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Abstract

The Black-Litterman model combines the market equilibrium with

the investor’s personal views and gives optimal portfolio weights. In

this paper we will review the original Black-Litterman model (Section

1), we will modify the model such that it fits in a Bayesian framework

by considering the investors’ personal views to be a direct prior on

the means of the returns and by including a typical Inverse Wishart

prior on the covariance matrix of the returns (Section 2). We will

then consider Leonard and Hsu’s (1992)[10] idea for a prior on the

logarithm of the covariance matrix (Section 3). We encountered both

running time and memory allocation problems when we applied the

latter version to the whole S&P500. To overcome such computational

problems, Bayesian factor models are considered for the analysis. This

choice was also motivated by the strong connection between Black-

Litterman and the Capital Asset Pricing Model, which itself can be

seen as a factor model. Sensitivity analyses for the level of confidence

that investors have in their own personal views were performed and

performance of the models was assessed on a test data set consisting

of returns over the month of January 2018.
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1 The Original Black-Litterman Model

The Black-Litterman model was developed in the early 1990’s and has been

widely used for asset allocation. This model attempts to combine the market

equilibrium 1 with the investor’s personal views. Please see Section 1.2 for

an example of how personal views are created and Section 1.3 for more

details on the model.

1.1 Estimating the Market Equilibrium

The market is in equilibrium when all investors hold the market portfolio,

weq. It is when the demand for the assets in this portfolio equals the supply.

If we denote by π the market equilibrium returns, then the CAPM equation

is π = λΣweq. Here, λ is the investor’s risk aversion coefficient and Σ is

the covariance matrix of the returns on the assets in the portfolio[5]. For

more details on the connection between traditional Black-Litterman and the

CAPM, please see [4].

1.2 Example of Personal Views

Let us see how personal views are inputted in the traditional model. For

example, let us consider four assets: Apple Inc. (AAPL), Amazon.com

Inc. (AMZN), Google Inc. (GOOG) and Microsoft Corporation (MSFT).

Suppose we believe that AAPL will outperform AMZN by 2% and GOOG

will have returns that amount to 5%. Let µ =
[
µ1 µ2 µ3 µ4

]T
with µ1,

µ2, µ3 and µ4 representing the mean returns of AAPL, AMZN, GOOG and

MSFT, respectively, over the period that the investors decide to trade. The

1Please refer to Section 1.1 for more details on how the market equilibrium is com-
puted
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personal views can be represented as Pµ = q0, where the columns in the

matrix P represent the 4 stocks in the order in which we enumerated them

previously and each row in P and q0 represents a personal view:

P =

AAPL AMZN GOOG MSFT

view1 1 −1 0 0

view2 0 0 1 0

, q0 =

0.02

0.05



One observation would be that the investor clearly can’t input contra-

dicting views such as view1 and view3:

P =

AAPL AMZN GOOG MSFT

view1 1 −1 0 0

view2 0 0 1 0

view3 1 −1 0 0

, q0 =


0.02

0.05

0.1



1.3 The Black-Litterman Approach

Now that we have seen what the individual pieces of the model are, we are

also ready to present the mathematical formulation. We will consider that

the investor is looking at n assets and has v different views on those assets.

The return of the assets is considered to be random, r ∼ Nn(µ,Σ).

Black and Litterman (1992) (please see[5] for a more detailed intro-

duction to the model) introduce a prior on the mean of this return: µ ∼

Nn(π, τΣ). The quantity π represents the market equilibrium returns and it

is obtained by using an equation equivalent to the CAPM: π = λΣweq, with

λ representing the investor’s risk aversion parameter, weq the market equi-

2



librium weights and Σ the covariance matrix. The quantity τ is considered

to be a parameter that reflects the uncertainty in the CAPM prior, typically

considered to be τ = 0.05. Notice that the smaller the τ , the closer our µ

will be to the market equilibrium returns π.

In addition, Black and Litterman (1992) also considered the investor’s

personal views: Pµ ∼ Nv(q0,Ω), where v denotes the number of personal

views. Each such view has associated with it an uncertainty that the investor

has with respect to the view. The measures of confidence are entered as

diagonal entries in the matrix Ω. In equations (1), (2) and (3) from below,

Ω is a covariance matrix. Hence, on the main diagonal we will have the

variances of the returns for the personal views. Therefore, a small value

reflects a high confidence in the view and vice-versa.

Hence, the model is represented by:

• A normal distribution on the returns over one period:

r ∼ Nn(µ,Σ) (1)

• A CAPM prior:

µ ∼ Nn(π, τΣ) (2)

π = λΣweq

– π is a vector containing the market equilibrium returns for the

stocks.

– λ is the investor’s risk aversion parameter.

3



– weq =
[
w1 ... wn

]T
is a vector of market equilibrium weights

for the stocks selected. Those can be computed simply by using

the following formula:

wi =
outstanding shares for stock i · price for stock i∑n
i=1 outstanding shares for stock i · price for stock i

• Investor’s views prior:

Pµ ∼ Nv(q0,Ω) (3)

By combining (2) and (3), Black and Litterman reported that:

µ ∼ N(µ̄,M−1) , where (4)

M−1 =
(
(τΣ)−1 + P TΩ−1P

)−1
and

µ̄ =
(
(τΣ)−1 + P TΩ−1P

)−1 (
(τΣ)−1π + P TΩ−1q0

)
According to (1) and (4), the marginal distribution of r, unconditional

on µ is:

r ∼ N(µ̄, Σ̄) , where Σ̄ = M−1 + Σ (5)

In the Black-Litterman model, the return is considered to be random and

we have just seen that the posterior distribution is also normal (5). This

equation appropriately takes into account market volatility and correlations

also. Let us further look at the weights, w, that one would obtain when using

the posterior of the returns. The typical approach to the problem that an

4



investor with risk aversion parameter λ has when trying to maximize the

returns of the portfolio while minimizing the risk is to maximize the function

wTµpost − λ
2w

TΣpostw with respect to w. By taking the derivative with

respect to w, we obtain for the optimal weights an equation equivalent to

CAPM:

µpost = λΣpostw
∗ (6)

One can also observe the fact that if an investor has a different risk

aversion parameter, λ̂, he or she can obtain the optimized portfolio weights

by using the equation ŵ∗ = λ
λ̂
w∗.

He and Litterman (2002) [5] also observed that the optimal portfolio

weights w∗ can be expressed as a function of the market equilibrium port-

folio:

w∗ =
1

1 + τ

(
weq + P TΛ

)
where

Λ =
τ

λ
Ω−1q − 1

1 + τ
A−1PΣweq −

1

λ(1 + τ)
A−1PΣP TΩ−1q

and

A =
1

τ
Ω +

1

1 + τ
PΣP T

In the traditional Black-Litterman approach, it was suggested to replace

the covariance matrix Σ by a matrix estimated from historical data, after

5



which it treated Σ as a known covariance matrix in their model. This

can be problematic since there is extensive literature (please see [7]) that

shows the fact that the sample covariance matrix is not a good estimator

when the number of variables (or stocks - n - in our case) increases. The

optimal portfolio weights w∗ can be obtained by plugging in all parameters:

the CAPM prior mean π, the uncertainty parameter τ , the personal views

parameters P, q0,Ω and the covariance matrix Σ. The model they proposed

was a probability model. The optimal portfolio weights were easily obtained

by plugging in all parameters. No data was collected, only the covariance was

obtained from historical data. Instead, in here, we will propose a statistical

approach, more specifically, a complete Bayesian statistical approach, which

also takes into consideration the investor’s views. We will consider two

cases: (1) when historical data is available and (2) when historical data is

not available.

2 Bayesian Models - Inverse-Wishart prior on co-

variance of returns

2.1 Introduction

The original Black-Litterman Model is a probability model. The allocations

can be determined by inputting all parameters in the model. All parameters

are determined based on the knowledge of market economic conditions. In

here, we would like to develop a statistical model in which parameters are

estimated using current data.

We will first look at the traditional model, look at what we could poten-

tially change and introduce a new approach. Since we would like to develop

6



a statistical approach, we will introduce a sample of returns:

(1) – r1, r2, ..., rm|µ,Σ
iid.∼ Nn(µ,Σ).

∗ ri represents the return in the ith trading period (for example

daily return in the ith trading day or the hourly return in the

ith hour of the trading period or etc.)

∗ m = number of returns = length of the trading period or the

length of the period over which the investor is intending to

hold the portfolio.

– In the pursuit of creating a Bayesian approach, we consider the

commonly used priors; a normal prior on the mean vector µ and

an Inverse Wishart prior on the covariance matrix Σ:

µ ∼Nn(π,Λ)

Σ ∼W−1(ν,Σ0)

Notice that in the traditional model, they considered a special

case when Λ = τΣ. However, the derivations work in the same

way, obtaining the same equations as in (4) with a more general

positive definite covariance matrix Λ instead of τΣ.

– But how do we specify the prior parameters using historical data:

∗ ν = number of historical returns

∗ Σ0 = sample covariance matrix of historical returns

(2) – According to Black and Litterman we would also like to consider

the investor’s view Pµ ∼ Nv(q0,Ω).
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– Therefore we would have 2 priors on µ:


µ ∼ Nn(π,Λ)

Pµ ∼ Nv(q0,Ω)

(7)

– This creates an inconsistency since if µ follows Nn(π,Λ) then Pµ

follows Nv(Pπ, PΛP T ). But q0 and Ω are parameters inputted

by the investor and, therefore, in general we have that Pπ 6= q0

and PΛP T 6= Ω.

(3) Since v = number of personal views and n = number of stocks, usually,

in practice, we will have that v < n. Therefore, the prior in the tra-

ditional approach µ ∼ Nn(π,Λ) contains more information (n pieces)

than the prior Pµ ∼ Nv(q0,Ω) does (v pieces). In order for our prior

to contain as much information as the traditional approach, we could

construct an augmented matrix P ∗ by adding rows to the original ma-

trix P such that the resulting n × n matrix P ∗ is invertible. We will

see more details about how to accomplish this in the next Section

2.2.

(4) Consider an augmented P ∗ and let r∗i = P ∗ri.

– Hence, we obtain that the assumptions of our model are:

r∗1, r
∗
2, ..., r

∗
m
iid.∼ Nn(µ∗,Σ∗)

µ∗ ∼ Nn(q0
∗,Ω∗), where µ∗ = P ∗µ

Σ∗ ∼W−1(ν,Σ0), where Σ∗ = P ∗ΣP ∗T

– According to investor’s views represented by the second equa-
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tion in (7), we replace the expected value of Pµ by q0 and the

covariance matrix of Pµ by Ω. More specifically, we have the

following:

q0
∗ = E [µ∗] = E [P ∗µ] = E

P
P2

µ
 =

q0

q2

 (8)

Ω∗ = V ar (P ∗µ) = V ar

P
P2

µ
 = (9)

=

 Ω PV ar(µ)P T2

P2V ar(µ)P T P2V ar(µ)P T2

 (10)

– This suggests how we should specify q0
∗ and Ω∗ and it can be

done using our historical data. For simplicity, let us assume that

the horizon over which the investor is intending to hold the port-

folio (or the trading period) is m = 21 (the average number of

trading days in a month). We split the historical dataset of the

transformed returns r∗i = P ∗ri into months and compute a mean

for each month. In the end we would take an average of those

monthly means and replace the first entries with q0. We would

take the variance of those monthly means and replace the top left

part of the matrix with Ω.

Remark 1. Please notice that in the prior of µ∗ ∼ Nn(q0
∗,Ω∗),

with the above specification of parameters, v pieces of information

are from the investor’s view (the q0 part of (8)) and n− v pieces
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of information from history (the q2 part of (8) are estimations

obtained from historical data). Similarly, in the traditional ap-

proach we have n pieces of information from historical data due

to the CAPM prior (2) and v from the investor’s views prior (3).

Also, once we have an invertible P , we can follow two approaches:

• Obtain the distribution of µ, which could be easily done if P is invert-

ible.

• From the very beginning transform the returns into the personal view

space: r∗i = Pri. This procedure will still require P to be invertible

since after obtaining the posterior in the transformed space, we have

to be able to transform back.

Hence, either way, we would need to have a matrix P that is invertible and

this brings us to the following discussion.

2.2 Creating an Invertible P

The matrix of our personal views is very likely not invertible since most of

the times it is not even square. As we will see, the v views that we will

have (the number of rows in P ) will be smaller than the n assets that we

are considering to trade (the number of columns in P ). In this section, we

will present a method in which we can add rows to P such that the resulting

square matrix P ∗ is invertible. The main idea is based on the way in which

one would row reduce a matrix to the echelon form.

Besides the fact that the investor clearly can’t input inconsistent views,

as we have seen in Section 1.2, there is another important remark that can

be made:
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Remark 2. Views (which are the rows in the matrix P ) can be inputted

by the investor such that they are linearly independent. It is simpler to see

this in an example. Let us consider that the investor inputs views which are

linearly dependent such as:

P =

AAPL AMZN GOOG MSFT

view1 1 −1 0 0

view2 0 1 −1 0

view3 1 0 −1 0

, q0 =


0.02

0.05

0.07



The first 2 views from above imply that the relationships among investors’

expected returns over the period of length m are:


E [RAAPL]− E [RAMZN ] = 0.02

E [RAMZN ]− E [RGOOG] = 0.05

⇒ E [RAAPL]− E [RGOOG] = 0.07

Therefore, the third view is redundant and should not be inputted.

With the above remark, we are ready to proceed with the methodology of

adding rows to our matrix P (which already has linearly independent rows).

It is well known that a matrix is invertible if and only if its row reduced

echelon form is the identity matrix. This gives us the idea of making it

invertible by adding rows to it in the following way:

• For each column in P which contains only 0’s, we have to create a new

row that will have only one 1 in the respective column and 0’s in all

the others.

• If a row has more than 1 nonzero entry, for each one except the entries

in the pivot columns, we have to create a row in which we have a 1.
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For example, if we consider the matrix P from Section 1.2, the above

procedure gives us:

P =

1 −1 0 0

0 0 1 0

→


1 −1 0 0

0 0 1 0

0 0 0 1

→


1 −1 0 0

0 0 1 0

0 0 0 1

0 1 0 0

 = P ∗ =

P
P2



Please notice that we denoted by P ∗ the augmented invertible matrix based

on P , and by P2 the part that was added to P .

2.3 Derivation of Posterior Distributions

Now that we have found a method to augment P to a matrix P ∗ that is

invertible and we also managed to create corresponding q0
∗ and Ω∗, the

problem is posed in a more typical Bayesian framework:

r∗1, r
∗
2, ..., r

∗
m|µ∗,Σ∗

iid.∼ Nn(µ∗,Σ∗) (11)

µ∗ ∼ Nn(q0
∗,Ω∗) (12)

Σ∗ ∼W−1(ν,Σ0) (13)

From (11), we obtain that the joint density of our returns is:

f(r∗1, ..., r
∗
m|µ∗,Σ∗) ∝ det(Σ∗)−

m
2 exp

{
−1

2

m∑
i=1

(r∗i − µ∗)TΣ∗−1(r∗i − µ∗)

}

12



From (12), we obtain that the density for µ∗ is:

π(µ∗) ∝ det(Ω∗)−
1
2 exp

{
−1

2
(µ∗ − q0

∗)TΩ∗−1(µ∗ − q0
∗)

}

Similarly, using (13), we obtain that the density for Σ∗ is:

π(Σ∗) ∝ det(Σ∗)−
ν+n+1

2 exp

{
−1

2
Tr
(

Σ0Σ∗−1
)}

Here Tr(A) represents the trace of the matrix A. Hence, by multiplying the

above 3 equations, we obtain that the joint density for all of them is:

π(r∗1, ..., r
∗
m, µ

∗,Σ∗) ∝ det(Σ∗)−
ν+m+n+1

2 exp

{
−1

2
Tr
(

Σ0Σ∗−1
)}

det(Ω∗)−
1
2

×exp

{
−1

2

(
(µ∗ − q0

∗)TΩ∗−1(µ∗ − q0
∗) +

m∑
i=1

(r∗i − µ∗)TΣ∗−1(r∗i − µ∗)

)}
(14)

Let us focus on the parenthesis in the second exponential and let us

prove the following result.

Lemma 1. The following equality holds, where r̄∗ =
∑m
i=1 r

∗
i

m :

m∑
i=1

(r∗i − µ∗)TΣ∗−1(r∗i − µ∗) =
m∑
i=1

(r∗i − r̄∗)TΣ∗−1(r∗i − r̄∗)

+m(r̄∗ − µ∗)TΣ∗−1(r̄∗ − µ∗)

Proof. We will start by manipulating the right hand side:

RHS =
m∑
i=1

(
r∗i
TΣ∗−1r∗i − r∗i

TΣ∗−1r̄∗ − r∗TΣ∗−1r∗i + r∗TΣ∗−1r∗
)

+mr∗TΣ∗−1r̄∗ −mr∗TΣ∗−1µ∗ −mµ∗TΣ∗−1r̄∗ +mµ∗TΣ∗−1µ∗
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But since mr̄∗ =
∑m

i=1 r
∗
i ⇒ mr∗T =

∑m
i=1 r

∗
i
T , we obtain that:

RHS =
m∑
i=1

(r∗i
TΣ∗−1r∗i − r∗i

TΣ∗−1r̄∗ − r∗TΣ∗−1r∗i ) + 2mr∗TΣ∗−1r̄∗

−

(
m∑
i=1

r∗i
T

)
Σ∗−1µ∗ − µ∗TΣ∗−1

(
m∑
i=1

r∗i

)
+

m∑
i=1

µ∗TΣ∗−1µ∗

=
m∑
i=1

(r∗i
TΣ∗−1r∗i − r∗i

TΣ∗−1r̄∗ − r∗TΣ∗−1r∗i ) + 2mr∗TΣ∗−1r̄∗

−
m∑
i=1

r∗i
TΣ∗−1µ∗ −

m∑
i=1

µ∗TΣ∗−1r∗i +
m∑
i=1

µ∗TΣ∗−1µ∗

We observe that Σ∗−1 and r̄∗ do not depend on the sum. Hence, we can

factor them out:

RHS =

m∑
i=1

(r∗i
TΣ∗−1r∗i − r∗i

TΣ∗−1µ∗ − µ∗TΣ∗−1r∗i + µ∗TΣ∗−1µ∗)

+ 2mr∗TΣ∗−1r̄∗ −

(
m∑
i=1

r∗i
T

)
Σ∗−1r̄∗ − r̄∗Σ∗−1

(
m∑
i=1

r∗i

)

=
m∑
i=1

(r∗i − µ∗)TΣ∗−1(r∗i − µ∗) + 2mr∗TΣ∗−1r̄∗ −mr∗TΣ∗−1r̄∗

−mr∗TΣ∗−1r̄∗ =
m∑
i=1

(r∗i − µ∗)TΣ∗−1(r∗i − µ∗)

Let us make a notation before we proceed: s2 = 1
m−1

∑m
i=1(r∗i−r̄∗)TΣ∗−1(r∗i−

r̄∗).

Now, by using Lemma 1, we are ready to come back to the parenthesis in

the second exponential from the joint density of (r∗1, ..., r
∗
m, µ

∗,Σ∗) (equation
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(14)):

(µ∗ − q0
∗)TΩ∗−1(µ∗ − q0

∗) +
m∑
i=1

(r∗i − µ∗)TΣ∗−1(r∗i − µ∗)

= (m− 1)s2 +m(r̄∗ − µ∗)TΣ∗−1(r̄∗ − µ∗) + (µ∗ − q0
∗)TΩ∗−1(µ∗ − q0

∗)

= (m− 1)s2 + (r̄∗ − µ∗)T (mΣ∗−1)(r̄∗ − µ∗)

(µ∗ − q0
∗)TΩ∗−1(µ∗ − q0

∗) (15)

Lemma 2. (Completing the square) For any A ∈ Rp×p positive definite,

B ∈ Rp×p positive semi-definite and a, b ∈ Rp the following identity holds:

(y − a)TA(y − a) + (y − b)TB(y − b) = (y − y∗)T (A+B)(y − y∗)+

+(a− b)TH(a− b),

where y∗ = (A + B)−1(Aa + Bb) and H = A(A + B)−1B. If, furthermore,

B is positive definite, then H = (A−1 +B−1)−1. [11]

Since both of our normal distributions are not degenerated because we

can have inverses for both Σ∗ and Ω∗, we conclude that they do not have

any eigenvalues equal to 0. Moreover, since they are covariance matrices,

we know that they are positive semi-definite. Therefore their eigenvalues

are greater than or equal to 0. But since they can’t be 0, we observe that

they have to be strictly greater than 0. This implies that both matrices

are positive definite and therefore we can use the second formula for H in

Lemma 2.

Now, if we apply this result to equation (15) for y = µ∗, a = r̄∗, b = q0
∗,

A = mΣ∗−1 and B = Ω∗−1, we obtain:
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(m− 1)s2 + (µ∗ − µ∗)T (mΣ∗−1 + Ω∗−1)(µ∗ − µ∗)+

+(r̄∗ − q0
∗)TH(r̄∗ − q0

∗),

where

µ∗ =
(
mΣ∗−1 + Ω∗−1

)−1 (
mΣ∗−1r̄∗ + Ω∗−1q0

∗
)

and

H =

(
1

m
Σ∗ + Ω∗

)−1

If we go back with this result in the joint density represented by equation

(14), we obtain that:

f(r∗1, ..., r
∗
m, µ

∗,Σ∗) ∝

∝ det(Σ∗)−
m
2 exp

{
−1

2
(µ∗ − µ∗)T (mΣ∗−1 + Ω∗−1)(µ∗ − µ∗)

}
×exp

{
−1

2
(r̄∗ − q0

∗)TH(r̄∗ − q0
∗) + (m− 1)s2

}
×det(Ω∗)−

1
2det(Σ∗)

ν+n+1
2 exp

{
−1

2
Tr
(

Σ0Σ∗−1
)}

Since the only part that depends on µ∗ is the first line of the above

equation, we conclude that:

π(µ∗|r∗1, ..., r∗m,Σ∗) ∝ exp
{
−1

2
(µ∗ − µ∗)T (mΣ∗−1 + Ω∗−1)(µ∗ − µ∗)

}
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Therefore, we conclude:

µ∗|r∗1, ..., r∗m,Σ∗ ∼ Nn

(
µ∗,Σ∗

)
, where

µ∗ =
(
mΣ∗−1 + Ω∗−1

)−1 (
mΣ∗−1r̄∗ + Ω∗−1q0

∗
)

Σ∗ =
(
mΣ∗−1 + Ω∗−1

)−1
(16)

In order to find the posterior of Σ∗, it is easier to start from the original

joint density represented by equation (14). By collecting the terms that

depend on Σ∗ we obtain:

π(Σ∗|r∗1, ..., r∗m, µ∗) ∝ det(Σ∗)−
ν+m+n+1

2

×exp

{
−1

2

(
m∑
i=1

(r∗i − µ∗)TΣ∗−1(r∗i − µ∗) + Tr
(

Σ0Σ∗−1
))}

(17)

We notice that this is quite close to another Inverse Wishart distribution,

the only step left that we have to make is to manipulate the exponential.

Note that:

m∑
i=1

(r∗i − µ∗)TΣ∗−1(r∗i − µ∗) = Tr

(
m∑
i=1

(r∗i − µ∗)TΣ∗−1(r∗i − µ∗)

)

=
m∑
i=1

Tr
(

(r∗i − µ∗)TΣ∗−1(r∗i − µ∗)
)

But inside Tr(·), matrices are cyclically commutative as long as the dimen-

sions agree:
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m∑
i=1

Tr
(

(r∗i − µ∗)TΣ∗−1(r∗i − µ∗)
)

=
m∑
i=1

Tr
(

(r∗i − µ∗)(r∗i − µ∗)TΣ∗−1
)

= Tr

(
m∑
i=1

(r∗i − µ∗)(r∗i − µ∗)TΣ∗−1

)

Finally, by using this result and equation (17), we obtain:

π(Σ∗|r∗1, ..., r∗m, µ∗) ∝ det(Σ∗)−
ν+m+n+1

2

×exp

{
−1

2
Tr

((
Σ0 +

m∑
i=1

(r∗i − µ∗)(r∗i − µ∗)T
)

Σ∗−1

)}

We notice that this is the kernel of an Inverse Wishart distribution.

Therefore, we can conclude that:

Σ∗|r∗1, ..., r∗m, µ∗ ∼W−1

(
ν +m,Σ0 +

m∑
i=1

(r∗i − µ∗)(r∗i − µ∗)T
)

(18)

Now that we have the posterior distributions, we can implement a Gibbs

Sampler, which we will see in the following section, where we will also look

at how the parameters of the model were estimated.

2.4 Implementation

For implementation purposes, 4 stocks were chosen: Apple(AAPL), Ama-

zon(AMZN), Google(GOOG) and Microsoft(MSFT). Closing prices for the

4 from 1/2/2015 until 5/1/2017 were considered and the returns were com-

puted. Now, this data is split into 2 parts, one representing the current

data (the last m returns r1, ..., rm, here m = 21) and the rest representing

historical data used to estimate the parameters in the model. The reason
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why m = 21 was chosen is because we are thinking of modeling the returns

that happen within a period of approximately a month and 21 is the aver-

age number of trading days in a month. Hence, in this example, the trading

period for such an investor would be over a month. Next step is to augment

P as discussed in Section 2.2. Once P ∗ is created, we can just create our

transformed returns r∗i = P ∗ri. For this example, the following personal

views were chosen (the columns represent AAPL, AMZN, GOOG, MSFT,

respectively), which also yielded the following augmented P ∗:

P =

1 −1 0 0

0 0 1 −1

 , q0 =

0.02

0.05

 , P ∗ =


1 −1 0 0

0 0 1 −1

0 1 0 0

0 0 0 1


If we look at the second assumption in the model represented by equation

(12), we notice that q0
∗ and Ω∗ are, respectively, the mean and covariance

matrix for µ∗, which is in turn a mean of returns from a particular month

(again, in this example m = 21, approximately a month). Hence, one solu-

tion for estimating the parameters would be to take the returns from each

month in the historical data and to compute their means. This way, we

would have estimates for the monthly mean returns µ̂∗i , with i an integer

between 1 and the number of months in the historical data. Once we obtain

those, we can estimate ˆq0
∗ and Ω̂∗ by taking the mean and the covariance

of µ̂∗i .

But, we have to remember that we need to reflect our personal views in

the estimation presented above. In equations (8) and (9), we have showed
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how one should combine the estimates from the procedure just presented

with the investor’s personal views:

• Equation (8) shows that we should take the ˆq0
∗ obtained through the

above estimation and replace the first v entries with q0 (v, as mentioned

at the beginning, was the number of personal views). For example, in

our implementation we obtain:

q∗0 =


0.02

0.05

0.0011579235

0.0007917503



• Equation (9) shows that we should take the obtained Ω̂∗ and replace

the top left v × v matrix with our personal choice of Ω:


ω1 0 −1.072918 · 10−5 −2.665874 · 10−7

0 ω2 1.980838 · 10−6 −5.312208 · 10−6

−1.072918 · 10−5 1.980838 · 10−6 1.487749 · 10−5 3.732911 · 10−6

−2.665874 · 10−7 −5.312208 · 10−6 3.732911 · 10−6 9.331705 · 10−6


Now that the parameters of our model are estimated, a typical Gibbs

Sampler was used based on the posteriors represented by equations (18) and

(16).

A burning period of 103 was chosen and the number of iterations for the

Gibbs Sampler is 104. After the Gibbs sampler is completed, one would only

have to take the mean of the simulated µ∗(t), call it µ̂∗, and the average of

the simulated Σ∗(t), call it
ˆ

Σ
∗
. However, one has to remember that those
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Algorithm 1 Gibbs Sampler

1: Σ∗(t+1)|r∗1, ..., r∗m, µ∗(t) ∼W−1 (ν +m,ΣW−1), where

ΣW−1 = Σ0 +
m∑
i=1

(r∗i − µ∗
(t))(r∗i − µ∗

(t))T

2: µ∗(t+1)|r∗1, ..., r∗m,Σ∗(t+1) ∼ Nn

(
µ∗(t+1),Σ

∗(t+1)
)

, where

µ∗(t+1) =
(
mΣ∗(t+1)−1

+ Ω∗−1
)−1 (

mΣ∗(t+1)−1
r̄∗ + Ω∗−1q0

∗
)

Σ
∗(t+1)

=
(
mΣ∗(t+1)−1

+ Ω∗−1
)−1

were transformed using P ∗, hence now we would have to transform them

back into the original space: µ̂ = P ∗−1µ̂∗, Σ̂ = P ∗−1 ˆ
Σ
∗
P ∗−T . Just like in the

original model, in order to get the weights, one would use an equation similar

to the CAPM one presented in Section 1.3: w = 1
λ Σ̂
−1
µ̂. Here, λ = 2.5, as

chosen in the original model. Also there has been extensive research when it

comes to choosing λ. For trading stocks a risk aversion coefficient between 2

and 3 is reasonable.[6] Finally, we are ready to compare the results obtained

under the original model with the ones obtained from this one.

2.5 Results Comparison

Before we delve into how we compare the 2 approaches, let us make the

observation that in order to make any kind of comparison, one has to make

sure that the same data sets were used and the parameters were estimated

in the same way. Albeit the same personal views were imputed (same P , Ω,

q0), the two approaches differ in the fact that the extension has a prior on

Σ and the original makes use of the market equilibrium returns, which are
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estimated using π = λΣweq. In the following table, we can look at the setup

for both side by side:

Extension Original

r∗1, r
∗
2, ..., r

∗
m
iid.∼ Nn(µ∗,Σ∗)

µ∗ ∼ N(q0
∗,Ω∗)

r ∼ N(µ,Σ)

µ ∼ N(π, τΣ)

Instead of the market equilibrium, the extension simply has another pa-

rameter, which is estimated as mentioned in Section 2.4 (also the extension

has a prior on Σ and takes into consideration current data). Besides this

difference, the two are using the same data sets and the same parameters.

Now, the question becomes how should one compare the two. One obvious

approach would be to see how the two would perform if one would use them

on the real market, which will be presented in the results section for the

models that will follow later in this paper. However, it is of more interest to

us to check how close to our personal opinion is the posterior mean obtained

from the Gibbs Sampler.

Remark 3. Since for both models we have that Pµ ∼ N(q0,Ω), the smaller

the uncertainty in our views (the diagonal entries of Ω), the smaller the

standard deviation and, hence, the more certain the investor is about that

particular view.

Hence, from the above remark, we will look at how P ˆ̄µ behaves as we

look at small values for the diagonal entries of Ω. But how should one

define ”small”? As we have seen in Section 2.4, the expected returns for

the views were q0 =

0.02

0.05

. Hence, even a value of 10−4 is quite large
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since this would be the variance of our view and, therefore, the standard

deviation would become 10−2. Hence, a 95% confidence interval for the

first view would be (0, 0.04). If one tries to input even smaller ω, the Inverse

Wishart random generator gives a non-singularity error. Hence, we conclude

that we compare the models on values of the diagonal of the matrix Ω that

are between 0 and 10−4. Albeit we can’t input smaller ω, for the purposes

of checking the following remark, we changed q0 to q0 =

0.2

0.5

. Hence, for

both models an exhaustive method was implemented that would compute

for each pair of diagonal entries in Ω a posterior mean µ̂. Once this is

obtained, the distance |Pµ̂− q0| can be calculated for both models.

Remark 4. Since Pµ ∼ N(q0,Ω), we have that limΩ→O2 Pµ = q0 a.s.

Therefore, as the diagonal entries of Ω get smaller and smaller we expect

to get closer and closer to q0.

Remark 5. If we look at the posterior of µ∗ we have that:

µ∗|r∗1, ..., r∗m,Σ∗ ∼ Nn

(
µ∗,Σ

∗
)
, where

µ∗ =
(
mΣ∗−1 + Ω∗−1

)−1 (
mΣ∗−1r̄∗ + Ω∗−1q0

∗
)

Σ
∗

=
(
mΣ∗−1 + Ω∗−1

)−1

If we consider a small Ω∗, its inverse
(
Ω∗−1

)
is large. Therefore, the whole

term mΣ∗−1 + Ω∗−1 ≈ Ω∗−1, which implies that (mΣ∗−1 + Ω∗−1)−1 ≈ Ω∗.

Similarly, (mΣ∗−1r̄∗+Ω∗−1q0
∗) ≈ Ω∗−1q0

∗ for small enough Ω∗. Hence, we

would expect that the mean of the simulated µ∗(t) is close to q0
∗. Or, with

the notation already used, µ̂∗ ≈ q0
∗. Hence, by using the previous remark

also, we obtain that P (P ∗−1µ∗) ≈ q0.
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The following graphs have as 2 of the axis the 2 diagonal entries in Ω

and the third one represents the distance |Pµ− q0| = |P (P ∗−1µ∗)− q0| :

Figure 1: Results of Ω for the
extension model

Figure 2: Results of Ω for origi-
nal model

We notice from the z-axis, which represents the distance mentioned

above, that the modified model more closely follows the personal views.

This is according to our intuition: in Remark 1 we have noticed that the

modified model contains v pieces of prior information from investor’s views

and n − v from historical data. Meanwhile, the original model contains v

pieces from investor’s personal views and n (n > v in practice usually) pieces

of information from the historical data through the CAPM prior. Hence,

the original model contains v more pieces of information in the prior from

historical data and, therefore, we would expect the original model to follow

history more closely and to converge to the personal views more slowly, a

fact that can be observed from the previous figures.

We can also look at some specific values of the distance for different pairs

of ω1 and ω2 in Table 1.
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ω1 ω2 Original Extension

10−4 0.0001 0.154 0.052

10−4 0.00015 0.2 0.063

10−4 0.0002 0.235 0.077

10−4 0.00025 0.263 0.118

10−4 0.0003 0.286 0.118

10−4 0.00035 0.305 0.145

10−4 0.0004 0.321 0.177

10−4 0.00045 0.335 0.222

10−4 0.0005 0.347 0.282

10−4 0.00055 0.357 0.354

Table 1: Table with specific distance values

However, we would like to see if the structure of Pµ̂ is similar to q0.

For this we keep the two entries in Ω equal, we exhaustively search over

small ω s.t. Ω = ωI and we plot the two entries of Pµ̂ together with

the respective ω. Please note that the blue point (the one at coordinate

(o, q1, q2) = (0, 0.2, 0.5)) in Figures 3 and 4 represents the exact value of

q0 =

0.2

0.5

, which would be obtained for ω = 0.

By comparing Figures 3 and 4, we notice that not only the point simu-

lations represented by the red points are closer, but the whole curve (which

was obtained by interpolation) seems to be closer to the theoretical value

represented by the blue point. Also, we notice that in both cases, as ω in-

creases, Pµ̂ gets further away from q0, which is what theoretically should

happen.
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Figure 3: Results of Ω for the
extension model

Figure 4: Results of Ω for origi-
nal model

2.6 But do we need an invertible P?

In Section 2.2, we introduced a method of creating an invertible matrix P

by adding rows. This has both advantages and disadvantages:

• Disadvantages:

– The method presented in Section 2.2 for augmenting P in order

to become invertible is not unique.

• Advantages:

– When augmenting P , v pieces of prior information come from the

personal views and n − v pieces of prior information come from

history, as we have seen in Remark 1.

We now consider the posteriors when P is unaugmented from what the

investor is inputting. Hence, in this section, we will consider the same setup
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as before, with the only difference being the fact that P is not even square:

r1, r2, ..., rm|µ,Σ
iid.∼ Nn(µ,Σ)

Pµ ∼ Nv(q0,Ω)

Σ ∼W−1(ν,Σ0)

Since P shows up in the second equation of our model assumptions, the

only posterior that will change from what we had previously will be that for

µ. Hence, in the joint distribution, we will consider only the terms depending

on µ:

π(µ|r1, ..., rm) ∝ exp

{
−1

2

m∑
i=1

(ri − µ)TΣ−1(ri − µ)

}

× exp
{
−1

2
(Pµ− q0)TΩ−1(Pµ− q0)

}

For the first exponential we can use Lemma 1. This yields:

π(µ|r1, ..., rm) ∝ exp
{
−1

2

(
(m− 1)s2 +m(r − µ)TΣ−1(r − µ)

)}
× exp

{
−1

2
(q0 − Pµ)TΩ−1(q0 − Pµ)

}

We remember that s2 = 1
m−1

∑m
i=1(ri − r̄)TΣ−1(ri − r̄) and hence this

term does not depend on µ. Now, let us focus on the remaining terms in

the exponential:
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(r − µ)T (mΣ−1)(r − µ) + (q0 − Pµ)TΩ−1(q0 − Pµ)

= rT (mΣ−1)r − 2rT (mΣ−1)µ+ µT (mΣ−1)µ+ q0
TΩ−1q0 − 2q0

TΩ−1Pµ

+µTP TΩ−1Pµ = µT
(
mΣ−1 + P TΩ−1P

)
µ− 2

(
rT (mΣ−1) + q0

TΩ−1P
)
µ

+rT (mΣ−1)r + q0
TΩ−1q0

Since only the first two terms depend on µ, we obtain that:

π(µ|r1, ..., rm,Σ) ∝ exp
{
−1

2
µT (mΣ−1 + P TΩ−1P )µ

}
× exp

{
−1

2
2(mΣ−1r + P TΩ−1q0)Tµ

}

Lemma 3. Let M be a symmetric and invertible matrix, then the following

identity holds:

xTMx− 2bTx = (x−M−1b)TM(x−M−1b)− bTM−1b

Proof. We just need to expand the quadratic term:

(x−M−1b)TM(x−M−1b) = xTMx− 2bTM−1Mx+ bTM−1MM−1b

= xTMx− 2bTx+ bTM−1b

Hence, if we apply this lemma for x = µ, M = mΣ−1 + P TΩ−1P and

b = mΣ−1r + P TΩ−1q0, we obtain that the exponential in the distribution

of the posterior of µ is (the −1
2 still sits in front of the formula, we just omit

it in the following for simplicity of writing):
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(
µ− (mΣ−1 + P TΩ−1P )−1(mΣ−1r + P TΩ−1q0)

)T
(mΣ−1 + P TΩ−1P )

×
(
µ− (mΣ−1 + P TΩ−1P )−1(mΣ−1r + P TΩ−1q0)

)
− bTM−1b

Lastly, we notice that b and M do not depend on µ, and hence, the

posterior of µ is dictated by the first big term, which is actually the density

of a normal distribution:

µ|r1, ..., rm,Σ ∼ N (µpost,Σpost) , where

µpost = (mΣ−1 + P TΩ−1P )−1(mΣ−1r + P TΩ−1q0)

Σpost =
(
mΣ−1 + P TΩ−1P

)−1

This posterior is very close to the one obtained by using the first approach

(represented by equation (16)), the only difference being the fact that in

this new approach the matrix P shows up. This is because here we did not

change the investor inputted matrix P , while in the previous approach we

augmented P in order for it to be invertible.

2.7 Implementation

Implementing this model is straightforward since it is very similar to the

previous version. The only difference is the fact that in the posterior for µ

we have P appearing, while in the previous model there was no P since we

were adding rows to it so that it becomes invertible. We remind ourselves

that this was the first approach because we can take the inverse and easily

find the prior distribution of µ from the prior distribution of Pµ. Using the

derived posteriors, the Gibbs Sampler is:
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Algorithm 2 Gibbs Sampler

1: Σ(t+1)|r1, ..., rm, µ
(t) ∼W−1

(
ν +m,Σ0 +

∑m
i=1(ri − µ(t))(ri − µ(t))T

)
2: µ(t+1)|r1, ..., rm,Σ

(t+1) ∼ N
(
µpost

(t+1),Σpost
(t+1)

)
, where

µpost
(t+1) = (mΣ(t+1)−1

+ P TΩ−1P )−1(mΣ(t+1)−1
r + P TΩ−1q0)

Σpost
(t+1) =

(
mΣ(t+1)−1

+ P TΩ−1P
)−1

2.8 Results

Just like before, we will try to look at the sensitivity of our model to different

confidence levels. Remarks 3 and 4 made when we presented the results

for the previous model still hold. Since in Ω we have on the main diagonal

(call them ωi) the variances in our views Pµ, the smaller the ωi, the more

certain we are in view i. This should also be reflected in our posterior: if we

provide very large ωi, it means that we are very uncertain about the views

and the model should take into consideration the history a lot more, while

if we provide very small values for ωi, it means that we are very certain

about the views and the model should take them into consideration a lot

more than the history.

Just like before, in order to quantify and visualize the model’s sensitivity

to different confidence levels, we will look at the distance |Pµpost−q0| (which

will be on one of the axis in our plots) over different combinations of ωi.

The same 4 stocks from before were chosen (AAPL,AMZN,GOOG,MSFT),

but since this work is more recent, the daily returns are from 1/2/2014 to

12/29/2017. The views are (rows are views and the columns represent the

4 stocks in the order AAPL,AMZN,GOOG,MSFT):
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q0 =

0.02

0.05

 , P =

−1 1 0 0

0 0 1 −1


When it comes to the confidence levels in the 2 views, one can input val-

ues as small as 10−7 without encountering any numerical issues, like we did

previously when we were augmenting the matrix P . Hence, one doesn’t need

to make any change to the model when implementing it or when inputting

any value. We take a grid of equally spaced points (ω1, ω2) between 10−7

and 2 · 10−5. The burn period was set to 103 and the number of iterations

in the Gibbs Sampler was set to 104.

However, one could also use the same views, but considering the daily

returns for the whole S&P500 instead of just for 4 stocks. For this, we

need the daily returns of companies actively traded in S&P500 over the

period mentioned before. We won’t have to change q0 at all, but P has

more columns since they would represent the stocks in the famous index

and it will still have 2 rows for the same 2 views. One would fill out P by

making sure that in the first row and the column corresponding to AAPL

we will have a −1, in the first row and the column corresponding to AMZN

we will have a 1 and similarly for the second row. Of course, the dimension

of some of the matrices and vectors will be much bigger and therefore, all

computations will be more expensive. Hence, this version was parallelized

and the number of iterations in the Gibbs Sampler decreased to 103 (as we

will see, even with so few iterations, convergence for the mean is achieved,

but convergence for the covariance matrix is not). The interval 10−7 to 10−5

for the confidence levels was split into 4 parts, in the following way:
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(1) ω1 ∈
{

10−7, 2.5 · 10−7, 4 · 10−7, 5.5 · 10−7, 7 · 10−7, 8.5 · 10−7, 10−6
}

and ω2 ∈{
10−7, 2.5 · 10−7, 4 · 10−7, 5.5 · 10−7, 7 · 10−7, 8.5 · 10−7, 10−6

}
, with each

possible pair (ω1, ω2) ran on one core.

(2) ω1 ∈
{

10−6, 2.5 · 10−6, 4 · 10−6, 5.5 · 10−6, 7 · 10−6, 8.5 · 10−6, 10−5
}

and ω2 ∈{
10−6, 2.5 · 10−6, 4 · 10−6, 5.5 · 10−6, 7 · 10−6, 8.5 · 10−6, 10−5

}
, with each

possible pair (ω1, ω2) ran on one core.

(3) ω1 ∈
{

10−7, 2.5 · 10−7, 4 · 10−7, 5.5 · 10−7, 7 · 10−7, 8.5 · 10−7, 10−6
}

and ω2 ∈{
10−6, 2.5 · 10−6, 4 · 10−6, 5.5 · 10−6, 7 · 10−6, 8.5 · 10−6, 10−5

}
, with each

possible pair (ω1, ω2) ran on one core.

(4) ω1 ∈
{

10−6, 2.5 · 10−6, 4 · 10−6, 5.5 · 10−6, 7 · 10−6, 8.5 · 10−6, 10−5
}

and ω2 ∈{
10−7, 2.5 · 10−7, 4 · 10−7, 5.5 · 10−7, 7 · 10−7, 8.5 · 10−7, 10−6

}
, with each

possible pair (ω1, ω2) ran on one core.

Each pair (ω1, ω2) took a little more than 4 hours to run.

• When ω1 = 10−6, with 95% confidence, the return on the first view

would be in the interval (0.018, 0.022), which would show that the

investor is very confident.

• When ω1 = 10−4, with 95% confidence, the return on the first view

would be in the interval (0, 0.04), which would show that the investor

is not as confident.

In the figures presented, we notice that both curves have similar shapes,

albeit the one on the right converges slower to 0 as oi become smaller (ωi

in our model). Also, the curve on the right seems to be underneath the

one on the left. Intuitively, this is because there is a lot more information
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Figure 5: |Pµpost − q0| when tak-
ing only the 4 stocks

Figure 6: |Pµpost − q0| when tak-
ing S&P500

in our prior for Σ when we take the whole S&P500. Moreover, both have

very similar shapes. The distances go to 0 as ωi go to 0. This is in tune

with our intuition of how the model should behave like: as one gets more

and more confident in their inputted views, the model should put a lot

of importance on them and not on the historical data. Vice-versa, in both

figures the distance seems to converge to a certain value as ωi become bigger

and bigger. Again, this is what we would think that the model should do

since large ωi, suggests that one is uncertain about the personal view and

therefore, the history should play a more important role. Indeed, if we

would only take the historical returns, an unbiased estimate for µ is r and

the distance becomes |Pr − q0| = 0.05388875, which is what the plots seem

to tend to converge to.

We will move our focus towards looking at the profits (or losses) that one

would obtain when using the model to trade over the month of January 2018

(testing data consisting of daily returns between 1/2/2018 and 1/30/2018)

using an initial capital of $100, 000 (this does not include any capital require-
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ments for short selling). We remember that in order to get portfolio weights

we use the same approach as before. From Gibbs Sampling we estimate

µpost and Σpost and we use the CAPM equation 6: w = 1
2.5Σpost

−1µpost.

Albeit when we took the whole S&P500 the number of iterations in

the Gibbs Sampler was small, we notice from the above analysis that we

still get very good estimates for µpost since the posterior distance behaves

exactly like our intuition suggests it should do. The running averages for

the mean also converge fast for small ωi. However, because of the size of

Σpost and because of the fact that one has to take its inverse in order to

compute the portfolio weights w, the number of iterations is not enough

to give accurate predictions of profits. Nevertheless, for completeness, the

average profit when considering the whole S&P500 is $13, 191.39 with a

standard deviation of $2, 908.134.

We will now present the profits obtained when using only 4 stocks. We

notice that the first view has a bigger impact on the profits curve than the

second view. Moreover, as the confidence in the first view increases (as

ω1 goes to 0), the profits sky rocket. This is because over the month of

January 2018 AMZN outperformed AAPL by 23.997% and our view was

indeed that AMZN will overrun AAPL (albeit by only 2%, a 10th of what

actually happened in reality).

AMZN outperforming AAPL by nearly 24% in one month is uncommon.

Therefore, next we will present the same results, the only change made

is that we replace AMZN with FB (Facebook). The same data sets were

used and all other inputs stay exactly the same as we just presented at

the beginning of this section, except q0. We will also look at how the model

behaves when the investor inputs a personal view exactly like what happened

during the month of January 2018 (very ”informed” investor) and exactly the
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Figure 7: Profit when taking only 4 stocks

opposite of what happened during the month of January (very ”uninformed”

investor). Therefore, we will also look at what happens when we choose

q0 =

0.06212815

0.01366718

 and q0 = −

0.06212815

0.01366718

, respectively.

Figure 8: 4 stocks,FB
in and q0 =
[0.02, 0.05]T

Figure 9: 4 stocks,
FB in and view ex-
actly like reality

Figure 10: 4 stocks,
FB in and view op-
posite of reality

Again, just like before, we notice that, as ωi get smaller and smaller,

when taking into account the whole S&P500, the curve seems to be under

and closer to 0 than the one when taking into account only 4 stocks. This

might be because the prior on the covariance matrix containing the whole
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Figure 11: S&P500,
FB in and q0 =
[0.02, 0.05]T

Figure 12: S&P500,
FB in and view ex-
actly like reality

Figure 13: S&P500
FB in and view op-
posite of reality

S&P500 has more information than the one which only has 4 stocks. More-

over, for the same q0, the curves have a similar orientation and general shape.

Hence, this confirms the belief that albeit a small number of iterations was

used for the Gibbs Sampler that takes into account the whole S&P500, the

estimated posterior mean is still accurate. However, as mentioned before,

the estimate for Σ−1
post when it’s size is big is not accurate enough to have

very reliable profit estimates.

Nevertheless, for completeness of this analysis, we proceed by leaving all

the inputs mentioned before unchanged and keeping q0 =

0.02

0.05

. When

taking into account the whole S&P500, the average profit over the before

mentioned range of simulated pairs (ω1, ω2) is $11, 619.97 with a standard

deviation of $2, 852.246. In the next plot we can observe the profits obtained

when considering just the 4 stocks mentioned before.

From the figure, one can see that the first view has a higher influence on

the profits than the second view. This is because if we let ω2 constant the

resulting curve increases a lot faster than the curve obtained by keeping ω1

constant.
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Figure 14: Profit 4 stocks, FB in and q0 =
[0.02, 0.05]T

3 Bayesian Models - Leonard-Hsu prior on covari-

ance of returns

3.1 Introduction

Just like when introducing the approach with an Inverse Wishart prior, let

us see what we would like to improve on it:

• It has been shown by Alvarez, Niemi and Simpson in [1] that it creates

a strong a priori dependence between the correlation and the variance.

• With an Inverse-Wishart prior on Σ ∼ W−1(ν,Σ0), all its entries de-

pend on two parameters: ν and Σ0.

Therefore, two of the assumptions will be unchanged:

r1, r2, ..., rm|µ,Σ
iid.∼ Nn(µ,Σ)

Pµ ∼ Nv(q0,Ω)
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A very interesting idea for a different prior on the covariance matrix is

presented by Leonard and Hsu (1992)[10]. As the title of this section is

hinting, this prior will actually be on log(Σ). In order to better understand

Leonard and Hsu’s idea, let us look at the distribution:

f(r1, ..., rm|µ,Σ) = (2π)−
mn
2 det(Σ)−

m
2 exp

{
−1

2

m∑
i=1

(ri − µ)TΣ−1(ri − µ)

}

Let A = log(Σ), λAi and λΣi (with i = {1, 2, ..., n}) be the eigenvalues

of A and Σ respectively. Since A = log(Σ) we obtain that λAi = log(λΣi)⇒

λΣi = eλAi . Finally, by remembering that the determinant is the product of

the eigenvalues and that the trace of a matrix is the sum of the eigenvalues,

we notice that det(Σ) =
∏n
i=1 λΣi =

∏n
i=1 e

λAi = eTr(A). By using this in the

joint distribution of the returns and by noticing that (ri−µ)TΣ−1(ri−µ) ∈ R

we obtain:

f(r1, ..., rm|µ,Σ) = (2π)−
mn
2 exp

{
−1

2
Tr

(
m∑
i=1

(ri − µ)TΣ−1(ri − µ)

)}

×exp
{
−m

2
Tr(A)

}
= (2π)−

mn
2 exp

{
−1

2
Tr

(
m∑
i=1

(ri − µ)(ri − µ)TΣ−1

)}

×exp
{
−m

2
Tr(A)

}
= (2π)−

mn
2 exp

{
−m

2
Tr
(
A+ Se−A

)}
Here, S = 1

m

∑m
i=1(ri − µ)(ri − µ)T . Before we continue, let us define an

operator and make a few notations.

Definition 1. Let A be a n×n matrix, A = (aij)i,j={1,2,...,n}, then we define
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an operator that stacks in a vector the entries parallel to the main diagonal:

V ec∗(A) =
[
a11 a22 ... ann| a12 a23 ... an−1n|...|a1n

]T
We notice that if A is n × n, V ec∗(A) is 1

2n(n + 1) × 1. This definition

brings us to the following notations:

Notation 1.

λ = V ec∗(log(S)), α = V ec∗(log(Σ))

Λ = log(S), A = log(Σ), d =
1

2
n(n+ 1)

The idea that Leonard and Hsu had was to approximate f(r1, ..., rm|µ,Σ)

by approximating e−A. The approximation makes use of the fact that

X(ω) = e−Aω satisfies a Volterra integral equation[3]:

X(t) = S−t −
∫ t

0
Ss−t(A− Λ)X(v)dv, 0 < t <∞,

By letting t = 1, by iterative substitution of X(v) and by using the spectral

decomposition of matrix S we obtain that the approximation is (please see

Appendix A for the proof):

f∗(r1, ..., rm|α) = (2πe)−
mn
2 det(S)−

m
2 exp

{
−1

2
(α− λ)TQ(α− λ)

}
(19)

In order to see how to compute Q, we first have to introduce a couple

more notations. If we let ei, di to be the ith normalized eigenvector with

its corresponding eigenvalue, respectively, then fij is obtained by looking at

the equation V ec∗(log(Σ))T fij = eTi log(Σ)ej and identifying the coefficients
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of the entries in the log(Σ) matrix. With those fij , we can finally compute

Q:

Q =
m

2

n∑
i=1

fiif
T
ii +m

n∑
i<j

ξijfijf
T
ij , where

ξij =
(di − dj)2

didj(log(di)− log(dj))2
(20)

Remark 6. The approximate distribution is: α|r1, ..., rm ≈∼ N(λ,Q−1)

Now we are ready to move on to the next section and resent the assump-

tions of the model.

3.2 The Model

As mentioned in the previous section, we will have a prior on the log(Σ). But

how would one construct an intuitive distribution? The simplest distribution

that one could work with is the multivariate normal, in which the variance

terms on the main diagonal have a mean θ1 and a variance σ2
1 and the

covariance terms, which are on the off diagonal, have another mean θ2 and

another variance σ2
2. Hence, we arrive at the following model:

r1, ..., rm|µ,Σ
iid.∼ N(µ,Σ) (21)

Pµ ∼ N(q0,Ω) (22)

α|θ,∆ ∼ N(Jθ,∆) (23)
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Where we have the following uninformative priors:

π(θ) ∝ 1

π(σ2
1, σ

2
2) ∝ 1

We introduced the following notations:

Notation 2.

J =



1 0

: :

1 0

0 1

: :

0 1


,∆ =

σ2
1In O

O σ2
2Id−n

 , θ =

θ1

θ2



Please note that this approach has a few advantages over the classical

Inverse-Wishart one:

• There are 2 parameters that determine the entries in the covariance

matrix: σ2
1 and σ2

2 (θ is integrated out as shown in Appendix B).

• We do not need good estimates for the hyper-parameters σ2
1 and σ2

2.

• From a modeling perspective, it has been studied before (please see

[1]) that a model which allows flexibility by allowing both covariances

and variances to be modeled by the data is more appealing.
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3.3 Derivation of Posterior Distributions

If we let θ to have a uniform prior (θ ∝ 1) by integrating it out from the

density in equation (23), we obtain:

Proposition 1.

f(α|σ2
1, σ

2
2) =

∫
θ
det(∆)−

1
2 exp

{
−1

2
(α− Jθ)T∆−1(α− Jθ)

}
dθ =

= 2πdet(∆)−
1
2det(JT∆−1J)−

1
2 exp

{
−1

2
αTGα

}
, where

G =
(
Id − J(JT∆−1J)−1JT∆−1

)T
∆−1

(
Id − J(JT∆−1J)−1JT∆−1

)
For the proof, please see the Appendix B.

Now, by using this distribution together with the approximation ob-

tained from the Volterra integral of the distribution of returns denoted by

equation (19) and with the prior on Pµ represented by equations (22), we

can finally obtain the approximate joint distribution:

f(α, µ, σ2
1, σ

2
2, r1, ..., rm) ≈∝ det(∆)−

1
2det(JT∆−1J)−

1
2 exp

{
−1

2
αTGα

}
× det(S)−

m
2 exp

{
−1

2
(α− λ)TQ(α− λ)

}
× det(Ω)−

1
2 exp

{
−1

2
(Pµ− q0)TΩ−1(Pµ− q0)

}
(24)

We will first proceed with finding the posterior of α. Hence, we have

to collect all the terms depending on α. Since one of those is the approxi-

mation obtained from the Volterra integral, the posterior is going to be an

approximate distribution:

42



π∗(α|r1, ..., rm, σ
2
1, σ

2
2, µ) ≈∝ exp

{
−1

2

(
αTGα+ (α− λ)TQ(α− λ)

)}

We can apply Lemma 2 (Completing the square) with y = α, a =

0, A = G, b = λ,B = Q and we obtain that:

α|r1, ..., rm, σ
2
1, σ

2
2, µ ≈∼ N(α∗, (Q+G)−1), where α∗ = (Q+G)−1Qλ

(25)

Moving to the posterior of σ2
1, σ

2
2, we have to collect the terms depending

on ∆, which also includes G. We note that the term obtained from the

Volterra integral approximation of the matrix exponential does not show up

in this posterior. Hence, this will be an exact distribution:

π(σ2
1, σ

2
2|α, µ, r1, ..., rm) ∝ det(∆)−

1
2det(JT∆−1J)−

1
2 exp

{
−1

2
αTGα

}

However, one can write the above distribution in scalar form. By apply-

ing Lemma 4 which can be found in Appendix B, one finds that the joint

posterior distribution of σ2
1, σ

2
2 is equal to:

π(σ2
1, σ

2
2|α, µ, r1, ..., rm) ∝

(
σ2

1

)−n−1
2
(
σ2

2

)− d−n−1
2 exp

{
−1

2
αTGα

}

Furthermore, by applying Lemma 5 which can also be found in Ap-

pendix B, we obtain that the scalar version for the equation is:
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π(σ2
1, σ

2
2|α, µ, r1, ..., rm) ∝

(
σ2

1

)−n−1
2 exp

{
− 1

2σ2
1

n∑
i=1

(αi − αv)2

}

×
(
σ2

2

)− d−n−1
2 exp

{
− 1

2σ2
2

d∑
i=n+1

(αi − αc)2

}

Here, αv are the averages of the log of the variance terms and αc are the

averages of the log of the covariance terms:

αv =

∑n
i=1 αi
n

and αc =

∑d
i=n+1 αi

d− n

Hence, both posteriors of σ2
1 and σ2

2 are following Inverse Gamma distri-

butions and they are independent:

σ2
1|α, µ, r1, ..., rm ∼ IG

(
n− 3

2
,
1

2

n∑
i=1

(αi − αv)2

)

σ2
2|α, µ, r1, ..., rm ∼ IG

(
d− n− 3

2
,
1

2

d∑
i=n+1

(αi − αc)2

)
(26)

We are finally ready to compute the posterior for µ also by collecting

the terms that depend on it. We notice that the term obtained from the

Volterra integral approximation of the matrix exponential does not show up

in the posterior. Therefore, like the posteriors of σ2
1 and σ2

2, this will be an

exact distribution. Moreover, we notice that the first two equations in the

assumptions of our model (equations (21) and (22)) are the same as when

we used an Inverse Wishart prior. Therefore, the derivation for the posterior

for µ will be the same, yielding:
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µ|α, σ2
1, σ

2
2, r1, ..., rm ∼ N (µpost,Σpost) , where

µpost = (mΣ−1 + P TΩ−1P )−1(mΣ−1r + P TΩ−1q0)

Σpost =
(
mΣ−1 + P TΩ−1P

)−1

3.4 Implementation

Now that we have derived our posteriors, we are ready to implement it,

using a Gibbs Sampler. The only difference from before is that we will use a

Metropolis-Hastings algorithm for sampling α, for which we need the exact

posterior distribution. This will be proportional to the distribution obtained

from collecting all terms with an α from the joint distribution represented

by equation (24):

exp

{
−1

2
αTGα

}
det(S)−

m
2 exp

{
−1

2
(α− λ)TQ(α− λ)

}

We have seen that it results in the posterior:

α|r1, ..., rm, σ
2
1, σ

2
2, µ ≈∼ N(α∗, (Q+G)−1), where α∗ = (Q+G)−1Qλ

π∗(α|r1, ..., rm, σ
2
1, σ

2
2, µ) ≈∝ exp

{
−1

2
(α− α∗)T (Q+G)(α− α∗)

}

This is an approximation since det(S)−
m
2 exp

{
−1

2(α− λ)TQ(α− λ)
}

is

an approximation of the pdf of a multivariate normal using the Volterra

integral equation. If we would replace it with the exact distribution, we

would obtain:
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π(α|r1, ..., rm, σ
2
1, σ

2
2) ∝ exp

{
−m

2
Tr
(
A+ Se−A

)
− 1

2
αTGα

}

The Metropolis-Hastings step at tth iteration would be that we would

simulate a candidate value from the approximate posterior distribution:

α̃ ≈∼ N(α∗, (Q+G)−1) and we would accept it with probability min(ρ, 1),

where

ρ =
π
(
α̃|r1, ..., rm, σ

2
1

(t)
, σ2

2
(t)
, µ(t)

)
π
(
α(t)|r1, ..., rm, σ2

1
(t)
, σ2

2
(t)
, µ(t)

) · π∗
(
α(t)|r1, ..., rm, σ

2
1

(t)
, σ2

2
(t)
, µ(t)

)
π∗
(
α̃|r1, ..., rm, σ2

1
(t)
, σ2

2
(t)
, µ(t)

)
It is useful at this point to remember that because of the notation intro-

duced in Notation 1, we have a connection between π∗ and π since there

is one between A and α, namely:

α = V ec∗(A)

Using the Metropolis Hastings step that was just discussed, we arrive at

the following Gibbs Sampler:
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Algorithm 3 Gibbs Sampler log(Σ)

1: α(t+1) =

{
α̃ ∼ N

((
Q(t) +G(t)

)−1
Q(t)λ(t),

(
Q(t) +G(t)

)−1
)

w.p. min(ρ, 1)

α(t)otherwise

2: Since α = V ec∗(log(Σ))⇒
{

compute Σ(t+1) = exp
{
V ec∗−1

(
α(t+1)

)}
keep Σ(t)

3:

σ
2
1

(t+1) ∼ IG
(
n−3

2
, 1

2

∑n
i=1

(
αi

(t+1) − αv(t+1)
)2)

σ2
2

(t+1) ∼ IG
(
d−n−3

2
, 1

2

∑d
i=n+1

(
αi

(t+1) − αc(t+1)
)2) ⇒

⇒ ∆(t+1) =

[
σ2

1
(t+1)

In O
O σ2

2
(t+1)

Id−n

]
4: Let Σµ =

(
mΣ(t+1)−1

+ PTΩ−1P
)−1

, µ(t+1) ∼ N
(

Σµ
(
mΣ(t+1)−1

r + PTΩ−1q0
)
,Σµ

)
5: Compute S(t+1) = 1

m

∑m
i=1

(
ri − µ(t+1)

) (
ri − µ(t+1)

)T
, λ(t+1) = V ec∗

(
log
(
S(t+1)

))
,

dj
(t+1) and ej

(t+1) the eigenvalue and normalized eigenvector of S(t+1) respectively.

6: Compute f
(t+1)
ij by identifying the coefficients of the entries of the log (Σ) matrix from the

equation V ec∗
(
log
(
Σ(t)

))T
fij

(t+1) = ei
(t+1)T log

(
Σ(t)

)
ej

(t+1)

7: Compute ξ
(t+1)
ij =

(di
(t+1)−dj(t+1))2

di
(t+1)dj

(t+1)(log(di(t+1))−log(dj(t+1)))2

8: Compute Q(t+1) = m
2

∑n
i=1 fii

(t+1)fii
(t+1)T +m

∑n
i<j ξij

(t+1)fij
(t+1)fij

(t+1)T

9: Compute

G(t+1) =
(
Id − J(JT∆(t+1)−1

J)−1JT∆(t+1)−1
)T

∆(t+1)−1×

×
(
Id − J(JT∆(t+1)−1

J)−1JT∆(t+1)−1
)

3.5 Results

Just like we did before, in this section we will depict the sensitivity of the

model to changes in confidence levels (ωi) in terms of both the distance of

the posterior to investor’s view and the profits obtained if one would use

this model to trade.

Before we delve into the actual results for this version of the model, we

notice that Remarks (3) and (4) both hold. Basically, this means that as

the diagonal entries in Ω get smaller, the more confident we are in the views

because we have the assumption that Pµ ∼ N(q0,Ω). Same assumption

points out the fact that the smaller Ω is, the closer Pµ should be to q0.

Hence, a very small Ω shows the fact that the investor is very confident in
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this view and, therefore, the posterior should also be close to q0. Therefore,

the smaller our Ω is, the closer Pµpost should be to q0. In the first part of this

section we will present some plots similar to the ones presented before. We

will take 2 views and do an exhaustive search over possible combinations of

pairs of values for the 2 diagonal entries of Ω (which are depicted as 2 axis)

and compute the same distance as before:|Pµpost− q0| (which is depicted as

1 axis).

We chose the same 4 stocks (AAPL, AMZN, GOOG, MSFT), and we

will use the same data set as when we presented the results in Section 2.8:

daily returns from 1/2/2014 to 12/29/2017. We will use the following inputs

(again the columns are in order AAPL, AMZN, GOOG, MSFT and the rows

represent the views):

q0 =

0.02

0.05

 , P =

−1 1 0 0

0 0 1 −1


Just like when we had a P non-square and an Inverse Wishart prior, in

this version of the model, one can use smaller confidence levels than when

we were just using an Inverse Wishart prior and the augmented matrix P .

This time one can choose ωi (which were defined as the entries in the main

diagonal of Ω) of the order 10−7 without getting any numerical issues. For

the results presented here, we let (ω1, ω2) range between 10−6 to 10−4.

However, one can imagine that this approach is more computationally

expensive than just having an Inverse Wishart prior on Σ. Therefore, the

sensitivity analysis was ran in parallel on multiple cores (each core running

the Gibbs Sampler for 1 pair (ω1, ω2)) and the range itself was split into 4

ranges:
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(1) ω1 ∈
{

10−6, 4 · 10−6, 7 · 10−6, 10−5
}

and ω2 ∈
{

10−6, 4 · 10−6, 7 · 10−6, 10−5
}

(2) ω1 ∈
{

10−5, 4 · 10−5, 7 · 10−5, 10−4
}

and ω2 ∈
{

10−5, 4 · 10−5, 7 · 10−5, 10−4
}

(3) ω1 ∈
{

10−6, 4 · 10−6, 7 · 10−6, 10−5
}

and ω2 ∈
{

10−5, 4 · 10−5, 7 · 10−5, 10−4
}

(4) ω1 ∈
{

10−5, 4 · 10−5, 7 · 10−5, 10−4
}

and ω2 ∈
{

10−6, 4 · 10−6, 7 · 10−6, 10−5
}

The Gibbs Sampler was ran on one core for each possible pair (ω1, ω2)

within the same range.

The burn period was set to 103 and the iterations to 104. Albeit those

seem relatively small, convergence is actually achieved very fast when ωi are

small.

Figure 15: Distances for log(Σ) prior

We notice that in this version of the model, the distance converges to 0

very fast as o1 (ω1 in the model) and o2 (ω2 in the model) go to 0. Also,

we notice that as o1 and o2 get bigger, it converges very fast to a stabilizing

distance. This is consistent with our intuition since if we are very confident
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in our views, the model should put a lot more importance on them, while

if we are not confident at all in our views, the model should just take into

consideration the history. Indeed, if we use only the history, the unbiased

estimator for µ is the sample mean of the returns (r) and therefore the

distance becomes |Pr − q0| = 0.05388875.

We also notice that the second view (corresponding to o2) has more

influence on the posterior than the first view. This is because the 3D curve

would leave a 2D line on a section parallel to the ”o2 vs distance” plane

that converges to 0 as o2 gets very small much faster than a section parallel

to the ”o1 vs distance” plane would when o1 gets very small.

We will proceed by looking at profits (losses) that we would obtain by

using this model trained on the same daily returns between 1/2/2014 and

12/29/2017. We would estimate using Gibbs Sampling the posterior mean

(µpost) and the posterior covariance (Σpost) and we use the CAPM equation

(6) to obtain the weights to be w = 1
2.5Σpost

−1µpost. With those weights

we compute the profits that we would obtain over the month January 2018

(just like before, daily returns between 1/2/2018 and 1/30/2018) with an

initial investment of $100, 000. Here, one could use a different investment

horizon also.

The same P , q0, grid for ωi, burn period, iteration period were used as

before. The following is a 3D plot of the sensitivity of the profits to changes

in confidence:

We observe a profit that is approximately between $10, 000 and $58, 000.

In order to interpret this curve, we would have to know what actually hap-

pened in the month of January 2018 using the views inputted. More specif-

ically, over the month of January 2018, PrJan2018 =

0.23996743

0.01366718

. Albeit
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Figure 16: Profits with AMZN in and q0 =
[0.02, 0.05]T

the inputted 1st view is a 10th of what happened in reality (AMZN outper-

formed AAPL by almost 24% in January 2018), the model puts a higher

importance on it than on the 2nd view. Indeed, the profits increase drasti-

cally as we decrease ω1 and keep ω2 constant. Profits do not increase much

as we decrease ω2 and keep ω1 constant.

Just like we did before, since a 24% gain on AAPL in a month is an

extreme scenario, let us consider a different stock instead of AMZN. We

will replace AMZN with FB (Facebook) and we will keep all the inputs the

same as before, except that we will vary q0. In the following 3 figures we

will present the results for profits when the investor considers q0 =

0.02

0.05

,

q0 =

0.06212815

0.01366718

 which is exactly what happened during the month of

January 2018 (the ”well informed” investor) and q0 =

−0.06212815

−0.01366718

 which

is exactly the opposite of what happened during the month of January 2018
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(the ”poorly informed” investor):

Figure 17: Profits
FB instead of AMZN
and q0 = [0.02, 0.05]T

Figure 18: Profits
FB instead of AMZN
and view exactly like
reality

Figure 19: Profits
FB instead of AMZN
and view opposite of
reality

• Since PrJan2018 =

0.06212815

0.01366718

, the view in which q0 =

0.02

0.05

 has

returns that are much closer to what happened in reality than when

we had AMZN instead of FB (especially the first view is closer). We

notice that the second view has a greater influence on the profits than

what we have seen in Figure 16 and this can be clearly noticed in

Figure 17 from above.

• If the investor has a view exactly like the reality (Figure 18), the first

view has more influence on the profits as ω1 gets smaller and smaller.

• Moreover, if we compare Figures 18 and 19, we notice that they seem

to be a reflection of each other with respect to a plane parallel to the

”o1 vs o2” plane. This would make sense since the only difference

between the two is that in Figure 18 we have a q0 =

0.06212815

0.01366718


and in Figure 19 we have a q0 = −

0.06212815

0.01366718

.
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3.6 Limitations

In the previous section, we haven’t presented any results for the whole

S&P500. This is because we have encountered both memory allocation

and running time problems. Both arise from the size of the matrices which

makes all matrix computations and sampling from multivariate distributions

time consuming. The biggest issue is with the construction of the matrix Q.

We remind ourselves that we have to compute fij by looking at the equation

V ec∗(log(Σ))T fij = eTi log(Σ)ej and identifying the coefficients of the entries

in the log(Σ) matrix. With those fij , we can finally compute Q:

Q =
m

2

n∑
i=1

fiif
T
ii +m

n∑
i<j

ξijfijf
T
ij , where

ξij =
(di − dj)2

didj(log(di)− log(dj))2

It is easy to compute ξij and the elegant way to compute the f ′s is by

coding a 4 way tensor and applying the function V ec∗(·) to 2 of its entries

(one can see the pattern more easily by taking a small dimensional example).

However, this is not the fastest way since one can actually fill out each entry

in Q directly. In both situations, the dimensionality problem still exists.

When we take into consideration the whole S&P500, the number of rows

and columns are of size d = 500·501
2 , but since Q is symmetric we would

have to store a little more than half of the entries in Q (albeit this approach

makes all the formulas in the posterior a lot messier). Even so, the size

of such an object is approximately 53 GB. Even with the biggest server at

UCSB, for which a node has 1 TB of RAM memory, we could only run this

in parallel on at most 20 cores.

The memory allocation problem combined with a running time that is a
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lot bigger than just the 4 hours that took to run the simulations presented

in Section 2.8 makes this approach computationally not feasible for a large

data set.

We have looked at a couple of ideas to remedy the problem:

• Writing the matrix Q to the disk. Unfortunately, one would need a

high speed connection (for example SSD) to be able to write it fast

enough that it doesn’t make the running time even longer. This is of

paramount importance since we have to compute Q at each iteration

of the Gibbs Sampler.

• We have looked at parallelizing the Gibbs Sampler itself (which is

a Markov Chain). More precisely, in the general setting of Markov

Chains, we have looked at independently starting at m initial points

and, from each initial point, starting independent Markov Chains.

It has been shown[2] that for one single Markov Chain that satisfies

Doob’s conditions, the ergodic average converges geometrically:

P

(
1

n

n∑
k=1

f(Xk) > ε
∣∣∣X0 = x0

)
≤ A(ε)ρ(ε)n ,where

(∃)d0, t0 s.t. ρ(ε) = Φ(d0, t0)
1
d0 + η with η s.t. ρ(ε) < 1,

Φ(d0, t0) = sup
x0

E
[
et0
∑d0
k=1f(Xk)

∣∣∣x0

]
By using this result, one can easily show that for running m Markov

Chains in parallel we obtain the following bound:

P

(
1

m

m∑
i=1

1

n

n∑
k=1

f(Xik) > ε
∣∣∣x0

)
≤ e−t0∗mnεA∗(ε)mρ∗(ε)mn

Here, the existence of d0
∗, t0

∗ and the definitions of A∗(·), ρ∗(·) are in
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the same way as before. The problem is that we cannot compare the

right hand sides of the 2 inequalities from above because the A(·), A∗(·)

and ρ(·), ρ∗(·) are different since this is a proof of existence.

4 Bayesian Factor Black-Litterman Models

The running time and memory allocation problems encountered when using

the whole market would suggest that one has to reduce the dimensionality.

Moreover, there is a strong connection between the original Black-Litterman

model and CAPM (which can be seen as a factor analysis model in statistics).

This gave us the idea of adding a fully Bayesian specified factor model to the

Bayesian extensions presented in this paper. All the posteriors have already

been derived for those. In this section we will provide a brief introduction

to the work presented here so far and to the classical factor analysis model.

4.1 Introduction

In previous chapters, we discussed two Bayesian versions for the Black-

Litterman model:

• One with an Inverse-Wishart prior on the covariance matrix of the

returns:

r1, r2, ..., rT |µ,Σ
iid.∼ Nn(µ,Σ)

Pµ ∼ Nv(q0,Ω)

Σ ∼W−1(ν,Σ0)

(27)

• The other one has a prior on the logarithm of the covariance matrix,

inspired from the work of Leonard and Hsu [10]:
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r1, ..., rT |µ,Σ
iid.∼ Nn(µ,Σ)

Pµ ∼ Nv(q0,Ω)

α|θ,∆ = V ec∗(log(Σ))|θ,∆ ∼ N 1
2
n(n+1)(Jθ,∆)

(28)

Where the variables were introduced in Notations 1 and 2 and the oper-

ator V ec∗(·) was defined in Definition 1.

Just like in the original Black-Litterman, P is the matrix of personal

views, q is a vector that contains return on those views, and Ω is a diagonal

matrix containing the confidence in each view. For example, if the investor

believes that Amazon will outperform Apple by 2% and that Google will

outperform Microsoft by 5%, they will have the following setup:

q0 =

0.02

0.05

 , P =

AAPL FB GOOG MSFT

view1 −1 1 0 0

view2 0 0 1 −1

As we have seen in (25), when using the version with prior on the loga-

rithm of the covariance matrix of the returns (28), the approximated poste-

riors for α using the Volterra integral equation are:

α|r1, ..., rm, σ
2
1, σ

2
2, µ ≈∼ N(α∗, (Q+G)−1), where α∗ = (Q+G)−1Qλ

The matrix Q, defined as in equation (20), is of size d× d = 1
2n(n+ 1)×

1
2n(n+ 1) and is randomly generated at each iteration in a Gibbs Sampler.

Therefore, if one considers the whole S&P500, the size of this matrix in

terms of memory would be of around 106GB. Because of this issue, we

decided to introduce factors in order to reduce the dimension. Hence, as
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we will see in the following sections, after applying factor models, we will

introduce priors on the covariance matrix of the common factors instead

of introducing priors directly on the covariance matrix of the returns. The

dimension of the covariance matrix of the common factors is q×q (q=number

of factors), which is much smaller than n × n (n=number of stocks), the

dimension of the covariance matrix of the returns.

4.2 Factor Analysis

The observable vector of returns at time t satisfies the following equation:

rt − µ = Λft + εt

Here we introduced the following notation:

Notation 3. • rt is a vector of size n× 1 (n =number of stocks) which

represents the observed returns for each individual stock at time t.

• µ is a vector of size n × 1 representing the means of the returns for

each individual stock.

• Λ is a n× q matrix of factor weights.

• ft is a vector of size q × 1 representing the common factors at time t.

• εt is a vector of size n× 1.

We also have the following assumptions:

(1) E [εt] = 0 and Cov(εt) = Ψ. Hence, we obtain that E
[
εtε

T
t

]
= Ψ.

(2) E [ft] = 0 and Cov(ft) = Φ. Hence, we obtain that E
[
ftf

T
t

]
= Φ
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(3) εt and ft are independent. Hence, we obtain that Cov(εt, ft) = 0 or,

equivalently, E
[
ftε

T
t

]
= 0

Remark 7. The covariance matrix of the returns is:

Cov(rt) = Σ = ΛΦΛT + Ψ

Proof.

Σ = Cov(rt) = E
[
(rt − µ)(rt − µ)T

]
= E

[
(Λft + εt)(Λft + εt)

T
]

=

= E
[
Λftf

T
t ΛT + 2Λftε

T
t + εtε

T
t

]
= ΛE

[
ftf

T
t

]
ΛT + 2ΛE

[
ftε

T
t

]
+ E

[
εtε

T
t

]
=

= ΛΦΛT + Ψ

If we allow in the above remark Φ
1
2 to be the Cholesky decomposition

matrix of Φ, and we denote by L = ΛΦ
1
2 , we obtain that Σ = LLT + Ψ.

The Principal Factor Method is taking advantage of the spectral decom-

position of Σ and the above remark. Let λ0i and ei (where i = {1, 2, ..., n})

be the eigenvalues and eigenvectors of Σ, respectively. Also, let us assume

that the eigenvalues are ordered in descending order: λ01 ≥ ... ≥ λ0n Then,

the spectral decomposition of Σ can be represented as:

Σ =
n∑
i=1

λ0ieiei
T

By keeping the largest q eigenvalues and discarding the smaller n − q,

we obtain an approximation to Σ:
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Σ ≈
q∑
i=1

λ0ieiei
T

Hence, we would obtain an exact equality if we would add to the above

approximation the error term:

Σ =

q∑
i=1

λ0ieiei
T + Ψ =

[√
λ01e1 ...

√
λ0qeq

]
√
λ01e1

:√
λ0qeq

+ Ψ =

= LLT + Ψ

4.3 The Models

The reduction in dimension is not the only reason of using factor models.

The other motivation is, as Cheng showed in [4], that the original Black-

Litterman [5] is closely related to the Capital Asset Pricing Model (CAPM),

which actually is itself a factor model. Our work consists of combining the

two Bayesian versions for the Black-Litterman model ((27) and (28)) with

the work of Lee, Poon and Song (2007) in [8] and the work of Lee and Shi

(2000) in [9].
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4.4 Assumptions for Inverse-Wishart prior on covariance of

common factors

We introduce a factor model on the returns (n =number of stocks, T =number

of returns considered, v =number of views):

rt = µ+ Λft + et

et|Ψ
iid.∼ Nn(0,Ψ) for all t = {1, 2, ..., T}, where Ψ = diag(Ψ1, ...,Ψn)

(1) Hence, by letting the parameters µ, ft,Λ,Ψ be random so that we can

put priors on them, we obtain that the conditional distribution of the

returns rt is:

rt|µ, ft,Λ,Ψ ∼ Nn(µ+ Λft,Ψ) for all t = {1, 2, ..., T}

(2) Next, let us introduce priors on all parameters:

ft|Φ
iid.∼ Nq(0,Φ) for all t = {1, 2, ..., T}

Λk|Ψk
indep.∼ Nq(Λ0k,ΨkHk)

Ψk
indep.∼ IG(αk, βk) for all k = {1, 2, ..., n}

Here, ΛTk is the kth row in Λ.

(3) Following the Black-Litterman approach, we introduce a prior on the

mean of the returns, which is projected through the investor’s views:

Pµ ∼ Nv(q0,Ω)

(4) Moreover, similar to (27) and (28), we introduce two different priors on
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the covariance matrix of common factors, which has dimension q × q.

This is smaller than n×n, which is the size of the covariance matrix of

the returns. The first one that we will focus on is the typical Inverse-

Wishart prior and the second one will be a logarithmic prior, following

the work of Leonard and Hsu in [10]:

Φ ∼W−1(ν0, R0)

Therefore, all the model assumptions are:

rt|µ, ft,Λ,Ψ ∼ Nn(µ+ Λft,Ψ), for all t = {1, 2, ..., T}

Pµ ∼ Nv(q0,Ω)

ft|Φ
iid.∼ Nq(0,Φ), for all t = {1, 2, ..., T}

Φ ∼W−1(ν0, R0)

Λk|Ψk
iid.∼ Nq(Λ0k,ΨkHk)

Ψk
iid.∼ IG(αk, βk), for all k = {1, 2, ..., n}

(29)

We will proceed by computing the posteriors for this simpler version,

which has an Inverse-Wishart prior on the covariance matrix of the common

factors ft.

4.5 Posteriors for Inverse-Wishart Prior on covariance of

common factors

From the model assumptions in (29), we find that the joint distribution is:
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f(·) ∝ det(Ψ)−
T
2 exp

{
−1

2

T∑
t=1

(rt − µ− Λft)
TΨ−1(rt − µ− Λft)

}

×det(Ω)−
1
2 exp

{
−1

2
(Pµ− q0)TΩ−1(Pµ− q0)

}
×det(Φ)−

T
2 exp

{
−1

2

T∑
t=1

fTt Φ−1ft

}
det(Φ)−

ν0+q+1
2

× exp

{
−1

2
Tr(R0Φ−1)

} n∏
k=1

Ψ−αk−1
k exp

{
−

n∑
k=1

βk
Ψk

}

×
n∏
k=1

det(ΨkHk)
− 1

2 exp

{
−1

2

n∑
k=1

(Λk − Λ0k)
T 1

Ψk
H−1
k (Λk − Λ0k)

}
(30)

We start by finding the updated density of ft:

π(ft|·) ∝ exp

{
−1

2

(
(Λft − (rt − µ))TΨ−1(Λft − (rt − µ)) + fTt Φ−1ft

)}

Let us focus on the term in the exponential:

fTt ΛTΨ−1Λft − 2fTt ΛTΨ−1(rt − µ) + (rt − µ)TΨ−1(rt − µ) + fTt Φ−1ft

= fTt (ΛTΨ−1Λ + Φ−1)ft − 2(rt − µ)TΨ−1Λft + (rt − µ)TΨ−1(rt − µ)

Just like before, we will repeatedly make use of Lemma 3. We first

apply it for x = ft,M = ΛTΨ−1Λ+Φ−1, bT = (rt−µ)TΨ−1Λ and we obtain

that the term in the exponential for the posterior of ft is:

(
ft − (ΛTΨ−1Λ + Φ−1)−1ΛTΨ−1(rt − µ)

)T
(ΛTΨ−1Λ + Φ−1)

×
(
ft − (ΛTΨ−1Λ + Φ−1)−1ΛTΨ−1(rt − µ)

)
−(rt − µ)TΨ−1Λ(ΛTΨ−1Λ + Φ−1)−1ΛTΨ−1(rt − µ)
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Here, only the first term depends on ft and we actually observe that it

is the kernel of a normal distribution. Therefore, we obtain that:

ft|·
indep.∼ Nq

(
(ΛTΨ−1Λ + Φ−1)−1ΛTΨ−1(rt − µ), (ΛTΨ−1Λ + Φ−1)−1

)
Now, we are ready to find the posterior for µ:

π(µ|·) ∝ exp

{
−1

2

T∑
t=1

(rt − Λft − µ)TΨ−1(rt − Λft − µ)

}

× exp

{
−1

2
(Pµ− q0)TΩ−1(Pµ− q0)

}

Let r∗t = rt−Λft, for all t = {1, 2, ..., T} and r∗ =
∑T
t=1 r

∗
t

T =
∑T
t=1(rt−Λft)

T .

If we focus only on the first exponential, we can apply the typical trick of

subtracting and adding r∗ and we obtain that the term in the first exponen-

tial is equal to:

T∑
t=1

(r∗t − µ)TΨ−1(r∗t − µ) =

T∑
t=1

(r∗t − r∗)TΨ−1(r∗t − r∗) + T (r∗ − µ)TΩ−1(r∗ − µ)

Therefore, we obtain that the posterior of µ is:

π(µ|·) ∝ exp

{
−1

2
T (r∗ − µ)TΨ−1(r∗ − µ)

}
× exp

{
−1

2
(Pµ− q0)TΩ−1(Pµ− q0)

}
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Again, let us turn our attention to the term in the exponentials:

r∗TΨ−1r∗ − 2r∗T (TΨ−1)µ+ µTTΨ−1µ+ µTP TΩ−1Pµ

−2qT0 Ω−1Pµ+ qT0 Ω−1q0

Hence, the posterior of µ is:

π(µ|·) ∝
{
−1

2

(
µT (TΨ−1 + P TΩ−1P )µ− 2(r∗TTΨ−1 + qT0 Ω−1P )µ

)}

Finally, we managed to arrive at an equation to which we can again apply

Lemma 3. With x = µ, M = TΨ−1 +P TΩ−1P , bT = r∗TTΨ−1 + qT0 Ω−1P ,

we obtain that the term in the exponential is:

(
µ− (TΨ−1 + P TΩ−1P )−1(TΨ−1r∗ + P TΩ−1q0)

)T
(TΨ−1 + P TΩ−1P )

×
(
µ− (TΨ−1 + P TΩ−1P )−1(TΨ−1r∗ + P TΩ−1q0)

)
−(TΨ−1r∗ + P TΩ−1q0)T (TΨ−1 + P TΩ−1P )−1(TΨ−1r∗ + P TΩ−1q0)

Since the first term is the only one that depends on µ and since we

recognize this to be the kernel of a normal distribution, we eventually obtain

that:

µ|· ∼ N
(
(TΨ−1 + P TΩ−1P )−1(TΨ−1r∗ + P TΩ−1q0), (TΨ−1 + P TΩ−1P )−1

)
,

where r∗ =

∑T
t=1 (rt − Λft)

T

We move next to finding the posterior of Φ:

π(Φ|·) ∝ det(Φ)
ν0+q+1+T

2 exp

{
T∑
t=1

fTt Φ−1ft + Tr(R0Φ−1)

}
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Again, let us focus on the terms in the exponential. By using the fact

that Tr(·) is cyclically commutative (as long as dimensions agree), we obtain

that:

T∑
t=1

fTt Φ−1ft + Tr(R0Φ−1) =
T∑
t=1

Tr(fTt Φ−1ft) + Tr(R0Φ−1)

=
T∑
t=1

Tr(ftf
T
t Φ−1) + Tr(R0Φ−1) = Tr

((
R0 +

T∑
t=1

ftf
T
t

)
Φ−1

)

Therefore, the posterior of Φ is:

Φ|· ∼W−1

(
ν0 + T,R0 +

T∑
t=1

ftf
T
t

)

Finally, we are left to compute the posteriors of Λ and Ψ, which we will

do in one step. This is because if we let θ̃ be the vector of all parameters

except Λ and Ψ, we obtain that:

π(Λ,Ψ|θ̃) = π(Λ|Ψ, θ̃)π(Ψ|θ̃) (31)

By looking at the likelihood in equation (30) and by collecting the terms

depending on Λ and Ψ, we obtain:

π(Λ,Ψ|θ̃) ∝
n∏
k=1

(
Ψ
−T

2
−αk−1

k det(ΨkHk)
− 1

2

)
exp

{
−

n∑
k=1

βk
Ψk

}

× exp

{
−1

2

T∑
t=1

(rt − µ− Λft)
TΨ−1(rt − µ− Λft)

}

× exp

{
−1

2

n∑
k=1

(Λk − Λ0k)
T 1

Ψk
H−1
k (Λk − Λ0k)

}

Let us first focus our attention on the last two exponentials. We notice
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that one sum is over columns (the one over t), while the other sum is over

the rows (the one over k). However, we can write the sum over t as a sum

over k in the following way:

T∑
t=1

(rt − µ− Λft)
TΨ−1(rt − µ− Λft) =

T∑
t=1

n∑
k=1

(rkt − µk − fTt Λk)
2 1

Ψk

=
n∑
k=1

(rTk· − µk~1− F TΛk)
T 1

Ψk
(rTk· − µk~1− F TΛk)

Notation 4. Here, we introduced the following notation:

• ~1 =
[
1 1 ... 1

]T
, of size T × 1.

• rk· = the kth row in the matrix of returns R =
[
r1 ... rT

]
• F =

[
f1 ... fT

]
is the matrix in which we have as columns the

common factors.

• µk is the kth entry in the vector of means µ.

• Λk is the kth row in the matrix Λ.

Since we managed to change the summation so that it is with respect

to the rows, we can now combine the last two exponentials from the joint

posterior density presented above:

π(Λk,Ψk|θ̃) ∝
(

Ψ
−T

2
−αk−1

k det(ΨkHk)
− 1

2

)
exp

{
− βk

Ψk

}
× exp

{
−1

2
(rTk· − µk~1− F TΛk)

T 1

Ψk
(rTk· − µk~1− F TΛk)

}
× exp

{
−1

2
(Λk − Λ0k)

T 1

Ψk
H−1
k (Λk − Λ0k)

}
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We will focus only on the terms in the exponentials:

βk
Ψk

+ (rTk· − µk~1− F TΛk)
T 1

Ψk
(rTk· − µk~1− F TΛk)

+(Λk − Λ0k)
T 1

Ψk
H−1
k (Λk − Λ0k)

=
βk
Ψk

+ ΛTk F
1

Ψk
F TΛk + Λk

1

Ψk
H−1
k Λk − 2ΛTk F

1

Ψk
(rTk· − µk~1)

−2ΛTk
1

Ψk
H−1
k Λ0k + (rTk· − µk~1)T

1

Ψk
(rTk· − µk~1) + ΛT0k

1

Ψk
H−1
k Λ0k

= ΛTk
1

Ψk
(FF T +H−1

k )Λk − 2Λk
1

Ψk

(
F (rTk· − µk~1) +H−1

k Λ0k

)
+(rTk· − µk~1)T

1

Ψk
(rTk· − µk~1) + ΛT0k

1

Ψk
H−1
k Λ0k +

βk
Ψk

Since the only terms that depend on Λk are the first two, we can focus

for now only on them and it will give us the posterior. However, we keep

in mind that we still have three other terms remaining in the exponential,

which will give us the posterior of Ψk (please see (31)). Now, for the first

two terms, we can apply again Lemma 3 for x = Λk, M = 1
Ψk

(FF T +H−1
k ),

b = 1
Ψk

(
F (rTk· − µk~1) +H−1

k Λ0k

)
and we obtain:

(
Λk −Ψk(FF

T +H−1
k )−1 1

Ψk

(
F (rTk· − µk~1) +H−1

k Λ0k

))T
× 1

Ψk
(FF T +H−1

k )

×
(

Λk −Ψk(FF
T +H−1

k )−1 1

Ψk

(
F (rTk· − µk~1) +H−1

k Λ0k

))
− 1

Ψk

(
F (rTk· − µk~1) +H−1

k Λ0k

)T
Ψk(FF

T +H−1
k )
−1 1

Ψk

×
(
F (rTk· − µk~1) +H−1

k Λ0k

)
+ (rTk· − µk~1)T

1

Ψk
(rTk· − µk~1)

+ΛT0k
1

Ψk
H−1
k Λ0k +

βk
Ψk

67



Notation 5. Let us make another notation:

Ωk = (FF T +H−1
k )−1

µk = Ωk

(
F (rTk· − µk~1) +H−1

k Λ0k

)
With the above notation, we finally found the posterior of Λk to be:

Λk|·
indep.∼ N(µk,ΨkΩk)

All we have left is to put together the last four terms in the above equa-

tion and, after noticing that the first term is simply 1
Ψk

(Ωk
−1
µk)

T
ΩkΩk

−1
µk =

1
Ψk
µTk Ωk

−1
µk, we obtain that the posterior of Ψk is:

Ψk|·
indep.∼ IG (αΨk , βΨk) , where

αΨk =
T

2
+ αk

βΨk = βk +
1

2

(
(rTk· − µk~1)T (rTk· − µk~1) + Λ0kH

−1
k Λ0k − µkTΩk

−1
µk

)
4.6 Assumptions for Leonard-Hsu prior on covariance of com-

mon factors

The only change from the assumptions presented in Section 4.4 is the prior

on Φ. As mentioned previously, we reduce the dimension of the covariance

matrix of the returns by introducing a prior on the covariance matrix of the

common factors. This has dimension q× q (q =number of factors), which is

much smaller than n× n (n =number of stocks). Hence, the only equation

that changes in the following set of equations is the last one:
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rt|µ, ft,Λ,Ψ ∼ Nn(µ+ Λft,Ψ), for all t = {1, 2, ..., T}

Pµ ∼ Nv(q0,Ω)

ft|Φ
iid.∼ Nq(0,Φ)for all t = {1, 2, ..., T}

Λk|Ψk
iid.∼ Nq(Λ0k,ΨkHk), for all k = {1, 2, ..., n}

Ψk
iid.∼ IG(αk, βk), for all k = {1, 2, ..., n}

V ec∗(log(Φ))|θ,∆ ∼ N(Jθ,∆)

(32)

Where the variables were introduced in Notations 1 and 2 and the oper-

ator V ec∗(·) was defined in Definition 1.

4.7 Posteriors for Leonard-Hsu prior on covariance of com-

mon factors

The only change from the version just introduced is that we replace the

Inverse-Wishart prior with:

α|θ,∆ = V ec∗(log(Φ))|θ,∆ ∼ N(Jθ,∆)

The framework is very similar to what was introduced in Section 3

(more specifically equations (21), (22) and (23), with the common factors

playing the role of the returns. We obtain that the posteriors in this case

are:

α|· ≈∼ N(α∗, (Q+G)−1), where α∗ = (Q+G)−1Qλ,

G =
(
Id − J(JT∆−1J)−1JT∆−1

)T
∆−1

(
Id − J(JT∆−1J)−1JT∆−1

)
Moreover, the matrix Q is computed in a similar way as before (please
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see equation 20). If we let ei, di to be the ith normalized eigenvector with

its corresponding eigenvalue, respectively, then fij is obtained by looking at

the equation V ec∗(log(Φ))T fij = eTi log(Φ)ej and identifying the coefficients

of the entries in the log(Φ) matrix. With those fij , we can finally compute

Q:

Q =
m

2

q∑
i=1

fiif
T
ii +m

q∑
i<j

ξijfijf
T
ij , where

ξij =
(di − dj)2

didj(log(di)− log(dj))2

Furthermore, the posteriors for σ2
1 and σ2

2 are very similar to what we

obtained in equations (26). The only difference is that the number of stocks

n is replaced by the number of factors q and d = 1
2q(q + 1):

σ2
1|· ∼ IG

(
q − 3

2
,
1

2

q∑
i=1

(αi − αv)2

)

σ2
2|· ∼ IG

d− q − 3

2
,
1

2

d∑
i=q+1

(αi − αc)2


4.8 Sensitivity Analysis

As mentioned in the introductory Section 1, the motivation behind incor-

porating a factor model to our previous models was spurred by the memory

allocation problem that we ran into when using the alternative with a loga-

rithmic prior on the covariance matrix of the returns of the whole S&P500.

Therefore, in this section, we will present simulation results only for the

model that has a logarithmic prior on Φ.

Furthermore, the Inverse-Wishart version is much simpler to implement.

We would just make the observation that the way in which we would specify
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the parameters of the W−1(ν0, R0) is similar to our previous alternatives,

which did not contain the factor models. The only difference is that in the

previous versions this was a distribution on the covariance matrix of the

returns, while here it is on the covariance matrix of the common factors

ft. Hence, we will use the historical common factors to estimate ν0 and

R0. More specifically, we would determine the optimal number of factors

for example from a scree plot of eigenvalues vs number of factors. We

consider the whole S&P500 consisting of daily returns between 1/2/2014

and 12/29/2017 (the same dataset considered in the results section for our

version in which P is not augmented - Section 2.8 and for our version

which has a prior on log(Σ) - Section 3.5). We determined that the optimal

number of factors for this dataset is q = 18. Next, we would fit to this dataset

a factor model with q = 18 factors, we would take the common factors ft

from the output of the function and we would consider R̂0 = Cov(ft) and

ν0 =number of ft’s= T .

4.9 Implementation for Leonard-Hsu prior on covariance of

common factors

Now that we have derived our posteriors, we are ready to implement it,

using a Gibbs Sampler. We will use a Metropolis-Hastings algorithm for

sampling α, for which we need both the exact posterior distribution and

the approximation obtained with the Volterra integral equation. It is an

approach introduced by Leonard and Hsu in [10] and also very similar to

the one used in Section 3.4. The exact distribution is:
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exp

{
−1

2
αTGα

}
det(S)−

m
2 exp

{
−1

2
(α− λ)TQ(α− λ)

}

This results in the following posterior:

α|· ≈∼ N(α∗, (Q+G)−1), where α∗ = (Q+G)−1Qλ

π∗(α|·) ≈∝ exp
{
−1

2
(α− α∗)T (Q+G)(α− α∗)

}

This is an approximation since det(S)−
m
2 exp

{
−1

2(α− λ)TQ(α− λ)
}

is

an approximation of the pdf of a multivariate normal using the Volterra

integral equation. If we replace it with the exact distribution, we would

obtain:

π(α|·) ∝ exp
{
−m

2
Tr
(
A+ Se−A

)
− 1

2
αTGα

}

The Metropolis-Hastings step at tth iteration would be that we would

simulate a candidate value from the approximate posterior distribution:

α̃ ≈∼ N(α∗, (Q+G)−1) and we would accept it with probability min(ρ, 1),

where

ρ =
π (α̃|·)
π
(
α(t)|·

) · π∗ (α(t)|·
)

π∗ (α̃|·)

It is useful at this point to remember that because of the notation intro-

duced in Notation 1, we have a connection between π∗ and π since there

is one between A and α, namely:

α = V ec∗(log(Φ)), A = log(Φ)
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One of the big advantages of using a Bayesian framework is that we do not

need good estimates for the initial staring points for the Gibbs Sampler.

This is because the Gibbs Sampler is a Markov chain that satisfies Doob’s

conditions and, therefore, it forgets the initial starting points and, eventu-

ally, it converges to the stationary distribution. There is extensive literature

that shows, for example, that the sample covariance matrix is a bad estima-

tor (ill-conditioned) when the number of parameters is large in comparison

to the amount of data used to estimate it. One of the most famous papers,

which also introduces a correction, is Ledoit and Wolf [7].

Therefore, albeit the Gibbs Sampler converges to the same distribution

no matter the starting points, we should try to initialize it with good esti-

mates. Also, we have to make sure that we specify the hyper-parameters

with values that would make sense in the real world:

• T = number of returns in the historical dataset= number of returns

from 1/2/2014 to 12/29/2017.

• ˆFinit =
[
f̂1f̂2...f̂T

]
, where f̂t for t = {1, 2, ..., T} are the common

factors obtained by fitting a factor model on the historical dataset

with an optimal number of factors of q = 18 determined from a scree

plot of eigenvalues.

• We also have that ft|Φ
indep.∼ Nq(0,Φ). In order to specify ˆΦinit, we take

the covariance of the above found common factors: ˆΦinit = Cov(f̂t).

• We also have the following assumption.

α|θ,∆ = V ec∗(log(Φ))|θ,∆ ∼ Nd

 θ1~1q

θ2~1d−q

 ,
σ2

1Iq O

O σ2
2Id−q


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– In order to initialize σ2
1, we have to take the variance of the first

q entries in V ec∗(log( ˆΦinit)).

– In order to initialize σ2
2, we have to take the variance of the last

d− q entries in V ec∗(log( ˆΦinit)).

• We remember that Λk|Ψk
indep.∼ Nq(Λ0k,ΨkHk). Since, in general, we

do not have any prior information on the factor weights, we specify

the hyper-parameters to be:

– ˆΛ0kinit = ~0

– We initialize the variance ΨkHk with a big value: Ψkinit = 1 and

Hkinit = 1010Iq.

• Also, we remember that Ψk
indep.∼ IG(αk, βk), for all k ∈ {1, 2, ..., n}.

Similarly to the previous point made, in the real world, we do not

have any prior information on Ψk and this should be reflected in our

choice of αk and βk. If we let αk → 0 and βk → 0 in the pdf of the

IG(αk, βk), we notice that we obtain an uninformative prior. There-

fore, we initialize αkinit = βkinit = 10−10.

Using the Metropolis Hastings step that was just discussed, we arrive at

the following Gibbs Sampler:
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Algorithm 4 Gibbs Sampler log(Φ)

1: α(t+1) =

{
α̃ ∼ N

((
Q(t) +G(t)

)−1
Q(t)λ(t),

(
Q(t) +G(t)

)−1
)

w.p. min(ρ, 1)

α(t)otherwise

2: Since α = V ec∗(log(Φ))⇒
{

compute Φ(t+1) = exp
{
V ec∗−1

(
α(t+1)

)}
keep Φ(t)

3:

σ
2
1

(t+1) ∼ IG
(
q−3

2
, 1

2

∑q
i=1

(
αi

(t+1) − αv(t+1)
)2)

σ2
2

(t+1) ∼ IG
(
d−q−3

2
, 1

2

∑d
i=q+1

(
αi

(t+1) − αc(t+1)
)2) ⇒

⇒ ∆(t+1) =

[
σ2

1
(t+1)

Iq O
O σ2

2
(t+1)

Id−q

]
4: Let Σµ =

(
TΨ(t)−1

+ PTΩ−1P
)−1

⇒ µ(t+1) ∼ N
(

Σµ
(
TΨ(t)−1

r∗(t) + PTΩ−1q0
)
,Σµ

)
,

where r∗(t) = 1
T

∑T
i=1

(
ri − Λ(t)f

(t)
i

)
.

5: Let

Σf =
(

Λ(t)TΨ(t)−1
Λ(t) + Φ(t+1)−1

)−1
⇒ f

(t+1)
i ∼ N

(
ΣfΛ(t)TΨ(t)−1

(
ri − µ(t+1)

)
,Σf

)
6:

Ψ
(t+1)
k

indep.∼ IG
(
αΨk

, βΨk

)
,where

αΨk
=
T

2
+ αk

βΨk
= βk +

1

2

((
rTk· − µ

(t+1)
k

~1
)T (

rTk· − µ
(t+1)
k

~1
)

+ Λ0kH
−1
k Λ0k − µk(t+1)TΩk

(t+1)−1
µk

(t+1)

)
Ωk

(t+1)
=
(
F (t+1)F (t+1)T +H−1

k

)−1

µk
(t+1) = Ωk

(t+1)
(
F (t+1)

(
rTk· − µ

(t+1)
k

~1
)

+H−1
k Λ0kΩk

(t+1)
)

7: Λ
(t+1)
k

indep.∼ N
(
µk

(t+1),Ψ
(t+1)
k Ωk

(t+1)
)

8: Compute S
(t+1)
f =

∑T
i=1 fif

T
i

T
, λ(t+1) = V ec∗

(
log
(
S

(t+1)
f

))
, dj

(t+1) and ej
(t+1) the eigen-

value and normalized eigenvector of S
(t+1)
f respectively.

9: Compute f
(t+1)
ij by identifying the coefficients of the entries of the log (Φ) matrix from the

equation V ec∗
(
log
(
Φ(t+1)

))T
fij

(t+1) = ei
(t+1)T log

(
Φ(t+1)

)
ej

(t+1)

10: Compute ξ
(t+1)
ij =

(di
(t+1)−dj(t+1))2

di
(t+1)dj

(t+1)(log(di(t+1))−log(dj(t+1)))2

11: Compute Q(t+1) = T
2

∑q
i=1 fii

(t+1)fii
(t+1)T + T

∑q
i<j ξij

(t+1)fij
(t+1)fij

(t+1)T

12: Compute

G(t+1) =
(
Id − J(JT∆(t+1)−1

J)−1JT∆(t+1)−1
)T

∆(t+1)−1×

×
(
Id − J(JT∆(t+1)−1

J)−1JT∆(t+1)−1
)
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4.10 Results-Personal Views on 4 Stocks

In this section we will present the results of sensitivity analysis identical to

some presented in our previous results subsections. This is because we would

like to check if the extensions introduced behave similarly. We will depict

the sensitivity of the model to changes in confidence levels (ωi) in terms of

both the distance of the posterior to investor’s view and the profits obtained

if one would use this model to trade. An analysis will be presented in the

next section, when many industry sectors from S&P500 will be involved in

the investor’s views (for a brief introduction to industry sectors, please see

Appendix C).

Before we delve into the actual results for this version of the model, we

notice that Remarks 3 and 4 both hold. Basically, this means that the

smaller the diagonal entries in Ω, the more confident we are in the views

because we have the assumption that Pµ ∼ N(q0,Ω). Same assumption

points out the fact that the smaller Ω is, the closer Pµ should be to q0.

Hence, a very small Ω shows the fact that the investor is very confident in

this view and, therefore, the posterior should also be close to q0. Therefore,

the smaller our Ω is, the closer Pµpost should be to q0. We will consider

2 views and do an exhaustive search over possible combinations of pairs of

values for the 2 diagonal entries of Ω (which are depicted as 2 axis) and

compute the distance:||Pµpost − q0|| (which is depicted as 1 axis).

Just like in the results Section 3.5, we chose to have views for the same

4 stocks (AAPL, FB, GOOG, MSFT), and we will use the same data set:

daily returns from 1/2/2014 to 12/29/2017. We will use the following inputs

(again the columns are in order AAPL, FB, GOOG, MSFT and the rows

represent the views). Please notice that the matrix P in our implementation
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has a lot more columns (one for each stock actively traded in S&P500), but

the vast majority of the entries are 0:

q0 =

0.02

0.05

 , P =

AAPL FB GOOG MSFT

view1 −1 1 0 0

view2 0 0 1 −1

Albeit the memory allocation problem encountered in our previous ex-

tensions was solved, the one presented in this paper is far more computation-

ally expensive since we have to sample from more distributions. Therefore,

again the exhaustive search was ran in parallel on multiple cores (each core

running the Gibbs Sampler for 1 pair (ω1, ω2), which was split into 16 differ-

ent ranges, each one running 6 simulations on an evenly split grid). The burn

period is 103 and the iteration period is 104, just as they were in Section

3.5.

In the following plot, 2 of the axis are represented by the two confidence

levels (ω1 and ω2) and the third one is represented by the distance |Pµpost−

q0|. As mentioned previously (Remarks 3 and 4), this distance should go

to 0 as ω1 and ω2 go to 0, which can easily be observed in the following

figure:

Furthermore, similarly to the versions introduced previously, as ω1 and

ω2 increase, the distance converges to the same number. Since ω1 and

ω2 are standard deviations, a high standard deviation represents a lack

of confidence in the personal views inputted. Therefore, intuitively, the

model should only take into consideration the history. This is precisely

how the model behaves. If we just consider the historical returns, the un-

biased estimator for µ is the sample mean of the returns, r. The distance
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Figure 20: Distance when considering only 4
stocks

|Pr−q0| = 0.05386381, which is the level at which the curve in the presented

picture flattens.

One could use this model to hold a portfolio over a testing dataset con-

sisting of the daily returns during the month of January 2018 with an initial

starting capital of $100, 000. We remember that in order to obtain portfolio

weights, we estimate from the Gibbs Sampler Σpost = ΛpostΦpostΛpost
T +

Ψpost and we try to maximize the portfolio returns, while minimizing the

portfolio risk. Hence, we would like to find maxw w
Tµpost − λ

2w
TΣpostw,

where λ is the investor’s risk aversion coefficient. In his paper [6], Janecek

suggests that λ = 2.5 is a reasonable choice for equities. By making the

derivative with respect to w equal to 0, and by solving the resulting equa-

tion for w, we obtain: w∗ = 1
2.5Σ−1

postµpost. The profits without considering

any fees on a testing dataset consisting of the returns over the month of Jan-

uary 2018 for all the previously mentioned combinations of confidence levels
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(ω1 and ω2) averaged $40, 075.87 with a standard deviation of $14, 373.88

4.11 Results-Personal Views on Industry Sectors

In this section, we will present similar results to the ones presented in the

previous section. We will have the exact same training and testing datasets

as before. The only change is in the personal views inputted in our model.

However, this time we would like to enter personal views about different

industry sectors.

In order to have good personal views and not just random guesses, as

we have done so far, we will use the weighting recommendations provided

by CFRA2, an independent fundamental and forensic investment research

firm. Each stock within the same sector receives equal weight that sum up

to 1, with a positive weight for the ones outperforming and a negative weight

for the ones under-performing. We will have the following 4 personal views

(for details on which companies are in each industry sector, please consult

Appendix C):

(1) Information technology outperforms utilities by 0.2% with confidence

level ω1.

(2) Energy outperforms industrials by 0.1% with confidence level ω2.

(3) Real Estate outperforms consumer staples by 0.2% with confidence

level ω2.

(4) Consumer discretionary outperforms financials by 0.3% with confi-

dence level ω2.

2CFRA: Fidelity Investments link
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Hence, we have that q0 = (0.002, 0.001, 0.002, 0.003)T .

We picked 2 distinct confidence levels for the 4 views simply because

we wanted to have another 3D plot with 2 of the axis represented by ω1

and ω2 and the third axis represented by the distance ||Pµpost − q0||. Just

as before, the exhaustive search was ran in parallel on multiple cores. The

same burning and iteration periods were used also.

Figure 21: Distance when consid-
ering industry sectors

Again, the model behaves exactly as our intuition and as Remarks 3

and 4 would suggest. As ω1 and ω2 go to 0, the distance ||Pµpost − q0||

converges to 0. Moreover, for bigger values of ω1 and ω2 (small confidence

in views) the distance converges to 0.004999748 = ||Pr− q0||. This confirms

our intuition that the less confident the investor is in his or her views, the

more the model takes into consideration the history.

Moving on to presenting the profits, we used the same starting capital of

$100, 000, the same testing dataset over the month of January 2018 and the

same methodology for computing the portfolio weights. The mean of the

profits over all the simulated pairs (ω1, ω2) was $37, 576.68 with a standard
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deviation of $5, 857.198.
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A

Proof of Approximation using Volterra Inte-

grals

As mentioned before, Bellman in his book Introduction to Matrix Analysis

shows an even more general result than what we need. The matrix expo-

nential X(t) = e(A0+cB0)t satisfies the Volterra integral equation:

X(t) = eA0t + c

∫ t

0
eA0(t−s)B0X(s)ds, 0 < t <∞

Now if we let in the above equation A0 = −Λ, B0 = Λ − A, c = 1 and

remembering that Λ = log(S) we obtain:

X(t) = S−t −
∫ t

0
Ss−t(A− Λ)X(v)dv, 0 < t <∞,

Since we want to approximate e−A, we let in the above equation t = 1

and we repeatedly replace X:

e−A = X(1) = S−1 −
∫ 1

0
Ss−1(A− Λ)S−sds

= S−1 −
∫ 1

0
Ss−1(A− Λ)

(
S−s −

∫ s

0
Su−s(A− Λ)X(u)du

)
ds

= S−1 −
∫ 1

0
Ss−1(A− Λ)S−sds+

∫ 1

0

∫ s

0
Ss−1(A− Λ)Su−s(A− Λ)

×
(
S−u −

∫ u

0
Sv−u(A− λ)X(v)dv

)
duds

≈ S−1 −
∫ 1

0
Ss−1(A− Λ)S−sds

+

∫ 1

0

∫ s

0
Ss−1(A− Λ)Su−s(A− Λ)S−ududs
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Where this is an approximation because the triple and higher order in-

tegrals were ignored. The conditional pdf of the returns is:

f(r1, ..., rm|µ,Σ) ∝ exp
{
−m

2
Tr(A+ Se−A)

}
Hence, from the Volterra approximation, by multiplying by S and taking

the trace, we obtain:

Tr(Se−A) ≈ n−
∫ 1

0
Tr
(
Ss(A− Λ)S−s

)
ds

+

∫ 1

0

∫ s

0
Tr
(
Ss(A− Λ)Su−s(A− Λ)S−ududs

)
The first integral is easier to compute:

∫ 1

0
Tr
(
Ss(A− Λ)S−s

)
ds =

∫ 1

0
Tr (A− Λ) ds = Tr (A− Λ)

The second integral requires more calculations. Before we delve into

them, let us write the spectral decomposition of S as S = E0D0E
T
0 . If we

define the matrix log through the Taylor series expansion, and by suing the

fact that E0 is orthonormal, we obtain that the spectral decomposition of

log(S) is Λ = log(S) = E0log(D0)ET0 . Also, let us make another notation:

B = ET0 (A− Λ)E0 ⇒ E0BE
T
0 = A− Λ:

Tr
(
Ss(A− Λ)Su−s(A− Λ)S−u

)
= Tr

(
(A− Λ)Su−s(A− Λ)S−(u−s)

)
= Tr

(
E0BD

u−s
0 BD

−(u−s)
0 ET0

)
= Tr

(
BDu−s

0 BD
−(u−s)
0

)
In order to compute the integral of this Trace term, we will try to put

it in scalar form:
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BDu−s
0 =


b11d

u−s
1 b12d

u−s
2 ... b1nd

u−s
n

: : ... :

bn1d
u−s
1 b12d

u−s
2 ... b1nd

u−s
n


For the matrix BD

−(u−s)
0 we obtain a similar result, the only difference

is that du−si is replaced by 1
du−si

. Also, from the spectral decomposition,

please note that di are the eigenvalues of S.

Since we need the Tr
(
BDu−s

0 BD
−(u−s)
0

)
, we will only compute the di-

agonal entries of this matrix:

diag
(
BDu−s

0 BD
−(u−s)
0

)
=

b211 + b12b21

(
d2
d1

)u−s
+ b13b31

(
d3
d1

)u−s
+ · · ·+ b1nbn1

(
dn
d1

)u−s
b21b12

(
d1
d2

)u−s
+ b222 + · · ·+ b2nbn2

(
dn
d2

)u−s
:

bn1b1n

(
dn
d1

)u−s
+ bn2b2n

(
dn
d2

)u−s
+ · · ·+ b2nn


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But we know that B is symmetric. Therefore, we obtain that:

∫ 1

0

∫ s

0
Tr
(
BDu−s

0 BD
−(u−s)
0

)
duds =

n∑
i=1

∫ 1

0

∫ s

0
b2iiduds

+
n∑
i 6=j

∫ 1

0

∫ s

0
b2ij

(
di
dj

)u−s
duds, where we have that

n∑
i=1

∫ 1

0

∫ s

0
b2iiduds =

n∑
i=1

b2ii
2

and also

n∑
i 6=j

∫ 1

0

∫ s

0
b2ij

(
di
dj

)u−s
duds =

n∑
i 6=j

∫ 1

0
b2ij

(
di
dj

)u−s
× 1

log(di)− log(dj)

∣∣∣s
0
ds =

∑
i 6=j

b2ij
log(di)− log(dj)

∫ 1

0
1−

(
di
dj

)−s
ds

=
∑
i 6=j

b2ij
log(di)− log(dj)

(
1−

(
dj
di

)s 1

log(dj)− log(di)

) ∣∣∣1
0

=
∑
i 6=j

b2ij
log(di)− log(dj)

+
∑
i 6=j

b2ij

dj
di
− 1

(log(di)− log(dj))2

=
∑
i<j

(
b2ij

log(di)− log(dj)
+

b2ji
log(dj)− log(di)

)

+
∑
i<j

b2ij

dj
di

+ di
dj
− 2

(log(di)− log(dj))2
= 0 +

∑
i<j

b2ij

dj
di

+ di
dj
− 2

(log(di)− log(dj))2

Finally, by adding the two double integrals, we obtain that

∫ 1

0

∫ s

0
Tr
(
BDu−s

0 BD
−(u−s)
0

)
duds = n− Tr(A) + Tr(Λ)+

+
1

2

n∑
i=0

b2ii +
∑
i<j

b2ij

dj
di

+ di
dj
− 2

(log(di)− log(dj))2

With the notation of the ξij introduced in the paper, we obtain the Volterra

approximation represented by equation (19).
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B

Proof of Proposition 1

The following equality holds:

f(α|σ2
1, σ

2
2) =

∫
θ
det(∆)−

1
2 exp

{
−1

2
(α− Jθ)T∆−1(α− Jθ)

}
dθ

= 2πdet(∆)−
1
2det(JT∆−1J)−

1
2 exp

{
−1

2
αTGα

}
, where

G =
(
Id − J(JT∆−1J)−1JT∆−1

)T
∆−1

(
Id − J(JT∆−1J)−1JT∆−1

)
Proof. Before we actually attempt to compute the integral, we would like

to put all the quantities in scalar form since this would make our life easier.

This brings us to the following two lemmas:

Lemma 4. det(∆)−
1
2det(JT∆−1J)−

1
2 = 1√

n(d−n)

(
σ2

1

)−n−1
2
(
σ2

2

)− d−n−1
2

Proof.

JT∆−1J =

 1
σ2

1
... 1

σ2
1

0 ... 0

0 ... 0 1
σ2

2
... 1

σ2
2

 J =

 n
σ2

1
0

0 d−n
σ2

2



Hence, we obtain that det(JT∆−1J)−
1
2 = 1√

n(d−n)

(
σ2

1

) 1
2
(
σ2

2

) 1
2 Also, clearly

since ∆ is diagonal, we obtain that:

det(∆)−
1
2 =

(
σ2

1

)−n
2
(
σ2

2

)− d−n
2

Multiplying the two determinants, we obtain the desired result.

Now let us turn our attention to writing in scalar form the term in the

exponential:
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Lemma 5. αTGα = 1
σ2

1

∑n
i=1(αi−αv)2 + 1

σ2
2

∑d
i=n+1(αi−αc)2, where αv is

the average of the α′s on the main diagonal (i.e. those that originate from

the log of the variance terms of the returns) and αc is the average of all the

α’s that are on the off diagonal (i.e. those that originate from the log of the

covariance terms of the returns).

Proof. First of all, one can notice that the formula for G can be simplified

for calculation purposes:

G =
(
Id − J(JT∆−1J)−1JT∆−1

)T
∆−1

(
Id − J(JT∆−1J)−1JT∆−1

)
= ∆−1 −∆−1J(JT∆−1J)−1JT∆−1 −∆−1J(JT∆−1J)−1JT∆−1

+∆−1J(JT∆−1J)−1JT∆−1 = ∆−1 −∆−1J(JT∆−1J)−1JT∆−1

We remember that we have computed JT∆−1J in Lemma 4:
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JT∆−1J =

 n
σ2

1
0

0 d−n
σ2

2

 and ∆−1J =



1
σ2

1
0

: :

1
σ2

1
0

0 1
σ2

2

: :

0 1
σ2

2



⇒ ∆−1J
(
JT∆−1J

)
=



1
n 0

: :

1
n 0

0 1
d−n

: :

0 1
d−n



⇒ ∆−1J
(
JT∆−1J

)
JT∆−1 =



1
nσ2

1
... 1

nσ2
1

0 ... 0

: ... : : ... :

1
nσ2

1
... 1

nσ2
1

0 ... 0

0 ... 0 1
(d−n)σ2

2
... 1

(d−n)σ2
2

: ... : : ... :

0 ... 0 1
(d−n)σ2

2
... 1

(d−n)σ2
2


Now we just have to subtract this matrix from ∆−1, which is just diagonal,

and we can finally compute the desired quantity:
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αTGα =
∑

1≤i 6=j≤n

1

nσ2
1

αiαj +
n∑
i=1

n− 1

nσ2
1

α2
i +

∑
n+1≤i 6=j≤d

1

(d− n)σ2
2

αiαj

+
d∑

i=n+1

d− n− 1

(d− n)σ2
2

α2
i

By looking at this equation and the one that we have to prove, we realize

that if we would manage to show the following identity, we would also prove

the lemma:

∑
1≤i 6=j≤n

1

nσ2
1

αiαj +

n∑
i=1

n− 1

nσ2
1

α2
i =

1

σ2
1

n∑
i=1

(αi − αv)2

Let us start from the right hand side:
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Now we finally have all the necessary identities to write the integral in

our proposition in scalar form. We would have to prove that:

∫
θ1

exp

{
− 1

2σ2
1

n∑
i=1

(αi − θ1)2

}
dθ1

∫
θ2

exp

{
− 1

2σ2
2

q0∑
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(αi − θ2)2

}
dθ2

= 2π
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n
exp

{
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2σ2
1
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(αi − αv)2

}
σ2√
d− n

exp

{
− 1

2σ2
2
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}
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Hence, if we manage to show the following identity, we would manage to

prove the proposition also:

∫
θ1

exp

{
− 1

2σ2
1

n∑
i=1

(αi − θ1)2

}
dθ1 =

√
2π

σ1√
n
exp

{
− 1

2σ2
1

n∑
i=1

(αi − αv)2

}

Let us start from the left hand side and subtract and add the average

αv in each term of the sum from the exponential:

LHS =

∫
θ1

exp
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− 1

2σ2
1

n∑
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}
dθ1
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×
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×
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(
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2
(
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Now we recognize that the term inside the integral is close to the density

of a normal distribution. Hence, this gives us the idea of doing the change

of variables:
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y1 =
θ1 − αv
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√
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n
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As mentioned before, a similar identity can be showed for the second integral

that depends solely on θ2 and this completes the proof of the proposition.
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C

S&P500 Industry Sectors

The stocks in the S&P500 are divided into broad groupings based on eco-

nomic characteristics. Currently there are 11 industry sectors3

• Communication Services: from telephone access to high-speed inter-

net, this sector of the economy keeps us all connected.

• Consumer Discretionary: businesses that have demand that rises and

falls based on general economic conditions such as washers and dryers,

sporting goods, new cars, and diamond engagement rings

• Consumer Staples: businesses that sell the necessities of life, ranging

from bleach and laundry detergent to toothpaste and packaged food.

• Energy: businesses that source, drill, extract, and refine the raw com-

modities we need to keep the country going, such as oil and gas.

• Financials: banks, insurance companies, real estate investment trusts,

credit card issuers, and a host of other money-centric enterprises that

keep the debits and credits of the economy flowing.

• Health Care: drug companies, medical supply companies, and other

scientific-based operations that are concerned with improving and heal-

ing human life.

• Industrials: from railroads and airlines to military weapons and indus-

trial conglomerates.

3According to thebalance.com
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• Information Technology: hardware, software, computer equipment,

and IT services operations.

• Materials sector manufacturers, logs, and mines everything from pre-

cious metals, paper, and chemicals to shipping containers, wood pulp,

and industrial ore.

• Real Estate: all Real Estate Investment Trusts (REITs) with the ex-

ception of Mortgage REITs, which is housed under the financial sector.

The sector also includes companies that manage and develop proper-

ties.

• Utilities sector is home to the firms that make our lights work when

we flip the switch, let our stoves erupt in flame when we want to cook

food, make water come out of the tap when we are thirsty, and more.

In this section, we will show specifically which companies were considered

in each one of the industry sectors from our 4 personal views introduced in

Section 4.11.
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Information Technology

Count Symbol Name Count Symbol Name

1 ACN Accenture plc 35 INTC Intel Corp.

2 ATVI Activision Blizzard 36 IBM International Business Machines

3 ADBE Adobe Systems Inc 37 INTU Intuit Inc.

4 AMD Advanced Micro Devices Inc 38 IPGP IPG Photonics Corp.

5 AKAM Akamai Technologies Inc 39 JNPR Juniper Networks

6 ADS Alliance Data Systems 40 KLAC KLA-Tencor Corp.

7 GOOGL Alphabet Inc Class A 41 LRCX Lam Research

8 GOOG Alphabet Inc Class C 42 MA Mastercard Inc.

9 APH Amphenol Corp 43 MCHP Microchip Technology

10 ADI Analog Devices, Inc. 44 MU Micron Technology

11 ANSS ANSYS 45 MSFT Microsoft Corp.

12 AAPL Apple Inc. 46 MSI Motorola Solutions Inc.

13 AMAT Applied Materials Inc. 47 NTAP NetApp

14 ADSK Autodesk Inc. 48 NFLX Netflix Inc.

15 ADP Automatic Data Processing 49 NVDA Nvidia Corporation

16 AVGO Broadcom 50 ORCL Oracle Corp.

17 CA CA, Inc. 51 PAYX Paychex Inc.

18 CDNS Cadence Design Systems 52 QCOM QUALCOMM Inc.

19 CSCO Cisco Systems 53 RHT Red Hat Inc.

20 CTXS Citrix Systems 54 CRM Salesforce.com

21 CTSH Cognizant Technology Solutions 55 STX Seagate Technology

22 GLW Corning Inc. 56 SWKS Skyworks Solutions

23 DXC DXC Technology 57 SYMC Symantec Corp.

24 EBAY eBay Inc. 58 SNPS Synopsys Inc.

25 EA Electronic Arts 59 TTWO Take-Two Interactive

26 FFIV F5 Networks 60 TEL TE Connectivity Ltd.

27 FB Facebook, Inc. 61 TXN Texas Instruments

28 FIS Fidelity National Information Services 62 TSS Total System Services

29 FISV Fiserv Inc 63 VRSN Verisign Inc.

30 FLIR FLIR Systems 64 V Visa Inc.

31 IT Gartner Inc 65 WDC Western Digital

32 GPN Global Payments Inc. 66 WU Western Union Co

33 HRS Harris Corporation 67 XRX Xerox Corp.

34 HPQ HP Inc. 68 XLNX Xilinx Inc

Table 2: Information Technology stocks
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Energy

Count Symbol Name Count Symbol Name

1 APC Anadarko Petroleum Corp 17 KMI Kinder Morgan

2 ANDV Andeavor 18 MRO Marathon Oil Corp.

3 APA Apache Corporation 19 MPC Marathon Petroleum

4 BHGE Baker Hughes, a GE Company 20 NOV National Oilwell Varco Inc.

5 COG Cabot Oil & Gas 21 NFX Newfield Exploration Co

6 CVX Chevron Corp. 22 NBL Noble Energy Inc

7 XEC Cimarex Energy 23 OXY Occidental Petroleum

8 CXO Concho Resources 24 OKE ONEOK

9 COP ConocoPhillips 25 PSX Phillips 66

10 DVN Devon Energy Corp. 26 PXD Pioneer Natural Resources

11 EOG EOG Resources 27 RRC Range Resources Corp.

12 EQT EQT Corporation 28 SLB Schlumberger Ltd.

13 XOM Exxon Mobil Corp. 29 FTI TechnipFMC

14 HAL Halliburton Co. 30 VLO Valero Energy

15 HP Helmerich & Payne 31 WMB Williams Cos.

16 HES Hess Corporation

Table 3: Energy stocks
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Consumer Staples

Count Symbol Name Count Symbol Name

1 MO Altria Group Inc 17 HRL Hormel Foods Corp.

2 ADM Archer-Daniels-Midland Co 18 SJM JM Smucker

3 CPB Campbell Soup 19 K Kellogg Co.

4 CHD Church & Dwight 20 KMB Kimberly-Clark

5 CLX The Clorox Company 21 KR Kroger Co.

6 KO Coca-Cola Company (The) 22 MKC McCormick & Co.

7 CL Colgate-Palmolive 23 TAP Molson Coors Brewing Company

8 CAG Conagra Brands 24 MDLZ Mondelez International

9 STZ Constellation Brands 25 MNST Monster Beverage

10 COST Costco Wholesale Corp. 26 PEP PepsiCo Inc.

11 COTY Coty, Inc 27 PM Philip Morris International

12 CVS CVS Health 28 PG Procter & Gamble

13 DPS Dr Pepper Snapple Group 29 SYY Sysco Corp.

14 EL Estee Lauder Cos. 30 TSN Tyson Foods

15 GIS General Mills 31 WMT Wal-Mart Stores

16 HSY The Hershey Company 32 WBA Walgreens Boots Alliance

Table 4: Consumer Staples stocks
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Financials

Count Symbol Name Count Symbol Name

1 AMG Affiliated Managers Group Inc 33 JPM JPMorgan Chase & Co.

2 AFL AFLAC Inc 34 KEY KeyCorp

3 ALL Allstate Corp 35 LNC Lincoln National

4 AXP American Express Co 36 L Loews Corp.

5 AIG American International Group, Inc. 37 MTB M&T Bank Corp.

6 AON Aon plc 38 MMC Marsh & McLennan

7 AJG Arthur J. Gallagher & Co. 39 MET MetLife Inc.

8 AIZ Assurant Inc. 40 MCO Moody’s Corp

9 BAC Bank of America Corp 41 MS Morgan Stanley

10 BK The Bank of New York Mellon Corp. 42 NDAQ Nasdaq, Inc.

11 BBT BB&T Corporation 43 NTRS Northern Trust Corp.

12 BLK BlackRock 44 PBCT People’s United Financial

13 HRB Block H&R 45 PNC PNC Financial Services

14 BHF Brighthouse Financial Inc 46 PFG Principal Financial Group

15 COF Capital One Financial 47 PGR Progressive Corp.

16 CBOE Cboe Global Markets 48 PRU Prudential Financial

17 SCHW Charles Schwab Corporation 49 RJF Raymond James Financial Inc.

18 CB Chubb Limited 50 RF Regions Financial Corp.

19 CINF Cincinnati Financial 51 SPGI S&P Global, Inc.

20 C Citigroup Inc. 52 STT State Street Corp.

21 CME CME Group Inc. 53 STI SunTrust Banks

22 CMA Comerica Inc. 54 SIVB SVB Financial

23 DFS Discover Financial Services 55 TROW T. Rowe Price Group

24 ETFC E*Trade 56 TMK Torchmark Corp.

25 RE Everest Re Group Ltd. 57 TRV The Travelers Companies Inc.

26 FITB Fifth Third Bancorp 58 USB U.S. Bancorp

27 BEN Franklin Resources 59 UNM Unum Group

28 GS Goldman Sachs Group 60 WFC Wells Fargo

29 HIG Hartford Financial Svc.Gp. 61 WLTW Willis Towers Watson

30 HBAN Huntington Bancshares 62 XL XL Capital

31 ICE Intercontinental Exchange 63 ZION Zions Bancorp

32 IVZ Invesco Ltd.

Table 5: Financials stocks
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Utilities

Count Symbol Name Count Symbol Name

1 AES AES Corp 14 EXC Exelon Corp.

2 LNT Alliant Energy Corp 15 FE FirstEnergy Corp

3 AEP American Electric Power 16 NEE NextEra Energy

4 AWK American Water Works Company Inc 17 NI NiSource Inc.

5 CNP CenterPoint Energy 18 NRG NRG Energy

6 CMS CMS Energy 19 PCG PG&E Corp.

7 ED Consolidated Edison 20 PNW Pinnacle West Capital

8 D Dominion Energy 21 PEG Public Serv. Enterprise Inc.

9 DTE DTE Energy Co. 22 SCG SCANA Corp

10 DUK Duke Energy 23 SRE Sempra Energy

11 EIX Edison Int’l 24 SO Southern Co.

12 ETR Entergy Corp. 25 WEC Wec Energy Group Inc

13 ES Eversource Energy 26 XEL Xcel Energy Inc

Table 6: Utilities stocks
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Industrials

Count Symbol Name Count Symbol Name

1 MMM 3M Company 33 IR Ingersoll-Rand PLC

2 AYI Acuity Brands Inc 34 JEC Jacobs Engineering Group

3 ALK Alaska Air Group Inc 35 JBHT J. B. Hunt Transport Services

4 ALLE Allegion 36 JCI Johnson Controls International

5 AAL American Airlines Group 37 KSU Kansas City Southern

6 AME AMETEK Inc. 38 LLL L-3 Communications Holdings

7 AOS A.O. Smith Corp 39 LMT Lockheed Martin Corp.

8 ARNC Arconic Inc. 40 MAS Masco Corp.

9 BA Boeing Company 41 NLSN Nielsen Holdings

10 CHRW C. H. Robinson Worldwide 42 NSC Norfolk Southern Corp.

11 CAT Caterpillar Inc. 43 NOC Northrop Grumman Corp.

12 CTAS Cintas Corporation 44 PCAR PACCAR Inc.

13 CSX CSX Corp. 45 PH Parker-Hannifin

14 CMI Cummins Inc. 46 PNR Pentair Ltd.

15 DE Deere & Co. 47 PWR Quanta Services Inc.

16 DAL Delta Air Lines Inc. 48 RTN Raytheon Co.

17 DOV Dover Corp. 49 RHI Robert Half International

18 ETN Eaton Corporation 50 ROK Rockwell Automation Inc.

19 EMR Emerson Electric Company 51 COL Rockwell Collins

20 EFX Equifax Inc. 52 ROP Roper Technologies

21 EXPD Expeditors International 53 LUV Southwest Airline

22 FAST Fastenal Co 54 SRCL Stericycle Inc

23 FDX FedEx Corporation 55 TXT Textron Inc.

24 FLS Flowserve Corporation 56 TDG TransDigm Group

25 FLR Fluor Corp. 57 UNP Union Pacific

26 FBHS Fortune Brands Home & Security 58 UAL United Continental Holdings

27 GD General Dynamics 59 UPS United Parcel Service

28 GE General Electric 60 URI United Rentals, Inc.

29 GWW Grainger (W.W.) Inc. 61 UTX United Technologies

30 HON Honeywell Int’l Inc. 62 VRSK Verisk Analytics

31 HII Huntington Ingalls Industries 63 WM Waste Management Inc.

32 ITW Illinois Tool Works 64 XYL Xylem Inc.

Table 7: Industrials stocks
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Real Estate

Count Symbol Name Count Symbol Name

1 ARE Alexandria Real Estate Equities Inc 17 IRM Iron Mountain Incorporated

2 AMT American Tower Corp A 18 KIM Kimco Realty

3 AIV Apartment Investment & Management 19 MAC Macerich

4 AVB AvalonBay Communities, Inc. 20 MAA Mid-America Apartments

5 BXP Boston Properties 21 PLD Prologis

6 CCI Crown Castle International Corp. 22 PSA Public Storage

7 DLR Digital Realty Trust Inc 23 O Realty Income Corporation

8 DRE Duke Realty Corp 24 REG Regency Centers Corporation

9 EQIX Equinix 25 SBAC SBA Communications

10 EQR Equity Residential 26 SPG Simon Property Group Inc

11 ESS Essex Property Trust, Inc. 27 SLG SL Green Realty

12 EXR Extra Space Storage 28 VTR Ventas Inc

13 FRT Federal Realty Investment Trust 29 VNO Vornado Realty Trust

14 GGP General Growth Properties Inc. 30 WELL Welltower Inc.

15 HCP HCP Inc. 31 WY Weyerhaeuser Corp.

16 HST Host Hotels & Resorts

Table 8: Real Estate stocks
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Consumer Discretionary

Count Symbol Name Count Symbol Name

1 AAP Advance Auto Parts 39 M Macy’s Inc.

2 AMZN Amazon.com Inc. 40 MAR Marriott Int’l.

3 APTV Aptiv Plc 41 MAT Mattel Inc.

4 AZO AutoZone Inc 42 MCD McDonald’s Corp.

5 BBY Best Buy Co. Inc. 43 MGM MGM Resorts International

6 BWA BorgWarner 44 KORS Michael Kors Holdings

7 KMX Carmax Inc 45 MHK Mohawk Industries

8 CCL Carnival Corp. 46 NWL Newell Brands

9 CBS CBS Corp. 47 NWSA News Corp. Class A

10 CHTR Charter Communications 48 NWS News Corp. Class B

11 CMG Chipotle Mexican Grill 49 NKE Nike

12 CMCSA Comcast Corp. 50 JWN Nordstrom

13 DHI D. R. Horton 51 NCLH Norwegian Cruise Line

14 DRI Darden Restaurants 52 ORLY O’Reilly Automotive

15 DISCA Discovery Inc. Class A 53 OMC Omnicom Group

16 DISCK Discovery Inc. Class C 54 RL Polo Ralph Lauren Corp.

17 DISH Dish Network 55 PHM Pulte Homes Inc.

18 DG Dollar General 56 PVH PVH Corp.

19 DLTR Dollar Tree 57 ROST Ross Stores

20 EXPE Expedia Inc. 58 RCL Royal Caribbean Cruises Ltd

21 FL Foot Locker Inc 59 SNA Snap-On Inc.

22 F Ford Motor 60 SWK Stanley Black & Decker

23 GRMN Garmin Ltd. 61 SBUX Starbucks Corp.

24 GM General Motors 62 TPR Tapestry, Inc.

25 GPC Genuine Parts 63 TGT Target Corp.

26 GT Goodyear Tire & Rubber 64 TIF Tiffany & Co.

27 HBI Hanesbrands Inc 65 TJX TJX Companies Inc.

28 HOG Harley-Davidson 66 TSCO Tractor Supply Company

29 HAS Hasbro Inc. 67 TRIP TripAdvisor

30 HLT Hilton Worldwide Holdings Inc 68 FOXA Twenty-First Century Fox Class A

31 HD Home Depot 69 FOX Twenty-First Century Fox Class B

32 IPG Interpublic Group 70 ULTA Ulta Beauty

33 KSS Kohl’s Corp. 71 UAA Under Armour Class A

34 LB L Brands Inc. 72 VFC V.F. Corp.

35 LEG Leggett & Platt 73 VIAB Viacom Inc.

36 LEN Lennar Corp. 74 DIS The Walt Disney Company

37 LKQ LKQ Corporation 75 WHR Whirlpool Corp.

38 LOW Lowe’s Cos. 76 YUM Yum! Brands Inc

Table 9: Consumer Discretionary stocks
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