions that lead to ineffectual outputs. The mask is being updated by adding more

skippable outputs after processing a new weight bit index.

Formulation: Consider the bitwise generation of a convolution output activation (pixel)

Op,q at location (p,q) of a certain output channel M (being produced by filter M). Each

convolution is multiplication of a three-dimensional filter with the corresponding part of the input

feature map, which can be shown as a flattened dot-product (vector-vector multiplication). We

start with the i = 7th (MSB) of the weight and build up the partial output using the shift-and-add

operation (the first bit determines the sign). Notice that in INT8 representation, the weights are

considered 8-bits integers.

Op,q = A ·W [7 : i] =
0

∑
i=7

A · (W (i)×2i×−1i==7)

If i≤ 8−T (i.e., after processing T weight indexes without skipping), we start masking
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Figure 5.3. Early output prediction of TermiNETor.

the outputs that are predicted to be negative. Nevertheless, the partial output Op,q is incomplete

and its sign might be changed if more indexes are processed. Fig. 5.4 demonstrates such a

scenario. After the first bit, A ·W [7 : 7] is negative but it increases and eventually its sign flips

after using four bits (A ·W [7 : 4]).

We observed that adding a ∆p,q ≥ 0 term that accounts for the residual convolution yields

better prediction. We can think of ∆p,q as an inexpensive positive bias term that is easy to

compute and is also spatially aware of the input activation map. Thus, we have:

if i≤ 8−T and Op,q +∆
p,q < threshold⇒ maskp,q = 1 (5.1)

Essentially, ∆p,q ensures that the partial output is negative enough to avoid potential sign change.

Also for the convolution layers that are followed by a max-pooling, we mask the outputs that are
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Figure 5.4. An example of negative-to-positive sign flip.

predicted to be ineffectual (i.e., are smaller than the maximum element of the pooling window

P):

if i≤ 8−T and (p,q) ̸= argmaxP(p,q)⇒ maskp,q = 1 (5.2)

5.2.2 Model Calibration

We observe accuracy degradation when the inference procedure of TermiNETor, ex-

plained above, is performed using a baseline pretrained model. This is because the pretrained

model is not tuned for the imposed inference approximations; similar to, e.g., quantization

wherein the weights require post-tuning. Also, the hyperparameters T (that allows skipping after

a particular weight bit index) and ∆ (prediction bias) are layer-dependent and requires a rigorous

design-space exploration.

To address the former issue, we calibrate the pretrained model to compensate the ap-

proximations imposed by TermiNETor’s inference, summarized by Algorithm 5. During the

calibration process, the model tunes the weights toward the solution space that is highly sparse

in the lower portions of the 8-bits weights. Such a weight calibration makes the lower portion of
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Algorithm 4. TermiNETor calibration framework

Require: Pretrained weights Θ0, train data = {X ,y}
1: model← SGD(Θ0,X ,y)
2: for each epoch in total epochs do
3: for each layer ℓ in model.layers() do
4: for each bit idx in [7, · · · ,0] do
5: if bit idx < 8−T ℓ then
6: if ℓ.index = 1 then
7: Y ℓ += ℓ.forward(X)
8: end if
9: if ℓ.index > 1 then

10: Y ℓ += ℓ.forward(Y ℓ−1)
11: end if
12: end if
13: maskℓ← genMask(Y ℓ,bit idx, ℓ.pool)
14: if bit idx ≥ 8−T ℓ then
15: if ℓ.index == 1 then
16: Y ℓ += ℓ.forward(X ,maskℓ)
17: end if
18: if l.index > 1 then
19: Y ℓ += ℓ.forward(Y ℓ−1,maskℓ)
20: end if
21: end if
22: end for
23: end for
24: Θt+1← SGD(Θt)
25: end for=0

the weights to be less impactful as compared to the upper portion. Notice that the calibration

procedure is different from quantization. In quantization, cutting the discarded LSB bits does not

affect the model accuracy. However, in our case, the LSB bits still play a major role to retain the

model accuracy (which we further analyze in Section 6.4); by calibration, only the probability of

negative-to-positive sign flip is decreased. Algorithm 5 processes the weight bits one by one (line

4) and updates the forward propagation outputs of the layer ℓ (denoted by Y ℓ) after each bit. If

more T ℓ or more bits are consumed, the algorithm applies the mask on the forward propagation

values, which replaces the masked values with 0.
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Figure 5.5. Percentage of false negative for two layers of a pretrained VGG16 model on CIFAR-
100 dataset. The X-axis is the number of used weight bits.

5.2.3 Hyperparameters Exploration

Minimum prediction index T : In bit-serial processing of the weights, the confidence

of outputs estimation improves as we move from the MSB bit towards the LSB bit. The key

metric to evaluate the confidence of early termination is the false negative percentage, i.e., the

percentage of outputs that are predicted negative but would turn to positive if all the weight

bits are used. As shown in Fig. 5.5, the percentage of false negatives is layer-dependent, and it

decreases as we consume more bits. Therefore, the value of T is first derived from the plots of

the pretrained networks, and then we use model calibration to mitigate the accuracy loss. For

example, T = 4 might be acceptable for layer 4 (the left figure) but it can incur accuracy loss for

layer 13.

Mask generation and bias term ∆: The partial output prediction mechanism uses a

simple addition and comparison. It takes the partial output sum, adds a pre-computed value ∆,

and checks if the result is greater than a desired threshold. The pre-computed value ∆ is unique

for each output sum, while the threshold is the same for all the outputs of a layer. Both the

parameters are computed offline and are loaded for comparison during run-time. To ensure that

minimum number of outputs will use all the weights’ bits, the network is calibrated to make the

weights’ bits more sparse, i.e., more bits in a weight parameter are zero. This helps in obtaining

a threshold value that gives a higher prediction confidence corresponding to each weight bit. As

we showed in the example of Fig. 5.4, zero bits do not affect the partial output. At the same time,
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Figure 5.6. Weight histograms before model calibration (left) and after (right) for two layers of
VGG16.

the more zeroes present in the weight, the higher the probability of terminating that computation

earlier. Fig. 5.6 shows the impact of model calibration on the distribution of two representative

layers of VGG16. The histogram is sparse around certain values which have large number of ‘1’

bits as the frequency of such values is minimized in the calibrated model.

For every layer of the network, the input activations corresponding to the training data set

are analyzed (offline) by taking their product with the kernel weights to determine an appropriate

bias ∆(p,q) for each output of the layer. After this, the threshold value (see Equation (5.1)) is

obtained heuristically by analyzing the output predictions considering the obtained ∆(p,q). We

performed multiple experiments with the partial output prediction mechanism and realized that

the prediction mechanism should not be employed as soon as the partial outputs are generated,

since initially the confidence in the prediction is quite low and degrades the accuracy.

To improve hardware utilization, TermiNETor also implements group-termination, whereby

processing a chunk of adjacent outputs (pixels with the same (i, j) position but different channels)

are terminated together. We elaborate group-termination in Section 6.3.
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5.3 TermiNETor Architecture

5.3.1 Overview

The efficiency of the TermiNETor architecture is critical since, on the one hand, the

processing elements should be able to operate on generating a new output upon early-terminating

a particular output (rather than simply staying idle to simplify dataflow), and on the other hand,

data reuse is a key efficiency factor which may contradict the first desideratum. This section

elaborates on how TermiNETor can meet both criteria.

Fig. 5.7 shows the overview of TermiNETor datapath. It comprises a two-dimensional

array of processing elements (PEs). The baseline architecture is an 8×16 array to consume a

comparable power to previous works, but the architecture is scalable as we examine in Section

6.4. Each input lane broadcasts an input sub-image brick by brick to all the PEs in the same

row (we use lane to distinguish between logical and physical memory entities). A brick (input,

weight, or output) is composed of consecutive elements in the Z axis, e.g., channels of an image.

Similarly, each weight lane broadcasts a unique filter (occasionally, up to three different filters)

at a time to all the PEs of the same column. Therefore, a PE row produces the same output

indexes of different channels. The operations are bit-serial on the weights, so the weight lanes

only transfer one bit of each weight. In our setting, a brick consists of eight elements. Therefore,

each activation lane supplies 8×8-bits inputs, and each weight lane provides eight single bits

(occasionally 16 or 24) of different weights (i.e., one bit of each). The activations and weights

correspond to the same indexes; hence, the PEs can perform immediate MAC operations, which

in practice is just a shift-and-add operation. The operations are orchestrated in a fashion that all

PEs of a row terminate at the same time and move to the next sub-image, independent of the

other rows, and only infrequent halts are needed to coordinate different PE rows. TermiNETor

benefits from multiple levels of data reuse and sharing to reduce both on-chip and off-chip

memory accesses, which we elaborate in subsection 6.3.3.

Once a weight brick is loaded (shared) into a column PEs, the PEs keep continuously
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Figure 5.7. Overview of TermiNETor’s baseline architecture.

reusing this brick by fetching different activations, while at the same time the fetched activations

are being shared and used among all PEs of a row. Also, after all the first (front) bricks of the

current 16 filters are used (e.g., nine bricks for a 3× 3×Z filter), the front bricks of the next

batch of filters are loaded, so they can operate on the same input activations stored in the input

lanes. Thus, the inputs bricks will remain in the small on-chip memory until all filters use them.

Since the filters are being processed bit by bit, the available weight lanes, on aggregate, can store

one bit of all the filters in a given time, so TermiNETor does not need to evict and re-fetch a

weight; all stored weight bits will be processed before evicting permanently.

5.3.2 Dataflow

TermiNETor partitions an X ×Y ×C input feature map into multiple x× y×C sub-

images, as shown in Fig. 5.8. Each sub-image is stored in a separate input lane and is shared

with all PEs of a row. The values of x and y depend on the PE’s local register file (RF) size as

well as the number of filters a PE receives. For instance, with 128 filters, each PE of the 8×16

array will visit 128
16 = 8 filters. Thus, an RF with a depth of 32 words can allocate four words per

102



filter (i.e., 2×2 output pixels for eight channels); hence, the sub-images can be up to 4×4×C

assuming filters of shape 3×3×C with sliding stride of 1. The number of sub-images can be

more than the input lanes (PE rows). In that case, the remaining sub-images will be processed in

multiple similar iterations after the currently stored sub-images are processed for all the filters.

TermiNETor processes the stored sub-images as follows.

First, brick 1 of filters 1 to 16 are loaded into PE columns 1 to 16, respectively. As

alluded above, a brick consists of eight consecutive elements in the Z axis (channels). Operating

at the brick level avoids local data storage and simplifies the compute elements. Initially, all

PEs of a column share the same filter brick. The filters’ bricks contain eight weights, but only

one bit of each. Hence, only W [7] of all weights are loaded at this stage. We pack the same

index of the weights in the same memory word for regular memory accesses. The sub-images

are scanned from the bottom row toward the top. Overlapping bricks of adjacent sub-images will

be transferred from one input lane to the other. E.g., in Fig. 5.8, input lane 1 stores the 4×4

green sub-image (indexes 1 to 16); to produce output pixel index 3, it needs to read some of

the inputs from the red sub-image. After applying brick 1 to the corresponding bricks of the

input sub-image (i.e., to the inputs that need the brick 1 to generate the 2×2 output in the above

example), bricks 2 to 9 of the current filters are applied to their corresponding input bricks, as

well. Thereafter, we move to the next bricks (deeper channels) of the sub-image as well as of

the loaded filters. Finally, after processing all the channels, we load the next batch of the filters

(17–32) and repeat the same procedure.

So far, one bit of all the filters (W [7]) is used. Before repeating the whole procedure with

W [6], we examine if certain PEs can be released. We perform the PE release in the granularity

of a row. All PEs of a row generate the same (i, j) positions but for different channels. Since

the outputs among the same positions of different channels are more correlated, we enforce

this row-termination during the TermiNETor calibration. That is, all outputs produced with

the PEs of a row try terminating at the same weight index, which we call row-termination or

group-termination. In particular, the outputs window generated by a row is small (e.g., 2×2
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Figure 5.8. A sample input and filters for TermiNETor dataflow explanation.

when there are 128 filters, or 2×1 for 256 filters), which keeps the value correlated.

Once a row is terminated, its input lane loads another sub-image and starts over with

W [7] of filters 1–16 for the new sub-image. Nevertheless, the weight lanes are shared among all

the rows. Therefore, the other rows might need to continue processing with W [x ̸= 7] and cannot

supply W [7]. However, all the weight lanes supply the same filter at a given time. That is, the

terminated row needs to load filters 1–16 with W [7], and the rest of the rows need to also load

filters 1–16, albeit weight W [x ̸= 7]. Also, all the rows and PEs use the same brick index, which

facilitates address generation. Therefore, at the cost of increasing the weight lane size, we use

multiple banks so a weight lane can provide different weight bits when certain rows advance the

other ones. It is straightforward as the brick index, and hence, the memory address will be the

same for all rows. Note that the weight lanes are small as they store a single bit of a filter at a

time. We limit the number of different indexes to three. On the rare occasions that more than

three different weight bits are needed, we halt the outpaced rows to coordinate the rows.

The number of cycles to process an X×Y ×C input image by the 8×16 TermiNETor

array can be calculated as follows:

cycle count =
X×Y

8
× k1× k2×

F

16
× C

8
×Wavg (5.3)

where k1× k2 is the filters’ kernel size (sliding stride of 1), F is the number of filters, and Wavg
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is the average number of weight bits consumed among the outputs. The 8 in X×Y
8 indicates the

number of rows that can independently process a sub-image, 16 in F
16 corresponds to the number

of columns which enable loading the filters as batches of 16, and 8 in C
8 denotes the brick size,

since we process eight channels at once.

5.3.3 Data Reuse

TermiNETor takes advantage of different types of data sharing and reusing provided

by its architecture and/or dataflow. Since a weight lane is shared among all the PEs within

the corresponding column, a weight fetched from these memories will be used with multiple

PEs of a column. The same also holds for the input activation lanes, i.e., the activations of a

lane are broadcast to all 16 PEs of a row. In addition, a loaded weight brick stays in the PE

until all the input activations that it can use are processed (e.g., in Fig. 5.8, after loading brick

1, all the sub-image inputs it can use are fetched in a row-major manner before loading brick

2). Furthermore, the sub-images that are stored in the input lanes are used for all filters before

evicting, and there is no need to re-fetch from the DRAM. These activations remain in the input

lanes until all the filters are processed. A difference between input bricks and weight brick is that

a weight brick stays in the PE’s local register, while new activations are constantly read from the

local input lanes. Note that the input lanes consume significantly smaller power than DRAM.

Another type of filter reuse that TermiNETor supports is via batch processing. In the

last convolution layers the image size becomes smaller, e.g., 4× 4×C . In such a case most

of the PE rows become unused, but are still supplied with the filters that are shared across the

columns. Hence, they can operate on different images using their independent input lanes. In

batch processing mode, TermiNETor processes each image layer by layer before a layer ℓ causes

PE underutilization. TermiNETor saves the inputs of the layer ℓ in the DRAM, processes other

image(s) in the same fashion with full resource usage until layer ℓ, and continues to process the

layer ℓ and subsequent ones for the stored feature maps by loading multiple of them at a time.

This helps to maximize PE utilization with a small increase of the embedded DRAM size as only
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Figure 5.9. A processing element (PE) of TermiNETor.

one (and small) layer per image needs to be temporarily stored.

5.3.4 Processing Elements

TermiNETor benefits from uncomplicated processing elements, which is shown in Fig.

5.9. As explained in subsection 5.3.2, a brick of eight different weights, one bit of each, is loaded

into the PE and is applied on all required bricks of the row sub-image. Therefore, an eight-bit

register stores the 8×1bit weights. At each cycle, eight 8-bits activations are read from the input

lane and broadcast into the PEs. We only latch these activations at the output of the lane SRAM

using 8×8 flip-flops which drive the whole row; hence, no input register is needed in the PE.

The 32-words RF accumulates the partial sums associated with the PE (e.g., for eight filters, four

outputs per each). The address of the RF row, input from the controller, depends on which of the

assigned filters and outputs are being processed. The 0≤ x≤ 7 denotes the weight bit index that

is being processed and determines the amount of shifts.

Upon termination signal after a certain weight bit index, the content of the RF is trans-

ferred to the output lanes. For implementation purposes (to make the RFs compact), we share a

4× wide RF between four PEs. Therefore, as shown in Fig. 5.7, an output lane is shared between

several columns, and the links between PEs in a row show writing the computation result in the

shared RF (note that RFs use the same address).
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Table 5.1. Accuracy and operation comparison of TermiNETor with baselines.

 
Network 

Accuracy Operation (M) 

Base SeerNet 4-bits TermiNETor Base SeerNet 4-bits TermiNETor 

 

VGG16 91.65% 91.30% 90.82% 91.52% 314 262 (1.20×) 157 (2×) 187 (1.68×) 

ResNet18 93.81% 93.38% 93.02% 93.56% 555 499 (1.11×) 277 (2×) 384 (1.45×) 

ResNet50 94.58% 93.20% 93.24% 94.08% 1298 1103 (1.18×) 649 (2×) 885 (1.47×) 
 

VGG16 70.40% 70.12% 69.01% 70.07% 318 267 (1.19×) 159 (2×) 191 (1.66×) 

ResNet18 75.41% 74.96% 73.15% 75.13% 555 492 (1.13×) 277 (2×) 381 (1.46×) 

ResNet50 77.30% 76.84% 75.12% 77.01% 1298 1056 (1.23×) 649 (2×) 893 (1.45×) 

 

VGG16 56.91% 56.04% 55.15% 56.84% 1256 1017 (1.24×) 628 (2×) 833 (1.51×) 

ResNet18 61.84% 61.01% 59.92% 61.66% 2222 1990 (1.12×) 1111 (2×) 1568 (1.42×) 

ResNet50 64.13% 63.32% 61.90% 64.02% 5194 4672 (1.11×) 2597 (2×) 3685 (1.41×) 

 

C
IF

A
R

 

10
 

C
IF

A
R

 

10
0
 

Im
a
g

e
-

N
e
t 

5.4 Experimental Results

5.4.1 General Setup

We implemented the algorithmic flow of TermiNETor, i.e., bit-level mask and threshold

generation, early convolution termination, and calibration (including enforcing row-termination)

using PyTorch. For training, we used SGD optimizer, momentum of 0.9 with weight decaying,

and learning rate from 0.1 down to 0.0002 over 100 epochs. To recap, the weights and activations

are quantized to eight bits and the convolution operation is implemented by bitwise shift-and-add

operations. Using the pretrained model, we derive the layer-wise bit index T at which the

dynamic mask (for ineffectual output predictions) generation starts. Our experiments showed

that the mask generation can start after consuming the first three bits (towards MSB) for most

of the layers. For certain layers (e.g., layer 4 of VGG16 on CIFAR-100), we can start the mask

generation after consuming the first two bits of weights.

We implemented the TermiNETor accelerator in SystemVerilog and verified its function-

ality using Modelsim. We used Synopsys Design Compiler O-2018.06 to synthesize the RTL

code, and Cadence Innovus 2019 for placement and routing using TSMC 40 nm 0.9V library

(using a combination of HVT and RVT) for the typical (TT) process corner. We used TSMC

0.8V high-performance memory compiler to generate the dual-port register file (for PEs) and

single-port SRAMs (for input activation lanes, weight lanes, and output lanes). Thanks to the

simplicity of the processing elements, TermiNETor could achieve an operating frequency of
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Figure 5.10. Physical layout of TermiNETor accelerator, implemented in TSMC 40 nm technol-
ogy.

1 GHz. We used the post placement and routing netlist to report the area and power using Design

Compiler. To calculate the DRAM access energy, we used Destiny [110] to generate a 32 MB

(128 bit words) eDRAM model for 40 nm and added the DRAM power based on its aggregate

read and write throughput. The 32 MB DRAM can store the whole input/output feature maps of

any layer, as well as the model weights.

Fig. 5.10 illustrates the post placement and routing layout of the baseline TermiNETor

(8×16 array), which occupies 0.95 mm2. Each of the eight rows are divided into groups of four

PEs, that share a wide register file. The input activations memories (left), weight memories (top),

and output memories (bottom) are also visible.

5.4.2 Operation Reduction

We evaluate the algorithmic effectiveness of TermiNETor by comparing it with SeerNet

[103], which is a two-stage ineffectual output predictor. The first stage of SeerNet uses a 4-bits

quanitized inference for mask generation, and then it uses the generated mask for full-precision (8-

bit) inference as the second stage. The performance improvement, defined as effective operations,

is reported with respect to the 8-bits baseline implementation (multiplication of a w-bits weight is
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considered as w
8 of a 8-bits weight multiplication). We also include the performance and accuracy

metrics for the 4-bit weight quantization (which uses 1
2 effective operations compared to 8-bits

weights). In our evaluation, we considered VGG16, ResNet-18, and ResNet-50 networks using

CIFAR-10 and CIFAR-100 datasets, as well as a 200-class subset of ImageNet (Tiny ImageNet).

Table 6.1 summarizes the accuracy and effective operation count for the aforementioned

models and datasets. The Base, SeerNet and 4-bit columns represent the baseline 8-bit quantized

model, SeerNet inference [103] and 4-bit quantized models. SeerNet, which is only software-

centric optimization, does not reuse the computations performed in the mask generation stage

(4-bits inference), leading to computation overhead. This overhead in computation nullifies the

gains of skipping ineffectual outputs when the output sparsity is less than 50%. It is worth noting

that the results presented in SeerNet [103] do not account for the computations performed in the

first phase (mask generation). In the following we summarize the results of different datasets.

CIFAR-10: As compared to the baseline VGG16 network, while SeerNet achieves

1.20× operation reduction with 0.35% accuracy loss, our method offers 1.68× reduction with

only 0.13% accuracy loss. For residual networks such as ResNet-18, while SeerNet’s speedup

is 1.11×, our method offers 1.45× improvement with better accuracy. We observe a similar

trend for ResNet50; 1.47× speedup in TermiNETor versus 1.18× of SeerNet, and 0.88% higher

accuracy. Since down-sampling in residual networks is manly implemented using a stride-2

convolution, the sparsity of output activation is low, leading to low speedup values in the residual

networks as compared to VGG16. Although the 4-bit model offers 2× speedup, it suffers

accuracy loss of up to 1.34%.

CIFAR-100: For CIFAR-100, we achieve 1.66× speedup in operation count using

VGG16, 1.46× using ResNet-18, and 1.45× on ResNet50, which are on average 34% higher

than SeerNet, with 0.1% higher accuracy. The 4-bit quantization offers 2× speedup, but incurs

1.94% accuracy loss (versus 0.3% of our approach).

TinyImageNet: We observe a similar trend with the Tiny ImageNet dataset. Along

with an improved operation reduction (up to 1.51× speedup) compared to the baseline, our
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Table 5.2. Operation reduction with ∼2% accuracy budget.

 
Network 

Accuracy Operation (M) 

Base TermiNETor Base TermiNETor 
 

VGG16 91.65% 89.90% 314 96 (3.27×) 

ResNet18 93.81% 91.61% 555 214 (2.59×) 

ResNet50 94.58% 92.33% 1298 496 (2.62×) 

 

VGG16 70.40% 68.16% 318 98 (3.24×) 

ResNet18 75.41% 73.11% 555 219 (2.53×) 

ResNet50 77.30% 75.16% 1298 503 (2.58×) 

 

VGG16 56.91% 54.94% 1256 502 (2.50×) 

ResNet18 61.84% 59.86% 2222 958 (2.32×) 

ResNet50 64.13% 62.12% 5194 2144 (2.42×) 
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improvements are 25.2% better than SeerNet with 0.72% higher accuracy (only 0.12% drop

compared to the 8-bits baseline).

The 4-bits quantized models offer a constant 2× operation reduction. However, 4-bits

models suffer an accuracy loss of up to 2.2%. Accordingly, we allowedTermiNETor to undergo

an accuracy degradation of up to∼2.2% (similar to 4-bits models) by starting the mask generation

early in the bit-serial processing of the weights as well as using more aggressive threshold values.

With up to 2% accuracy loss as compared to the 8-bits baselines, we observe an operation

reduction of upto 3.3× for VGG16 with CIFAR-10 dataset as compared to 2× speedup of the

4-bit model. As shown in Table 5.2, TermiNETor achieves better speedup values for other

datasets and networks, compared to the 4-bit models.

Table 5.3. Characterization of TermiNETor components.

Module (total) Size/count Area (µm2) Power (mW)
Processing Element 8×16 81,263 42.8
Activation Memory 16 KB 281,636 59.1
Weight Memory 18 KB 271,596 15.2
Output Memory 4 KB 75,163 1.9
Register File 10 KB 233,987 78.2
Controller 1 9,258 4.78
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5.4.3 TermiNETor Accelerator Evaluation

Table 5.3 presents the characterization of TermiNETor hardware components. Each PE

has a 32×20bit register file, but as as mentioned in Section 5.3.4, we merge the RFs of four

PEs in a row and share a 32×80bit RF among all. Considering 8-bits weights and activations,

20-bits words are sufficient to accumulate all partials (as most of the products cancel out each

other). The entire array needs 32×20b×8×16 = 10KB of register file. To avoid DRAM stalls

when flushing out the output activations from RFs, we use intermediate output lanes consisted of

four SRAMs, each of which has a size of 1 KB (256× 32-bits). We stall new computations in the

architecture during the data transfer from the RFs to the output lanes, which takes 32×8 = 256

(an output lane is shared between all eight rows). In networks such as ResNet-18 and ResNet-50,

this stall is utilized to perform residual layer addition.

The capacity of the activation memory enforces a limit on the number of input channels

that can be stored in the buffer. Sparse outputs (as a result of early termination) demand

more input activations to be stored in the activation memory because idle PE rows reduce the

throughput. On the contrary, loading only a subset of input channels increases the DRAM

accesses as the activations are re-fetched for every weight bit. With the sparsity distribution of

VGG16, ResNet18 and ResNet50, our simulation experiments indicate that loading a maximum

of 512 input channels into the activation memory balances the throughput and the DRAM

accesses. In our architecture, we use eight activation memories, each with a size of 2KB (256 ×

64-bit) transferring 64-bits to each PE row every cycle. Similarly, the weight memory supplies

unique weight bricks to all the PEs in a column. To store the weights, we use 16 SRAMs (for 16

PE columns), each having 1152 unique eight bit words, with a total capacity of 18KB.

The 8×16 architecture of TermiNETor occupies a total area of 0.95 mm2 (at 40 nm),

consumes 4.0 mW leakage power, an average dynamic power of 222.5 mW (at 1 GHz), 9.2% of

which is the DRAM access power (average among benchmarks). The baseline 8×16 array of

TermiNETor is able to process 12.2 ImageNet-size (224×224 images) implementing VGG16
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Figure 5.11. Scalability of performance, area, power, and utilization of TermiNETor running
different image sizes.

(large image and network), or 235 smaller 32×32 images running ResNet-18 (small image and

network). Fig. 6.6 shows how the throughput scales by increasing the TermiNETor accelerator

size up to 32×32 array. The baseline is shown by 1.0× (which denotes 12.2 image/second for

VGG16, and 235 image/second for ResNet-18 as mentioned). The largest array, i.e., 32×32,

which consists of 8× more PEs, can increase the performance by up to 7.86×, which is almost

linear with the number of PEs added.

The same Fig. 6.6 also shows the area sociability, which is independent of image size.

While the baseline area is 0.95 mm2 (denoted by 1.0×), the area of the largest array (32×32)
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Figure 5.12. Energy per classification, normalized to GPU.

is only 5.04× larger (i.e., 5.04× 0.95mm2 = 4.79mm2). The area increase is < 8× because

although the PE count is increased by 8×, the number of input lanes of the 32× 32 array is

only 4× of the baseline array, and the number of weight and output lanes increases by just 2×.

A similar trend can be observed for the power consumption. As alluded above, the leakage

and dynamic power of the baseline array is 4.0 mW and 222.5 mW, respectively. The energy

consumption reduces by increasing the array size due to better data reuse, i.e., the same weights

and inputs are shared among more PEs, and a result, SRAM accesses are reduced. PE utilization

is lower for ResNet-18 than VGG16 due to the residual layers, which have a 1×1 kernel that

enables the output lane to process more filters at the expense of activations. For residual layers

with larger number of input channels (≥ 512), there are a limited number of activations to start

with, and early termination combined with the low capacity of the output buffer diminishes it

even further. It results in a PE rows remaining unused for a significant time.

5.4.4 Comparison with Previous Work

Since the performance and power consumption depends on the resources (e.g., PE array

size), we compare TermiNETor with state-of-the-art works in terms of energy consumption

per classification. Particularly, the results of subsection 5.4.3 showed that the performance of
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TermiNETor scales well with the PE array size; hence, high performance targets can be meet

if the energy consumption is satisfactory. Therefore, we compare the energy consumption of

TermiNETor (for both baseline 8×16 and larger 32×32 array, as well as the baseline baseline

8×16 without early termination) with SCNN [6], Cambricon-S [98], and FuseKNA [7]. The

former two (SCNN and Cambricon-S) are zero weight/input skipping accelerators without bit-

serial operations (i.e., sparsity-aware 8-bits accelerators), while FuseKNA skips zero inputs as

well as repetitive computations using bit-serial operations. The results of SCNN, Cambricon-S,

and FuseKNA are presented in [7] as normalized to Nvidia 1080 GTX GPU; hence, we repeated

the experiments using the same GPU and normalized the TermiNETor results to the obtained

result of GPU.

Fig. 5.12 compares the energy usage of TermiNETor and the other accelerators running

224×224 images on VGG16, ResNet-18, and ResNet-50, normalized to Nvidia 1080 GTX Ti

GPU. The 32×32 array of TermiNETor achieves the highest energy efficiency and reduces the

energy consumption by 120.1× over GPU, 1.98× over FuseKNA, 3.84× over SCNN, and 4.84×

over Cambricon-S. Compared to the baseline 8×16 array with (without) early termination, the

32×32 array is 1.20× (1.75×) more energy efficient (with ∼5.7× higher power consumption

according to Fig. 6.6, i.e., ∼1290 mW versus 226 mW of the baseline TermiNETor array).

5.5 Conclusion

In this work, we introduce TermiNETor framework to accelerates CNN inference by

performing dynamic convolution termination for ineffectual output activations. During the

weight bit-serial inference data flow, at every weight bit, we predict ineffectual output activations

resulting from the ReLU and max-pooling layers. Using these predictions, the donwstream

bitwise shift-and-add convolution operations are continued only for the useful output activations.

We evaluate TermiNETor across various networks and datasets, demonstrating a significant

reduction in operation count (up to 1.7× speedup) with negligible loss of accuracy. We also
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propose a novel accelerator that exploits the dynamic bitwise convolution terminations with an

average energy efficiency of 120× as compared to GPU, and at least 1.98−4.84× with respect

to the state-of-the-art sparsity-aware accelerators. In the next chapter, we propose another neural

network accelerator that reuses redundant computations during the inference phase. In addition

to reducing the compute and energy burden, we also focus on reducing the memory footprint of

the model, leading to an area-optimized silicon implementation.
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Chapter 6

AI Acceleration: Patterned DNN

Weight clustering is an effective technique for compressing deep neural network (DNN)

memory by using a limited number of unique weights and low-bit weight indexes to store

clustering information. In this chapter, we propose PatterNet, which enforces shared clustering

topologies on filters. Cluster sharing leads to a greater extent of memory reduction by reusing

the index information. PatterNet effectively factorizes input activations and post-processes

the unique weights, which saves multiplications by several orders of magnitude. Furthermore,

PatterNet reduces the add operations by harnessing the fact that filters sharing a clustering

pattern have the same factorized terms. We introduce techniques for determining and assigning

clustering patterns and training a network to fulfill the target patterns. We also propose and

implement an efficient accelerator that builds upon the patterned filters. Experimental results

show that PatterNet shrinks the memory and operation count up to 80.2% and 73.1%, respec-

tively, with similar accuracy to the baseline models. PatterNet accelerator improves the energy

efficiency by 107× over Nvidia 1080 1080 GTX and 2.2× over state of the art.

6.1 Introduction

The ever-increasing efficacy of DNNs in diverse application domains is coupled with the

increase in the size and computations of their models [111]. Extensive research has been done

to alleviate the memory and computational burden of DNNs. Primary compression techniques

116



include weight quantization [93, 94, 95], pruning [91, 92], clustering [92, 112], and filter pruning

[113, 8], especially with a slant toward hardware efficiency such as hardware-aware quantization

[96] and structured pruning [114].

In weight quantization, the network parameters take values from a set of predetermined

values (e.g., −2k−1 to 2k−1− 1 in uniform quantization), while weight clustering groups the

weights into abstract clusters, where all weights of a cluster share the same value. Thus, by

clustering we can simply store the cluster index/id of each weight (in index table), along with

a small table that maps the indexes to weight values. Previous works [95, 115] show that ∼16

unique weights can retain the accuracy, which results in 2× memory compression by storing

log2 16 = 4-bit indexes instead of the primary 8-bit weights.

As shown in Figure 6.1, the convolution operation in CNNs is essentially a window-wise

dot-product between a multi-dimensional filter and the input activations to generate output

feature maps. Since clustering uses a limited number of unique weights, it can be leveraged

for computation efficiency by factorizing weights. The example of Figure 6.1(a) shows filters

clustered with two unique weights w1 and w2. Clustering can reduce multiplications (MULs) by

first accumulating the inputs based on the weights clusters and applying MULs on the sum of

factorized terms. For a filter with nw weights (typically O(103)), the number of MULs reduces

from nw to G (the number of unique weights or clusters), where usually G=16 unique weights is

sufficient as alluded earlier.

Factorization also results in common sub-groups of inputs. In Figure 6.1(a), both filters

f1 and f2 computations have overlapping sub-groups a3 + a4 and a2 + a5. A previous study,

UCNN [115], attempts to form compound sub-computations to be reused among multiple filters.

Nevertheless, UCNN achieves less than 30% energy improvement due to the complexities

involved in dealing with fine-grained sub-groups. FuseKNA [7] uses weights in a bit-serial

fashion to slice MULs into ADDs. When processing each bit of multiple filters, FuseKNA reuses

the overlapping ADDs among kernels.

In this paper, we take an unorthodox approach to increase computation reuse and reduce
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(b) Whole cluster reuse among different filters.

Figure 6.1. Weight clustering with (a) computation reuse and (b) cluster reuse between filters.

memory by enforcing filters to share the same clustering pattern. Filters f1 and f2 in Figure

6.1(b) share the same clustering. That is, a particular weight at index i of both f1 and f2 belong

to the same cluster. This is distinguished by using the same background colors for clusters

of f1 and f2. However, unlike baseline clustering [92] that uses the same unique weights, in

PatterNet each filter can have a different set of G unique weights; hence, filters share clustering

patterns, not exact data. As a result of pattern sharing, along with the reuse of whole activation

groups between f1 and f2 (e.g., a1 +a3 +a4 is repeated for both filters), the same cluster-index

information can be used for both filters. Therefore, f2 only needs to store its unique weights set

(which is negligible compared to the eliminated index information), and carry out only G MULs

on the pre-computed input sub-groups that have already been accumulated when processing f1.

Our main contributions are as follows. In Section 6.2, we explore the potentials of

patterned filters, propose a mathematical formulation to identify the patterns, and a training

strategy to enforce the desired patterns without deteriorating the model accuracy. To the best

of our knowledge, this is the first work that introduces patterned filters to save memory and

computation of DNNs. In Section 6.3, we elaborate the dataflow, architecture, and processing

units of PatterNet accelerator that supports networks with both patterned and conventional

weight clustering. As weight quantization is a special case of clustering, our architecture

supports quantized networks, as well. In Section 6.4, we examine the efficiency of PatterNet

on various datasets and networks in terms of computation and memory reduction and compare

the functionally-verified synthesized PatterNet accelerator with previous works.
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Figure 6.2. Convolution operation. Filters f1 and f2 use the same pattern with different unique
weights.

6.2 Patterned Neural Network

6.2.1 Motivation

Figure 6.2 shows the parameters of a convolution layer that comprises F filters of C×k×k

dimension. The depth of each filter, C, is equal to the number of channels (feature maps) of the

input activations. An output pixel (activation) of output channel ℓ is created by applying the

filter Fℓ over a particular C×k×k window of the input. Thus, the number of output feature maps

is equal to the number of filters, F. Multiplication of a filter and input window is essentially

a dot-product by flattening them. For an input with H×H channels, the output image has a

dimension of R×R, for R = H−k
S +1, where S is the stride size (i.e., the sliding step of the filters).

Assuming every n f subset of a layer’s filters share the same clustering pattern, the total

parameter memory consists of C×k×k× logG bits to store the common index table (i.e., cluster

indexes of weights instead of values), and n f×G×8b bits to store the actual weights of n f

filters assuming 8-bit weights. The total number of operations include total C×k×k ADD (in G

groups/clusters), accompanied with G MULs and ADDs for each filter to generate an output.

That being said, Figure 6.3 shows the parameter memory and operation reduction of

patterned VGG-16 layers over the 8-bit quantized model for N∈{4,8,16} filters sharing one

pattern assuming G=16 unique weights per filter. For intermediate layers, saving ranges from
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Figure 6.3. Memory and operation saving of patterned weight clustering when N filters share
one pattern.

7.2× to 22.1× depending on N, and up to 28.8× in the last layers. We assumed that a fixed

number of filters share a single pattern. In practice, each pattern may contribute to a different

number of filters of a layer as we elaborate in Section 6.2.2. Note that G=16 and 8-bit weights

are a special case that leads to the same memory and operation savings; otherwise, the savings

can be different.

6.2.2 Pattern Selection

Pattern selection involves determining the number of clustering patterns, the patterns

themselves, and the assignment of patterns to filters. Exploring inter-filter structural similarities

is a proper starting point in determining the common patterns and the filters that share these

patterns. Patterning is more complicated than other problems such as filter pruning that considers

the filters exclusively (e.g., pruning based on l1 norms [113] or ranks of filters [8]).

We use Figure 6.4 to elaborate our proposed pattern selection approach. Using a pre-

trained model, we cluster the weights of each filter to G groups using any conventional approach

such as k-means. Note that this step is a simple one-shot clustering merely to reduce the number

of unique weights of filters. In this illustrative example, filters f1 and f2 are clustered into four

groups, distinguished by different colors. In patterned clustering, for flexibility, each filter can

have an arbitrary set of unique weights different than other filters (denoted by G1−4 for f1 and
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H1−4 for f2 in Figure 6.4). The goal is to find the filters with most similar clustering, indicated by

how many same-cluster weight indexes in fi are also in the same cluster in f j. A naive approach

is to correspond each cluster of fi with a cluster in f j and count the overlaps, which results in G!

combinations (2×1013 for G=16).

We formulate the “similarity finding” as the Hungarian matching problem. For each

pair of filters fi and f j, we create the table of longest common subsequences between all groups,

ending up in a G×G table. For instance, in Figure 6.4, cluster G2 of f1 has three common

indexes with cluster H4 of f2, namely, indexes 2, 14, and 20. The Hungarian matching algorithm,

with a time complexity of O(G3), finds the best matching of fi and f j groups that maximizes

the score (shared elements). The example of Figure 6.4 obtained a score of 20, meaning that by

replacing clustering of f1 with f2, 20 (out of 27) weights of f1 will be still in the same cluster as

before (i.e., only 7 of f1 weights get a different value).

We obtain the similarity scores between all pairs of filters and create an F×F distance

matrix (distance defined as 1/score). Finally we use the distance matrix to find P (number of

patterns) collections of filters, where filters of a collection have smaller distances to each other

than to other collections. For this end, we use the k-medoids algorithm [116] to cluster F filters

into P collections. Unlike k-means that calculates the Euclidean distance between data points,

k-medoids works with custom cost functions, e.g., a distance matrix. In addition, unlike k-means,

k-medoids returns actual data points of the collection as the center points, leading to a greater

interpretability of the centers. This is essential in pattern selection as the returned centers will be

the filters with their clustering pattern selected to be shared. Note that the number of filters in

each of the P pattern collections can be different.

6.2.3 Free Filters

Although imposing a limited number of patterns among all the filters works for simpler

datasets such as Fashion-MNIST, in more complex datasets such as CIFAR100 we observe

accuracy degradation. This is a result of failing to extract certain pixel patterns because of
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the cluster-sharing constraint between the filters. Therefore, we relax the constraint of pattern

sharing on certain filters in a layer, dubbed as free filters. Free filters still comply with weight

clustering (hence they still benefit from factorization) but do not follow an enforced pattern.

To select the free filters, in the original pretrained model, we sort the filters based on the

singular value decomposition (SVD) of their output feature maps using the train data, according

to [8]. SVD value indicates how many rows of a feature map are linearly independent. The

overall rank score of a filter is the mean of the generated feature maps SVDs. Filters with a rank

higher than a threshold are deemed as more informative filters and selected as pattern-free (or

indeed single-pattern) filters.
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6.2.4 Patterned Model Training

After identifying the patterns associated with each filter, we use projected gradient

descent (PGD) to calibrate the model toward the determined patterns. PGD solves constrained

optimization problems, which in our case is “the solution W of the DNN must belong to pattern

constraints Q”, formally, W∈Q f ({W i}Li=1,X ), where L is the layers and X is the input data.

Starting from an initial W0 ∈Q (e.g., by cluster-wise averaging of pre-tarined weights) PGD

proceeds as follows:

Wk+1 = PQ

(
Wk−λ∇ f (Wk,X )

)
(6.1)

PQ projects the gradients such that Wk+1 ∈Q as well. The projection of the gradients itself is an

optimization problem:

PQ(Wk) = argW∈Q|W −Wk|22. (6.2)

Meaning that the new weights need to minimize |W −Wk|22 while also adhering to Q. Since

weights of the solution W are clustered, i.e. all weights of a cluster get the same value, the

solution of (6.2) translates to minimizing ∑(x−wi)
2 for each cluster, in which wis are the

post-gradient weights and x is the new weight of the cluster. Thus, x = wi yields the optimal

solution. Therefore, after backpropagation of each batch, we simply replace each updated weight
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Algorithm 5. Training process in PatterNet

Inputs: model (trained), X , free filters, pattern dict, G
Output: PatterNet model

1: for iter from 1 to epochs×batches do
2: model← SGD(model, X )
3: for ℓ in model.convlayers do
4: for in model.filters(ℓ) do
5: if in free filters[ℓ] then
6: model.weight[ℓ][]← k-means(, G)
7: end if
8: if in pattern dict[ℓ] then
9: model.weight[ℓ][]← project weights(, pattern dict)

10: end if
11: end for
12: end for
13: end for
14: return model =0

with the average of its cluster. Algorithm 5 summarizes the PatterNet training, where the

project weights function of line 9 carries out the weight projection explained above.

6.3 PatterNet Architecture

6.3.1 Overview

Figure 6.5 shows the details of PatterNet architecture and data flow. The architecture

comprises an Ra×Ca array of processing elements (PEs). Each PE is responsible for one pattern

(which is shared with one or multiple filters) and generates one/multiple output pixels. PEs

gradually receive all the inputs and pattern cluster indexes of a window, accumulate each input

in the proper group based on the index, and eventually multiply the unique weights (for all filters

sharing the pattern) on the accumulated groups.

To reduce the memory accesses, PatterNet uses a pattern-stationary data flow while

trying to maximize the data reuse, as well. To this end, the PE array is logically split into

row-groups, made up of two consecutive rows (total Ra2 row-groups in our architecture). All

PEs in a row-group operate on the same inputs (intra row-group data sharing), but each PE
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possesses a different pattern. Thus, a row-group generates multiple channels of an output. The

corresponding PEs in all row-groups (e.g., PE1, PE33, etc.) possess the same pattern (inter

row-group data sharing), but use different inputs. Therefore, in a given time, the same channels

of Ra2 outputs are on progress. Once all the channels associated with the running patterns

are produced, PatterNet scans another input window to generate the next Ra2 outputs. After

scanning all input rows, PatterNet starts over with the next set of patterns (if any) and repeats

the same procedure to generate all the channels.

6.3.2 Data Flow

We elaborate the data flow of PatterNet using the 3×3 example convolution of Figure

6.53. A brick is a complete 1×1 window that includes all the channels (z dimension). PatterNet

fetches the input activations as sub-bricks. The number of channels (pixels) in a sub-brick is

architectural parameter (e.g., four pixels). As shown in the figure, the convolution involving the

input activation window w1 =
(13 12 11

8 7 6
3 2 1

)
and the associated filter generates the right-most pixel

of the output feature map. To do this, fetching of inputs starts from the bottom-right brick toward

to top-left in a column-wise fashion (i.e., 1→ 6→ ···13) by fetching all sub-bricks commencing

the next brick. This facilitates a great degree of data reuse as explained next in subsection 6.3.3.

Once a sub-brick is fetched, it is broadcast to all PEs in a row-group. Along with the inputs, each

PE receives the pattern index corresponding to the fetched activations.

To recap, we first create activation sub-groups by adding cluster-specific activations,

before multiplying with the cluster’s weight value. To implement this, in every cycle, a PE

processes one activation and adds it to the corresponding cluster group (out of G). After fetching

and accumulating all the input bricks of an input window, each PE fetches the actual weights

associated with the processed pattern. For each filter that shares the current pattern, the PE

fetches its G unique weights cycle by cycle and multiplies with the accumulated values of

group-1 to group-G. The aforementioned window w1 produces the output pixels associated with

32 patterns of PE1 to PE32 of output brick 1 (i.e., at least 32 channels of the output feature map).
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The convolution window is then shifted left. Hence, the row-group 1 will generate the same

channels of output brick 2 as it did for output brick 1.

Multiple row-groups generate multiple output rows simultaneously. As row-group 1

processes input window w1, row-group 2 processes window w4 to generate 2nd output row. All

row-groups generate the same channels since they use the same patterns (hence, filters). Once

the row-groups finish scanning the current input rows (i.e., the windows reach the left edge),

each input window moves up by Ra2 (number of row-groups) rows. After scanning all the rows,

PatterNet starts over from the first row with a new set of patterns until all output channels are

created.

6.3.3 Data Reuse

PatterNet takes advantage of multiple levels of data sharing. The input activations

are shared among all PEs of a row-group, and clusters index data are shared between all

corresponding PEs in the row-groups (e.g., PE1, PE33, PE65, etc.). In addition, except the edge

of the image, in a 3×3 convolution window, an input brick is shared between three windows of

the same row. E.g., in Figure 6.53, input brick 3 is used in windows w1, w2, and w3 (processed

by RF1, RF2, and RF3 as explained in the next subsection). Therefore, once a sub-brick of

input brick 3 is fetched, PatterNet’s PE processes computations for all the three windows

(the PE also fetches three index data in a cycle). This results in ∼3× speed-up in addition to

memory access reduction. Furthermore, the kth row-group processes one input row ahead of its

previous row-group k−1. PatterNet buffers the input to be reused later for row-group k−1 and

avoids DRAM accesses with a small buffer. For instance, row-group 2 starts by operating on

input brick 6, which will be immediately required by row-group 1 upon finishing input brick

1. Similarly, row-group 3 starts by input brick 11, which will be required by row-group 2 after

processing input brick 6. This efficient data reuse is possible due to PatterNet’s data flow that

simultaneously runs multiple vertically-adjacent windows, and processing each window in a

column-wise fashion. Thus, when scanning the input image for the current patterns, each input
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is fetched only once from the DRAM.

6.3.4 Processing Units

Processing Elements: Figure 6.52 shows the internals of the PE. Top blue boxes are

temporary registers reg11 to reg24 that store the activations sub-bricks fetched from the input

buffer. PEs of different row-groups use the same input buffer bus in a time-multiplexed fashion.

Thus, these registers are required to store enough inputs until the round-robin arbiter grants

access to a row-group to fetch the next sub-brick after Ra2 cycles.

Register Files: As explained in subsection 6.3.3, an input brick may participate in several

adjacent windows. The register files RF1 to RF4 receive one input activation as data, along with

several cluster indexes as the address to accumulate the input with the proper group. One of the

RFs is spare to avoid stalls, explained below. The reg idx (index register) continuously fetches

these index data from the Index Lane buffer. Since the windows sharing an input are adjacent

(i.e., an activation only differs in x dimension within the windows), the index data of these

windows can be aligned in one memory row. Note that since corresponding PEs of row-groups

process the same pattern, the fetched index data is broadcast to all of Ra2 corresponding PEs of

all row-groups using the common index bus of a column.

Accumulator: Once all inputs of a window are accumulated in an RF, the PE loads unique

weights w1 to wG one-by-one from the Weight Lane to the reg w, and reads the accumulated

sum of group-1 to group-G from that RF, accumulates the multiplications in the reg out, and

finally transfers the output to Out Lane. Since each filter sharing a pattern has its own unique

weights, these multiplications need to be repeated for all filters sharing the pattern. The key

benefit of PatterNet is that, once the input sub-groups are computed a pattern, producing

new output channels (of shared filters) takes just G cycles per filter. Since the first window (of

horizontally-adjacent windows) is several input bricks ahead from the other two, in a given time,

the results of only one window becomes ready in a PE. A PE contains one extra RF, so when an

RF is stuck to finalize the multiplications, the fourth RF replaces it to process new input bricks
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and avoid stall.

Output Lanes: PEs in a column time-multiplex the same output bus to transfer the

output activation to the Out Lane. The bus is granted in a round-robin fashion, but it does not

cause performance overhead as outputs of all PEs of a column can be transferred to Out Lane

before generating the outputs of next window. The Out Lane temporarily stores a few adjacent

horizontal outputs (from the same PE), or adjacent vertical outputs (from the corresponding PEs

of different row-groups) for pooling operation before writing to DRAM. The output data layout

written into the DRAM is the same as input bricks, i.e., continuous pixels of an output brick are

written in the same DRAM row.

6.4 Experiments and Results

6.4.1 Experimental Setup

We implemented PatterNet concepts (i.e., pattern and rank-based free filter selection

and training) using PyTorch. For training, we used SGD optimizer, momentum of 0.9 with

weight decaying, and learning rate from 0.1 down to 0.0008 over 100 epochs. For parameter G

(number of unique weights or clusters per pattern) we found G=16 sufficient to retain accuracy

by sweeping across a spectrum of values. Similarly, we tried a range of values for P (number of

patterns) and found P=16 sufficient for accuracy.

We implemented PatterNet accelerator in SystemVerilog and verified its functionality

with Modelsim. We synthesized it using TSMC 40 nm standard cell library at 0.9 V using

Synopsys Design Compiler for a target frequency of 500 MHz. We used Artisan memory compiler

with the same technology to generate SRAM buffers and register files. Power consumption of all

elements is obtained using Synopsys Power Compiler. For DRAM access energy model we used

Destiny [110]. Our primary architecture consists of Ra=8 rows (four row-groups) and Ca=16

(32 PEs per row-group).
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6.4.2 Operation and Memory Reduction

We evaluate the effectiveness of PatterNet by comparing it with a state-of-the-art filter

pruning approach dubbed Hrank [8]. We use VGG16, Resnet18, and Resnet50 networks with

CIFAR10 and CIFAR100 datasets as used in [8], and a 200-class subset of ImageNet (Tiny

ImageNet). To recap from Section 6.2.1, the patterned filters run ADDs to accumulate the input

activations for P filters, followed by MULs of their unique weights on the resulted groups. The

free filters are special cases of patterned filters, where a free filter has one independent pattern.

Thus, free filters also benefit from factorization to reduce the number of MULs, as well as weight

clustering to reduce memory.

Table 6.1 summarizes the accuracy, operation count (ADD and MUL), and memory for

the aforementioned models and datasets. The Base column indicates the baseline 8-bit model,

and Hrank column is the state-of-the-art filter pruning [8]. We selected the pruning ratios of

Hrank layers according to its original work [8].

CIFAR10: As compared to the baseline VGG16 network, while HRank provides 56.1%

reduction in operation count and 62.2% reduction in parameters, our method offers 72.4%

reduction in operation count and 77.9% reduction in parameters, with 0.3% better accuracy.

For residual networks such as ResNet18, while the operation reduction in HRank is 54.4%,

our method offers 69.4% reduction. We observe a similar trend for ResNet50; 68% operation

reduction in PatterNet as compared to 46% reduction of HRank. PatterNet shrinks parameters

size significantly (80.2% vs HRank’s 66.8%) for Resnet18 and (64.1% vs HRank’s 45.7%) for

Resnet50, along with better accuracy metrics as compared to HRank.

CIFAR100: For CIFAR100, we achieve 73.1% operation count reduction using VGG16, 61.5%

using ResNet18 and 68.6% using ResNet50. The reduction in parameters is considerably better

than HRank’s reductions (77.4% vs 61.1%, 71% vs 48.8% and 64% vs 46.2%) for VGG16,

ResNet18 and ResNet50 respectively.

TinyImageNet: We observe a similar trend with the Tiny ImageNet dataset. Along with an
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Table 6.1. Comparing PatterNet with baseline and Hrank [8].  

 
Model 

Accuracy Operation (M) Parameters (MB) 

Base Hrank PatterNet Base Hrank PatterNet Base Hrank PatterNet 

C
IF

A
R

10
 VGG16 91.73% 91.89% 92.19% 314.0 

137.7 
(56.1%) 

86.7 
(72.4%) 

14.28 
5.39 

(62.2%) 
3.14 

(77.9%) 

Resnet18 93.84% 93.14% 93.59% 555.5 
253.2 

(54.4%) 
169.7 

(69.4%) 
10.64 

3.53 
(66.8%) 

2.10 
(80.2%) 

Resnet50 94.65% 94.12% 94.64% 1298 
701.2 

(46.0%) 
416.5 

(68.0%) 
22.3 

12.16 
(45.7%) 

8.04 
(64.1%) 

C
IF

A
R

10
0
 VGG16 70.45% 69.84% 70.15% 312.0 

132.4 
(57.6%) 

84.1 
(73.1%) 

14.26 
5.55 

(61.1%) 
3.22 

(77.4%) 

Resnet18 75.30% 74.19% 74.83% 555.5 
341.1 

(38.6%) 
213.8 

(61.5%) 
10.69 

5.47 
(48.8%) 

3.09 
(71.0%) 

Resnet50 77.21% 76.12% 76.92% 1298 
682.1 

(47.4%) 
407.5 

(68.6%) 
22.5 

12.10 
(46.2%) 

8.1 
(64.0%) 

T
in

y
-

Im
a
g

e
N

e
t VGG16 56.95% 53.16% 55.90% 1272 

549 
(56.8%) 

355 
(72.0%) 

22.79 
14.1 

(38.2%) 
11.7 

(48.4%) 

Resnet18 62.28% 60.97% 62.20% 2221 
1364 

(38.6%) 
854 

(61.5%) 
10.74 

5.52 
(48.5%) 

3.14 
(70.7%) 

Resnet50 64.20% 62.65% 63.88% 5192 
2727 

(47.5%) 
1629 

(68.6%) 
22.75 

12.3 
(45.8%) 

8.31 
(63.4%) 

 

 

  

 

Table 6.2. Memory size of baseline PatterNet architecture.

Input buffer Index lane Weight lane Out lane Register File
2048×32b (8 KB) 768×24b (2.25 KB) 64×8b (64 B) 512×20b (1.25 KB) 16×20b (40 B)

improved operation reduction (up to 72%) and parameter reduction (up to 70.7%) as compared

to the baseline, our improvements are better than HRank while achieving improved accuracy

metrics (1-2%) over HRank.

In summary, PatterNet shrinks the model memory up to 80.2% and operation count up to

73.1%, with a similar accuracy as compared to the 8-bit baseline models.

6.4.3 PatterNet Accelerator Details

The baseline PatterNet architecture consists of four row-groups (Ra=8) and 16 columns

(Ca=16). Table 6.2 reports the size of PatterNet memories. As explained in Section 6.3.3, the

input buffer stores the entire brick of a row-group for reuse by the preceding row-group. The

image depth goes up to 2048 channels in Resnet50, thus, the input buffer should store 2048×4

input activations of four row-groups, packed as 2048×32b (four inputs of a brick are packed in a

row and fetched at once to a row-group). The index memory stores all 4-bit indexes, which is

512×3×3 for the largest filter. Since three indexes per pattern is read in a column (and there are
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Table 6.3. Characterization of PatterNet components.

Module (one) Area (µm2) Leakage (mW) Dynamic (mW)
Input Buffer 33,284 0.454 0.563
Index Lane 15065 0.171 0.426

Weight Lane 1,744 0.030 0.034
Out Lane 10,961 0.118 0.356

PE (with RFs) 9,472 0.173 0.470
Controller 151,029 1.701 2.518

two patterns in a column), the memory has a 768×(6×4) layout. The weight memory supplies

the unique weights of a column’s filters. Each pattern is shared with up to 32 filters, thus, it

stores up to 64 weights. Similarly, the out lane stores all outputs generated by a column (four

row-groups and 64 filters). In addition, it stores the adjacent pixels for pooling, requiring a

total of 512 rows and 20-bit per row for each output pixel. Finally, each RF has 16 rows for

accumulation of G=16 groups.

Table 6.3 shows the per-component area and delay of the PatterNet using the setup of

subsection 6.4.1. The 8×16 architecture of PatterNet occupies an area of 1.84 mm2 (at 40 nm).

The compact area is mainly due to sharing a weight index lane and an output lane within an entire

column, and a small input activation memory that buffers the inputs for reuse so PatterNet

uses only 70 KB on-chip memory. The design consumes a peak (wost-case) power of 145.7 mW:

29.4 mW leakage, and maximum dynamic power of 116.3 mW (at 500 MHz), 34% of which is

the DRAM access power. The data reuse of PatterNet makes an effective DRAM access rate

of ∼1 Byte/cycle, the same rate as PEs consume inputs in a shared fashion.

6.4.4 PatterNet Scalability

Figure 6.6 shows the scalability of PatterNet (implementing VGG16 model) as the

array size increases from 8×16 to 8×32 (2× columns), 16×16 (2× rows), and 16×32 (2×

columns and rows) for 32×32 images and ImageNet-scale 224×224 images. The area in both

cases is the same and input-independent. Except for the PE utilization that shows the actual
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Figure 6.6. Scalability of performance, power, and energy of PatterNet running VGG16 with (a)
224×224 (b) 32×32 images.

Table 6.4. Metrics of 8×16 array for large and small images.

Image size Input/sec Area (mm2) Power (mW) Energy/input (mJ)
224×224 11.3 1.84 133.6 11.9
32×32 415.3 1.84 96.3 0.23

quantities, the other parameters are normalized to 8×16 array values (Table 6.4 shows the actual

values of the baseline 8×16 architecture). For large images, PatterNet architecture shows better

scalability, i.e., 3.6× higher performance (input/sec) when both rows and columns duplicate.

However, for small images, PE utilization rate reduces down to 46% in the 16×32 array. As a

result, it achieves only 2.6× performance gain. The average utilization rate for large images is

90% in the baseline 8×16 array and 76% in the largest array. The area is not scaled by 4× since

the size of index lane and weight lane buffers remains the same, and their number only increases

by 2×. Finally, for large images, the largest array (16×32) shows better energy/input. This is

mainly because the DRAM access power ratio significantly reduces (down to 9.3%) because the

fetched inputs are reused between more row-groups.

6.4.5 Comparison with Previous Work

We compare performance-per-watt of PatterNet with the state-of-the-art FuseKNA [7]

which also reuses the overlapping ADDs among kernels in a bit-serial accelerator, and with

SCNN [6] which is a MAC-based sparse (zero-skipping) accelerator (results compiled from [7]).
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Figure 6.7. Comparison of PatterNet, SCNN [6], and FuseKNA [7] energy efficiency normalized
to GPU.

Figure 6.7 shows the performance-per-watt (energy per image) normalized to Nvidia 1080 GTX

GPU, all designs running 224×224 images. PatterNet surpasses GPU energy efficiency by

107×, SCNN by 3.6×, and FuseKNA by 2.2×.

6.4.6 Physical Design and Tapeout

We use TSMC 40nm foundry enablement to realize the silicon implementation and

fabrication of PatterNet accelerator DIE. The DRC and LVS clean layout of PatterNet

accelerator is shown in Figure 6.8. As shown in the figure, we incorporate am additonal

capability of Hyperdimensional (HD) compute logic [117], which is a new brain-inspired

computing paradigm to build lightweight learning algorithms. The traditional CNN pipeline

is replaced by HDnn encoding pipeline (the last few layers replaced by HD), to accelerate the

computing, improving training performance and energy efficiency. For more details of the

implementation details of HD logic in PatterNet we refer the readers to tinyHD [118].

For the physical design, we use six-layer metal stack and a restribution layer (RDL); M1,

M2, M3, M4, M5, M6, and AP. For the interface with package, we use wirebond design with 145

IO pads (8 power and ground pads) and each IO pad is enabled with an aluminium launching

bondpad. Since the DIE area is limited by the number of IO pads, we perform multiplexing of
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Figure 6.8. Physical layout of PatterNet accelerator; wirebond design with 145 IO pads and a
total silicon area of 11.25mm2 in TSMC40nm.

IO signals, to maximally optimize the number of IO pads. The layout area is 3091×3640 um.

The fabrication phase of the tapedout chip is handled by TSMC’s multi-project wafer (MPW)

Cybershuttle program. The subsequent design, fabrication and assembly of package and boards

is outsourced to Siltronics [119].

6.5 Conclusion

In this work, we introduced the concept of patterned cluster sharing between DNNs filters,

which achieves memory reduction by reusing the clustering indexes, and operation reduction

by using weight factorization and reusing the result among the filters of the same cluster. We

proposed techniques to determine and assign the patterns over the filters, as well as a training

approach to yield the target patterns. We evaluated the filter patterning using different datasets

and networks, which revealed its effectiveness in significant memory and operation reduction

(by 80.2% and 73.1% respectively), which surpassed the state-of-the-art filter pruning technique
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while achieving better accuracy. We also proposed PatterNet accelerator based on the above

ideas, which obtained 2.2× better energy efficiency than state-of-the-art accelerators.
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Chapter 7

Conclusions

7.1 Thesis Summary

The device scaling over the last three decades has helped the chip industry exhibit

consistent performance, power, and area (PPA) gains. One of the primary contributors to the

PPA gain is the EDA industry, which helped designers realize optimal multi-objective design

implementations. However, as the chip industry transitions into sub-7nm nodes, more complex

rules increase the overall design cost and tool runtimes. To keep the design cost and turn-around-

time under control, designers introduce margins at various stages of the IC design flow, and

also compromise on the design-space exploration, leading to unclaimed benefits from the newer

nodes. Therefore, to keep up with the pace of PPA expectations and also fight the saturation of

Moore’s law, we focus on two promising opportunities at the top of the compute stack: (i) AI for

Design Optimization, and (ii) ASIC Design for accelerating AI algorithms.

Chapters 2, 3, and 4 present various applications of AI for efficient IC design. Our

PBA-GBA model in Chapter 2 predicts expensive PBA timing results from inexpensive GBA

results, essentially addressing the accuracy-runtime tradeoff during the timing analysis. We

demonstrated that our model-predicted PBA arrival times reduce mean, 99th percentile, and max

divergence metrics by at least 26.6%, 13.4% and 11.7%, respectively, as compared to reference

PBA-GBA divergence metrics. In the same chapter, our corner prediction framework accurately

captures and exploits the physics of timing delays across multiple corners to improve design
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convergence and design cost. With a 1M-instance example in foundry 16nm enablement (10%

training, 90% testing), our corner prediction model based on 10 observed corners predicts timing

results at the remaining 48 unobserved corners with less than 0.5% relative root mean squared

error, and 99th percentile relative prediction error of less than 0.6%. Chapter 3 formulates

the detailed placement problem of ASIC design, as a Markov Decision Process (MDP). Our

two-stage RLPlace framework utilizes Deep-Q learning for coarse arrangements of clusters

and Satisfiability Modulo Theories (SMT) for fine-grain refinement. With the global placement

output of two critical IPs as the start point, we achieve up to 1.35% improvement as compared to

commercial tool’s detailed-placement. Chapter 4 presents an SMT-based joint application-aware

routing and static VC assignment framework that guarantees deadlock freedom, to achieve

optimal latency in network-based communication subsystems. Our experiments show that our

approach can achieve up to 30% better performance than the state-of-the-art application-aware

oblivious routing algorithms.

In Chapter 5 and Chapter 6, we present two domain-specialized hardware accelerators,

focusing on the inference phase of neural network based image classification applications. We

alleviate the computational and energy burden of neural network accelerators, by reusing the

computations, and skipping unnecessary computations. Our TermiNETor framework in Chapter

5 is an algorithmic innovation with hardware support, for dynamically predicting and skipping

the ineffectual outputs. TermiNETor demonstrates up to 1.7× speedup with negligible loss of

accuracy across many different networks and datasets. The TermiNETor accelerator exploits

the dynamic bitwise convolution terminations with an average energy efficiency of 120× as

compared to GPU, and up to 4.84× with respect to the state-of-the-art sparsity-aware accelerators.

To exploit the reuse of computations and reduce the memory footprint, Chapter 6 proposes a

novel patterned neural network PatterNet. We propose a systematic framework for exploring

and enforcing shared cluster topologies to optimize computation reuse, and an efficient hardware

implementation of our idea. We demonstrate a significant memory and operation reduction (by

80.2% and 73.1% respectively), surpassing the state-of-the-art filter pruning technique while
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achieving better accuracy. We also designed PatterNet accelerator that is 2.2× more energy

efficient than state-of-the-art accelerators. We use TSMC 40nm foundry enablement for the

silicon realization of PatterNet and TermiNETor neural network accelerators.

7.2 Future Directions

AI-based techniques for multidisciplinary IC design analysis and optimization, and task-

optimized silicon implementation offer a viable way to extend the golden age of semiconductor

innovation, despite the stalling of Moore’s law and increased IC design costs for newer nodes.

7.2.1 AI for Design Optimization

In this dissertation, we focused on isolated tasks of the IC design process. Integrating

multiple AI-based models at various stages of IC design and translating them into end-to-end

PPA benefits is an important future direction to pursue. To this end, we seek to integrate our

PBA-GBA and corner prediction models with an academic sizer and optimizer, to explore the

benefit from reduced pessimism in multi-corner multi-mode (MCMM) timing closure and sizing

for leakage and total power reduction. For the RL-based detailed-placement optimization, we

use half-perimeter wire-length (HPWL) as our reward function. As part of our future work, we

are exploring other rewards such as routing congestion, placement density, and timing criticality.

On the other hand, the demand for big data to support AI for EDA has been increasing. However,

the lack of circuit benchmarks severely hinders the research outcomes. To mitigate the lack of

open source benchmarks, we are generating large synthetic circuit repositories, intended for

various transfer learning problems in the IC design cycle.

Our SMT-based joint routing and virtual channel (VC) allocation framework, JARVA

guarantees a deadlock free solution for the mesh topology. As part of our future work, we seek

to extend the formulation to other topologies like Torus and Folded-Torus.
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7.2.2 ASIC Design for AI Acceleration

An AI-specific accelerator is a hardware implementation specialized to meet the com-

pute, memory, and energy requirements of resource-constrained AI implementations. In this

dissertation, we propose two neural network accelerators that are based on reusing redundant

computations (PatterNet) and terminating unnecessary computations (TermiNETor). Though

each of these proposed accelerators offers significant performance and energy benefits, combining

the reuse and early termination ideas can offer the best of both frameworks. However, designing

the hardware implementation and formulating a data flow that can support both patterned neural

networks and early dynamic termination is a challenging task. In addition, by exploiting some of

the physical design knobs, such as power gating and clock gating for PE rows, multi-voltage

islands can further optimize energy requirements.
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