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Abstract

Dislocation Morphology and Mobility on the

Slip Planes of Hexagonal Close-Packed Materials

by

Claire Marie Albrecht

Hexagonal close packed HCP materials are already being widely used as

structural materials in several key industries, and there is currently great

interest in expanding their employment in many next-generation engineering

applications. The use of HCP materials necessitates understanding and mod-

eling their deformation response, whether in processing or in service. The

plastic deformation response of materials with an HCP crystal structure is

governed by the glide of dislocations on both low index and high index planes.

For an HCP crystal, whether it deforms in a brittle or ductile manner de-

pends on the relative amounts of moving dislocations contributed on these

low index and high index planes. The ease of dislocation motion is largely

a consequence of the characteristics of the dislocation core structure, such

as number of planes on which it extends, whether it dissociates into smaller

partial dislocations, its splitting distance, and the width of the individual

partials. Therefore, understanding individual dislocations (at the nanoscale

level) on the unique slip planes of HCP metals, sheds important insight onto

the deformation of HCP materials.

Isolating individual dislocations is difficult to do experimentally and is

xviii



limited by length and time scales in many quantum/atomistic models. As

such, we employ a phase field formulation that incorporates periodic poten-

tials, from first principle calculations, to model individual dislocations on the

distinct HCP slip planes. This work explores individual dislocations using

the phase field dislocation dynamics PFDD model which had to go through

several code developments to account for the lower symmetry of HCP crystal-

lography and its unique slip plane energetics, elastic anisotropy, and thermal

fluctuations. This work explores dislocation dissociation, morphology, and

mobility on the basal, prismatic and pyramidal II slip planes in HCP materi-

als, taking a special focus on the relatively unstudied pyramidal-II plane. 10

different HCP materials are modeled over the course of this work, but spe-

cial attention is given to understanding dislocations in Mg for its promises

in lightweighting applications, as well as Ti and Zr which are also commonly

studied HCP materials. The temperature dependencies of dislocation glide

are studied by the additional consideration of thermal fluctuations into the

energy minimization framework of the model.

Since dislocation motion is largely a consequence of the characteristics

of the dislocation core structure (number of planes on which is extends,

whether it dissociates into smaller partial dislocations, its splitting distance,

and the width of the individual partial cores) modeling dislocation dynamics

in HCP requires a model that is capable of capturing these characteristics

of dislocation core structure. Previously, the PFDD model was written for

the symmetry of cubic crystal structures and had only been applied to face-

centered cubic FCC materials. So for our work, the PFDD model is first

extended to determine the static and dynamic properties of discrete disloca-

tions belonging to all types of slip modes in the HCP crystal, such as the basal

⟨a⟩, prismatic ⟨a⟩, and pyramidal II ⟨c + a⟩ slip modes [1]. This is the first

xix



time a phase-field based dislocation dynamics model has been used to model

HCP materials, so we look at equilibrium dislocation cores and dislocation

dissociation under no stress so we can compare our results with results from

other atomistic models and experiments for validation. The dissociation sim-

ulations using the HCP capable PFDD method incorporate directly density

functional theory DFT-calculated generalized stacking fault energy GSFE

surfaces and curves for the different HCP slip planes and employ isotropic

elasticity. The results demonstrated good agreement with available results

from molecular statics MS, DFT, or experimental observations of dislocations

structures in Mg.

We move forward into a deeper exploration of the pyramidal II plane, on

which dislocation behavior remains elusive and the resulting material effects

are unknown. We employ an elastically anisotropic version of the PFDD

approach, to compute the equilibrium core structures of pyramidal-II ⟨c + a⟩

dislocations under zero externally applied stress conditions in ten HCP met-

als: Be, Co, Mg, Re, Ti, Zn, Cd, Hf, Y, and Zr. In all these metals, under

zero applied stress, the initialized perfect ⟨c + a⟩ pyramidal dislocations dis-

sociate into two partials that separate in plane, creating extended structures,

with nanometer-sized splitting distances referred to as equilibrium stacking

fault widths eSFW (that is the fully relaxed or equilibrated distance between

partials under zero external applied stress). The eSFWs for these 10 metals

scales inversely with their normalized intrinsic stacking fault energy I from

their GSFE curves. In most cases, the dislocation partial core widths and

Burgers vectors are not ideally equal. These asymmetries in the dislocation

structures are explained by deviations in the pyramidal II GSFE landscape

from that expected of a metal with an ideal c/a ratio and symmetric land-

scape. Metals with higher levels of elastic anisotropy have wider separation

xx



distances (20–35%) for both screw and edge character dislocations than what

would be expected with effective isotropic constants.

The discovery of the asymmetric dislocation cores on the pyramidal II

plane prompted the following question: will the same energetics that result

in asymmetric dislocation cores, also gives rise to asymmetric dislocation

slip? We then applied an external shear stress that initiates dislocation glide

along the slip plane of interest and note any changes in the splitting distances

of the partial dislocations as they glide in tandem. If the partial dislocations

and associated stacking fault glide while maintaining a consistent splitting

distance between the two partial dislocations, we refer to this as the dynamic

stacking fault width dSFW. We find glissile dislocations on the pyramidal II

plane have dSFW that are directionally dependent. That is to say, if we apply

a shear stress to initiate glide along one direction the measured dSFW differs

from the dSFW measured when we apply a shear stress to induce glide in

the opposite direction.The directional dependency of the dSFW is due to the

asymmetries in GSFE curves and the decompostition of the Burgers vector

for each partial dislocation. We explore this further by using a Frank-Read

FR source to generate expanding dislocation loops. We calculate the critical

shear stress σc for loop expansion for each FR source. We consider both

screw and edge type initial dislocations in a FR source of different lengths on

the basal and the pyramidal II plane and find the loop shape is dominated

by screw type sections to minimize the line tension energy of the expanding

loop. We also note large variations in the stacking faults throughout the FR

loop expansion until the loop had expanded beyond its critical shape and a

steady-state dSFW was reached. The evolution of the stacking faults during

the FR dislocation loop expansion is due to the different energetic barriers

to glide that governs each partial dislocation. Directional dependency is

xxi



also noticed for the FR source simulations of the pyramidal II plane, as the

energetic barriers (e.g. from the asymmetric GSFE profile) associated with

the leading and the trailing partial are ”assigned” based on the directionality

of the applied shear stress.

All of the simulations up to now are deterministic and carried out under

an assumed temperature of 0K. However, the pyramidal planes are suspected

to be temperature dependent more so than the other slip planes and many

material processes and applications occur at or above room temperature. So

in order to truly understand pyramidal II dislocation behavior we need to

explore the temperature dependency of pyramidal slip. This necessitates the

extension of the PFDD formulation to account for thermal activation. In our

final PFDD development we derive the Langevin force equations for the phase

field framework to account for thermal fluctuations at variable temperatures.

This produces a stochastic thermal noise term that we can add to the energy

minimization equation in the PFDD model. This advanced PFDD model

with thermal capabilities is then used to explore how temperature affects the

time to dislocation loop formation from a Frank-Read FR source. We study

Mg, Ti, and Zr over various temperatures T ranging from 0 ≤ T/Tm ≤ 0.5,

where Tm is the melting temperature for each material. We also look at the

velocity of infinitely long screw and edge type dislocations as they glide under

the same shear stress we apply in the FR simulations. We find the leading

partial for the screw dislocation ”breaks away” at a greater velocity than the

trailing partial at higher temperatures T/Tm > 0.2 creating a continuously

growing stacking fault. We find that when we decrease the applied shear

stress the leading screw partial does not breakaway at higher temperatures.

This breakaway is not observed for the temperatures and stresses applied to

edge dislocations. In the FR source simulations this results in the screw por-

xxii



tions ”smearing” out at higher temperatures. This breakaway phenomenon

observed on the pyramidal II plane is both dislocation character type, stress

and temperature dependent.
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Chapter 1

Introduction

1.1 Motivated by light-weighting

The world’s pursuit of improved fuel efficiency has generated an interest in

materials light weighting. This search for advanced materials with low den-

sity and high strength has focused attention on several promising hexagonal

close packed (HCP) structured materials, specifically magnesium (Mg). This

work will at times consider many HCP materials, but Mg will be a primary

focus for examples throughout this work due to it’s potential benefits in light-

weighting applications and thus being one of the most studied HCP materials.

Mg and its alloys have densities that are approximately two-thirds that of

aluminum (Al) alloys and one-quarter that of steel [8]. The replacement of

these prolifically used structural materials with Mg alloys results in a signif-

icant weight reduction. As such, Mg is the focus of light-weighting within

the automotive and aerospace industries [9]. The reduction in weight of cars

and airplanes would lead to a notable improvement in their fuel economy.

Thus, future implementation of these Mg alloys in transportation methods

on a global scale would result in a dramatic decrease in the world’s energy

1



consumption, independent of the energy source (i.e. fossil fuels, solar, etc.).

Additionally, Mg has full recyclability, thin wall capability, corrosion resis-

tance, radiation resistance, resilience at high operating temperatures, bio-

compatibility, and is the 8th most abundant element in the earth’s crust, as

well as trillions of tonnes of Mg in the oceans, from which most of the 850,000

tonnes/year are produced. So while advances are continually updating the

latest in energy production and storage to reduce our dependency on fossil

fuels and lower our carbon foot print, Mg-based alloys have the potential to

be a long term and sustainable partner to any energy source, acting as a

multiplier for many other energy reduction strategies.

According to a review by Yang et al. (2008) more than 90% of Mg-based

alloy structural components are produced via casting process [10], which is far

more energetically and cost expensive than the current production processes

employed for most structural components in the car and aerospace industry

i.e. cold-rolled Al-alloy sheet metal. Unfortunately, to this day sheet Mg is

still hindered by poor room temperature formability, ductility, and it’s highly

anisotropic mechanical behavior; it is too brittle to be implemented in the

wider structural applications of sheet Mg. In a 2014 paper by Sandlobes et

al. it is shown that pure Mg deforms via strain localization into macro shear

bands, along which early cracking occurs. These bands act as soft zones for

dislocations to move quickly along like a dislocation highway as deformation

proceeds [11]. Pure Mg completely fractures along these macroscopic shear

bands after as little as a 20% reduction in thickness via cold-rolling. Plas-

tic deformation in metals is mediated by dislocation nucleation, mobility,

and interactions. Ductility is a slip sensitive property, which is governed by

interactions between dislocations with other dislocations, stacking faults, so-

lutes, grain boundaries, and other micro-structures. Thus, the development
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of Mg alloys with ductility enhancement requires fundamental studies of dis-

location energetics, nucleation, multiplication, dissociation, and annihilation

processes, all of which behave differently in the unique HCP crystal lattice

structure.

1.2 Dislocations and stacking faults

Dislocations are an important type of extended linear defect in the atomic

lattice of a material. They are characterized by their orientation within the

crystal structure, called the line sense, with respect to the magnitude and

direction of the lattice distortion due to the presence of the dislocation, called

a Burgers vector, b⃗. The lattice distortion due to the presence of a disloca-

tion produces a stress field that depends on the character of the dislocation

and the material. When the line sense and Burgers vector are parallel they

are characterized as being a screw type dislocation, when they are perpen-

dicular they are characterized as an edge type dislocation, and when the

angle between the two is somewhere between 0◦ and 90◦ the dislocation is

characterized as being of mixed character. The stress field around a disloca-

tion produces interaction forces between other dislocations, defects, solutes,

grain-boundaries and various other micro-structures. As such, dislocations

are closely related to the plastic mechanical properties exhibited by a ma-

terial (i.e. formability, ductility, strength). For this reason, there are many

experimental and computational studies that focused on achieving a better

understanding of dislocation slip and the deformation mechanisms.

Dislocation behavior (i.e. glide, core shape, dissociation into partials)

depends on the energetics of it’s slip system, which describes the set of sym-
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Figure 1.2.1: (a)Schematic of two common GSFE curve shapes for a close-

packed plane common in FCC and HCP materials (See Figure 1.3.1 (a) to

see the close-packed planes of HCP). They are symmetrical with global min-

ima at neighboring direct lattice sites a Burgers vector, b, apart. Notice the

different critical energy points on each, one has only one unstable stacking

fault energy, U, which means that it is more energetically favorable for the

dislocation core to remain compact (as shown in (b)), while the other has

two unstable stacking faults energies on either side of an intrinsic stacking

fault energy, I, which indicates it is more energetically favorable for a dislo-

cation to dissociate into two partial dislocations with an associated stacking

fault in between (as depicted in (c)). Figures (b) and (c) are adapted from

www.princeton.edu/∼maelabs/mae324/07/07mae 52a.htm
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metrically identical slip planes and the associated family of slip directions

on which dislocation motion occurs. The full energetics of a slip plane con-

taining one or more slip directions can be described by an energy landscape

known as a γ-surface. The γ-surface is usually generated via ab initio meth-

ods by measuring the energy penalty between two adjacent slip planes during

shear deformation in several directions mapping out the energetic surface of

a given slip plane.

A dislocation’s slip direction will follow the lowest energetic path. This

energetically favorable cross-sectional path of the γ-surface is referred to as

the generalized stacking fault energy (GSFE) curve. The GSFE curve begins

and ends at neighboring direct lattice site that correspond to the Burgers vec-

tor displacement, but does not necessarily run parallel to the Burgers vector,

as we will see on the basal plane in HCP materials. GSFE curves contain

important energetic points (see Figure 1.2.1): (i) the unstable stacking fault

energy, U , which is a local or global maximum and is the energetic barrier

to dislocation glide and (ii) the intrinsic stacking fault energy, I, which is

a local minimum and is an indication that a dislocation will dissociate into

partial dislocations, forming a stacking fault in between (as shown in (c)).

The Burgers vectors of the partial dislocations are a linear combination of

the Burgers vector for the full dislocation (as is shown in (b,c)).

The stacking fault width is both slip plane and material dependent and

is the result of balancing energies. Because of the local minimum in the

GSFE curve along the slip path, it is energetically more favorable for a full

dislocation to dissociate into two partial dislocations.

Efull > 2Epartial (1.2.1)

Dislocations with like signed Burgers vectors (i.e. like the Burgers vectors
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for the partial dislocations) repel one another reducing the elastic interaction

(strain) energy, which is inversely proportional to the distance d between the

two.

Edisl−disl ∝
1

d
(1.2.2)

it is energetically favorable for partial dislocations to glide apart, however

this comes at the expense of the stacking fault energy penalty. Every atom

within the stacking fault is no longer at a direct lattice site with zero energy

and incurs an energy penalty of I from the GSFE curve. Thus the energy

penalty of the stacking fault scales with the area of the stacking fault.

ESF ∝ AreaSF (1.2.3)

The balance of these three energies under no external stress produces what

we refer to as an equilibrium stacking fault width eSFW. This eSFW is slip

plane and material specific. Under an applied stress we refer it as a dynamic

stacking fault width dSFW. We will explore these further in later chapters.

See Figure 1.3.1 which shows the unique slip planes in the HCP unit cell

and Figure 1.3.2 to see corresponding GSFE curves for these planes in Mg.

1.3 Hexagonal close-packed crystallography

The plastic deformation response of materials with a hexagonal close packed

(HCP) crystal structure is governed by the glide of dislocations on both low

index and high index planes [12]. Each mode of slip is defined by the specific

slip plane and slip direction of these dislocations [12, 13] (See 1.3.1). For an

HCP crystal, whether it deforms in a brittle or ductile manner depends on the

relative amounts of moving dislocations contributed by each mode [14]. The

ease of dislocation motion is largely a consequence of the characteristics of
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the dislocation core structure, such as number of planes on which it extends,

whether it dissociates into smaller partial dislocations, its splitting distance,

and the width of the individual partials.

Figure 1.3.1: HCP crystallography with slip planes and Burger vectors. a)

Basal and prismatic plane both have an ⟨a⟩-type dislocations and can thus

only produce deformation in the closed pack plane along the a-axes direc-

tions. b) Pyramidal II plane contains ⟨c + a⟩-type dislocations, which can

accommodate deformation along the c-axis direction.

For HCP crystals, the structure of the dislocation core depends on the

type of glide plane and Burgers vector, the elastic strain, and the strain

energy that the dislocation core generates in the surrounding material outside

the core region. Most dislocation cores can be described as being dissociated

into partial dislocations with a smaller Burgers vector and a stacking fault

in between [12, 15, 16, 17]. The spreading distance between the partials

is governed primarily by the balance between the interaction strain energy

between the partials and the energy required to form or grow the stacking
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Figure 1.3.2: GSFE curves of Mg for the basal, prismatic, and pyramidal

II planes. The x-axis is normalized by the respective Burgers vector for each

plane. From the critical energy points we can determine that dislocations on

the prismatic plane will remain compressed, which dislocations on the basal

and pyramidal II plane will dissociate into two partial dislocations, forming

a stacking fault.

fault [18]. For the HCP Mg crystal, recent density functional theory (DFT)

and Molecular Dynamics (MD) studies have calculated the core structures of

dislocations of edge and screw character belonging to the basal ⟨a⟩, prismatic

⟨a⟩, and pyramidal ⟨c + a⟩ modes [15, 16, 19, 20]. They are all shown to be

planar, with the partials and associated core displacements predominantly

acting in the slip plane. The basal ⟨a⟩ dislocation dissociates into two partials

with an intrinsic stacking fault in between, the prismatic ⟨a⟩ dislocation

remains compact, i.e., undissociated, and the pyramidal ⟨c + a⟩ dislocation

splits into two partials of equal Burgers vector separated by a stacking fault.

For other structurally relevant metals, such as HCP Ti and Zr, far fewer
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DFT and MD studies on core structures currently exist [21, 22, 23, 24].

Apart from core structures, atomistic simulations have been successful

in modeling the motion of individual HCP dislocations [25, 26]. Due to

size limitations, the dynamics of dislocations have not been simulated by

DFT. MD, given an interatomic potential, has been used to study the motion

of a wide range of HCP crystals, such as Mg and Mg alloys, Zr, and Ti

[16, 17, 20, 21, 26, 27]. Yet still, it is widely recognized that length and time

scale limitations prevent the study of traditional size crystals ( > microns)

and typical laboratory test conditions ( > 10−3/s). These limitations also

make it prohibitive to model collections of dislocations.

As an alternative to atomic-scale simulations are continuum mechanics

models that attempt to model directly an individual dislocation or dislo-

cations moving on specific planes. These models are often referred to as

mesoscale models, due to the length and/or time scales of the phenomenon

they model as opposed to the theory or formulation on which they are based.

The discrete dislocation dynamics (DDD) technique is one such example and

has, for several decades, proven to be a powerful and effective tool for mod-

eling from a few to several hundreds of individual dislocations, propagating

within a number of crystal structures, including HCP crystals [28, 14]. How-

ever, in DDD, dislocations are modeled as linear objects and the structure

of the dislocation core is not resolved. Another class of continuum models

are Peierls-Nabarro (P-N) models, or more recently generalized PN models

(GPN), that calculate core structures of dislocations based on minimizing

the elastic strain and lattice energies. But to date, these have been applied

mostly to face-centered cubic (FCC) and body-centered cubic (BCC) crys-

tals, with exception of [29], which investigated dislocations lying in the basal

plane in Mg.
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A third type of continuum mechanics models are those that adopt the

framework of phase field (PF) theory and apply it to simulate the motion

of discrete dislocations in single and polycrystalline systems [30, 31, 32, 33].

Traditionally, PF theory has been used to predict the temporal and spatial

evolution of domain structures, whose distinguishing property is indicated by

a set of order parameters, ζ (e.g., representing solute concentration, atomic

order, polarization, dislocation slip) [31, 33, 34, 35]. In PF-based discrete

dislocation modeling, the general free energy density E of Cahn and Hilliard

(1958) [36] is made to depend on the total strain energy and stacking fault

energy (SFE). The phase field order parameter, ζα, corresponds to the crys-

tallographic shift caused by a gliding dislocation on the slip plane α. A

coupled set of time-dependent Ginzburg-Landau equations is then employed

to solve for ζα, at every time step. Accordingly, with this methodology, the

values of ζα correspond to non-negative dissipation and gradient flow toward

thermodynamic equilibrium. Like DDD and P-N/GPN models, PF disloca-

tion mechanics models have primarily been employed to study dislocations in

FCC crystals. Recent application of the PF approach to dislocation processes

has seen treatment of the nucleation and motion of defects, such as disloca-

tions and twins, and their interactions with surfaces, boundaries, and inter-

faces in FCC single crystals and polycrystalline materials [37, 38, 31, 32, 39].

Only recently has PFDD been applied to BCC crystals, to study misfit dis-

locations in a BCC twist boundary or anisotropy in loop expansion under

stress [40, 41]. For glide processes relevant to HCP stacking, a few notable

exceptions are the work by [42], who investigated the transition of the FCC

to HCP structure via the glide of FCC Shockley partial dislocations, and by

[43], who recently modeled slip transmission of Shockley partial dislocations

on the basal plane in a Ti alloy across an HCP/BCC interface.
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Reference Section 1.6.1 outlining our work studying these unique HCP slip

planes by building upon the 3D phase field dislocation formulation, called

phase field dislocation dynamics (PFDD).

1.4 Promising ductility in slip activation on

the pyramidal II plane

Hexagonal close packed (HCP) materials are already being widely used as

structural materials in several key industries, and there is currently great

interest in expanding their employment in many next-generation engineer-

ing applications. HCP Hf, Zr, and Be and their alloys are frequently used

in many nuclear and defense industries [44, 45, 46, 47]. In the biomedi-

cal industry HCP Ti and Zr and their alloys have long been the materials

of choice, but additional alloys of Mg and Zn currently being considered

[48, 49]. Many HCP Co-based alloys are in development for use in newer

high-temperature aerospace applications [50, 51]. Employment of HCP ma-

terials in these technologies necessitates understanding and modeling their

deformation response, whether in processing or in service.

With respect to the HCP lattice, HCP materials slip easiest in their

compact ⟨a⟩ direction on their compact planes, either basal or prismatic.

Deformation in their ⟨c⟩ axis requires pyramidal ⟨c + a⟩ slip, which is more

difficult, and the degree of plastic ansitropy scales with the difference in

activation energies between ⟨a⟩ slip and pyramidal ⟨c + a⟩ slip modes [52,

53, 54, 55, 56, 57, 58]. Another inelastic mode of deformation that occurs

easily in HCP materials is deformation twinning and it competes directly

with pyramidal ⟨c + a⟩ slip in accommodating ⟨c⟩ axis deformation [59, 49].

Ductility of HCP metals is thought to be limited by plastic anisotropy and/or
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deformation twinning [58]. Therefore, enabling wider use of HCP metals and

improving ductility resides in understanding pyramidal ⟨c + a⟩ slip [60, 61,

62, 12].

Pyramidal ⟨c + a⟩ dislocations can be difficult to move due to the com-

bined effect of a relatively large Burgers vectors (36–46% longer than ⟨a⟩

Burgers vectors) and some atomic shuffling, as a consequence of the atomi-

cally rumpled pyramidal plane [12, 15]. Based on Frank’s rule, it is energet-

ically preferable for a full {1̄1̄22} ⟨c + a⟩ dislocation to dissociate into two

equal partial dislocations rather than remain whole by the following reaction

[12]:

1

3
[21̄1̄3] → 1

6
[21̄1̄3] +

1

6
[21̄1̄3] . (1.4.1)

The products of this reaction, the two like-signed partials, repel. In their

attempt to glide away, their motion is limited by the stacking fault they create

across the glide plane. Their equilibrium separation Re can be estimated by

a balance of their repulsive interaction energy and penalizing energy of their

stacking fault in between them [63]:

Re =
Kb2

8πI
(1.4.2)

where b is the magnitude of the Burgers vector of the undissociated, com-

pact dislocation, I is the intrinsic stacking fault energy (SFE), and K is the

anisotropic energy factor from Ref. [4], which depends only on dislocation

character and the five independent elastic constants.

The extent of the stacking fault Re plays an important role not only in the

partial dislocation mobility, but also in key dislocation-based processes, such

as grain boundary migration, interactions between grain boundaries and in-

terfaces, dislocation network formation, and dislocation-dislocation reactions

[64, 65, 66, 67, 57]. They may be responsible for the choice of prevalent dis-
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location reactions, preferred glide planes, and mechanisms for overcoming

obstacles, such as cross slip or climb [68, 69, 70, 71]. Dislocation theory and

atomistic simulations suggest that dissociation of dislocations with relatively

large Burgers vectors, such as pyramidal dislocations, can play a role in twin

embryo formation or twin boundary migration in HCP metals [72, 13, 73, 74].

The dissociated core structure of the pyramidal-II {1̄1̄22} plane is, in

part, a consequence of its complex fault energy landscape, the energy asso-

ciated with shearing across the glide plane. The energy along the ⟨112̄3⟩ slip

direction, called the generalized stacking fault energy (GSFE) curve, has a

single local minimum corresponding to I. The displacement, xI , to reach

this local minimum is related to the Burgers vector of the partials. Density

functional theory (DFT) calculations for the GSFE curve on the pyramidal-

II plane have been reported in a number of works for Mg [17, 15, 75], Ti

[17, 1, 76], Zr [17, 1, 77], as well as Cd, Zn, and Re [17]. For Mg, Dou et al.

[75] studied the peaks and valley in the relevant displacement path, finding

that the two peaks were unequal and the local minimum I does not occur at

half shift between stable points. The asymmetry suggests asymmetric split

of the perfect dislocation and overall core structure, deviating from the ge-

ometric model in Equation 1.4.2. Recent DFT work on Mg, as well as the

other metals Zr, Ti, Cd, Zn, and Re, noted similar asymmetries, but further

indicated that these asperities varied with the metal [1, 17, 77]. Kumar et

al. [15, 78] demonstrated that allowing for additional relaxations, during the

calculation of the pyramidal GSFE curve, caused changes in the peaks and

local minimum and the displacements needed to achieve them. In the case of

pyramidal-II in Mg, the displacement shift became closer to 0.5b, and con-

sistent with Equation 1.4.2. They explained that for the pyramidal planes in

Mg and Zr additional atomic shuffles were needed to reach the lowest energy
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minimum state. The same was not true for the basal or prismatic planes,

whose atomic structures are flat and symmetric about the glide direction.

However, for other metals, curves from fully relaxed DFT calculations still

show that an asymmetry persists [78, 17].

A few experimental studies have identified moving or dissociated ⟨c + a⟩

dislocations in Mg, otherwise identification or characterization of dislocation

cores is challenging and requires high resolution microscopy. Slip trace anal-

yses of deformed Mg and Mg alloy crystals have provided evidence of profuse

pyramidal slip [54, 56, 52, 79, 80]. In-situ microscopy in nanocrystalline

Mg witnessed pyramidal slip dislocations in motion [58]. Early room tem-

perature experimental observations from transmission electron microscopy

(TEM) by Stohr and Poirier [81] reported that pyramidal dislocations are dis-

sociated into two equal length (1/2) ⟨c + a⟩ dislocations, in agreement with

the analytical picture in Equation 1.4.1. More recently high-resolution TEM

(HR-TEM) studies revealed the stabilization of a single (1/2) ⟨c + a⟩ partial

dislocation on the pyramidal-II {1̄1̄22} plane [15].

In addition to the {1̄1̄22} plane, pyramidal ⟨c + a⟩ dislocations can possi-

bly glide on the first-order {1̄1̄01} pyramidal plane. The preferred pyramidal

plane for a given HCP material currently relies on experimental observa-

tion and is not yet understood. Second-order (or type II) pyramidal glide

is commonly expected in most HCP metals with the exception of Ti and

Zr. However, pyramidal type II has been observed in Zr [82, 83, 84] and Ti

[85, 86], while the other type I glide has been reported more recently in Mg

[87, 88, 80].

Computational studies of dislocation core structures have been carried out

via a number of methods. The large size of Burgers vectors most often limits

application of DFT for calculating the equilibrium core structures of pyrami-
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dal dislocations. The relatively larger length scales accessible with molecular

dynamics methods makes it suitable; however, the largest body of work to

date focuses on the one HCP metal, Mg, for which interatomic potentials have

been developed specifically for studying defects. Alternatively, a number of

continuum models based on continuum mechanics, such as the phase-field

microelasticity (PFM) [89], phase-field dislocation dynamics (PFDD) [90],

semidiscrete variational [91], and generalized Peierls-Nabarro (GPN) mod-

els [92], have been employed to compute dislocation core structures. They

are formulated to capture long-range stress fields of dislocations, while sac-

rificing atomic-scale physics and fidelity. This class of models are developed

primarily for simulating dislocation processes, involving one or more discrete

dislocations, and their application to core structures is one problem they

share with ab initio and atomistic methods [90, 93].

The PF-based methods and GPN models minimize an energy functional

at every point in the system and the order parameters are usually chosen

to identify a slipped phase and un-slipped phase. Dislocation core struc-

tures are calculated by relating discrete atomic displacements with a contin-

uum disregistry field. The input parameters for the energies associated with

these displacements can be obtained from ab initio calculations, experimen-

tal measurements, molecular dynamics, or molecular statics (MS), provided

that reliable potentials exist [94]. In Chapter 2 the PFDD model is extended

to determine the static and dynamic properties of discrete dislocations be-

longing to all types of slip modes in the HCP crystal, such as the basal ⟨a⟩,

prismatic ⟨a⟩, and pyramidal ⟨c + a⟩ slip modes [1]. Previously, the PFDD

methodology was predominantly applied to dislocations in materials with

cubic crystal structures, namely face-centered cubic (FCC) [94, 95, 31], and

body-centered cubic (BCC) [41, 96] structures. The dissociation simulations
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using the HCP PFDD method incorporated directly DFT-calculated GSFE

surfaces and curves for the different HCP slip planes and employed isotropic

elasticity [1]. The results demonstrated good agreement with available re-

sults from MS, DFT, or experimental observations of dislocations structures

in Mg. Moving forward into a deeper exploration of the pyramidal II plane,

we employ an elastically anisotropic version of the PFDD approach, devel-

oped in Reference [95], to compute the equilibrium structures of pyramidal-II

{1̄1̄22} ⟨112̄3⟩ dislocations in ten HCP metals: Be, Co, Mg, Re, Ti, Zn, Cd,

Hf, Y, and Zr (See Section 1.6.2).

1.5 Temperature dependent deformation

With the incredible advances in computational and experimental capa-

bilities, the constant pursuit of structural materials exhibiting high strength-

to-weight characteristics has lead researchers to return their attention to Mg

and its alloys in hopes to elucidate the half a century old, unresolved ques-

tions surrounding its plasticity. In addition to being the lightest structural

metal, Mg has been shown to exhibit a high damping capacity [97] as well

as excellent fatigue resistance [98]. One of the main technical challenges,

limiting the structural applications of Mg alloys, is the need to improve the

strength and creep resistance at elevated temperatures [99]. Surprisingly, the

number of studies that report on the thermo-mechanical response of Mg and

its alloys, is only a small fraction compared to other metallic alloys. As a re-

sult, there remain many open questions regarding the effects of temperature

on the deformation of Mg and its alloys that have yet to be addressed.

Crucial insight into expanding structural manufacturing capabilities and

improving the formability of Mg and Mg alloys at higher temperatures may
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come from understanding the plastic deformation mechanisms in Mg at ele-

vated temperatures. The HCP lattice structure of Mg induces high anisotropy,

which results in low formability at room temperature, making plastic working

of Mg and Mg alloys difficult [100]. In the 1960s Wonziewicz and Backofen

[101] studied the plain strain compression of four hard orientations of bulk Mg

single crystals at various temperatures from room temperature to 307 ◦C, and

have shown a strong temperature dependence on the critical resolved shear

stress (CRSS) for non-basal slip (e.g. prismatic and pyramidal ⟨c + a⟩ slip).

Interestingly, in 2001 Yoo et al. [66] reported an anomalous increase in the

CRSS of pyramidal ⟨c + a⟩ slip during c-axis compression of single crystals at

TH ∼ 0.4 (TH is the homologous temperature defined as the material temper-

ature, T, divided by the melting temperature, Tm). Furthermore, in addition

to this thermal-hardening, in 2010 Ando et al. [102] reported a decrease in

ductility with an increase in temperature. These contradictory observations

are indicative of a transformation in deformation modes at elevated temper-

atures and merits further investigation. There is clearly a need for a more

systematic study of the temperature effects on various slip systems in Mg

(and other HCP materials).

The mechanical behavior of HCP metals is determined by the core struc-

tures and energies of dislocations and planar defects, including twin bound-

aries and stacking faults. The variety of possible structures, along with

the corresponding energetics, for these defects results in several competing

deformation modes. The shortest Burgers vector in HCP cyrstallography,

b = ⟨a⟩ = 1/3 ⟨112̄0⟩ lies on the primary slip system, either on the basal

plane for Mg, Be, Cd, and Zn, or on the prismatic plane in Ti, Zr, and Hf.

Non-basal slip with a Burgers vector of b = ⟨c + a⟩ on the pyramidal plane

provides a secondary or an additional slip system. The low crystal symme-
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try of HCP materials limits the number of active independent slip systems,

which necessitates that twinning deformation be activated especially at and

below room temperature, where non-basal slip is restricted due to its high

CRSS [60]. It is also observed that sensitivity of non-basal dislocation slip

to temperature is high, while that for deformation twinning is much lower

[103, 104, 105]. Some HCP metals, like Ti and Zr, have exhibited deformation

by mechanical twinning far more readily than in Mg and Be [60]. As a result,

different HCP materials have dramatically different mechanical properties,

particularly in single-crystal deformation [99, 106]. In the case of Mg, twins

formed by c-axis compression are all very thin and do not seem to contribute

very much to the ductility [107]. In general HCP metals show unlimited duc-

tility at high temperatures, but the contribution of twinning decreases with

increasing temperature [107]. Therefore, it is highly probable that some slip

system (the pyramidal ⟨c + a⟩ plane) is active in Mg, giving c-axis deforma-

tion, and its ductility strongly depends on this deformation mechanism [107].

It is also observed that sensitivity of non-basal dislocation slip to temperature

is high, while that for deformation twinning is much lower [103, 104, 105].

Therefore, at elevated temperatures, the CRSS for dislocation mediated plas-

ticity becomes lower than that for deformation twinning [99, 104, 105]. As

a result, non-basal slip is expected to be activated at elevated temperatures

and provide sufficient slip systems for arbitrary shape change [66]. Despite

this diverse behavior, little is understood mesoscopically about the mecha-

nisms of non-basal deformation modes, specifically ⟨c + a⟩ dislocation slip

on the pyramidal plane at high enough temperatures to influence plasticity

and their impact on material properties. The thermo-mechanical responses

in HCP materials will be broken down and further explored in two chapters.

Chapter 4 explores the deterministic dynamics of dislocation mobility at 0K.
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And in Chapter 5 we add stochastic thermal considerations.

1.6 Dissertation Outline

This work follows the evolution and application of the phase field dislocation

dynamics (PFDD) model, through several stages of development to accom-

modate: i) the dislocation-governing energetics of the lower symmetry HCP

crystallography with its unique slip planes, ii) the full stiffness tensor to ac-

count for elastic anisotropy in a material, and iii) the addition of a Langevin

force term to the PFDD formulation to account for the thermodynamic driv-

ing forces on dislocation behavior in a material at variable temperatures.We

will be using the PFDD model for simulations on the microscale, however

the model is capable of reaching mesoscopic lengths and timescales (See Fig-

ure 1.6.1). Each chapter covering the stages of the PFDD model development

will review the PFDD methodology through the lens of the focused devel-

opment and applications. As such the PFDD formulation will be expressed

using various notations that the author felt was most suitable for highlighting

the focus of that work.

These iterations of the PFDD model are applied to study: i) the equi-

librium dislocation core (compact or dissociated and the resulting stacking

fault widths, Re) on the basal, prismatic, and pyramidal II plane of several

HCP materials with assumed elastic isotropy, ii) a more in depth study of

the partial dislocation cores and Re on the pyramidal II plane in 10 differ-

ent HCP materials each with very unique GSFE curves and accounting for

elastic anisotropy, iii) dynamic stacking fault widths Rd on the basal and

pyramidal II plane and critical stress required for dislocation emission from

a Frank-Read (FR) source, along with a study of the Burgers vectors of the
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partial dislocations and the associated stacking fault, and iv) temperature

dependency of dislocation velocities and loop formation from a FR-source on

the pyramidal II plane.

In addition to developing a greater understanding of the aforementioned,

we hope that the important material dependent properties calculated using

PFDD will help bridge computational methods across the multiscale model-

ing lengths and times (See Figure 1.6.1).

Figure 1.6.1: Multiscale modeling. PFDD bridges the scale by using in-

put calculated from density functional theory (DFT) and its output can be

used to better inform larger continuum models. This figure is adapted from

http://www.dierk-raabe.com/multiscale-modeling/

1.6.1 PFDD code development for HCP slip planes

Chapter 2 reviews our work exploring dislocations on various planes in HCP

materials, which was published in Reference [1]. We build upon the 3D
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phase field dislocation formulation, called phase field dislocation dynamics

(PFDD), presented in [39, 108, 109, 41] and adapt it to treat dislocations on

slip systems belonging to distinct slip modes in an HCP crystal. To demon-

strate the method, we carry out calculations for a small selection of materials,

Mg, as well as an MgY alloy, Ti and Zr that would be potentially distinct

in the structures of their dislocation cores. The choice of Mg is particularly

important since dislocations in Mg have been heavily studied by a number of

other computational methods. It is nearly elastically isotropic and the dis-

locations belonging to the different slip modes are sufficiently distinct. The

PFDD model requires as input the stacking fault energies on the different

slip planes of HCP crystals, and here, the slip-plane energetic landscapes,

called the generalized stacking fault energies, are calculated using DFT for

Mg, Ti, and Zr. Use of DFT advantageously circumvents the need for re-

liable interatomic potentials from atomic-scale simulation. The extended

HCP phase field dislocation model is applied to calculate the core structures

of dislocations on the three common HCP slip modes: basal, prismatic, and

pyramidal-type II, under zero applied stress. We compare these results with

similar calculations by MD and DFT available in the literature to verify the

model extensions. This 3D phase field method will be suitable for calculating

the formation, motion and interaction of extended defects in strained HCP

crystals.

1.6.2 PFDD application to Re on pyramidal II plane

in 10 HCP materials

Chapter 3 reviews our work exploring the pyramidal II plane, published in

Reference [2], we employ an elastically anisotropic version of the PFDD ap-
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proach, developed in Reference [95], to compute the equilibrium structures of

pyramidal-II {1̄1̄22} ⟨112̄3⟩ dislocations in ten HCP metals: Be, Co, Mg, Re,

Ti, Zn, Cd, Hf, Y, and Zr. All input parameters including the lattice param-

eters, elastic constants, and GSFE curves are computed from first principles

to avoid any dependence on interatomic potentials. These ten metals exhibit

anisotropic elasticity to varying degrees [7]. For the DFT GSFE calculations,

we apply the same method with full relaxation to all ten and show that their

energetic landscapes exhibit with a single local minimum and two unequal

maxima, featuring a wide range of intrinsic SFEs. We show that achiev-

ing a single local minimum in the GSFE for Co requires accounting for its

ferromagnetic properties.

In all these metals, the ⟨c + a⟩ pyramidal dislocations dissociate into two

partials that separate in plane, creating extended structures, with nm-sized

splitting distances. For the screw dislocation, Zn has the widest splitting dis-

tance and Ti the narrowest, and for the edge dislocation, Hf has the widest

and Be the narrowest. Considering all ten metals, the separation distances

scale inversely with the normalized intrinsic SFE, I/(Kb), where K is an

anisotropic energy factor dependent on elastic constants and dislocation char-

acter. In most cases, the dislocation partial core widths and Burgers vectors

are not ideally equal. These asymmetries in the dislocation structures can be

explained by deviations in the {1̄1̄22} GSFE landscape from that expected of

a metal with an ideal c/a ratio and symmetric landscape. Metals with higher

levels of elastic anisotropy have wider separation distances for both screw and

edge character dislocations than expected with effective isotropic constants,

being 20–35% broader for Zn, which is highly anisotropic but having no effect

on Re, Y, and Mg, which are all nearly isotropic. These findings on the equi-

librium structure of ⟨c + a⟩ pyramidal-II dislocations across a broad range of
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HCP metals are important for understanding their motion and interactions

with other dislocations or interfaces.

1.6.3 Dynamics of dislocations in HCP

At least 5 active independent slip systems are required for plastic defor-

mation, but research shows that many HCP materials only have 3 active

independent slip systems available at room temperature that allow for only

⟨a⟩ type dislocation glide, meaning the necessary c−axis deformation is not

accommodated by slip at these temperatures. Given the need for more active

independent slip systems beyond those mentioned on the basal plane to im-

prove ductility and the temperature sensitivity of non-basal plane activation

for ⟨c + a⟩ dislocation slip we need a better understanding of what is going

on in the pyramidal II plane when it is under external shear stresses. Thus,

the broader goal in Chapter 4 is to fill the gaps in our understanding of the

dynamic ⟨c + a⟩ dislocation behavior on the pyramidal II plane.

Isolating the pyramidal II plane for study via experimental approaches is

incredibly sensitive to sample preparation and orientation, thus it is difficult

if not impossible to limit the influence of basal and twinning deformation.

Therefore, PFDD model and its ability to isolate dislocation glide to one

slip plane, is the perfect tool to consider dynamic dislocation behavior on

the pyramidal II plane. In this Chapter 4 we will build upon the work in

the previous chapters, which considered ⟨c + a⟩ dislocation behavior, includ-

ing dissociation, partial core spreading, and the equilibrium stacking fault

widths on the pyramidal II plane in 10 different HCP materials [1, 2], by

now applying an external shear stress in these simulations.

We first look for directional dependencies in the applied stress for dislo-

cation mobility on the pyramidal II plane, since the previous work showed
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strong asymmetries in the partial cores, it would follow that these might have

an impact on their mobilities and dynamic stacking fault widths dSFW. We

do find that the dSFW have a directional dependency that corresponds to

the GSFE asymmetries and the magnitude of the partial Burgers vectors.

We use an infinitely long dislocation dipole set-up for these simulations.

Next we use a Frank-Read source set-up to explore the behavior of ex-

panding dislocation loops of various lengths, initial characters, and their

corresponding critical shear stress σc. For comparison, we first start with

simulations isolating dynamic dislocation loop behavior on the basal plane,

which does not have any directional dependencies, but does evolve ununi-

formly due to the decompsition of the Burgers vectors into partials. Then

we explore the pyramidal II plane in greater depth. The colinear nature of

the Burgers vector decomposition results in uniform, symmetrical dislocation

loop expansion, but we see directional dependencies in the applied stress, and

loop shape variations depending on the character of the initial dislocation.

This is the result of the loop shape minimizing to total energy from the dis-

location line tension by minimizing the edge type portions of the loop and

maximizing the screw type portions of the loop since they have a lower line

tension penalty. All of this work is simulated using the deterministic version

of the PFDD model

1.6.4 Thermally activated dislocation motion on the

pyramidal II plane

As what just covered, at least 5 active independent slip systems are required

for plastic deformation, but many HCP materials have 3 active indepen-

dent slip systems available at room temperature that allow for only ⟨a⟩ type
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dislocation glide, meaning the necessary c−axis deformation is not accom-

modated by slip at these temperatures. Deformation twinning can help to

accommodate c−axis deformation at room temperature, but some of these

HCP materials, including Mg, exhibit limited deformation twinning, the com-

bined effect resulting in low ductility. Both basal slip and deformation twin-

ning are relatively temperature insensitive and yet increases in the ductility

of HCP materials are observed at higher temperatures, thus there must be

a transition in deformation modes that can accommodate c−axis compres-

sion/tension from deformation twinning to ⟨c + a⟩ dislocation slip at higher

temperatures. Thus, the broader goal in Chapter 5 is to fill the gaps in our

understanding of how temperature affects ⟨c + a⟩ dislocation behavior on the

pyramidal II plane.

We do this by deriving the Langevin force equations for the phase field

framework to account for thermal fluctuations at variable temperatures. This

produces a thermal noise term that we can add to the energy minimization

equation in the PFDD model. This advanced PFDD model with thermal

capabilities is then used to explore how temperature effects the time to dis-

location loop formation from a Frank-Read FR source. We study Mg, Ti,

and Zr. We also look at the velocity of infinitely long screw and edge type

dislocations under the same applied shear stress. We find the leading partial

for the screw dislocation ”breaks away” at a greater velocity than the trailing

partial at lower temperatures creating a growing dSFW. In the FR source

simulations this results in the screw portions ”smearing” out at higher tem-

peratures. This breakaway phenomenon observed on the pyramidal II plane

is both stress and temperature dependent.
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Chapter 2

Development of phase field

model for dislocations in

hexagonal close packed crystals

In this stage of the phase field dislocation dynamics PFDD model develop-

ment, which was published in Reference [1], we build upon the 3D phase

field dislocation formulation presented in [39, 108, 109, 41] and adapt it to

treat dislocations on slip systems belonging to distinct slip modes in an HCP

crystal. To demonstrate the method, we carry out calculations for a small

selection of materials, Mg, as well as an MgY alloy, Ti and Zr that would be

potentially distinct in the structures of their dislocation cores. The choice

of Mg is particularly important since dislocations in Mg have been heavily

studied by a number of other computational methods. It is nearly elasti-

cally isotropic and the dislocations belonging to the different slip modes are

sufficiently distinct. The PFDD model requires as input the stacking fault

energies on the different slip planes of HCP crystals, and here, the slip-

plane energetic landscapes, called the generalized stacking fault energies,
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are calculated using DFT for Mg, Ti, and Zr. Use of DFT advantageously

circumvents the need for reliable interatomic potentials from atomic-scale

simulation. The extended HCP phase field dislocation model is applied to

calculate the core structures of dislocations on the three common HCP slip

modes: basal, prismatic, and pyramidal-type II. We compare these results

with similar calculations by MD and DFT available in the literature to verify

the model extensions. This 3D phase field method will be suitable for calcu-

lating the formation, motion and interaction of extended defects in strained

HCP crystals.

2.1 Methodology

The PFDD formulation is general and application to different material sys-

tems falls largely on choice of energetic terms, and their parameters and

functional forms. Up to now research has focused on cubic systems, and the

energetic terms in the master energy functional have been selected to apply

best to cubic crystal structures. Due to the symmetry of cubic materials,

some simplifying assumptions could be made and here for the low symmetry

of HCP crystals, these need to be re-evaluated. In this section we briefly

review the PFDD approach and in the next section, we detail the energetic

terms applicable for dislocations in HCP crystals.

2.1.1 The Phase Field Approach for Dislocations

Phase field formulations treat a 3D discretized system where every point is

a thermodynamic system, whose free energy is specified as a function of the

field variables of interest. A scheme is used to minimize the total system

energy and solve for the corresponding values for the field variables. The
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field variables, or order parameters, are scalar-valued and evolve within the

system. In the case of dislocations, the order parameters, ζα, represent the

location of slip by dislocations in the slip system α. A physically based

definition for these order parameters associates one order parameter with slip

made by each slip system. In the case of an FCC crystal, there are 12 order

parameters needed to fully describe dislocation dynamics in an FCC crystal

[90, 89, 31]. A mathematically based definition, however, considers a reduced

set of order parameters associated with slip made by independent directions.

For an FCC crystal, using this definition produces eight order parameters,

consisting of a set of slip by both perfect and partial slip systems [110].

In the dislocation problems of interest, the total free energy of the system

consists of three contributions [90, 89, 31]:

E = Estrain + Eext + Elattice (2.1.1)

where Estrain is the elastic strain energy generated by a dislocation and

dislocation-dislocation interactions, Eext is work done to the system through

an applied stress, and Elattice describes the energy expended as a disloca-

tion glides through the crystal lattice breaking and re-forming atomic bonds.

Some, but not all, phase field dislocation formulations [89, 110] include an

energy term associated with the gradient in the order parameter. It is partic-

ularly relevant at the dislocation line, at the boundary between the slipped

and unslipped region and its functional form depends on the configuration

of the core, e.g., whether it is planar or non-planar, spread or compact. It

is best informed by atomic-scale calculations, and in practice the term has

introduced fitting parameter(s) to be adjusted according to an atomic scale

core calculation. The impact of the additional gradient energy term has been

reported in a few studies, each having focused on its effects for a particular
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FCC metal [111, 94, 3, 112]. In this work, we elect to make independent

comparisons between our dislocation structure calculations and those from

other methods and to not add fit parameters. Therefore, in this first presen-

tation of the HCP formulation, we neglect the gradient energy term, bearing

in mind that it would straightforward to include it in later treatments.

Traditionally, the strain energy Estrain can be expressed as

Estrain =
1

2

∫
Cijklϵ

e
ij(x, t)ϵ

e
kl(x, t)d

3x (2.1.2)

where Cijkl is the elastic moduli tensor. Through transformation into Fourier

space, the elastic strain, ϵe, can be expressed in terms of the plastic strain,

ϵp. The strain energy can then be written as

Estrain =
1

(2π)3
1

2
Âmnuv(k)ϵ̂pmn(k)ϵ̂p∗uv(k)d3k (2.1.3)

where a superposed (ˆ) denotes the Fourier transform, Âmnuv(k) = Cmnuv −

CkluvCijmnĜk(k)kjkl, k is the wavenumber vector, Ĝk(k) is the Fourier trans-

form of the Green’s tensor of linear elasticity, denotes the principal value of

the integral, and the superscript (∗) denotes the complex conjugation.

The plastic strain ϵp results from the motion of dislocations and, therefore,

can be expressed as a function of the order parameters [90, 89]

ϵpij =
1

2

N∑
α=1

bζα(x, t)δα(sαi m
α
j + sαj m

α
i ). (2.1.4)

The sum is taken over all slip systems from 1 to N included in the material,

b is the magnitude of the Burgers vector, m is the slip plane normal, s is

the slip direction (normalized Burgers vector), and δα is a Dirac distribution

supported on the active slip planes. Considering again, as an example, the

FCC crystal structure, wherein there are 12 slip systems belonging to the

{111}⟨110⟩ slip mode and hence 12 order parameters. Dislocations on these
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systems are referred to as perfect dislocations since their Burgers vector cor-

responds to a lattice translation vector. The slip plane normals are of the

{111} type, slip directions are of the ⟨110⟩ type, and N = 12 for all possible

glide systems.

The external energy is given by

Eext =

∫
σappl
ij ϵpijd

3x (2.1.5)

where σappl is the applied stress tensor. Similar to the strain energy, the

dependence on the order parameters comes through the expression of the

plastic strain shown in Equation 3.1.1.

The lattice energy Elattice represents the expenditure of breaking and

reforming interlayer atomic bonds as a perfect or partial dislocation moves

through the crystal lattice. This lattice energy depends on the material and

on the crystallographic plane under consideration. In general, the lattice

energy Elattice can be written as

Elattice =
N∑

α=1

∫
ϕα(ζ1(x), ζ2(x), ..., ζN(x))d2x (2.1.6)

where ϕα(ζ1(x), ζ2(x), ...) is a periodic potential and the equation is integrated

over the slip plane. It is also possible that this potential could be a function

of multiple order parameters from slip systems, ζ1(x), ζ2(x) ... ζN(x).

The time-dependent Ginzburg-Landau (TDGL) equation is used to evolve

the total system energy to equilibrium and determine the order parameters

corresponding to the equilibrium state. It relates the time variation of the

order parameters to the variation in the total system energy with respect to

each order parameter α as follows:

∂ζα(x, t)

∂t
= −L

δE(ζ)

δζα(x, t)
(2.1.7)
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where L is related to the convergence speed (or mobility) of the system and

has a non-negative coefficient that is constant for all order parameters. We

arbitrarily set L = 1 and chose a time step small enough to resolve the evolu-

tion of the system. (In Chapter 5 we have to account for the material specific

value of L as it is used in the thermal noise term, which is added to the TDGL

equation.) For calculations involving multiple order parameters, Equation

2.1.7 becomes a set of N coupled integro-differential equations, where N

equals the number of order parameters, that must be solved numerically to

evolve the system. Additionally, the solution of this equation requires the

use of a Fast Fourier Transform in order to determine the contribution of the

strain energy (as shown in Equation 3.1.4) to the total energy.

2.1.2 PFDD extensions for HCP crystal structures

The PF formulation for an HCP crystal structure departs from the foregoing

one in two main aspects, first by taking into account the low symmetry of

the HCP crystal structure, and second, the multiplicity of slip modes. These

aspects affect the development of all energetic terms in the master energy

functional, which in the present study, are the elastic strain energy, external

energy, and lattice energy in Equation 3.1.3.

The first important departure from the cubic systems is that the basis for

the lower symmetry HCP system is not Cartesian. Directions in the HCP unit

cell are conventionally expressed using the Miller-Bravais four-index notation

{hk.l} or Miller three-index notation {hkl}. Unlike FCC metals, the Miller

three-index notation for HCP slip systems has a 120◦ angle between the first

two indices. Further one axis, the c-axis, is longer than the other two axes.

The c/a ratio depends on the HCP metal. In the present code, we elect

to first transform all slip plane normals and slip directions expressed in the
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HCP basis to a Cartesian coordinate system, so that that usual mathematical

manipulations, utilizing dot and cross-products, can be used.

The second aspect concerns the multiplicity of slip modes, which involves

specifically appreciating the differences in the atomic structure and crystal-

lography among the common slip modes in the HCP system. Every slip mode

in the HCP crystal has its own value of the Burgers vector, slip plane, and

number of slip systems. Within a mode, the slip systems share the same

crystallography but are independently oriented. Here we demonstrate the

method by modeling dislocations on three of the most frequently observed

modes in deformed HCP crystals: the basal, prismatic, and pyramidal-II slip

modes. Both the basal ((0001) plane) and prismatic ({1̄010} type planes)

slip modes accommodate glide of ⟨a⟩-type dislocations, which are dislocations

with ⟨a⟩ Burgers vectors. The prismatic and basal slip modes also each have

three slip systems. The pyramidal-II mode ({2̄112} type planes), however,

can accommodate strain in the ⟨c⟩ direction through the motion of ⟨c + a⟩

dislocations. The Burgers vector is aligned along a specific ⟨c + a⟩ direction

lying in the glide plane. Six slip systems belong to the pyramidal-II mode.

Apart from these three modes, a few other slip modes have been observed

in the deformation of HCP crystals (such as the pyramidal-I mode) but are

not considered in the present examples. These can be incorporated using the

same methodology as developed here.

Redefinition of the slip planes and slip directions for the HCP crystal

affect the formulation of the plastic strain, ϵp, which is used directly in the

calculation of the elastic strain energy and external energy, Equations 3.1.4

and 5.2.4. To accommodate the different slip modes and their distinct Burg-

ers vectors, Equation 3.1.1 is re-written to consider a slip plane-dependent

32



Burgers vector

ϵpij =
1

2

N∑
α=1

bαζα(x, t)δn(sαi m
α
j + sαj m

α
i ) (2.1.8)

As before, the slip plane normal and slip direction are slip system-dependent,

but in the above, the dependency of the magnitude of the Burgers vector on

the slip mode is also taken into account. N is the total number of slip planes.

Considering the three slip modes, we define Nb, Npr, and Npy as the number

of slip systems available in the basal, prismatic, and pyramidal-II slip modes,

respectively. Hence, Nb + Npr + Npy = N and α = 1 to N , where N = 12.

The expression for Elattice will also differ substantially from one slip mode

to another within the same HCP crystal. First, as in the other terms, the

crystallography of the slip planes and slip directions associated with preferred

slip in the HCP crystal must be defined. Second, the lattice energies for each

slip mode need to be considered individually, since the atomic density and

configuration of the atoms differ among the glide planes of these modes. The

general form of the lattice energy presented in Equation 5.2.5 is still appro-

priate; however, the functional form of the periodic potential will depend on

the atomic interactions across the particular slip plane of interest. The total

Elattice will consist of the energy contributions from dislocations that may be

present on any or all of these three slip modes at a time.

In the present formulation, slip by each slip system is defined physically

and so a unique order parameter is associated with each slip system. Con-

sequently, the lattice energies associated with different systems are mutually
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exclusive, permitting us to write the lattice energy as follows:

Elattice = Ebasal + Eprism + EpyrII

=

Nb∑
α=1

∫
ϕbasal
α (ζ1(x), ..., ζNb

(x))d2x

+

Npr∑
α=1

∫
ϕpr
α (ζ1(x), ..., ζNpr(x))d2x

+

Npy∑
α=1

∫
ϕpyrII
α (ζ1(x), ..., ζNpy(x))d2x (2.1.9)

where Ebasal is the lattice energy for dislocations gliding on basal slip planes,

Eprism the lattice energy for dislocations gliding on prismatic planes, and

EpyrII for the lattice energy for dislocations gliding on pyramidal-II planes.

At a given point in the computational volume, lattice energies will for the

most part correspond to one plane and hence order parameters on that plane.

The sum of two or more lattice energies will occur when glide planes from

different slip modes intersect. In addition, as exemplified in Equation 5.2.5,

the periodic potentials may be a function of order parameters from multiple

slip systems.

2.1.3 DFT determined γ-surfaces and GSFE curves

The Elattice is a material-specific and slip-plane-specific function of the or-

der parameters, associated with the energy expended when bonds are bro-

ken across the plane in dislocation glide. In prior works, the models used

for Elattice originate from simple functions, such as a single parameter sine-

squared function [38] to multi-parameter piece-wise quadractic function [90],

to more complex sinusoidal functions modeling in detail a generalized stack-

ing fault energy (GSFE) curve [113, 114], or Fourier sine series [3, 115, 31,

116], modeling a 2D γ-surface. The parameters associated with these func-
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tions are usually informed by an atomistic calculation particular to the ma-

terial. When the energy landscape is too complex to be described reliably

by a function, an alternative approach has been to employ look-up tables

comprised a large set of pre-calculated energies corresponding to a fine grid

of points on the energetic landscapes [110, 94]. Obtaining the energy as-

sociated with dislocation glide on a particular plane has been derived by

considering an ideal situation of cutting a perfect crystal in half across the

glide plane of interest and calculating the excess energy per unit area in-

curred by shifting one crystal half with respect to the other half [117, 118].

The γ-surface is the energy landscape associated with all possible shifts in

the two in-plane dimensions. The energy associated with shifting this plane

in solely one crystallographic direction lying on the plane (one slice of the

γ-surface) corresponds to a curve, referred to as a generalized stacking fault

energy (GSFE) curve. In the case of slip in an FCC crystal, γ-surface is

usually calculated for the {111} slip plane, the one glide plane of interest,

and the energy associated with shifting this plane in either the ⟨110⟩ or ⟨112⟩

directions are the common GSFE curves. GSFE curves and γ-surfaces do not

directly represent a dislocation, but they represent the energy associated with

the changes in atomic positions that a dislocation would cause as it glides

on that plane. These energetic quantities have been adopted in Elattice since

they are undeniably more convenient to calculate than the Peierls barrier.

Here, as mentioned, we apply the model to different glide planes in four

HCP crystals, Mg, MgY, Ti, and Zr, and we will adopt GSFE curves or

γ-surfaces in Elattice for them. These energetic quantities are commonly cal-

culated with atomic-scale methods, such as DFT or MD [111, 20]. However,

most DFT γ-surfaces and GSFE curves apply to cubic materials and not

to planes in HCP materials [119, 120]. The most common cases for HCP
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metals are the GSFE curves for the basal slip mode in Mg and Mg alloys

[121, 16, 20]. Here we will use the GSFE for the basal plane in Mg47Y from

[122]. For the prismatic slip plane in Mg, Zr and Ti, the DFT-calculated

GSFE curves that we will use have been calculated in [16, 77, 123, 21, 124].

The γ-surface for the pyramidal-I plane in Mg has already been presented in

[15, 16, 125].

For the PFDD calculations presented in this work, we performed addi-

tional DFT calculations for the GSFE curves for the HCP crystalline planes

that are not available in the literature, which include γ-surfaces and GSFE

curves for the basal plane in Mg and the pyramidal-II planes in Mg and Ti.

For all DFT calculations here we use the code as implemented in Vienna

Ab-initio Simulation Package (VASP) [126, 127] and utilize the generalized

gradient approximation (GGA) for the exchange correlation functional with

the Perdew-Burke-Ernzerhof (PBE) parameterization [128]. The interaction

between valence electrons and ionic cores was treated using PAW potentials.

The number of valence electrons in Mg potential taken is 2 and in the Ti

potential 4. A plane wave energy cutoff of 400 eV was employed and the

structure was optimized until the force on each atom became smaller than

0.01 eV/A. We used a 19x19x19 Gamma-centered Monkhorst Pack k-point

mesh to integrate the Brillouin Zone of the primitive HCP unit cells to cal-

culate the lattice constants and elastic constants.

The lattice parameters and elastic constants are presented Table 2.1.1.

All values were calculated here using our DFT methods but the moduli for

Mg47Y, which were obtained from [122]. Overall, these are in good agreement

with previous DFT calculations and experimental measurements [77, 15].

These values will be used in the PFDD calculations that follow. For the sake

of simplicity, the elastic strain energy generated around the dislocation is
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calculated under the assumption that the material is a linear elastic, isotropic

solid. The isotropic elastic stiffness tensor is given by:

C =



λ + 2µ

λ λ + 2µ

λ λ λ + 2µ Symm

µ

µ

µ


(2.1.10)

where µ is the shear modulus and λ is Lamé’s first parameter, which are

related by

Kb = λ +
2

3
µ (2.1.11)

We calculate µ and Kb using the following Voigt equations for hcp [129]

µ =
1

15
[(2C11 + C33) − (C12 + 2C13) + 3(2C44 + C66)] (2.1.12)

Kb =
1

9
[(2C11 + C33) + 2(C12 + 2C13)] (2.1.13)

The DFT determined and isotropic averages used in the calculations for Mg,

Ti, and Zr are presented in Table 2.1.1.

In the DFT calculation of the generalized stacking fault energies, we used

the relaxed method [15], wherein for each displacement step, minimization

of the energy of the system is ensured by fixing all atomic positions along

the glide direction and allowing positions along the plane normal and the

in-plane direction lying normal to the glide direction to relax. For each slip

plane, the supercell dimensions are chosen based on the minimum number

of layers along the z-direction for which convergence in system energy is

attained. For Mg, the periodic model for basal slip plane contains 52 atoms

and its dimensions are 3.19 Å along x, 5.53 Å along y and 77.17 Å along z.
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Table 2.1.1: Lattice constant (in Å) and elastic constants (units of GPa)

for bulk HCP-Mg, Ti, and Zr obtained from DFT and isotropic averages for

the shear modulus, µ, and Lamé’s parameter, λ.

Material a (Å) c/a C11 C33 C12 C13 C44 C66 µ λ

Magnesium 3.190 1.625 63.3 65.7 25.9 20.8 18.0 18.7 19.26 23.53

Mg47Y 3.206 1.626 63.3 65.7 25.9 20.8 18.0 18.7 19.26 23.53

Titanium 2.923 1.581 159.4 191.7 108.9 83.9 37.6 25.2 35.68 94.43

Zirconium 3.231 1.601 135.1 166.1 80.3 70.7 26.1 27.4 30.23 77.59

The periodic model for pyramidal-II slip plane in Ti contains 60 atoms and

its dimensions are 5.063 Å along x, 5.467 Å along y, and 51.960 Å along z.

All supercells contain a thick vacuum layer of 15 Å along the z-direction.

2.1.4 Lattice energy for the basal slip mode

On the basal plane, there are three possible directions of slip, each corre-

sponding to an order parameter for that plane, ζ1, ζ2, and ζ3. For the basal

plane, the lattice energy Ebasal can be expressed as

Ebasal =

Nb∑
α=1

∫
ϕbasal
α (ζ1, ζ2, ζ3)d

2x , (2.1.14)

where ϕbasal
α is the periodic potential and α = 1 to Nb, the number of basal slip

systems. As mentioned, here we characterize this potential with the GSFE

surface, or γ-surface, the excess energy associated with shift one crystalline

half relative to another about the basal plane. Using DFT for set of in-plane

shear displacement, this surface has been calculated for Mg. Figure 2.1.1

presents the γ-surface for the basal plane calculated from DFT. First, it is
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recognized that the location of the maxima and minima in this basal plane

γ-surface coincide well with those of the {111} plane in an FCC crystal. In

prior PFDD work on FCC γ-surfaces, a common approach is to parameterize

a continuous function for the ϕ(ζ) from a discrete set of DFT calculations

on a γ-surface. In this way derivatives were directly calculable and less DFT

calculations were required overall to construct the potential. A function that

fit the FCC plane well is the seven-coefficient complex Fourier series function

[115, 3, 116]. Here we adopt this function for the ϕbasal
α and parameterize it

for the basal plane using the seven DFT calculated points on the basal plane

γ-surface. This function is given by

ϕbasal(ζ1, ζ2, ζ3) = j0 + j1[cos 2π(ζ1 − ζ2) + cos 2π(ζ2 − ζ3) + cos 2π(ζ3 − ζ1)]

+ j2[cos 2π(2ζ1 − ζ2 − ζ3) + cos 2π(2ζ2 − ζ3 − ζ1) + cos 2π(2ζ3 − ζ1 − ζ2)]

+ j3[cos 4π(ζ1 − ζ2) + cos 4π(ζ2 − ζ3) + cos 4π(ζ3 − ζ1)]

+ j4[cos 4π(3ζ1 − ζ2 − 2ζ3) + cos 4π(3ζ1 − 2ζ2 − ζ3)

+ cos 4π(3ζ2 − ζ3 − 2ζ1) + cos 4π(3ζ2 − 2ζ3 − ζ1)

+ cos 4π(3ζ3 − ζ1 − 2ζ2) + cos 4π(3ζ3 − 2ζ1 − ζ2)]

+ k1[sin 2π(ζ1 − ζ2) + sin 2π(ζ2 − ζ3) + sin 2π(ζ3 − ζ1)]

+ k3[sin 4π(ζ1 − ζ2) + sin 4π(ζ2 − ζ3) + sin 4π(ζ3 − ζ1)]

(2.1.15)

where the coefficients j0− j4, k1, k3 define the material-dependent local max-

imum, local minimum, and curvature of the 2D energy surface. These coeffi-

cients correspond to particular points taken from the γ-surface, G,G1, G2, G3, T, T1
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and are related to the coefficients via the following expressions [115]:

j0 = 0.823(4G− 6G1 + 6G2 − 7.392G3 + 0.804T + 0.804T1)

j1 = 0.274(−8G + 12G1 − 12G2 + 14.785G3 − 1.608T + 0.215T1)

j2 = 0.091(23.072G− 29.138G1 + 32.785G2 − 42.215G3 + 2.569T − 2.412T1)

j3 = 0.137(−8G + 12G1 − 12G2 + 14.785G3 + 0.215T − 1.608T1)

j4 = 0.023(1.856G− 13.723G1 + 6.431G2 − 4.277G3 − 0.962T + 3.531T1)

k1 = 0.137(−32G + 48G1 − 48G2 + 62.785G3 − 4.608T − 2.785T1)

k3 = 0.046(17.072G− 19.292G1 + 31.923G2 − 34.708G3 + 3.341T − 8.354T1)

(2.1.16)

Figure 2.1.1 compares the DFT calculated γ-surface for pure Mg and

the surface calculated with the Fourier series approximation presented in

Equation 2.1.15. The points, G,G1, G2, G3, T, T1, taken from the γ-surface to

parameterize the approximation, are also shown on both energy landscapes.

The pathway starting at point A and traveling through points T and T1

(in ⟨112̄0⟩ type directions) represents a perfect Burgers vector translation.

The other two pathways (one starting at A and traveling through G1, G2, G3

to point G, and the other starting at point G), represent the two partial

dislocation translations in ⟨11̄00⟩ type directions. In the case of basal slip,

the six points shown in Figure 2.1.1 from the material γ-surface determine

the coefficients needed in Equation 2.1.15. These values for pure Mg are: G =

29.32 mJ/m2, G1 = 57.70 mJ/m2, G2 = 88.49 mJ/m2, G3 = 66.08 mJ/m2,

T = 262.73 mJ/m2, and T1 = 151.53 mJ/m2. The greatest deficiency of

the Fourier series approximation is labeled by M in the top figure of Figure

2.1.1. The M point represents a global energetic maximum where two atoms

are located directly on top of each other, and is incorrectly represented by

Equation 2.1.15. However, this atomic configuration is not located along a
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φbasal(ζ1, ζ2, ζ3)

Figure 2.1.1: Comparison of γ-surfaces for the basal slip plane in Mg as

determined with DFT (bottom) and the parameterization (top) presented in

Equation 2.1.15. The points used from the material γ-surface to determine

the coefficients calculated with Equation 2.1.16 are labeled on both plots.

pathway that would be involved in the dissociation of the perfect dislocation.

In order to model basal slip in Mg47Y, we determined a parameterized γ-

surface from the same seven points lying along the ⟨112̄0⟩ and ⟨11̄00⟩ GSFE

curves calculated by DFT by [122]. From their work, we obtained the follow-

ing values for Mg47Y: G = 27.80 mJ/m2, G1 = 44.46 mJ/m2, G2 = 83.82

mJ/m2, G3 = 61.65 mJ/m2, T = 214.69 mJ/m2, and T1 = 124.34 mJ/m2.

Using these values in Equation 2.1.16, the coefficients needed to inform ϕbasal

are calculated and presented in Table 2.1.2. Figures 2.1.2(a) and (b) directly

compare the GSFE curves in a ⟨11̄00⟩ type direction as determined with DFT

and the Fourier series approximation, showing reasonable agreement for this
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particularly important slice of the energetic landscape.

Table 2.1.2: Basal GSFE parameterization coefficients: Inter-planar spac-

ing d normalized in terms of the Burgers vector b and the calculated coeffi-

cients for the lattice energy potential function (Equation 2.1.15) for the basal

slip mode. All coefficients are shown in units of mJ/m2.

Material d j0 j1 j2 j3 j4 k1 k3

Mg 0.81250 120.7223 -4.6751 -53.0878 25.4338 -3.8782 13.6261 -21.5761

Mg47Y 0.81305 143.6364 -33.1868 -18.2934 5.6344 -0.9729 -44.8569 -6.2832
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Figure 2.1.2: Direct comparison of GSFE curves determined with DFT and

the periodic potentials used in the calculation of the lattice energy in PFDD

for (a) basal slip systems in pure Mg, (b) basal slip systems in Mg47Y, (c)

prismatic slip systems in pure Mg, Zr, and Ti, and (d) pyramidal-II slip

systems in pure Mg, and Ti. Unlike the symmetric energetic paths for partials

on the basal and prismatic planes, the pyramidal-II plane can have different

positions and values for the local minima and maxima.
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2.1.5 Lattice energy for prismatic and pyramidal II

slip modes

For prismatic slip, the relevant GSFE curve on the prismatic plane is as-

sociated with the prismatic slip system, {1̄010} ⟨12̄10⟩. For a prismatic

dislocation in PFDD, Eprism can be expressed as a function of a single or-

der parameter ζα corresponding to the slip direction ⟨12̄10⟩ on the prismatic

plane. The lattice energy is given by

Eprism =

Npr∑
α=1

∫
ϕprism
α (ζα)d2x , (2.1.17)

ϕprism
α is the periodic potential for the excess energy expended in gliding

along the slip vector. The ϕprism
α can be characterized by a GSFE curve

along the slip direction ⟨12̄10⟩. Here, these GSFE curves are calculated by

DFT and are taken from published DFT results from [124] for Mg, [77] for

the Zr data, and [123] for the Ti data. Figure 2.1.2(c) displays these curves.

In a material like Zr, the GSFE curve along the prismatic plane has a local

minimum, suggesting the possibility of a dislocation dissociation. Conversely

in Mg, the GSFE curve has no local minimum, which would imply that the

core is likely to remain compact.

The relevant GSFE curve for the pyramidal-II slip system is {2̄112}

⟨21̄1̄3⟩. Similar to the prismatic case, we consider only one active order

parameter ζα defined in a ⟨21̄1̄3⟩-type slip direction. In this case, the lattice

energy is given by

EpyrII =

Npy∑
α=1

∫
ϕpyrII
α (ζα)d2x , (2.1.18)

where ϕpryII is the periodic potential associated with excess energy in gliding

along the slip vector. For ϕpryII , we adopt a generalized stacking fault energy
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curve along ⟨21̄1̄3⟩ calculated using DFT. The pyramidal plane GSFE curve

for Mg is taken from [15], but here, it was necessary to calculate the GSFE

curve for Ti, as described in Section 2.1.3. GSFE curves for both Mg and

Ti are different from those DFT curves previously reported, which did not

employ full relaxation [16, 125].

In an effort to provide a continuous function for ϕ, we observe that the

DFT GSFE curves for the prismatic and pyramidal-II systems for the par-

ticular metals we study here can be generally represented by the following

function (where we drop the subscript α on ζ for brevity)

ϕm(ζ) = p0 + p1 cos(2πζ) + p2 cos(4πζ) + p3 cos(6πζ) + p4 cos(8πζ)

+ q1 sin(2πζ) + q2 sin(4πζ) + q3 sin(6πζ) + q4 sin(8πζ) , (2.1.19)

where m = prism and/or pyrII depending on the active slip mode(s). We

found this function convenient, but emphasize that not all GSFE curves

would require all nine coefficients. If the potential is symmetric, such as for

the prismatic plane GSFE curve for Ti, then the coefficients q1−q4 can be set

to zero. If it is symmetric and contains no local minima, like the prismatic

plane GSFE curve for Mg, then p4 can also be equal to zero.

The parameterized curves for ϕprism
α are compared against the DFT cal-

culations in Figure 2.1.2(c). In these three metals, the continuous potential

function provides excellent agreement to the data. Figure 2.1.2(d) shows the

DFT calculated pyramidal-II GSFE curves in comparison with the function

in Equation 2.1.19 for Mg and Ti. The pyramidal-II plane has an asym-

metric GSFE curve along the slip direction, which requires calculation of all

p0 − p4, q1 − q4 coefficients to fit the potential ϕpyrII
α to the DFT determined

energy profile. For the two pyramidal-II curves, the function offers an ex-

cellent continuous function representation to the DFT data. All coefficients
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Table 2.1.3: Prismatic and pyramidal-II GSFE parameterization coeffi-

cients: Inter-planar spacing d normalized in terms of the Burgers vector

b and the calculated coefficients for the lattice energy periodic potentials for

the prismatic and pyramidal-II (Equation 2.1.19) slip mode. All coefficients

are shown in units of mJ/m2.

Material Plane d p0 p1 p2 p3 p4 q1 q2 q3 q4

Mg Prism 0.86603 119.18 -102.05 -13.60 -1.117 0.000 0.000 0.000 0.000 0.000

Ti Prism 0.86603 138.65 -89.53 -43.96 2.591 -7.328 0.000 0.000 0.000 0.000

Zr Prism 0.86603 129.90 -93.28 -33.45 3.198 -4.051 0.000 0.000 0.000 0.000

Mg Pyr II 0.22318 217.98 -75.35 -116.48 -6.137 -9.728 -55.26 15.05 8.900 -1.228

Ti Pyr II 0.22589 427.52 -165.06 -220.30 -22.96 -9.542 -52.33 118.72 -13.57 -16.63

for the prismatic and pyramidal-II cases were fit using the MATLAB curve

fitting tool [130] and they are summarized in Table 2.1.3.

2.2 Equilibrium dislocation structure

In the following sections, we apply the HCP-PFDD method to simulate the

dissociation of an initially perfect dislocation into a stable, equilibrium struc-

ture under zero applied stress. The structural characteristics that can be as-

certained from the calculation are the partial dislocations resulting from the

dissociation, the distance between the partials, the width of the individual

partials and any asymmetry between their widths. For demonstration, the

character of the starting perfect dislocation will be either pure edge or pure

screw, although in principle, a dislocation of any initial character may be

considered. In the examples, these dislocations lie on one of three planes:

basal, prismatic, and pyramidal-II. When possible, we compare our results

to those previously calculated by DFT and molecular statics or MD. Not all
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cases treated here have been observed experimentally or pursued by other

computational methods, such as DFT or MD.

2.2.1 Simulation configuration

All simulations were carried out in a 3D cuboidal simulation cell. Due to the

use of a Fourier transform in the calculation of the elastic strain energy, all

boundaries are periodic. We elect to orient the primary glide plane such that

its normal direction lies parallel to the z-axis, as shown in Figure 2.2.1(a).

Accordingly the crystallographic directions of the x, y, and z-directions de-

pend on the slip system of interest. The corresponding directions for each

simulation cube used for the basal, prismatic, and pyramidal-II planes are

shown for an edge dislocation in Figures 2.2.1(b), (c), and (d), respectively.

The x−, y−, and z − axis in our simulation cell Figure 2.2.1(a) correspond

to the x−, y−, and z−axis respectively in our unit cells (see Figures 2.2.1(b-

d)) when initializing for an edge dislocation and to y−, x−, and z − axis

respectively when initializing for a screw dislocation. Thus, the slip plane

normal is always parallel to the z−axis of the simulation cell, the dislocation

line sense is always parallel to the y − axis and the Burgers vector, which

determines the orientation of the unit cell within the simulation cell and the

character of the dislocation with respect to the line sense, is parallel to the

x − axis for an edge dislocation and the y − axis for a screw dislocation.

This additional orientation step is not a requirement but a choice made here

since only one dislocation is being evaluated at a time in this study.

For convenience the grid spacing, λ0, in all x, y, and z directions, is chosen

to be the inter-planar distance of the slip plane, d, (normalized by the Burg-

ers vector b of a dislocation on that plane for a material), given in Tables

2.1.2 and 2.1.3. For any HCP slip plane, given in (hkil) or (hk.l) Miller-
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Figure 2.2.1: Schematics showing (a) the initial simulation set-up for the

PFDD computational cell, which was utilized with orientations for an edge

dislocation on the (b) basal, (c) pyramidal-II, and (d) prismatic glide planes.

The simulation set-up for a screw dislocation would have the same initial-

ization shown in (a), while the unit cells in (b-d) would be rotated around

their respective z − axis by 90◦. For clarity, the x−, y−, and z − axis in

our simulation cell correspond to the x−, y−, and z − axis respectively in

our unit cells when initializing for an edge dislocation and to y−, x−, and

z − axis respectively when initializing for a screw dislocation. Thus, the slip

plane lies parallel to the simulation cell surface, the dislocation line sense lies

parallel to the y − axis and the Burgers vector (and unit cell) orientation is

reflective of the desired dislocation character).
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Bravais notation the un-normalized inter-planar spacing d∗ depends on the

c/a ratio, and is given by 1
d∗2

= 4
3
h2+hk+k2

a2
+ l2

c2
. In this way, the c-axis, and in

particular, differences in the c-axis length (or the c/a ratio) for different HCP

materials are taken into account. See Figure 2.A.1 in Appendix 2.A on page

69 for further explanation on why λ0 = d in this PFDD formulation. For the

particular set up chosen here, the c-axis length is taken into account in the

grid spacing normal to the slip plane (z-axis in Figure 2.2.1(a)). Accounting

for the c-axis in this way is advantageous when using a cubic computational

grid, as is done here. A computational cell length of D = 256d was used

for simulations on basal and prismatic planes, and D = 640d was used for

simulations modeling the pyramidal-II plane. By repeating the simulation

for different cell sizes, the cell sizes used for the results that follow were deter-

mined to be sufficiently large that the dislocation structures were unaffected

by the image dislocations in the periodic cells.

Figure 2.2.2: Zoomed-in area of the slip plane showing the gradient of the

disregistry d∆/dx from PFDD for a basal edge dislocation in Mg as it evolves

to a final equilibrium dissociated state over time: (a) 0, (b) 400, (c) 1000,

and (d) 1400 time steps. The approximate side length of the area shown is

5.1 nm. The arrows labeled b and bp are the Burgers vectors for the full and

partial dislocations respectively.
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Inside the crystal, a dislocation dipole, consisting of a pair of perfect

dislocations with equal and opposite sign, is initially placed on the glide plane

(see Figure 2.2.1(a) and 2.2.2(a,c)). The dipole allows for a zero Burgers

circuit around the simulation cell. The calculations are completed for both

a perfect edge dipole and a perfect screw dipole. For the edge case, the

line orientation is aligned along the y-axis and the Burgers vector along the

x-axis. For the screw dipole, the line orientation is aligned along the y-

axis and Burgers vector also along the y-axis. With the perfect dislocations

in place on the glide plane, the simulation begins by evolving the system

energy using Equation 2.1.7 to a minimum energy state. During this time, we

observe that in some cases a perfect dislocation dissociates into smaller partial

dislocations, which move apart in the glide plane, while in other cases, the

dislocation simply spreads but does not dissociate. Since no external stress

is applied in the examples here, the partial dislocations move to achieve an

equilibrium structure.

To identify the displacement resulting from dislocation glide, particularly

when multiple order parameters are active, we calculate the disregistry ∆(x)

across the glide plane, which is defined as [3]

∆(x) =
3∑

i=1

ζi(x)si · sp , (2.2.1)

where sp is the Burgers vector direction of the initial perfect dislocation, and

si are the slip directions of each order parameter ζi on the glide plane. For

instance, in the case of the basal plane, there are three order parameters,

ζ1, ζ2, and ζ3 (in directions [112̄0], [12̄10], [2̄110]). Slip directions of Shockley

partial dislocations ([1̄100], [01̄10], [101̄0]) would correspond to a linear com-

bination of ζ1, ζ2, and ζ3, see Equation 2.1.15. A dislocation is located at

the boundary where the disregistry ∆(x) transitions from 0 to 1 (see Figures
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2.2.2(a,b)).

A dislocation results in a gradient in ∆(x). The peak in d∆(x)/dx cor-

responds the central position of a dislocation and spread non-zero d∆(x)/dx

about the peak corresponds to its width (see Figures 2.2.2(c,d)). Splitting

of the perfect dislocation into multiple partial dislocations of smaller Burg-

ers vector values would correspond to multiple peaks in the final d∆(x)/dx

profile, the distance between which is quantified as the equilibrium stack-

ing fault width SFW (which is also referred to as Re interchangeably). In

the case, where the perfect and partial dislocations are collinear (i.e., only

one order parameter is active), the disregistry (∆), calculated in Equation

2.2.1, is equivalent to the order parameter (ζ). To best visualize important

structural features of the relaxed dislocations and any resulting partials and

SFW we plot a zoomed in cross-section, centered around the position of the

initial perfect dislocation, for both the disregistry ∆(x) and the gradient of

the disregistry d∆/dx.

2.2.2 Dissociation on the Basal Plane

With the PFDD model, we simulate the dissociation of perfect edge and

screw oriented dislocations along the basal plane in pure Mg. Figure 2.2.3

shows the disregistry ∆(x) profile of the final state of the edge and screw basal

dislocation after the dissociation has completed. To reveal the dislocations,

in the same figure, the gradient d∆(x)/dx is also presented.

The calculation predicts that both edge and screw dislocations split into

two Shockley partials, which correspond to the two peaks in the d∆(x)/dx

curve. The spread about these peaks indicates the widths of the partials,

which are observed to be nearly equal. The equilibrium stacking fault width

SFW (also referred to as Re) is the distance between these peaks or the
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Figure 2.2.3: Basal equilibrium stacking fault width calculations for initially

(a) edge and (b) screw oriented perfect dislocations in the basal plane as

determined by PFDD. Results for both pure Mg and Mg47Y are shown.

center-to-center distance between the partials. Due to the grid spacing used

in the PFDD calculations the error in the Re is ± 0.5d. As defined, a portion

of the Re includes the cores of the partials and is not comprised entirely

of a perfect intrinsic stacking fault. For an edge dislocation in the basal

plane of pure Mg, the Re = 15.551Å (= 4.875b), where b = 3.190Å is the

Burgers vector magnitude of a dislocation on the basal plane for Mg. For

the screw dislocation, Re = 10.367Å (= 3.250b). The dissociation of perfect

edge and screw basal dislocations in Mg47Y are also simulated and the results

included in Figure 2.2.3 for comparison. The edge dislocation dissociation

results in Re = 20.856Å (= 6.504b), and the screw dislocation dissociation, a

Re = 10.428Å (= 3.2522b), where b = 3.2064 on the basal plane for Mg47Y.

The differences in the SFWs between Mg and Mg47Y are negligible for the

screw dislocation and ∼ 5 Å, just slightly less than 2b, wider for an edge

dislocation on Mg47Y compared to Mg. It can also be seen from d∆/dx that
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the cores of the two partials are narrower for Mg47Y compared to those for

Mg and from ∆(x = 0) that the magnitude of the Burgers vectors for both

the right and the left partials are equal.

The PFDD calculation follows the general expectation from continuum

dislocation theory, which is that a perfect dislocation on the basal slip plane

undergoes a planar dissociation following [12]:

1

3
[12̄10] → 1

3
[11̄00] +

1

3
[01̄10] (2.2.2)

The above reaction indicates that a perfect dislocation will dissociate into

two Shockley partial dislocations. Analogous to the dissociation of a perfect

FCC dislocation on the {111} plane, the Burgers vectors of these Shockley

partial dislocations on the basal plane are non-collinear and correspond to the

two ⟨11̄00⟩-type directions the basal γ-surface leading to the local minimum

[125, 12, 18]. A force balance on this dissociated structure gives as the split

distance or stacking fault width from the following analytical equation [18]

Re =
µ

2πγI

[
(bL · ξL) (bT · ξT ) +

(bL × ξL) · (bT × ξT )

1 − ν

]
(2.2.3)

where γI is the intrinsic SFE, ν is Poisson’s ratio, and bL and bT are the

Burgers vectors of the leading and trailing partial dislocations, respectively.

This expression presumes the reaction has already happened, reached the

local minimum configuration, and does not consider the dissociation process

that achieved it. Therefore, the only energy on the γ-surface needed is the

γI , intrinsic stacking fault energy corresponding to the local minimum. This

analytical model for Mg basal edge and screw dislocations predicts Re =

27.360Å (= 8.577b) and Re = 13.316Å (= 4.174b), respectively. Similarly, in

the case of Mg47Y, the analytical model produces Re = 27.018Å (= 8.443b)

for the split edge dislocation, and Re = 13.15Å (= 4.109b) for the split

screw dislocation. In both materials, the analytical model overestimates the
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SFW compared to the PFDD model (see table:basalSFWs). The PFDD

simulation takes into account the changes in interaction and lattice energies

as the partials glide apart during the dissociation process towards its final

equilibrium state, which is not known or specified a priori. The analytical

model, in contrast, assumes an end state comprised of two distinct partial

dislocations and does not account for changes in the interaction energy as

the two partial dislocations move apart from each other.

Other computational approaches have been used to calculate the equilib-

rium structure of the basal dislocation. We compare these results with the

PFDD calculations of the equilibrium SFWs for both edge and screw disloca-

tions on the basal plane in pure Mg in Table 2.2.1. Atomic-scale simulation

has been used to simulate the dissociation process, considering dynamical

forces in the disassociation process, which are missing in the PFDD simu-

lation. The data among the atomistic studies are wide spread, due to the

use of different simulation cell sizes, boundary conditions, and interatomic

potentials. Nevertheless, the PFDD results lie in well within this range. The

SFWs reported here are notably close to DFT predictions from [19] and [17].

Our results agree well with those from the atomistic study by [20], who un-

like the others in the table used the Mg EAM potential by [131]. Values for

SFWs calculated by [16], using both DFT and simulations using the MEAM

potential, are the lowest compared to all published DFT and EAM values.

We also show estimates form GPN models, which utilize a time-dependent

minimization scheme similar to the one used here. Differences between our

results and GPN can be attributed to the functional form and origin of the

fault energies used in the development of the Elattice term. Our results can

be directly compared to the GPN model by [29], wherein they also used as

input a full γ-surface.
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Table 2.2.1: Basal equilibrium stacking fault widths in units of Å from the

dissociation of edge and screw oriented perfect dislocations along the basal

plane in pure Mg reported previously in the literature and compared to val-

ues calculated with PFDD. The different methods are abbreviated as: phase

field dislocation dynamics (PFDD), density functional theory (DFT), atom-

istic calculations that use an embedded atom method (EAM) or a modified

embedded atom method (MEAM) interatomic potential, Generalized Peierls-

Nabarro (GPN), and anisotropic linear elastic theory (ALET). In the PFDD

calculations, the error bars correspond to 0.5d, which is error due to the grid

spacing used in the calculations.

Author Edge (Å) Screw (Å) b (Å) Method

This work
15.551 ± 1.296 10.367 ± 1.296

3.19
PFDD

27.360 13.316 Analytical [18]

[19]

16.64 6.4

3.2

DFT

14.4 6.4 EAM

12.8 1.28 EAM

[17]
23.895 11.151 3.186 ALET

22.323 12.756 3.189 DFT

[16]
7.011 4.016 3.187 DFT

12.493 4.016 3.187 MEAM

[132] 27.2 14.016 3.2 P-N

[20] 18.816 6.912 3.2 EAM

[133] 25.6 16.416 3.2 EAM

[29] 21.312 – 3.2 GPN
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2.2.3 Dissociation on the Prismatic Plane

We next apply the extended PFDD model to dislocations belonging to the

prismatic slip mode. Figure 2.2.4 shows the disregistry ∆(x) and its gradient

d∆/dx profiles across the final equilibrium dislocation structure for Mg, Zr,

and Ti. In the case of Mg, neither the edge nor screw dislocation dissociated,

and no stacking fault region develops. The compact structure of the perfect

dislocation is maintained. Stability of the compact core can be expected

since the GSFE curve for Mg on the prismatic plane lacks a local minimum.

This result agrees with DFT and atomistic calculations [16]. For Zr and Ti,

the results from PFDD in Figure 2.2.4 indicate that the perfect dislocations

dissociate into two distinct partial dislocations.

Figure 2.2.4: Prismatic equilibrium stacking fault width calculations for

initially (a) edge and (b) screw oriented perfect dislocations in the prismatic

plane as determined by PFDD. Results for pure Mg, Zr, and Ti are shown.

In the case of Zr and Ti, both perfect edge and screw dislocations dis-

sociate into two partials, collinear of the [12̄10] type and equal in Burgers
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vector. The final equilibrium SFW is Re = 5.596Å (= 1.732b) for Zr and

Re = 5.062Å (= 1.732b) for Ti. Neither metal exhibits a strong edge/screw

character dependence. The differences between the screw and edge SFW

are small and must lie within ± 0.5d, hence significant differences are not

apparent in the PFDD calculations. The structures of these dislocations

are symmetric, with the cores of the partials being equal in width. In both

metals, the SFW is not broad, an outcome of the shallow local energy mini-

mum associated with formation of the stacking fault as seen in the prismatic

GSFE curve 2.1.2(c). Further the core widths of the partial dislocations are

relatively large compared to the SFW, suggesting that the SFW is not com-

prised of a homogeneous intrinsic stacking fault. For these dislocations the

two partials are slightly more separated in Ti than Zr. The variations arise

because the final split distances are influenced by both the repulsive elastic

interactions between the partials and the local maxima and minimum in the

GSFE curves. Ti has the lower peak barriers, which would lead to the wider

partial cores, and it also has the higher modulus, which would lead to the

stronger repulsive interaction.

From continuum dislocation theory, perfect dislocations on the prismatic

slip plane are expected to dissociate following [12, 125]:

1

3
[12̄10] → 1

6
[12̄10] +

1

6
[12̄10] (2.2.4)

As we have seen from the PFDD calculations, this dissociation is seen only to

occur in Zr and Ti and not in Mg. Applying the analytical formula, Equation

2.2.3, to Zr and Ti only and using the energy minimum in the DFT GSFE

curves for γI , the equilibrium SFWs for an edge and screw dislocation in

Zr and Ti are found to be much larger than those calculated by PFDD.

For Zr, the analytical model predicts Re = 9.730Å (= 3.011b) for edge and
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Re = 6.071Å (= 1.879b) for screw. For Ti, the SFW values are Re = 10.282Å

(= 3.518b) and Re = 6.370Å (= 2.179b) for edge and screw, respectively. The

PFDD simulation takes into account the changes in interaction and lattice

energies as the partials glide apart during the dissociation process towards

its final equilibrium state. The analytical model, in contrast, neglects the

dissociation process.

Table 2.2.2: Prismatic equilibrium stacking fault widths in units of Å from

the dissociation of screw oriented perfect dislocations along the prismatic

plane in pure Zr reported previously in the literature and compared to val-

ues calculated with PFDD. The different methods are abbreviated as: phase

field dislocation dynamics (PFDD), anisotropic linear elastic theory (ALET),

and semidiscrete variational Peierls-Nabarro (SVPN). In the PFDD calcula-

tions, the error bars correspond to 0.5d, which is error due to the grid spacing

used in the calculations.

Author Screw (Å) b (Å) Method

This work
5.596 ± 1.399

3.231
PFDD

6.071 Analytical [18]

[22] 6.1 3.23 ALET

[24] 17.5 3.23 SVPN

Transmission electron microscopy (TEM) analyses of Ti and Zr suggest

that screw dislocations encounter much higher Peierls barriers than non-

screw dislocations, and therefore, control plastic deformation [134, 135, 136].

Published estimates for the equilibrium SFWs have focused on screw and

not edge dislocations. Previous work has computed SFWs for screw disso-

ciations on the prismatic plane in Zr using a P-N model [23, 24, 21]. When

these models are informed with DFT values for the elastic constants and
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γI , the calculations are consistent with those calculated here with PFDD

(e.g., 5.9 Å and 4.6 Å reported by [21]). Other numerical approaches in-

clude anisotropic linear elastic theory (ALET) and semidiscrete variational

Peierls-Nabarro (SVPN) and these are listed in Table 2.2.2. The ALET model

[22] achieves reasonable agreement with PFDD, which can be expected since

both approaches were informed with DFT. The SVPN result [24], however,

is noticeably higher, since the system minimization is time independent, and

like the analytical model, does not consider the dissociation process.

2.2.4 Dissociation on the Pyramidal-II Plane

We repeated the equilibrium SFW calculation with PFDD for dissociation of

edge and screw dislocations on the pyramidal-II slip plane in Mg and Ti. The

GSFE curves along the pyramidal-II slip plane have a local minimum, and

we expect two collinear partial dislocations with Burgers vector in a ⟨112̄3⟩

direction to form. Figure 2.2.5 shows the disregistry profiles resulting from

the PFDD simulations for edge/screw dissociation in both Mg and Ti. The

calculations indicate that two distinct partial dislocations form in both Mg

and Ti during the PFDD simulations. For Mg, PFDD simulations calculated

an equilibrium SFW of Re = 25.810Å (= 4.240b) and Re = 19.018Å (=

3.125b) for perfect edge and screw dislocation dissociation, respectively. In

the case of Ti, PFDD calculates Re = 17.293Å (= 3.162b) and Re = 11.117Å

(= 2.033b) for edge and screw dislocation dissociation, respectively.

A few experimental observations as well as MD simulations have reported

the perfect dislocations on the pyramidal-II slip plane to dissociate into two

partials equal in magnitude and collinear according to [12, 125, 15, 81, 137]:

1

3
[21̄1̄3] → 1

6
[21̄1̄3] +

1

6
[21̄1̄3] (2.2.5)
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Edge and screw ⟨c + a⟩ dislocation dissociation distances have been modeled

with DFT, using a cluster approach with fixed boundary conditions (edge)

and flexible boundary conditions (screw) but only in Mg, with calculated

stacking fault widths of ∼ 18Å and ∼ 16Å respectively [137]. Figure 2.2.5

shows the PFDD calculated dissociation distances for edge and screw dis-

locations on the pyramidal II plane in Mg and Ti. The results for Mg are

larger than those previously mentioned from literature (43% greater for edge

and 18.8% greater for screw).

Figure 2.2.5: Pyramidal-II equilibrium stacking fault width calculations for

initially (a) edge and (b) screw oriented perfect dislocations in the pyramidal-

II plane as determined by PFDD. Results for both pure Mg, and Ti are shown.

In the case of Mg, DFT has previously calculated the equilibrium SFW

for both edge and screw dislocations on the pyramidal-II slip plane, as shown

in Table 2.2.3. The equilibrium SFW as calculated with PFDD for both the

edge and screw dislocation dissociation reactions are slightly higher than

DFT and analytical calculations, but compare well with those determined

with DFT. We also note that there are further variations among the DFT
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Table 2.2.3: Pyramidal-II equilibrium stacking fault widths in units Å from

the dissociation of edge and screw oriented perfect dislocations along the

pyramidal-II plane in pure Mg reported previously in the literature and com-

pared to values calculated with PFDD. The different methods are abbreviated

as: phase field dislocation dynamics (PFDD), and density functional theory

(DFT). In the PFDD calculations, the error bars correspond to 0.5d, which

is error due to the grid spacing used in the calculations.

Author Edge (Å) Screw (Å) b (Å) Method

This work
25.810 ± 0.679 19.018 ± 0.679

6.087
PFDD

22.155 15.632 Analytical [18]

[137] 18.3 16.6 6.106 DFT

[69] – 14 6.0827 DFT

[15] 22.6 – 6.089 DFT

results, possibly due to the use of different exchange correlation functionals

and k-points, supercell sizes, initial dislocation configuration, and method

of defining the SFW width. To the authors’ knowledge, equilibrium SFW

calculations have not been previously reported for edge or screw dislocation

dissociations along the pyramidal-II plane in Ti.

Interestingly, the disregistry gradient d∆/dx in Figure 2.2.5 shows that

the dissociated dislocations in Mg have an apparent asymmetry between the

core widths of the two partials. The left partial has a much wider (∼ 2.5 times

wider) core than the right partial. Differences in the widths of the individual

partials (partial core spreading) in the split pyramidal-II dislocation in Mg

have also been reported in atomistic molecular dynamics calculations using
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the MEAM potential [16, 15]. The distances these two partials glide during

the dissociation are also unequal as well, with the left partial moving further

to the left than the right partial. In the case of Ti, the partial core widths

are not as dissimilar as in Mg, and the differences between the distances the

right and left partial glide during the dissociation is less than that in Mg and

favors glide of the right partial more than the left.

We surmise that the asymmetries in the Mg and Ti dislocation cores

arise from the asymmetry of the positions and critical energetic values in

their GSFE curves. First we consider the Burgers vectors of the two partials.

The reaction in Equation 2.2.5 suggests that the dissociation leads to two

partials of equal Burgers vector. From the PFDD calculated core structure,

we can determine the magnitude of the Burgers vector from the value of

the disregistry ∆ at x = 0. For Mg ∆(0) is ∼ 0.5 and thus we can expect

a dislocation split into partials with equal Burgers vectors, consistent with

Equation 2.2.5. For Ti, however, ∆(0) is ∼ 0.45, meaning the left and right

partials have a Burgers vector magnitude of 0.45b and 0.55b respectively,

where b is the magnitude of the Burgers vector for the initial perfect dislo-

cation. This asymmetry in the partial Burgers vector value is governed by

the displacement needed to achieve the local minimum or intrinsic stacking

fault energy I in the GSFE curve in Figure 2.1.2(d) and 2.2.6. As shown in

Figure 2.2.5, unlike Mg, the Burgers vectors of the two dissociated pyramidal

dislocations in Ti are not equal in magnitude.

It is noticed that the partial with the wider core is associated with the

lower unstable stacking fault peak U1 (left) and the narrower one with the

higher unstable stacking fault peak U2 (right) in the GSFE curve (see Figure

2.1.2(d) and 2.2.6). During the dissociation process, the lower peak barrier

would pose less resistance to partial dislocation glide, permitting core spread-
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ing. For Ti, with the more symmetrical core structure the difference between

the peak barriers in the Ti GSFE curve is comparatively smaller, apparently

leading them to only a slight asymmetry between the core widths of the left

and right partials.

Figure 2.2.6: Pyramidal-II GSFE curves for both Mg and Ti showing labels

for critical energetic points and the peak shear stresses as the slopes leading

to and from these points.

Related to the peak energies U is the peak shear stress required to move

the partial dislocations apart during the dissociation. These critical stresses

are calculated directly from the derivative of the GSFE curves with respect

to the displacement shift. The left partial would follow the energetic path

starting from the reference point (global minimum at 0 shift) to U1, whereas

the right partial would follow a path associated with the right most reference

point (global minimum at 1 to the peak U2). The ideal shear stress associated

with the resistance for the left partial to move is τ out1 is the maximum slope

from a global minimum to U1, and that for the right partial is τ out2 , the

maximum slope from the global minimum to U2. The local minimum in the

GSFE corresponds to the stacking fault formed by the glide of the partials.
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The peak slopes on either side of the local minimum, τ in1 andτ in2 , are related to

the resistance for the core of the partials to spread in plane. With interest in

the effect of asymmetries in the GSFE with asymmetries in core structures,

we analyze the ratios of these ideal shear stresses. Table 2.2.4 shows the four

peak slopes and the ratios of τ out2 /τ out1 and τ in2 /τ in1 as well as τ out1 /τ in1 and

τ out2 /τ in2 for Mg and Ti.

Table 2.2.4: The relationships between the absolute values for the maximum

slopes between the global and local maxima and minima of the GSFE curves

for the pyramidal-II planes of Mg and Ti as shown in Figure 2.1.2(d).

Material τ out1 τ in1 τ in2 τ out2 τ out1 /τ in1 τ out2 /τ in2 τ in2 /τ in1 τ out2 /τ out1

Mg 16.85 6.29 15.50 24.03 2.68 1.55 2.47 1.43

Ti 50.24 21.38 30.28 36.36 2.35 1.20 1.42 0.72

According to Table 2.2.4, τ out2 /τ out1 for Ti is less than unity, suggesting

that it will be easier for the right partial to glide right than the left partial to

glide left. As seen in the PFDD calculated core structure of the dissociated

screw dislocation in Figure 2.2.5(b), the left partial moves ∼ 0.9b left and the

right partial moves ∼ 1.1b right. Conversely, for Mg τ out2 /τ out1 is greater than

unity, suggesting that it will be far easier for the left partial to glide left than

the right partial to glide right. Accordingly, the core of the Mg pyramidal

dislocations as calculated via PFDD finds that the left and right partials

move ∼ 2.9b and ∼ 1.3b, respectively for the dissociated edge dislocation

and ∼ 2.0b and ∼ 1.1b, respectively for the dissociated screw dislocation.

Once the SF has formed, whether or not the spreading of a partial dis-

location core occurs is governed by τ in2 /τ in1 . Referring to Table 2.2.4, while

τ in2 /τ in1 exceeds unity for both Ti and Mg, it is much higher in Mg than

that for Ti, indicating that core spreading is more likely in one partial dis-
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location in Mg than Ti. Further, the ratios τ out1 /τ in1 and τ out2 /τ in2 indicate

which partial dislocation is likely to experience this spreading. According to

these values for Mg, we would anticipate spreading of the left partial core.

In agreement, in simulation, the left partial in the pyramidal core of Mg is

found to broadened widely, more so than the right one.

These GSFE sensitive dislocation core structures on the pyramidal II

plane is explored more in depth in the next chapter, where the next stage of

PFDD model development to include elastic anisotropy is used to simulate

dislocation behavior in 10 different HCP materials (See Chapter 3 on page

71)

2.3 Summary

This work presents model extensions to advance a phase field approach for

studying dislocation motion, called phase field dislocation dynamics (PFDD),

to include crystals with a hexagonal close packed (HCP) crystal structure.

The functional form of the lattice energy was modified to include periodic

potentials that depend on slip mode. In this way, the significant differences

seen in the γ-surfaces and GSFE curves on different HCP slip planes, as

determined with atomistic approaches, can be represented. The new periodic

potentials are directly informed by generalized stacking fault energy (GSFE)

curves calculated with density functional theory (DFT), either calculated

here or adopted from previously published DFT data. For instance, the γ-

surface for the basal slip plane in Mg and the GSFE curve for the pyramidal-II

slip plane in Ti are presented here.

With the model, we calculate the equilibrium SFWs for both edge and

screw dislocations in various HCP metals, including pure Mg, Mg47Y, Ti,
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and Zr, and on the basal, prismatic, and pyramidal-II slip planes. These

examples illustrate the flexibility of the model formulation, as well as permit

direct comparison with calculations of equilibrium SFW by other computa-

tional approaches, such as atomistic and other continuum approaches previ-

ously reported in the literature. For example, the method is able to capture

both the compact dislocation core on the prismatic plane in Mg, and also the

dissociated dislocation core on the prismatic plane in Zr and Ti. In all cases,

the PFDD results show reasonable comparison to results previous reported

using MD or DFT. Since PFDD was informed with DFT GSFE information,

best comparisons are generally found with DFT calculated values, or GPN

models also informed with DFT information. In addition, results were com-

pared to analytical calculations of the equilibrium SFW [18]. In all cases,

the analytical values were larger than those determined by PFDD. The ana-

lytical equation does not fully account for the dissociation process, including

energy barriers partials must overcome as they spread apart through the

crystal lattice. In addition, it is worth noting that in some cases, such as

screw and edge dislocations in Zr and Ti on the pyramidal-II plane, data for

the equilibrium core structures were not available in the current literature

for comparison.

In simulating the dissociation process from an initially unstable perfect

dislocation to its final equilibrium structure, the PFDD model revealed ad-

ditional effects of the displacements and values of energetic local maxima

and minima of the GSFE curve. The most pronounced example arose when

considering the structure of dislocations on the pyramidal-II plane, which

has an asymmetrical GSFE curve. In the case of Mg, the PFDD results

show that the width of the left partial is nearly three times wider than the

right partial, for a dissociated edge dislocation. It is also shown that while
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the Burgers vectors for the partial dislocations are equal in magnitude, the

left partial glides farther than the right partial. Consequently, the left partial

contributes more to the total SFW than the right partial. These results are in

agreement with previous work using atomistic calculations with the MEAM

potential, which also found an asymmetry in the width of individual partials

along the pyramidal-II plane in Mg [16, 15]. With the aid of PFDD calcula-

tions with designed GSFE curves, we identify the relationships between the

asymmetries in the GSFE curve and the asymmetries in the equilibrium core

structure of the dislocation, namely distances traveled by the two partials as

they glide apart during the dissociation and in the core widths and values

of the Burgers vectors of the two partial dislocations, explaining why the

extended dislocation structures exhibit significant differences in asymmetry

between Mg and Ti. On the other hand, while Ti also has a GSFE curve that

possesses some asymmetries, its pyramidal dislocation core structure bears

less asymmetric characteristics than the Mg pyramidal dislocation core. Our

analysis reveals that the partials in Ti have Burgers vectors with different

magnitudes that correspond to the position of the intrinsic stacking fault

energy, such that the left partial has a smaller Burgers vector than the right

partial.

We mention that other dislocations have been reported in HCP materials.

In both Zr and Ti, another important pyramidal slip system is pyramidal type

I, which has twelve slip systems. For Mg, whether this system is as active or

more active than the pyramidal type II mode studied here has been a point

of debate. This is a potential area for future work with the newly extended

HCP-PFDD model.

HCP metals, particularly in pure form, as studied here, tend to twin

easily when the c-axis of the crystals are stretched or compressed. The role
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of dislocations in the formation of deformation twin nuclei has been studied

predominantly using dislocation theory and atomistic simulation [138, 139,

140, 141]. It has been suggested that twin embryo formation begins with

the stress-induced dissociation of linear defects with relatively large Burgers

vectors, such a pyramidal dislocation or pile up of basal dislocations [73, 142,

143]. While in this study we do not simulate twin formation, we simulate

the dissociation process of individual dislocations. These calculations would

be fundamental to further calculations of dislocation reactions among many

dislocations with the PFDD model presented here.
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Appendix

2.A Grid spacing in HCP

Figure 2.A.1: The c-axis must be accounted for since we are no longer

dealing with a cubic lattice structure. The grid spacing, λ0, is chosen to be

the interplanar distance of the slip plane, d. Where d for any hcp slip plane

given in (hkil) or (hk.l) Miller-Bravais notation follows

1

d2
=

4

3

h2 + hk + k2

a2
+

l2

c2
.

This figure is adapted from [3].

In Figure 2.A.1 we see a distribution of ζ values on the cross-section plane

of a perfect/compact edge dislocation in a finite difference mesh used in the

phase field model, where the filled area (ζ = 1) represents the slipped region
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and the white areas (ζ = 0) is the unslipped region. By definition, a cell

filled with ζ = 1 indicates a stress-free shear strain, ϵ = b/d. When λ0 = d,

the relative displacement of the top to the bottom of the cell is λ0b/d = b and

therefore the boundary cell, where ζ = 1, bordering the slipped and unslipped

regions contains a single dislocation with Burgers vector b. If a larger scale

meshing is used, as depicted in the right figure, where λ0 > d, the hatched

region is the ‘resolvable ζ distribution, however the actual distribution is

the solid region and the displacement becomes λ0b/d ̸= b, or equivalently

the boundary cell contains λ0/d dislocations with Burgers vector b, which is

inconsistent with the definition of ζ.
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Chapter 3

Asymmetric equilibrium core

structures of pyramidal-II

dislocations in ten HCP

materials

In this stage of the PFDD development, published in Reference [2], we em-

ploy an elastically anisotropic version of the PFDD approach, developed by

a Beyerlein group member (PostDoc Shuozhi Xu) and published in Ref. [95],

to compute the equilibrium structures of pyramidal-II {1̄1̄22} ⟨112̄3⟩ disloca-

tions in ten HCP metals: Be, Co, Mg, Re, Ti, Zn, Cd, Hf, Y, and Zr. All in-

put parameters including the lattice parameters, elastic constants, and GSFE

curves are computed from first principles to avoid any dependence on inter-

atomic potentials. These ten metals exhibit anisotropic elasticity to varying

degrees [7]. For the DFT GSFE calculations, we apply the same method

with full relaxation to all ten and show that their energetic landscapes ex-

hibit with a single local minimum and two unequal maxima, featuring a wide

71



range of intrinsic SFEs. We show that achieving a single local minimum in

the GSFE for Co requires accounting for its ferromagnetic properties.

In all these metals, the ⟨c + a⟩ pyramidal dislocations dissociate into two

partials that separate in plane, creating extended structures, with nm-sized

splitting distances. For the screw dislocation, Zn has the widest splitting dis-

tance and Ti the narrowest, and for the edge dislocation, Hf has the widest

and Be the narrowest. Considering all ten metals, the separation distances

scale inversely with the normalized intrinsic SFE, I/(Kb), where K is an

anisotropic energy factor dependent on elastic constants and dislocation char-

acter. In most cases, the dislocation partial core widths and Burgers vectors

are not ideally equal. These asymmetries in the dislocation structures can be

explained by deviations in the {1̄1̄22} GSFE landscape from that expected of

a metal with an ideal c/a ratio and symmetric landscape. Metals with higher

levels of elastic anisotropy have wider separation distances for both screw and

edge character dislocations than expected with effective isotropic constants,

being 20–35% broader for Zn, which is highly anisotropic but having no effect

on Re, Y, and Mg, which are all nearly isotropic. These findings on the equi-

librium structure of ⟨c + a⟩ pyramidal-II dislocations across a broad range of

HCP metals are important for understanding their motion and interactions

with other dislocations or interfaces.

3.1 Computational Methods

3.1.1 DFT Methodology and Calculations

For all DFT calculations here, we use the Vienna Ab-initio Simulation Pack-

age (VASP) [126, 127] and utilize the generalized gradient approximation for

the exchange correlation functional with the Perdew-Burke-Ernzerhof param-
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eterization [128]. The interaction between valence electrons and ionic cores is

treated using projector augmented wave potentials. The number of valence

electrons for each material can be found in Table 3.1.1. A plane wave energy

cutoff of 400 eV is employed and the structure is optimized until the force on

each atom became smaller than 0.01 eV/Å. We use a 19 × 19 × 19 Gamma-

centered Monkhorst Pack k-point mesh to integrate the Brillouin Zone of

the primitive HCP unit cells to calculate the lattice parameters and elastic

constants. For the GSFE curves, we adopted a 17×13×1 k-point mesh. The

k-point mesh was sufficiently dense that the convergence of total energy was

less than 1 meV per atom with respect to a change in mesh size [144, 145].

We confirmed that higher values of energy cut off (up to 500 eV) and finer k-

point grids do not lead to significant differences in the constants or GSFEs.

All supercells contain a thick vacuum layer of 15 Å along the z-direction.

Among these ten metals, Co is a well known ferromagnetic material [146].

So we also identify the effect of ferromagnetic (FM) ordering in Co on the

lattice parameters, elastic constants, and GSFE through comparisons with

those calculated without magnetism (NM).

The lattice parameters and elastic constants calculated via DFT are pre-

sented in Table 3.1.2. Overall, these quantities are in good agreement with

previous DFT calculations and experimental measurements (see Table 3.B.1

in Appendix B) [77, 15]. For all HCP metals, we confirmed that the cal-

culated elastic constants satisfy 2C66 = C11 − C12, indicating transversely

isotropic elasticity with five independent constants.

In addition to the lattice parameters and elastic constants, PFDD also

utilizes {1̄1̄22} GSFE curves in order to calculate the equilibrium dislocation

core structures. For this work, the GSFE is the excess potential energy

incurred when one crystal half is sheared relative to the other half across the
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Table 3.1.1: Number of valence electrons in pseudopotential used in DFT

calculations and dimensions of supercell for pyramidal-II GSFE calculations

in Å. Number of atoms is 60. Number of planes along the z-direction is 30,

which is sufficiently large according to prior work in FCC [5] and BCC metals

[6].

Material No. of valence electrons Supercell dimensions (x, y, z)

Be 2 (3.923, 4.226, 38.544)

Mg 2 (5.525, 6.089, 51.488)

Y 11 (6.316, 6.777, 58.547)

Ti 4 (5.063, 5.467, 51.960)

Zr 4 (5.596, 6.100, 51.392)

Hf 4 (5.529, 5.965, 52.832)

Re 7 (4.800, 5.264, 47.134)

Co (NM) 9 (4.259, 4.658, 42.835)

Co (FM) 9 (4.316, 4.746, 43.524)

Zn 12 (4.614, 5.594, 46.894)

Cd 12 (5.255, 6.410, 52.345)

pyramidal-II {1̄1̄22} plane. The relevant direction of shearing on this plane

is the ⟨112̄3⟩ direction, the slip direction along which the local maxima and

minimum usually lie. Many details of these lattice energy curves can affect

the core structure, and for this reason, we employ DFT for its calculation,

as opposed to MS or a hypothetical function. To do so, we use the relaxed

method [15], wherein for each displacement step, minimization of the energy

of the system is ensured by fixing all atomic positions along the glide direction
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Table 3.1.2: Lattice parameters (in Å) and elastic constants (in GPa) for

the ten HCP metals obtained from DFT and isotropic shear modulus µ (in

GPa), and Lamé parameter, λ (in GPa).

Material a c/a C11 C12 C13 C33 C44 C66 µ λ

Be 2.265 1.5760 303 36.7 12.5 380.1 165.2 133.2 154.35 20.38

Mg 3.190 1.6250 63.3 25.9 20.8 65.7 18 18.7 19.26 23.53

Y 3.648 1.5660 74 24.4 21.3 78.1 25.2 24.8 25.65 22.91

Ti 2.923 1.5810 159.4 108.9 83.9 191.7 37.6 25.2 35.67 94.43

Zr 3.231 1.6010 135.1 80.3 70.7 166.1 26.1 27.4 30.23 77.59

Hf 3.192 1.5790 183.4 83.1 72.5 206.1 52.6 50.1 54.05 78.31

Re 2.773 1.6130 617.9 281 233.4 678.6 165.4 168.4 177.61 260.48

Co (NM) 2.459 1.6090 424.2 161.1 151.6 457.6 84.8 131.6 116.35 170.72

Co (FM) 2.492 1.6208 359.2 164.8 109.3 406.4 93.1 97.2 106.11 139.44

Zn 2.664 1.8470 154.3 38.4 48.4 63.9 30.4 58 39.58 45.05

Cd 3.034 1.8610 76.8 42.1 34.1 45.6 7.8 17.3 12.51 38.31

and allowing those along the plane normal and the in-plane direction lying

normal to the glide direction to relax. Fine displacement intervals were

used to precisely locate the local minimum. Note that with the same DFT

model design, the GSFE curves or surfaces for the basal, prismatic, and two

types of pyramidal planes in Mg, Zr, and Ti have been previously calculated

[1, 124, 15]. Here, we extend the pyramidal-II GSFE calculations for all ten

HCP metals

Figure 3.1.1(a) presents the calculated GSFE curves for all ten HCP met-

als. We observe that all curves have two pronounced local maxima, denoted
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Figure 3.1.1: Comparison of GSFE profiles for (a) the pyramidal-II plane

in ten HCP metals as determined by DFT, and (b) for Co with and without

magnetism considered in the DFT simulations. In Figure (a), the GSFE

curve for Co is shown with the effect of ferromagentism considered. The

unstable SFEs, U1,2, and intrinsic SFE, I, are labeled in (b).

as the unstable SFEs, U1 and U2, and a local minimum, well known as the

intrinsic SFE I. To ensure the local minimum indeed lies along the GSFE

curve, the full pyramidal-II GSFE surface of Mg was calculated with DFT

(see Figure 3.A.1 of Appendix A). Compared to prior pyramidal-II GSFE

curves, the results in Fig. 3.1.1 are similar with the exception of Cd [17].

Differences could be attributed to more atoms in the present supercell (≈

60) but coarser k-point grid.

The relative shear displacement xI/b across the plane corresponding to

I leads to a meta-stable stacking fault. Table 3.1.3 summarizes the values

for I, U1, U2, and xI/b. In all metals, the two peak energies, U1 and U2,

belonging to the same landscape, are unequal with U2 > U1. The local

minimum xI/b displacement is shifted from the ideal xI/b = 0.5, a reflection

of the anisotropy in bond length. In low symmetry HCP metals, the bond

lengths are generally unequal for all planes. When c/a =
√

8/3 = 1.633,
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all twelve nearest neighbors of an atom in the double lattice structure are

equidistant. Only one of the ten HCP metals, Mg, possesses a nearly ideal

c/a ratio, and accordingly, its xI/b = 0.49. Two metals, Zn and Cd, have

c/a ratios greater than ideal, leading to xI/b > 0.5. All remaining metals

have below ideal c/a ratios and xI/b < 0.5.

Table 3.1.3: The unstable SFEs, U1 and U2 and the intrinsic SFE, I for

ten HCP metals. Their normalized locations are also shown. All energies are

expressed in units of mJ·m−2, and positions are normalized with the Burgers

vector magnitude in the [112̄3] direction, b.

Material
U1 I U2

mJ·m−2 xU1/b mJ·m−2 xI/b mJ·m−2 xU2/b

Be 1335.7 0.23 678.2 0.47 1768.6 0.71

Mg 262.9 0.27 168.1 0.49 397.4 0.72

Y 380.1 0.27 352.3 0.42 565.6 0.71

Ti 617.8 0.21 332.1 0.44 764.2 0.68

Zr 538.5 0.21 260.2 0.44 658.2 0.69

Hf 730.2 0.20 411.9 0.43 919.6 0.69

Re 1468.1 0.27 1168.0 0.44 2088.8 0.74

Co (NM) 870.0 0.21 857.3 0.30 1502.5 0.69

Co (FM) 889.6 0.29 702.2 0.45 1381.2 0.71

Zn 324.3 0.35 150.3 0.52 393.4 0.78

Cd 174.4 0.36 78.2 0.53 202.3 0.79

Figure 3.1.1(b) examines more closely the GSFE curves for Co calculated

with and without ferromagnetic ordering. The effect of magnetism on the
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GSFE is found to be significant. Without magnetism, the GSFE possesses

no pronounced local minimum, but with magnetism, it has a single local

minimum at xI/b = 0.45, like the other nine HCP metals. The peak energy

U2 also reduces with magnetism by 8%. Table 3.1.2 shows that magnetism

increased the lattice parameter a and the c/a ratio and decreased the elastic

constants C11, C13 and C33. A similar effect of magnetism on a was reported

in prior studies of cubic metals, namely Cr [96], Fe [147], and Ni [5]. More im-

portantly, the values for the elastic moduli determined with ferromagnetism

achieve better agreement with the experimentally measured values, which

are presented in Table 3.B.1 in Appendix B. Hereinafter, PFDD calculations

in this paper will use the GSFE curve, lattice parameters, and elastic moduli

calculated for Co from DFT with ferromagnetism considered.

3.1.2 PFDD formulation

As is fundamental in phase field approaches, this method relies on the evolu-

tion of one or more order parameters through the minimization of the total

system energy. For phase field approaches formulated to study the motion

and interaction of dislocations, the order parameters, ζ, represent the loca-

tion of and area traveled by dislocations within the system [90, 111, 89]. The

order parameters are defined by slip systems within a material, and hence the

number of order parameters varies with the crystallography of the material

under study. Defined in this way, the set of ζ is used to describe the plastic

strain as

ϵpij =
1

2

Nop∑
α=1

bα
dα

ζα(x, t)δα(sαi m
α
j + sαj m

α
i ). (3.1.1)

where the sum is taken over all slip systems α from 1 to Nop included in

the material, bα is the magnitude of the Burgers vector on the slip plane
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of interest, dα is the interplanar distance for the active slip plane, δα is the

Dirac distribution supported on the slip plane, m is the slip plane normal,

and s is the normalized slip vector. In many crystals, multiple systems share

the same plane; therefore, while dα is defined with each slip system α, slip

systems on the same slip plane will share the same dα.

In the PFDD method, the order parameters evolve through the minimiza-

tion of the total system energy density, E, dictated at each time step via the

time-dependent Ginzburg-Landau (TDGL) equation

∂ζα(x, t)

∂t
= −L

δE(ζ)

δζα(x, t)
(3.1.2)

where L, which is related to the convergence speed of the system, is a non-

negative coefficient that is constant and set to unity here for all order pa-

rameters. For calculations involving multiple order parameters, Equation

3.1.2 becomes a set of N coupled integro-differential equations that must

be solved numerically to evolve the system. In the dislocation problems of

interest for this work, the total free energy density of the system consists of

two contributions [90, 31]:

E = Estrain + Elattice (3.1.3)

where Estrain is the elastic strain energy density generated by the presence of

dislocations in the system and interactions between these dislocations. The

lattice energy density, Elattice, describes the energy expended as a dislocation

glides through the crystal lattice breaking and re-forming atomic bonds. Un-

der an external stress, a third term for the work done to the system through

an applied stress would be included. However, for the problems in this work,

no external stress is applied. In addition, past PFDD formulations have

included a gradient energy term, representing the energy density stored in

the partial dislocation cores in FCC metals [94]. It tends to increase the
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partial dislocation core size in better agreement with MS [94, 148]. With

its basic effect qualitatively understood, we refrain from adding the gradi-

ent energy term in the present application since it requires an additional

material-dependent coefficient. We note that in this case, without the gra-

dient energy term, the PFDD formulation employed is equivalent to a GPN

model [92]. We emphasize that the GPN model has not yet been applied to

the problem of pyramidal-II dislocation cores, to our best knowledge.

The elastic strain energy density, Estrain, which is commonly expressed

in terms of the elastic strain, can also be expressed in terms of the plastic

strain [90]:

Estrain =
1

(2π)3
1

2
Âmnuv(k)ϵ̂pmn(k)ϵ̂p∗uv(k)d3k (3.1.4)

where a superposed (ˆ) denotes the Fourier transform, Âmnuv(k) = Cmnuv −

CkluvCijmnĜki(k)kjkl, k is the wavenumber vector, Ĝki(k) is the Fourier

transform of the Green’s tensor of linear elasticity, denotes the principal

value of the integral, Cijkl is the elastic moduli tensor and the superscript

(∗) denotes the complex conjugation.

In order to examine the effect of HCP anisotropy, we will use the elastic

moduli tensor and the Green’s tensor for either a transversely isotropic or

ideally isotropic material in the calculations. The elastic stiffness tensor for

both a transversely isotropic hexagonal system, Ca, and an isotropic system,

C i, can be given in compact matrix notation by:
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Ca =



C11

C12 C11

C13 C13 C33 Symm

C44

C44

C66



C i =



λ + 2µ

λ λ + 2µ

λ λ λ + 2µ Symm

µ

µ

µ


(3.1.5)

where 2C66 = C11 − C12, µ is the shear modulus, and λ is Lamé’s first con-

stant. We utilize a Voigt average to determine the two isotropic constants

from the five transversely isotropic constants (Table 3.1.2), using [63]

µ =
1

30
[7C11 − 5C12 + 2C33 + 12C44 − 4C13] (3.1.6)

λ =
1

15
[C11 + C33 + 5C12 + 8C13 − 4C44] (3.1.7)

whose values are also included in Table 3.1.2.

The lattice energy Elattice depends on the material and, in some cases,

such as HCP and BCC metals, the lattice energies of more than one type

of crystallographic plane are of interest [1, 96]. In general, Elattice can be

written as [90, 1]:

Elattice =

Np∑
β=1

∫
1

dβ
ϕβ(ζ1(x), ζ2(x), ..., ζN(x))d3x (3.1.8)

81



where ϕβ(ζ1(x), ζ2(x), ...) is a periodic potential for slip plane β on up to Np

planes.

3.1.3 PFDD model for ⟨c + a⟩ pyramidal dislocations

Here we consider a straight dislocation belonging to a pyramidal-II ⟨c + a⟩

slip system. Hence, Nop = 1, Np = 1, and α = β = 1. In what follows, we

drop the subscripts α and β. For the periodic potential of the pyramidal-II

plane, the following continuous function, proposed in Ref. [1], is adopted:

ϕ(ζ) = p0 + p1 cos(2πζ) + p2 cos(4πζ) + p3 cos(6πζ) + p4 cos(8πζ)

+ q1 sin(2πζ) + q2 sin(4πζ) + q3 sin(6πζ) + q4 sin(8πζ) . (3.1.9)

where the coefficients p0, ...p4, q1, ...q4 are calculated from the GSFE curves

using the MATLAB curve fitting tool [130]. The continuous GSFE curves

are shown in Figure 3.1.1(a) and the corresponding coefficients are presented

in Table 3.1.4.

The explicit Euler method is employed for the time integration in the

TDGL equation. The order parameter at time ti+∆t is formulated explicitly

based on its value at time ti according to Equation 3.1.2. A recent PFDD

work [148] found that the explicit Euler method requires the timestep size

∆t to be small enough for numerical stability, so ∆t = 0.01 is used in our

work.

Figure 3.1.2(a) shows the 3D cuboidal periodic simulation cell. As part of

the Fast Fourier transform method for calculating the strain energy density,

periodic boundary conditions are employed. All order parameters ζ = 0

(perfect direct lattice) at each grid point, except those that lie on the plane

z = N/2 and between x = N/4 and x = 3N/4 (in the darker shaded area)

where ζ = 1 (perfect direct lattice translated by 1 Burgers vector) for all
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Table 3.1.4: Interplanar spacing, d, normalized in terms of the Burgers vec-

tor magnitude b and the calculated coefficients for the lattice energy periodic

potential for the pyramidal-II (Equation 3.1.9) slip mode. All coefficients are

shown in units of mJ·m−2.

Material d/b p0 p1 p2 p3 p4 q1 q2 q3 q4

Be 0.22619 989.73 −295.15 −572.54 −45.07 −41.44 −178.95 143.29 6.682 −15.83

Mg 0.22318 217.98 −75.35 −116.48 −6.137 −9.728 −55.26 15.05 8.900 −1.228

Y 0.22680 332.03 −154.61 −137.14 −24.28 −4.422 −76.47 22.48 10.91 −1.145

Ti 0.22589 427.52 −165.06 −220.30 −22.96 −9.542 −52.33 118.72 −13.57 −16.63

Zr 0.22466 366.91 −127.64 −196.37 −21.80 −8.282 −48.31 105.95 −12.50 −12.27

Hf 0.22601 528.33 −184.61 −258.63 −41.86 −18.95 −82.81 131.01 −11.56 −15.33

Re 0.22392 1205.08 −482.64 −551.80 −92.09 −1.064 −269.59 46.20 42.31 24.93

Co(NM) 0.22416 875.19 −404.22 −306.22 −74.51 −38.14 −239.18 93.18 40.97 −17.05

Co(FM) 0.22344 770.05 −318.55 −360.51 −33.14 −23.72 −220.16 48.84 16.88 4.346

Zn 0.20934 214.57 −74.43 −115.09 −5.264 −15.33 −49.90 −56.68 23.13 8.863

Cd 0.20848 109.91 −41.06 −57.01 −2.154 −8.134 −25.06 −35.13 13.93 4.391

grid points in this region. Since dislocations are not explicitly defined in the

PFDD model, but rather are inferred as a structurally necessary defect along

boundaries between regions with different order parameter integer values,

two perfect dislocations are initialized in our simulation cell, one at x = N/4

and the other at x = 3N/4, forming a dipole. We chose this set up as

opposed to initializing the order parameter step from 0 → 1 at x = N/2

to avoid placing an unintentional dislocation along the periodic boundary.

Along each direction of the simulation cell there are N = 640 grid points.

Several simulation cell sizes were tested, and this size was determined to be

sufficiently large such that the final equilibrium state was unaffected by the

image dislocations in the periodic cells.

The grid spacing in all x, y, and z directions, is set as the interpla-
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nar distance d for the pyramidal-II plane normalized by the Burgers vec-

tor magnitude b. Note that b is for the ⟨112̄3⟩ direction and d is for the

{1̄1̄22} plane. In the (hkl) Miller-Bravais notation, the interplanar spac-

ing is 1
d2

= 4
3
h2+hk+k2

a2
+ l2

c2
. Thus, the interplanar spacing accounts for the

lattice spacing in both the ⟨a⟩ and ⟨c⟩ directions and changes with the ma-

terial c/a ratio. By using the interplanar spacing as the grid spacing, the

calculations account for the differences in the c-axis length among the HCP

materials. Table 3.1.4 summarizes the normalized interplanar spacing d/b for

each material. In addition, the DFT calculated elastic constants and lattice

parameters, shown previously in Table 3.1.2, are used to inform the materials

parameters for each simulation.

Each simulation begins with a perfect edge or screw dislocation dipole

placed on the glide plane, as shown in Figure 3.1.2(a). The dipole consists

of a pair of dislocations with equal and opposite sign, which produces a net

zero Burgers circuit around the simulation cell. The lines of the pair lie at

N/4 and 3N/4 along the x-axis and the line sense is oriented parallel to the

y-axis, which is the [11̄00] direction, as shown in Figure 3.1.2(b). For the

edge dislocation, the Burgers vector is oriented parallel to the x-axis ([112̄3]

direction) and for the screw dislocation, it lies parallel to the y-axis. It can

be demonstrated that as the system relaxes to its equilibrium state, the two

dislocations in the dipole behave independently and identically. Accordingly,

we focus the analysis hereinafter on the positive dislocation, which is on the

left in Figure 3.1.2(a).
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(a) (b)

Figure 3.1.2: Schematics showing (a) the initial simulation set-up for the

PFDD computational cell with two infinitely long parallel dislocations forming

a dipole. In (b), the HCP unit cell is oriented (shown for an initial edge

dislocation) such that the pyramidal-II glide plane lies parallel to the xy-plane

in the simulation cell in (a). The simulation set-up for a screw dislocation

would have the same initialization shown in (a), while the HCP unit cell in

(b) would be rotated around the z-axis by 90◦. For clarity, the x-, y-, and

z-axis in our simulation cell correspond to the x-, y-, and z-axis respectively

in our HCP unit cell when initializing for an edge dislocation and to y-, x-,

and z-axis respectively when initializing for a screw dislocation. Thus, the

slip plane lies parallel to the simulation cell surface, the dislocation line sense

lies parallel to the y-axis and the Burgers vector (and unit cell) orientation

is reflective of the desired dislocation character.
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3.2 Results

3.2.1 Disregistry across the core structure

To determine the structure of the dislocation at all times during the re-

laxation process, we extract in-plane values of the order parameter, ζ, and

compute the disregistry bζ across the plane where the dislocation lies. Given

that b is a constant for each metal, the latter quantity can be simplified as the

order parameter density dζ/dx. Initially the full dislocation is compact and

its dζ/dx profile corresponds to a narrow peak at the initial position x = 0.

If the dislocation dissociates during relaxation into smaller, distinct partial

dislocations, the order parameter density profile would transform in time to

one comprised of relatively shorter peaks where these partials are located, as

illustrated in Figure 3.2.1. The viewing plane of this illustration lies trans-

verse to the dislocation line. The two peaks correspond to the two partial

dislocations on the glide plane and the locations of these peaks correspond to

the positions of the center of the cores. To conserve the Burgers vector, the

partials will have the same sign and thus repel one another, causing the left

partial to displace to the left and the right one to the right from the dissocia-

tion site. If the cores of these partials were compact then they would appear

as two narrow peaks. Yet, in actuality, the cores of the partials assume a

finite width w in response to the energetic expense associated with creating a

fault. Adopting the approach used commonly in analyses of diffraction data,

we establish the widths of the partial cores, wl and wr, as the full width at

half maximum (FWHM) of each peak in dζ/dx profile. Over the years, the

size of the extended dislocation cores have been most prominently charac-

terized by the equilibrium distance between the two partials, which has also

been variously called the equilibrium stacking fault width (SFW) or splitting
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distance. Here, we define the equilibrium splitting distance as the distance

between the centers of the two partial, denoted as Re, as illustrated in Figure

3.2.1.

The Burgers vector decomposition between the two partials can also be

determined from ζ and its density dζ/dx. The magnitude of the Burgers

vectors for the partial dislocations can be expressed as a fraction of the

magnitude of the full pyramidal-II Burgers vector. The magnitude of the

Burgers vector of the left partial is related to the value of the order param-

eter ζ0 = ζ(x0) where the position x0 is the minimum value of the gradient

within the stacking fault (i.e., between the two peaks). The magnitude of

the Burgers vector for the right partial dislocation is the remainder 1 − ζ0.

Having identified ζ0, we can calculate the Burgers vector of the two partials

bl and br via,

b = ζ0b + (1 − ζ0)b = bl + br (3.2.1)

Figure 3.2.1: A schematic of the gradient of the order parameter, dζ/dx.

The labels indicate the equilibrium SFW, Re, and their core widths, wl and

wr, respectively.
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Table 3.2.1: The equilibrium SFW, Re, the left and right partial dislocation

core widths, wl and wr, and left and right Burgers vector magnitude, bl and

br, respectively, for perfect edge and screw dislocation dissociation in ten HCP

materials. Due to the grid spacing, the partial dislocation core widths have

error bars of ±0.1b. Values of Re, wl, wr, bl, and br are normalized by b.

Material Dislocation b (Å) Re wl bl wr br

Be
Edge 4.228 4.298 0.45 0.48 0.45 0.52

Screw 4.228 4.298 0.68 0.48 0.68 0.52

Mg
Edge 6.087 4.240 0.89 0.49 0.45 0.51

Screw 6.087 2.901 0.89 0.46 0.47 0.51

Y
Edge 6.778 3.175 0.68 0.48 0.45 0.52

Screw 6.778 2.495 0.91 0.46 0.45 0.54

Ti
Edge 5.468 4.065 0.45 0.44 0.45 0.56

Screw 5.468 2.259 0.45 0.44 0.45 0.56

Zr
Edge 6.099 4.717 0.45 0.44 0.45 0.56

Screw 6.099 2.696 0.45 0.44 0.45 0.56

Hf
Edge 5.966 4.971 0.45 0.44 0.68 0.56

Screw 5.966 3.389 0.45 0.44 0.68 0.56

Re
Edge 5.262 5.599 1.79 0.46 0.67 0.54

Screw 5.262 3.807 1.34 0.46 0.67 0.54

Co (FM)
Edge 4.746 4.916 1.79 0.47 0.89 0.53

Screw 4.746 3.576 1.34 0.47 0.67 0.53

Zn
Edge 5.595 4.815 0.42 0.52 0.42 0.48

Screw 5.595 4.397 0.42 0.52 0.42 0.48

Cd
Edge 6.410 4.168 0.42 0.53 0.42 0.47

Screw 6.410 2.710 0.42 0.53 0.42 0.47
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3.2.2 Be, Mg, Y

We begin with the group II and III HCP metals, Be, Y, and Mg. The GSFE

curve of Be stands out from the others in Figure 3.1.1(a) with the largest

unstable SFEs U1,2, as well as a distinct local minimum at the stable energy

I. In the GSFE curves for Y and Mg, however, the differences among U1,2

and I are relatively small and hence, their local minima lie in a relatively

shallow energy well.

Figure 3.2.2 shows the order parameter ζ and its density dζ/dx after the

equilibrium structure is achieved for dislocations in these metals. These pro-

files focus on a smaller region of the model crystal and ζ is represented by the

dotted lines and dζ/dx by the solid lines. The initial position of the disloca-

tion before the dissociation process is zero (as indicated with vertical dashed

line). In all three metals, the dislocation was observed to dissociate into two

partials with a stacking fault in between. The partial dislocations appear as

the two broad peaks in the order parameter density and the stacking fault is

the intervening, nearly flat region between them.

Table 3.2.1 summarizes the Burgers vectors of their partials as well as

their splitting distances Re. The Burgers vectors in each partial dislocation

are nearly, but not exactly, equal in value, with the left one being slightly

smaller than the right one. For Be, Mg, and Y, their final splitting distances

are, respectively, 18.17 Å, 25.81 Å, and 21.52 Å for the edge dislocations

and 18.17 Å, 17.66 Å, and 16.91 Å for the screw dislocations. The edge

dislocations have larger Re than the screw dislocations. This trend only

confirms the stronger edge repulsion force generated between two like edge

dislocations than two like screw dislocations.

For validation, we turn to available DFT calculations, which only exist

for Mg. DFT calculations reported 16.6 Å and 18.3 Å respectively for screw
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and edge dislocations [137] and 14 Å for the screw dislocation [69]. MS

simulations calculated 15 Å and 20.72 Å respectively for screw and edge

dislocations [149] and 22.6 Å for the edge dislocation [15]. Differences are

small considering likely variations in the definition of Re, elastic constants,

and fault energies among these studies. Further, as noted earlier, without

the gradient term, partial core widths tend to be narrower than those from

DFT or MS [94].

Figure 3.2.2: The order parameter, ζ (dotted lines), and its density, dζ/dx

(solid lines), along the [112̄3] slip direction for an initialized edge (a,b,c)

and screw (d,e,f) dislocations in Be, Mg, and Y. Both isotropic (red) and

anisotropic (blue) elastic considerations are compared. The vertical lines rep-

resent the location of the two partials before the dissociation, when they are

one unstable perfect dislocation at zero position, and at the end of the simu-

lation, when equilibrium is achieved.

The estimates for the widths of the partial cores w for Be, Y, and Mg are
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listed in Table 3.2.1. The energetic formulation in the model expects that

the larger U1,2 would lead to the narrower w. As expected, we observe that

the cores of the partials are generally wider in dislocations of Mg and Y, with

the smaller peak energies than those of Be, which has the highest U1 and U2

of this group.

We see that, in Mg and Y, the dislocation structures are asymmetric with

the width wl of the left partial generally larger than wr for the right one.

The asymmetry can be quantified by the ratio of wl/wr, which is also given

in Table 3.3.1. In the case of the edge dislocation, in Mg, the asymmetry is

noticeable with wl/wr slightly less than 2.0, and less so in Y with wl/wr = 1.5.

These differences result primarily from the different energetic pathways on

the GSFE curve corresponding to their displacement. The energetic path

for the left partial as it displaces in the negative ⟨112̄3⟩ direction follows the

right-hand portion of the GSFE and is affected by the second peak U2. This

path is different from that taken by the right partial, which displaces in the

positive ⟨112̄3⟩ direction and is, hence, dictated by U1.

We performed a second set of calculations considering isotropic elasticity

in place of the more realistic anisotropic elasticity. The split distances Re and

asymmetries between the two partials are not noticeably affected by elastic

anisotropy. Exceptions are a slight decrease in Re for the edge dislocation in

Be from 18.17 Å to 16.26 Å and a slight increase for the screw dislocation in

Mg from 17.66 Å to 19.02 Å when isotropy is assumed.

3.2.3 Ti, Zr, Hf

In this section, the equilibrium structures of dislocations for group IV HCP

metals (Ti, Zr, and Hf), are examined. The GSFE curves for this group have

similar shapes with a distinct local minimum located at xI/b = 0.43–0.44,
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which deviates significantly from the ideal 0.5. In each case, the two local

maxima, U1 and U2, are not significantly different in value.

Figure 3.2.3 presents ζ and dζ/dx for screw and edge dislocations in

these metals after equilibrium is achieved. Like the previous metals, the

dislocations in this group do not maintain a compact core. They dissociate

into two distinct partials, which for all three metals, are unequal in value,

with the left one being noticeably smaller, by 18%, than the right one. This

uneven split is an outcome of the relatively short critical shear displacement

of 0.43b–0.44b needed to achieve the local minimum fault in all their GSFE

curves. The separation distances Re of these partials belonging to the edge

dislocations are 28.77 Å, 22.23 Å, and 29.66 Å for Zr, Ti, and Hf, respectively.

Compared to the edge dislocations, in all metals in this group, Re for screw

dislocations are smaller, 16.44 Å, 12.35 Å, and 20.22 Å, for Zr, Ti, and Hf,

respectively.

Table 3.2.1 lists the partial widths, w, as defined by the FWHM method

in the two peaks in ζ. Two of the metals, Zr and Ti, feature a symmetric core

structure with wl/wr = 1.0. Hf, on the other hand, exhibits an asymmetric

core, unlike Zr and Ti, with wl/wr = 0.66.

The same calculations under the assumption of elastic isotropy are also

shown in the same plots for comparison. Elastic anisotropy of Ti and Zr leads

to wider Re than when the anisotropy is removed. The edge dislocation in

Ti exhibits the greatest increase in Re from 17.29 Å (isotropic) to 22.23 Å

(anisotropic). For Hf, on the other hand, elastic anisotropy does not lead to

significant changes in Re or its asymmetric structure.
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Figure 3.2.3: The order parameter, ζ (dotted lines), and its density, /dx

(solid lines), along the [112̄3] slip direction for an initialized edge and screw

dislocation in Ti, Zr, and Hf. The coloring follows Figure 3.2.2.

3.2.4 Re and Co

Next, we study the equilibrium core structures of dislocations in the group

VII and IX HCP metals: Re and Co. Their GSFE curves are compared

to others previously in Figure 3.1.1(a). An important distinguishing feature

of their energetic landscapes from the other eight metals is their significant

differences between their two peak energies U1 and U2. U2 is 30% higher than

U1 in Re and 36% higher than U1 in Co.

Figure 3.2.4 presents their equilibrium dislocation structures. These two

metals share many common features with the most prominent one being

their asymmetric structure, compared to the dislocation structures of other

metals. They both dissociate into two partials that are unequal in Burgers

vector value and core width. The Burgers vector left partial is approximately
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15% smaller in length than that of the right one and its width is twice as large.

The widths of the partial cores are some of the largest compared to the other

metals, even though their lattice parameters are not. Re has the larger Re

of 29.46 Å and 20.03 Å for the edge and screw dislocations, respectively. Co

has smaller Re of 23.33 Å and 16.97 Å for the two dislocations, respectively.

For comparison, the calculated structures using their isotropic equivalent

elastic properties are also included in these profiles. Elastic anisotropy has a

negligible effect on the splitting distance of both the edge and screw disloca-

tions. Only a very slight increase is seen in the Re for the screw dislocation

in Co due to elastic anisotropy; Re = 15.91 Å for isotropy compared to 16.97

Å for anisotropy.

!

"#

Figure 3.2.4: The order parameter, ζ (dotted lines), and its density, dζ/dx

(solid lines), along the [112̄3] slip direction for an initialized edge and screw

dislocation in Re and Co (FM). The coloring follows Figure 3.2.2.
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3.2.5 Zn and Cd

The last two metals studied are Zn and Cd, which are group XII metals. The

GSFE curves for these materials are presented previously in Figure 3.1.1(a).

Compared to the other metals, they have the lowest unstable SFEs U1 and

U2. Also, unique to this group, their c/a ratios are larger than the ideal

value and the displacement xI/b at which the local minimum is achieved is

greater than 0.5 (located at 0.52–0.53). The displacements corresponding to

the unstable SFEs are also larger than those of the other metals.

Figures 3.2.5 shows the calculated ζ and dζ/dx profiles for the equilibrium

cores for the edge and screw dislocations in Zn and Cd. Their splitting

distances, Re, are 26.94 Å and 24.60 Å for the edge and screw dislocations

for Zn and 26.73 Å and 17.37 Å for Cd.

The dislocation structures of these two metals is nearly symmetric. The

widths of their two partials are nearly equal. Although, like the other metals,

the Burgers vectors of the two partials are not precisely equal in length;

however, the difference is not significant (within ±0.02 Å). Due to the larger

displacement offset of the local minimum in their GSFE curves, the value of

the Burgers vector of the left partial is slightly larger than the right one.

Figures 3.2.5 (a)–(d) shows that anisotropy has a significant effect on

the equilibrium splitting distances for both Zn and Cd. These group XII

elements are the only materials here to exhibit a much narrower dζ/dx peak

separation distance when anisotropy is taken into consideration. In Zn, for

the edge dislocation, Re reduces to 26.94 Å under elastically anisotropic

conditions from an isotropic one of 42.17 Å; for the screw dislocation, Re

reduces to 24.60 Å under elastically anisotropic properties from Re of 30.45

Å under isotropic ones. Cd shows a similar trend, with Re value of 26.73

Å and 37.42 Å for the edge dislocation with elastic anisotropy and isotropic
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isotropy, respectively. Finally, in the screw case in Cd, we see Re equals 17.37

Å and 22.72 Å for the elastic anisotropic and isotropic cases, respectively.

Figure 3.2.5: The order parameter, ζ (dotted lines), and its density, dζ/dx

(solid lines), along the [112̄3] slip direction for initial edge and screw dislo-

cations in Zn and Cd. The coloring follows Figure 3.2.2.

3.3 Discussion

From the DFT calculations, we find that these metals bear different levels of

elastic anisotropy and different maxima and minima in their GSFE curves.

In PFDD calculations, these properties are directly taken into account, and

as the results have shown, the dissociation process leads to dislocation cores

that deviate from the ideal picture, particularly showing partial dislocations

with non-compact cores and that are unequal in their widths and Burgers

vectors. With all ten HCP metals in hand, we identify in the next few sections
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the material properties that govern their core structure.

3.3.1 Scaling of core size with the intrinsic stacking

fault energy

The analytical model in Eq. 1.4.2 expects that the intrinsic SFE, I, has the

most pronounced effect on the Re/b. Figure 3.3.1 presents the variation in the

PFDD calculated distances when considering anisotropy, Re/b, with I/(Kb),

as expected from the analytical model in Eq. 1.4.2. Re/b shows a strong

inverse scaling with I/(Kb). Metals Ti and Y have the largest I/(Kb) and

also the narrowest Re/b ≈ 2–3, while Zn and Be with the smallest I/(Kb)

have the widest Re/b ≈ 5–6. The inverse scaling reflects the same basic

principle used in the analytical model, that an SFW a low I comprises a

large fraction of the entire core structure and I has a dominant effect on the

equilibrium split distance.

Figure 3.3.1(b) examines the relationship between Re and the higher max-

ima U2 in the GSFE curve. A remarkably strong inverse scaling in U2/(Kb)

emerges. A similar analysis with U1/(Kb) does not show a strong trend, and

can be found in Figure 3.C.1 in Appendix C. In the dissociation process, the

partial dislocations move apart and evidently it is the higher maximum U2

that affects the resistance.

To date, the analytical model in Eq. 1.4.2 was the only application used

to predict Re/b for the pyramidal-II dislocations for just some of the HCP

metals studied here. For the remaining materials, this work is the first to

quantify the equilibrium stacking fault width on the pyramidal-II plane. Re-

sults indicate that as expected from theory, Re/b scales inversely with I/(Kb)

and is minimally impacted by U1/(Kb) and U2/(Kb). The key difference is
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Figure 3.3.1: The equilibrium partial separation distance Re, calculated

using PFDD plotted against (a) the intrinsic SFE I normalized by Kb, and

(b) the unstable SFE U2, also normalized by Kb. Expressions for K are given

in Ref. [4].

that the scaling is not as strong as the analytical model predicts and is not

profoundly affected by the anisotropy in its elasticity properties inherent to

HCP metals.

3.3.2 Origin of the asymmetric cores

The analysis so far has indicated that the asymmetry in the dislocation struc-

tures is not a consequence of elastic anisotropy. The dislocation cores from

the anisotropic and isotropic equivalent calculations exhibit very similar, if

not the same, asymmetries. The properties of the GSFE curves of the indi-

vidual metals, on the other hand, are highly influential. In particular, the

core widths of the partials are affected by the depth of the local minimum

in the GSFE. Shallow energy wells, for instance, would suggest that a broad

partial core, in which the partial Burgers vector is distributed in plane, are
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more energetically favorable over the formation of the compact partial core

bordering a minimum energy intrinsic stacking fault.

Here we observe that the GSFE curves of all ten HCP metals exhibit some

degree of asymmetry about the local minimum state. The two local maxima,

U1 and U2, are unequal, and hence, the local minimum lies at different depths

with respect to U1 and U2. The left partial, as it displaces left in the negative

slip direction, is affected by D2, and the right one, as it displaces in the

positive slip direction, by D1. With depth quantified by D = (U − I)/U ,

their differences can be measured by comparing D1 = (U1 − I)/U1 and D2 =

(U2−I)/U2 in each GSFE curve. Table 3.3.1 summarizes the ratios U2/U1 and

D2/D1 for each metal. A correlation can be identified by comparing D2/D1

with wl/wr. The more symmetric core widths have nearly equal depths within

20%. Those metals with GSFE curves with greater differences, where D2/D1

is large, such as Mg, Y, and Re, have highly asymmetric cores.

3.3.3 Effect of elastic anisotropy

The equilibrium core structures calculated assuming effective isotropic or ac-

tual anisotropic elastic properties are similar in many features. For instance,

many of the asymmetric properties of the core are retained even when the

anisotropy is removed by using the effective isotropic constants. The primary

effect of anisotropy is to, in some cases, either narrow or widen the equilib-

rium split distance, Re (see Figure 3.3.2). Qualitatively, these effects only

confirm that the dominant contribution of elasticity is to control the elastic

repulsive interactions between the two partials.

In theory, the ratio of the anisotropic to isotropic Rani
e /Riso

e should scale

with the ratio of the pre-energy factors, K/µ from Equation 1.4.2, the an-

alytical calculation for the stacking fault widths. Figure 3.3.3(a) shows the
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Table 3.3.1: The ratio between the left and right partial dislocation cores,

wl/wr, for both edge and screw dislocations, and the ratio between the unstable

SFEs, U2/U1, and the ratio, D2/D1. Values of wl and wr are from Table

3.2.1.

Material wl/wr (edge) wl/wr (screw) U2/U1 D2/D1

Be 1.0 1.0 1.324 1.252

Mg 1.98 1.89 1.512 1.600

Y 1.5 2.02 1.488 5.156

Ti 1.0 1.0 1.237 1.223

Zr 1.0 1.0 1.222 1.170

Hf 0.66 0.66 1.259 1.267

Re 2.67 2.0 1.423 2.157

Co (FM) 2.0 2.0 1.553 2.390

Zn 1.0 1.0 1.213 1.151

Cd 1.0 1.0 1.160 1.112

variation in the ratio of Rani/Riso, determined using PFDD, with the cal-

culated pre-energy factor K/µ for both edge and screw dislocations. The

calculations follow the expected scaling although we see that cases in which

the anisotropic and isotropic separations were nearly equivalent correspond-

ing to a range of K/µ = 1.05–1.2. Yet still, we find that in most cases that

the anisotropic Re is wider than the isotropic one when K/µ is much greater

than unity and vice versa when it is much less than unity.

Over the years, many factors have been proposed to quantify the level

of elastic anisotropy in HCP metals, some of which we have included in Ap-
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Figure 3.3.2: PFDD calculated SFWs (Re) for edge (90 ◦) and screw (0 ◦)

dissociated dislocations in the 10 HCP materials with assumed elastic isotropy

(iso) and anisotropy (ani). Mg, Y, and Re are relatively isotropic. Metals

with higher levels of anisotropy have wider Re except for Zn and Cd, which

are narrower. Anisotropy does not change morphology of the dislocation core.

pendix D for completeness. Knowing which anisotropic indexes best capture

certain material behavior could be important to larger length scale models,

which cannot model discrete deformation behaviors. There have been many

different anisotropic indexes (see Table 3.D.1 for the calculations of α, β,

and γ, as well as, Figure 3.D.1 depicting their relationship, if any, to the

ratio Rani/Riso for edge and screw dislocations) that do not consistently de-

scribe the impact elastic anisotropy can have on the equilibrium stacking

fault width.
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Recently, however, a measure of the distance between the upper and lower

bounds of the fourth-ranked elasticity tensor was used to develop an index

AL, applicable to all classes of elastic anisotropy [150]. Here we apply AL to

quantify the level of anisotropy among the ten HCP materials. AL is defined

as:

AL =

√[
ln

(
κV

κR

)]2
+ 5

[
ln

(
µV

µR

)]2
(3.3.1)

where the bulk (κV, κR) and shear moduli (µV, µR) are calculated following

the Voigt and Reuss averages, respectively. By definition, for an ideally

isotropic material, AL = 0.

Table 3.3.2 shows the AL factors, as well as the other indicators, for all

metals here. According to AL, Y is the most isotopic HCP metal and Zn the

most anisotropic. Figure 3.3.3 plots the ratio of the anisotropic to isotropic

Re against AL. The effect of anisotropy on the deviations is greater in the

edge case than screw case. It can be anticipated that the edge dislocations

would be more sensitive to the level of anisotropy due to the more complex

elastic stress state generated by edge dislocations than screw dislocations.

Significantly, Figure 3.3.3(b) shows that the closer Rani
e /Riso

e is to unity,

the smaller the value of AL, and vice versa. For instance, metals like Y,

Re, and Mg, with the relatively lower values of AL, have Re values that are

unchanged when isotropy is assumed in place of their actual anisotropy. It

captures the fact that, while Mg may be nearly isotropic, it is not exactly

isotropic, explaining the slight deviation of Rani
e /Riso

e of the screw dislocation

from unity. As AL for the metal increases up to 0.2 Rani
e becomes increasingly

greater than Riso
e . Likewise, the Rani

e of Cd and Zn, which have the highest

AL (¿ 0.3), deviate the most from their isotropic Riso
e counterpart, although

the effect is to shrink Rani
e with respect to Riso

e .
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The value for the pre-energy factor K/µ in Fig. 9(a), does not adequately

reflect the variation of Rani/Riso. We find in Fig. 9(b) that the closer AL is to

zero, the closer the ratio Rani/Riso unity, and vice versa, the higher the value

of AL, the greater the ratio Rani/Riso diverges from unity. In this regard, the

K/µ pre-factor does not work as well as AL.

Table 3.3.2: Log-Euclidean anisotropy index, AL, calculated using Equation

3.3.1 and the bulk (κV, κR) and shear moduli (µV, µR) as defined by Voigt and

Reuss are calculated for the ten HCP materials. All values are determined

using DFT calculated elastic constants shown in Table 3.1.2.

Material AL κV κR µV µR

Be 0.033 123.28 122.69 154.35 152.13

Mg 0.018 36.37 36.35 19.26 19.10

Y 0.005 40.01 40.01 25.65 25.58

Ti 0.173 118.21 118.17 35.67 33.01

Zr 0.092 97.74 97.36 30.23 29.01

Hf 0.021 114.34 114.26 54.05 53.55

Re 0.028 378.89 378.86 177.61 175.42

Co (FM) 0.075 210.18 210.16 106.11 102.61

Zn 0.509 71.43 60.11 39.58 31.95

Cd 0.341 46.64 42.01 12.51 10.82

The correlation is a significant result in light of the fact that three common

indices are poor indicators of the degree of aniostropy. In Figure 3.D.1(a),

shown in Appendix D, we plot the Rani
e /Riso

e versus the other anisotropic indi-

cator α (Eq. 3.D.1). This factor is defined by only four of the five constants.
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!"

Figure 3.3.3: The ratio of the anisotropic to the isotropic equilibrium SFW

Rani
e /Riso

e plotted against (a) the anisotropic energy factor, K normalized by

the shear modulus, µ, and (b) the Logarithmic Euclidean anisotropy index,

AL, for both edge and screw dislocation dissociation.

Similar to AL, for both the edge and screw character dislocations, larger

α corresponds to higher deviations from ideally isotropic. Mg, Y, and Re

present the lowest degree of anisotropy with the α indicator, and Zn and Cd,

show the highest deviation from isotropy. However, Be has a negative value

for this indicator and is an outlier. We also test, in Appendix D, the perfor-

mances of the other anisotropic indicators β (Eq. 3.D.2) and γ (Eq. 3.D.3),

as shown in Figure 3.D.1(b,c). As shown, the differences in the anisotropic

and isotropic Re exhibit no correlation with these other HCP anisotropy

indicators for either the edge or screw-character dislocations. At least for

dislocations, these anisotropy indicators do not gauge well the anisotropic

effects on Re.
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3.4 Conclusions

In this work, we use phase-field dislocation dynamics (PFDD) to calculate

the size and structural properties of pyramidal-II ⟨c + a⟩ dislocations in ten

HCP metals: Be, Cd, Co, Hf, Mg, Re, Ti, Y, Zn, and Zr. These metals

vary widely in their c/a ratio and degree of elastic anisotropy. As part

of the formulation, the calculation incorporates generalized stacking fault

energie (GSFE) curves for the pyramidal-II plane calculated from density

functional theory (DFT). Among these metals, the GSFE curves are similar

in shape but vary significantly in the location and value of their two local

maxima and local minimum I. In addition, for Co, magnetism is shown to

play a vital role in achieving a local minimum energy in its GSFE. With

DFT informed PFDD simulations of the dissociation process of both perfect

screw and edge dislocations to their low energy, equilibrium structures are

obtained. For all metals, the equilibrium dislocation structures of both edge

and screw character are not compact, but extended bounded by two partial

dislocations. Their splitting distances, Re, are found to range from 1.2–3 nm.

We show that Re/b scales inversely with the local minimum I/(µb). For some

metals, the structures are asymmetric, wherein the core widths of the two

partial dislocations are not exactly equal, deviating from the classic picture

from dislocation theory. The asymmetries in these cases can be explained

by significantly unequal maxima in the GSFE curves. The elastic anisotropy

is shown to not affect asymmetry between the partial Burgers vectors or

core widths. We show that the stronger the degree of elastic anisotropy, as

measured by the AL factor, the stronger the effect on Re. The influence,

whether widening or narrowing the core relative to isotropy, depends on the

degree of anisotropy and the screw/edge character of the dislocation.
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3.5 Copyright

This chapter was reworked from our published research in the Physical Ma-

terials Review Journal [2].

Copyright © 2021 by American Physical Society. All rights reserved.

Individual articles are copyrighted by the APS, as indicated on each article.

Individual articles may be downloaded for personal use; users are forbidden

to reproduce, republish, redistribute, or resell any materials from this journal

in either machine-readable form or any other form without permission of the

APS or payment of the appropriate royalty for reuse.

For permissions and other copyright-related questions, please email your

question to: customercare@aps.org
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Appendix

3.A GSFE surface

Figure 3.A.1: The standard (a) and relaxed (b) GSFE surfaces for the

pyramidal-II plane in Mg. The x-axis and y-axis values are normalized by the

magnitude of a direct lattice translation vector along the ⟨112̄3⟩ and ⟨1̄100⟩

directions, respectively.

Figure 3.A.1 shows 2D GSFE surfaces for the pyramidal-II plane in Mg
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calculated with standard and x-Relaxed methods for determining GSFEs

[15, 78] using DFT. In the standard method, we shift the upper half of the

crystal with respect to the lower half of the crystal on the pyramidal-II plane

in small displacements and only allow atomic positions along the z-direction

to relax. In the x-Relaxed method, we also allow for an additional relaxation

along the ⟨1̄100⟩ direction. Additional relaxation normal to ⟨112̄3⟩ allows

for local rearrangement of the atoms near the glide plane, which leads to a

well-defined local minimum compared to a shallow minimum for the standard

(unrelaxed) GSFE surface [78].

The lowest energetic path on the pyramidal-II GSFE surfaces, obtained

using both the standard (Figure 3.A.1(a)) and x-Relaxed (Figure 3.A.1(b))

methods, lies along the ⟨c + a⟩ edge, collinear to the ⟨112̄3⟩ direction, en-

ergetically indicating that the partials will have only parallel components.

This is similar to a recent finding that the ⟨111⟩ GSFE curves on {110},

{112}, and {123} planes in BCC metals lie along local minimum lines on

respective GSFE surfaces [6]. This allows us to simplify the input for the

periodic potential ϕ, used in the Elattice calculation, Equation 10, of the

PFDD model, from the GSFE surface to the GSFE curve, that describes the

governing energetics for the pyramidal-II plane. For this reason, we justify

calculating only the GSFE curves for the remaining HCP materials, which

would otherwise be too computationally time consuming when using DFT to

calculate the full GSFE surface. The full GSFE surface could be calculated

with MS, however this method is dependent on interatomic potentials and

could impact the position of the minima, and thus impact the PFDD results.
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3.B Experimental elastic constants

Table 3.B.1: Experimentally determined elastic constants (in GPa) for the

ten HCP metals [7] for comparison with the DFT derived values in Table

3.1.2.

Material C11 C12 C13 C33 C44

Be 299.40 27.60 11.00 342.20 166.20

Mg 63.48 25.94 21.70 66.45 18.47

Y 83.40 29.10 19.00 80.10 26.90

Ti 176.10 86.90 68.30 190.50 50.80

Zr 155.40 67.20 64.60 172.50 36.30

Hf 190.10 74.50 65.50 204.40 60.00

Re 634.40 266.00 202.00 701.60 169.10

Co (FM) 319.50 166.10 102.00 373.60 82.40

Zn 179.09 37.50 55.40 68.80 45.95

Cd 129.23 39.99 40.95 56.68 24.20
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3.C Variation of Re with the lower unstable

stacking fault energy

Figure 3.C.1: The equilibrium SFW Re plotted against the unstable SFE,

U1, normalized by the anisotropic energy factor, K, and the Burgers vector,

b.

3.D Additional measures of elastic anisotropy

Here we present results for the measures of elastic anisotropy in HCP mate-

rials conventionally referred to as α, β, and γ, and are related to the elastic

constants by [151]
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α =
C11 + C12 − C33

C13

(3.D.1)

β =
C66

C44

(3.D.2)

γ =
1

2C44

[
C33 + C11 + C12

2
− C13

√
α2 + 8

2

]
(3.D.3)

We note that only the last anisotropy factor, γ, contains all five indepen-

dent elastic constants of an HCP metal.

Table 3.D.1: Traditionally used anisotropic indices α, β, and γ, calculated

in Equations 3.D.1–3.D.3. All values are determined using DFT calculated

elastic constants shown in Table 3.1.2.

Material α β γ

Be −3.232 0.806 1.008

Mg 1.130 1.039 1.272

Y 0.953 0.984 1.120

Ti 0.913 0.670 1.401

Zr 0.697 1.050 1.681

Hf 0.833 0.952 1.230

Re 0.944 1.018 1.332

Co (FM) 1.076 1.044 1.610

Zn 2.661 1.908 0.564

Cd 2.150 2.218 1.390
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(a)

(b)

(c)

Figure 3.D.1: The ratio of the anisotropic to the isotropic equilibrium SFW

Rani
e /Riso

e plotted against the anisotropy indices (a) α, (b) β, and (c) γ for

both edge and screw dislocation dissociation.112



Chapter 4

Dynamic dislocation core

structures in HCP materials

In the previous chapters we developed and applied the PFDD model to ex-

plore the equilibrium stacking faults of dissociated dislocations and their

cores on the basal and pyramidal II planes in HCP materials. In this chap-

ter we will activate an externally applied shear stress in the PFDD model

to explore the dynamic stacking faults of dissociated dislocations and their

cores as they glide within their respective slip planes. First we will determine

if there is any directional dependency on dislocation morphology using the

same setup of an isolated infinitely long dislocation. We will then introduce

a new initial dislocation configuration, the Frank-Read source, and explore

how applied stress directionality influences dislocation loop formation mor-

phology.
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4.1 Directionally dependent dislocation glide

on the pyramidal II plane

In this work we used the same version of the PFDD model that was developed

and described in 3.1.

The previous studies show the partial dislocations on the pyramidal II

plane under stress-free conditions exhibit asymmetric cores and morphology,

and have Burgers vectors unequal in magnitude, corresponding to the posi-

tion of the intrinsic stacking fault energy I [2]. However, we do not know

how these dislocations behave under an applied stress. It is proposed that

there is a directional dependency on the dSFW and critical stress required

for dislocation glide. The simulations from that study are re-run for Mg, Be,

and Ti starting with an initial stress σi = 0.0000, allowing the dissociation

event to equilibrate before incrementally applying a shear stress until the

dislocation becomes mobile. Simulations are ran with an applied stress in

both a ’positive’ and ’negative’ direction, for an initial infinitely long edge

dislocation. The equilibrium stacking fault width eSFW and the dynamic

stacking fault width dSFW are quantified and given in dimensionless grid

points with a grid spacing equal to d/b, where d is the interplanar spacing

and b is the magnitude of the Burgers vector. The critical stress σc for the

onset of dislocation glide is also determined and expressed in terms of the

shear modulus µ. The model can be sped up by saving the data to an output

file for every ith time step evolution, which we have set to i = 50 for these

simulations. The set-up of the infinitely long dislocation is the same as in the

previous chapter (see Figure 3.1.2) with new cell dimension of 512×64×512

grid points (we are able to reduced the length of the cell in the y-direction

to cut down on computational time because the dislocations are infinitely
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long with the periodic boundary conditions). However in this work we use

a new data visualization tool, OVITO Basic (Open Visualization Tool) Ver-

sion 3.1.3, which allows us to define and track the SF as it glides through

our simulation cell (the SF is defined slightly differently in this work than it

was in the previous chapters).

Figure 4.1.1: The cross-section, showing the order parameter for grid points

along the x-direction, of an infinitely long dislocation in Ti that has dissoci-

ated forming a stacking fault. The range of order parameter values in Ti that

correspond to a stacking fault is ζ = [0.34, 0.54] (highlighted in dark gray).

The stacking fault is defined according to a range of order parameters that

corresponds to the presence of an intermediate step in the order parameter

profile, specific to each material. Figure 4.1.1 shows the order parameter

profile of the grid points perpendicular to the line sense of an infinitely long

edge dislocation in Ti that has dissociated forming a stacking fault. The
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order parameter values range from 0 (representing the unslipped regions)

to 1 (representing a region that has been slipped by a dislocation). The

region where the order parameter transitions from 0 and 1 describes the

presence of a dislocation. The intermediate step in this order parameter

profile shows that the dislocation has dissociated forming a stacking fault

boardered by two partial dislocations. The range of order parameter values

in Ti that correspond to a stacking fault is ζ = [0.34, 0.54] and the number

of grid points with an order parameter in that range adds up to the SFW (in

previous work the SF contained part of the partial, defined as the difference

between the center of the two partials, the two points on the graph where

the change in the order parameter was greatest). This new definition and

tracking of the SF does not account for any portion of the partial dislocation

cores. For ease of reference sake, the two partials will be identified as the left

and right partial, corresponding to order parameters ζl = (0.00, 0.34) and

ζr = (0.54, 1.00), respectively. This same dislocation reference can be made

with the lower and upper bounds of the stacking fault order parameter range

for the both Mg and Be as well, which are ζ = [0.40, 0.60] and ζ = [0.38, 0.58]

respectively.

Figure 4.1.2 shows the generalized stacking fault energy GSFE profiles

for the pyramidal II plane in Be, Ti, and Mg, along the ⟨c + a⟩ direction

(normalized by the Burgers vector). The position of I for Ti is ∼ 0.44 which

corresponds to the middle of the order parameter range associated with a

stacking fault in Ti. The same can be said for Mg and Be, which have an

I position of 0.50 and 0.48, respectively. By incrementally applying a shear

stress for opposite directions we notice directional dSFW and mobility de-

pendencies that might also be connected to the asymmetries of the pyramidal

II plane as captured by the GSFE curves.
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Figure 4.1.2: The generalized stacking fault energy GSFE curves for Be, Ti,

and Mg show various asymmetries for the positions of the local minimum, the

intrinsic stacking fault energy I, and the two maxima, the unstable stacking

fault energies U1 and U2, which correspond to the right and left respectively.

Figure 4.1.3 demonstrates the directional dependency of the applied shear

stress on the dynamic stacking fault width Rd and critical stress σc for dis-

location glide in Ti. For Ti, eSFW = 14 (all SFW are normalized by the

grid spacing). At σc = 0.0065µ± 0.0005µ we see dSFW = 15. In the oppo-

site direction the SFW increases to 15 at σ = −0.002µ as the right partial

accommodates this expansion by shifting to the right, while the left partial

remains static. At σ = −0.003µ and σ = −0.005µ we see an increase in SFW

to 16 and 17, respectively, as the right partial continues to accommodate the
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Figure 4.1.3: Snapshot of dislocation glide in Ti on the pyramidal II plane

under two different applied shear stresses. The stress is referred to as the

positive in the top picture and the isolated dislocation glides to the left. The

stress is referred to as negative in the bottom picture and the dislocation glides

to the right. The dynamic stacking fault width Rd and critical stress σc for

dislocation glide is dependent on the directionality of the applied shear stress.

expanding stacking fault. At σc = −0.0055µ ± 0.00005µ we get full dislo-

cation motion to the right and a dSFW = 16. This decrease could be due

to the smaller Burgers vector associated with the left partial and unstable

stacking fault energies that are closer in value (see the GSFE curve for Ti in

Figure 4.1.2).

For Mg, eSFW = 14. The SF expands to SFW = 15 at σ = 0.0002µ

as the left partial shifts while the right remains static. At σc = 0.00105µ ±

0.00005µ the SF begins to glide left with a dSFW = 16. In the opposite

direction the dSFW = eSFW and σc = −0.00135µ± 0.00005µ.

For Be, eSFW = 16. The static stacking fault SF expands under stress

via the left partial to SFW = 18 and then at σc = 0.00265µ ± 0.00005µ

we see the SF reduce to a dSFW = 17. Consider the GSFE curve for Be

in Figure 4.1.2, it is proposed the decrease in the dSFW could result from
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the right partial overcoming the maximum unstable stacking fault energy U2

and having enough momentum to make it over the lower unstable stacking

fault energy U1. Immediately upon the application of stress in the oppo-

site direction, the SF decreases to SFW = 15. The static SF eventually

recovers and expands to SFW = 17 via the right partial dislocation until

σc = −0.00245µ± 0.00005µ initiates SF glide with a dSFW = 18.

Now that it has been established that directionality impacts dislocation

behavior on the pyramidal II plane in ways that are intrinsic to each material,

we will consider a Frank-Read FR source in Mg for both edge and screw

dislocations on both the basal (no directional dependency) and pyramidal II

planes (directional dependency).

4.2 Frank-Read source

The FR source is created by considering two slip systems in the PFDD for-

mulation with the same Burgers vector but perpendicular slip plane normals.

Figure 4.2.1 depicts this configuration. The first slip plane has a normal in

the z-direction and corresponds to the slip plane of interest. The second slip

plane has a normal in the x-direction. In the case of a basal plane of interest,

both planes will have an ⟨a⟩ dislocation. In the case of a pyramidal II plane

of interest, both planes have a ⟨c + a⟩ Burgers vector. A “prismatic loop” is

created on the second plane that spans between z = 0 and z = N/2, where N

is the number of grid points λ in the z-direction. The width of the prismatic

loop is considered for both 20λ and 40λ cases. The order parameters for

the second slip system are set to 1 for grid points within the prismatic loop,

while all other order parameters are set to 0. Only the plane at z = N/2 is

allowed to evolve during the simulation, so the prismatic loop remains sta-
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tionary while a dislocation on the first slip system bows out onto the habit

plane.

Figure 4.2.1: The simulation setup for a Frank-Read source. A prismatic

loop is shown in green. Under an applied load, a dislocation loop containing

partials and a stacking fault, shown in white, bows out from the edges of

the prismatic loop on the chosen isolated slip plane in the center of the cell.

The blue-white boundary is the leading partial dislocation and the white-red

boundary is the trailing partial dislocation. The The Frank-Read source is

screw or edge-oriented depending on the orientation of the Burgers vector.

For all FR simulations, a cubic grid of 256 × 256 × 256 is used, though

the grid spacings vary between different planes. 3D periodic boundary con-

ditions are used. A shear stress is applied in the Burgers vector direction,

starting at zero stress and increasing by increments of 0.001µ. At each stress

increment, the simulation evolves for 10000 time steps, ∆t or until the simu-
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lation converges, whichever comes first. Convergence is defined as when the

norm of the change in order parameters is less than ∆ζ = 0.0005 between

successive times. The time step used is ∆t = 0.02 and is unitless in the code.

The model can be sped up by saving the data to an output file for every ith

time step evolution, which we have set to i = 100 for all simulations.

The critical stress σc was also calculated for each configuration and is

defined as the minimum applied shear stress under which the emitted FR

loop will not stall in an equilibrium configuration or collapse back into a

straight line if the stress stopped being applied; it is the first stress step in

the simulation where the emitted loop continues to expand until the entire

simulation cell is slipped. Figures 4.2.2-4.2.12 give detailed specifics on the

variety of the FR simulations. These FR source stacking fault loop emissions

are the first study of their kind for any hcp material and there are many

interesting features that are not fully understood and could very well be

different in other hcp materials.

4.2.1 Basal dynamics

Figures 4.2.2 and 4.2.3 show the evolution of a screw dislocation loop emission

from a FR source on the basal plane. We consider two initial FR lengths of

20λ and 40λ, respectively, where λ is the grid spacing. The 20λ FR source

has a critical stress σc = 0.0505µ ± 0.0005µ and the 40λ FR source has a

critical stress of σc = 0.0425µ± 0.0005µ.

For an initial edge dislocation in a FR source of length 20λ and 40λ, the

critical shear stress is σc = 0.0445µ ± 0.0005µ and σc = 0.0395µ ± 0.0005µ,

respectively. See Figures 4.2.4 and 4.2.5. The critical stresses for these initial

edge configurations are less than those previously mentioned for screw. These

critical stress values are meant to offer a reference point for those calculated
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for the pyramidal II plane. However, this is the first time the evolution of

a FR loop with a dissociated dislocation has been simulated on the basal

plane in an HCP material, which reveals an interesting asymmetrical SF due

to the differences in the directions of the Burgers vectors of the leading and

trailing partials. The shape of each resulting dislocation loop, partial and

variable dSFW is the result of the lower line energy associated with a screw

dislocation versus that for an edge, thus the shape of the FR loop reflects a

minimization of parts with an edge character, while maximizing parts with a

screw character. We also note that the SF expands greatly before a trailing

partial is emitted, which then quickly catches up to the leading partial and

a stable dSFW is reached.
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Figure 4.2.2: Screw, FR 20λ, +σ, basal plane in Mg. Successive snapshots

of Frank-Read source loop expansion of an initial screw dislocation on the basal

plane in Mg with a Frank-Read source length of 20 grid points (which equates

to a normalized length of 16.25b in terms of the Burgers vector b = 3.1900 or

51.84 Å).The emitting loop reaches a critical stress of σc = 0.0505µ ± 0.0005µ.

Each snapshot shows the formation of a stacking fault at separate timess (τ)

of the same simulation. (a) τ = 2 and contains the color map describing the

order parameter for Figures 4.2.2-4.2.13. (b) τ = 23 at σ = 0.0500µ right before

the critical stress is reached. The remaining snapshots are of the system under

the final applied stress σf = 0.0510µ for timess (c) τ = 120, where the largest

stacking fault width SFW = 23 occurs before the emission of the trailing partial

from the Frank-Read source, (d) τ = 126, where b1 is the Burgers vector for the

leading partial dislocation, (e) τ = 138, where b2 is the Burgers vector for the

trailing partial dislocation, (f) τ = 156, which captures the equilibrated dynamic

stacking fault under this applied stress (once the trailing partial has ’caught up’

to leading partial, this stacking fault width remains constant for the remaining

loop expansion, until the loop begins to interact with its image due to periodic

boundary conditions, as shown in (g) τ = 166, and (h) τ = 175, showing the

schematic for the linear combination of partial Burgers vectors on the basal plane

for an initial screw dislocation. 123



Figure 4.2.3: Screw, FR 40λ, +σ, basal plane in Mg. Successive snapshots

of Frank-Read source loop expansion of an initial screw dislocation on the basal

plane in Mg for a Frank-Read source length of 40 grid points (which equates to

a normalized length of 32.5b or 103.68 Å). The emitting loop reaches a critical

stress of σc = 0.0425µ± 0.0005µ. (a) is the snapshot at times τ = 2. (b) is τ = 69

at the applied stress σ = 0.0420µ right before the critical stress is reached. The

remaining snapshots are of the system under the final applied stress σf = 0.0430µ

for timesteps (c) τ = 162, where the largest stacking fault width occurs SFW = 24,

and b1 is the Burgers vector for the leading partial dislocation, (d) τ = 193, where

b2 is the Burgers vector for the trailing partial dislocation, (e) τ = 217, shows

the equilibrated dynamic stacking fault width (f) τ = 230, (g) τ = 241, and (h)

τ = 243, which shows the Frank-Read arms asymmetrically merging with their

image before merging with each other, unlike in Figure 4.2.2, where the two arms

of the Frank-Read source merge forming a complete dislocation loop before meeting

its image.

124



Figure 4.2.4: Edge, FR 20λ, +σ, basal plane in Mg. Successive snapshots of

Frank-Read source loop expansion of an initial edge dislocation on the basal plane

in Mg for a Frank-Read source length of 20 grid points The emitting loop reaches

a critical stress of σc = 0.0445µ±0.0005µ. Each sequential snapshot shows various

normalized times τ of the same simulation. (a) is the snapshot at time τ = 2. (b)

is the last time τ = 213 at the stress σ = 0.0440µ right before the critical stress

is reached. The remaining snapshots are at the final applied stress σf = 0.0450µ

for times (c) τ = 268, where the largest stacking fault width occurs SFW = 42

before the emission of the trailing partial from the Frank-Read source, and b1

is the Burgers vector for the leading partial dislocation, (d) τ = 287, where b2

is the Burgers vector for the trailing partial dislocation, (e) τ = 321, shows the

equilibrated dynamic stacking fault width, (f) τ = 356, (g) τ = 361, which shows

an asymmetric attraction of the leading partial arm of the Frank-Read source with

the merging leading partials of the image, and (h) τ = 367, where the schematic

for the linear combination of partial Burgers vectors on the basal plane for an

initial edge dislocation is noted for the red region, which has been slipped by both

the leading and trailing partial dislocations.
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Figure 4.2.5: Edge, FR 40λ, +σ, basal plane in Mg. Successive snapshots of

Frank-Read source loop expansion of an initial edge dislocation on the basal plane

in Mg for a Frank-Read source length of 40 grid points The emitting loop reaches

a critical stress of σc = 0.0395µ± 0.0005µ. (a) is the snapshot at time τ = 2. (b)

is τ = 315 at σ = 0.0390µ with a maximum SFW = 46 right before the critical

stress is reached. Both (a) and (b) are from the first simulation, which timed out

before completion. The remaining snapshots are representative of a stress greater

than σc = 0.0395µ± 0.0005µ for times (c) τ = 19, where the largest stacking fault

width occurs as the trailing partial begins to emit from the Frank-Read source

(d) τ = 29, (e) τ = 42, shows the equilibrated dynamic stacking fault width, (f)

τ = 51, (g) τ = 57, which shows an asymmetric attraction of the leading partial

arm of the Frank-Read source with the merging leading partials of the image,

and (h) τ = 60, where the schematic for the linear combination of partial Burgers

vectors on the basal plane for an initial edge dislocation is noted for the red region.
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4.2.2 Pyramidal II dynamics

The critical stresses for the pyramidal II plane are larger than those for basal,

but not by as much as we would expect. We expected the differences in crit-

ical stresses calculated using PFDD to resemble the differences observed in

the critical resolved shear stresses CRSS measured for single crystal deforma-

tion of the basal and pyramidal II plane (4MPa and 63MPa, respectively).

This is perhaps due to the simulations being athermal and thus reflecting

what we might expect at 0K, which there are not any experiments on pyra-

midal II dislocations in Mg at 0K for comparison. For the screw disloca-

tion with a FR length of 20λ and 40λ we see σc = 0.0655µ ± 0.0005µ and

σc = 0.0515µ ± 0.0005µ, respectively. In the negative direction we see very

different results with σc = −0.0735µ±0.0005µ and σc = −0.0545µ±0.0005µ

respectively. We also see very different morphology during evolution. For ex-

ample, for the FR length of 40λ we get a maximum stacking fault width (mea-

sured perpendicular and across the center of the FR source) of SFW = 64,

shown in Figure 4.2.8(g) compared to the maximum SFW = 20 in Figure

4.2.9(c). The directional dependency of the maximum stacking fault width

is even greater for a FR length of 20λ, with SFW = 110 Figure 4.2.6(e)

and SFW = 36 Figure 4.2.7(d) in the positive and negative applied stress

directions, respectively.

For the edge dislocation with a FR length of 20λ and 40λ we see σc =

0.0555µ± 0.0005µ and σc = 0.0455µ± 0.0005µ, respectively. In the negative

direction we similar results for FR length 20λ with σc = −0.0555µ± 0.0005µ

and lower results for FR length 40λ with σc = −0.0375µ ± 0.0005µ. We

also see directional dependency on dislocation morphology during evolution.

Where the FR length of 40λ produces a maximum stacking fault width of

SFW = 47 early on, before emitting a trailing partial, shown in Figure
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4.2.12(b), compared to the maximum SFW = 21 when the shear stress

is applied in the negative direction, as shown in Figure 4.2.13(b). While

the directional dependency of the maximum stacking fault width is smaller

(which was not the case for the screw dislocation) for a FR lenghth of 20λ,

with SFW = 38 Figure 4.2.10(c) and SFW = 23 Figure 4.2.11(c) in the

positive and negative applied stress directions, respectively.
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Figure 4.2.6: Screw, FR 20λ, +σ, pyramidal II plane in Mg. Successive

snapshots of Frank-Read source loop expansion of an initial screw dislocation on

the pyramidal II plane in Mg for a Frank-Read source length of 20 grid points

(which equates to a normalized length of 4.464b or 27.17 Å) . The emitting loop

reaches a critical stress of σc = 0.0655µ ± 0.0005µ. (a) is at time τ = 2. (b) is

at τ = 68 under the applied stress σ = 0.0650µ right before the critical stress is

reached. The remaining snapshots are at the final applied stress σf = 0.0660µ for

times (c) τ = 124 just as the the trailing partial is emitted from the Frank-Read

source, (d) τ = 130, where we see the stacking fault width continuing to expand

with the leading partial at a greater rate than the expansion of the trailing partial,

(e) τ = 131, where a maximum dSFW of 110 grid points across and a maximum

stacking fault area of 15692 grid points are reach, (f) τ = 135, the entire plane has

turned into a stacking fault with the cancellation of the leading partials, except

for the region that is finally being swept out by the expanding trailing partial

(g) τ = 137, and (h) τ = 138, where the schematic for the linear combination of

partial Burgers vectors on the pyramidal II plane for an initial screw dislocation

is noted for the red region.
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Figure 4.2.7: Screw, FR 20λ, −σ, pyramidal II plane in Mg. Successive

snapshots of Frank-Read source loop expansion of an initial screw dislocation

on the pyramidal II plane in Mg for a Frank-Read source length of 20 grid

points with an shear stress applied in the negative direction. The emitting

loop reaches a critical stress of σc = −0.0735µ± 0.0005µ. (a) is the snapshot

at time τ = 2. (b) is the last time τ = 49 under the applied stress σ =

−0.0730µ right before the critical stress is reached. The remaining snapshots

are at the final applied stress σf = −0.0740µ for times (c) τ = 100 just as

the the trailing partial is emitted from the Frank-Read source, (d) τ = 112,

where we see the maximum stacking fault width of 36 grid points across, (e)

τ = 114, where we measure the larges stacking fault area of 4660 grid points,

(f) τ = 116, (g) τ = 117, and (h) τ = 118.
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Figure 4.2.8: Screw, FR 40λ, +σ, pyramidal II plane in Mg. Successive

snapshots of Frank-Read source loop expansion of an initial screw dislocation

on the pyramidal II plane in Mg for a Frank-Read source length of 40 grid

points (which equates to a normalized length of 8.927b or 54.34 Å) . The

emitting loop reaches a critical stress of σc = 0.0515µ ± 0.0005µ. (a) is the

snapshot at time τ = 2. (b) is at τ = 102 with σ = 0.0510µ right before the

critical stress is reached. The remaining snapshots are at the final, applied

stress σf = 0.0520µ for times (c) τ = 154 just as the the trailing partial is

emitted from the Frank-Read source, (d) τ = 164, (e) τ = 170, (f) τ = 171

with a maximum stacking fault area of 9662 grid points, (g) τ = 172 with a

maximum dSFW of 64 grid points across, and (h) τ = 175.
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Figure 4.2.9: Screw, FR 40λ, −σ, pyramidal II plane in Mg. Successive

snapshots of Frank-Read source loop expansion of an initial screw dislocation

on the pyramidal II plane in Mg for a Frank-Read source length of 40 grid

points with a shear stress applied in the negative direction. The emitting

loop reaches a critical stress of σc = −0.0545µ± 0.0005µ. (a) is the snapshot

at time τ = 2. (b) is τ = 111 at stress σ = −0.0540µ right before the

critical stress is reached. The remaining snapshots are at the final, applied

stress σf = −0.0550µ for times (c) τ = 187 where we measure the maximum

dynamic stacking fault width to be 20 grid points, (d) τ = 197, (e) τ = 200,

where we measure the largest stacking fault area of 2540 grid points (this may

be exaggerated due to interactions at the periodic boundary), (f) τ = 202,

(g) τ = 205, and (h) τ = 206.
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Figure 4.2.10: Edge, FR 20λ, +σ, pyramidal II plane in Mg. Successive

snapshots of Frank-Read source loop expansion of an initial edge dislocation

on the pyramidal II plane in Mg for a Frank-Read source length of 20 grid

points (which equates to a normalized length of 4.464b or 27.17 Å). The

emitting loop reaches a critical stress of σc = 0.0555µ ± 0.0005µ. (a) is at

τ = 2. (b) is at τ = 95 under the applied stress σ = 0.0550µ right before the

critical stress is reached. The remaining snapshots are at the final, applied

stress σf = 0.0560µ for times (c) τ = 125 with the maximum dSFW of 38

grid points, (d) τ = 138, (e) τ = 148, (f) τ = 151, shows the cancellation

of the leading partial, generating a maximum stacking fault area of 11220

grid points, (g) τ = 153, shows the merging of the trailing partial and (h)

τ = 154, where the schematic for the linear combination of partial Burgers

vectors on the pyramidal II plane for an initial edge dislocation is noted for

the red region.
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Figure 4.2.11: Edge, FR 20λ, −σ, pyramidal II plane in Mg. Successive

snapshots of Frank-Read source loop expansion of an initial edge dislocation

on the pyramidal II plane in Mg for a Frank-Read source length of 20 grid

points with a shear stress applied in the negative direction. The emitting

loop reaches a critical stress of σc = −0.0555µ ± 0.0005µ. (a) is at τ = 2.

(b) is at τ = 154 at the applied stress σ = −0.0550µ right before the critical

stress is reached. The remaining snapshots are at the final, applied stress

σf = −0.0560µ for times (c) τ = 202 with a maximum dynamic stacking

fault width of 23 grid points (d) τ = 221, (e) τ = 226, (f) τ = 228, with a

maximum stacking fault area of 3125 grid points (g) τ = 229, (h) τ = 230.
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Figure 4.2.12: Edge, FR 40λ, +σ, pyramidal II plane in Mg. Successive

snapshots of Frank-Read source loop expansion of an initial edge dislocation

on the pyramidal II plane in Mg for a Frank-Read source length of 40 grid

points (which equates to a normalized length of 8.927b or 54.34 Å). The

emitting loop reaches a critical stress of σc = 0.0455µ ± 0.0005µ. (a) is at

τ = 2. (b) is at τ = 121 at the stress σ = 0.0450µ right before the critical

stress is reached and has the largest stacking fault width of 47 grid points.

The remaining snapshots are at the final, applied stress σf = 0.0460µ for

times (c) τ = 131, (d) τ = 141, (e) τ = 151, (f) τ = 152, (g) τ = 155, and

(h) τ = 156.
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Figure 4.2.13: Edge, FR 40λ, −σ, pyramidal II plane in Mg. Successive

snapshots of Frank-Read source loop expansion of an initial edge dislocation

on the pyramidal II plane in Mg for a Frank-Read source length of 40 grid

points with a shear stress applied in the negative direction. The emitting

loop reaches a critical stress of σc = −0.0375µ ± 0.0005µ. (a) is at τ = 2.

(b) is at τ = 20 where the maximum SFW is 21 grid points across, which

is interesting because this is the first time the maximum SFW is reached

before the critical stress. (c) is at τ = 316 at σ = −0.0370µ right before the

critical stress is reached. The remaining snapshots are at the final, applied

stress σf = −0.0380µ for times (d) τ = 370, (e) τ = 410, (f) τ = 416, which

has a maximum stacking fault area of 3624 grid points, (g) τ = 417, and (h)

τ = 418.
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4.3 Summary

The dSFWs on the pyramidal II plane show a directional dependency on the

applied stress that is the result of the variations in the GSFE curves that

influence the mobility of the leading and trailing partials.

On planes where the partial Burgers vectors are not colinear (i.e. the

basal plane) we see large variations in the dSFW between the leading lead-

ing and trailing partial of a FR loop, which expand with different preferential

direction depending on the orientation of their partial Burgers vector. We

note this for both the initial edge and screw FR source dislocations on the

basal plane and that the resulting loop shape varied for each initial dislo-

cation character. The shape of each resulting dislocation loop, partial and

variable dSFW is the result of the lower line energy associated with a screw

dislocation versus that for an edge. Thus, the shape of the FR loop reflects

a minimization of parts with an edge character, while maximizing parts with

a screw character.

In both edge and screw initial FR dislocation sources the SF emitted on

the pyramidal II plane was symmetric about the axis perpendicular to the

FR source, unlike the loop we saw on the basal plane. This is because the

Burgers vectors for the partials on the pyramidal II plane are colinear. It

is also noted that in all planes the initial screw dislocations formed SF that

preferred to spread wider along the y-axis direction parallel to the FR source,

while the initial edge dislocation formed SF that preferred to spread more

widely along the x-axis direction, perpendicular to the FR source. In all

cases this is again the result of the lower line energy associated with a screw

dislocation versus that for an edge, thus the shape of the FR loop reflects a

minimization of parts with an edge character, while maximizing parts with
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a screw character.
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Chapter 5

Langevin thermal noise

addition to the PFDD model

Thermal fluctuations can arise from dissipation mechanisms due to colli-

sion of dislocations with surrounding particles, such as phonons or elec-

trons. Rapid collisions and momentum transfers result in random forces

on dislocations. These stochastic collisions, in turn, can be regarded as time-

independent noise of thermal forces acting on the dislocations. Suppose the

exertion of thermal forces follows a Gaussian distribution. Then, thermal

fluctuations most likely result in very small net forces due to mutual can-

cellations. However, they sometimes become large and may cause diffusive

dislocation motion, stacking fault width changes, or thermal activation events

such as overcoming obstacle barriers. Therefore, a dislocation dynamics sim-

ulation model should also account not only for deterministic effects but also

for stochastic forces. In this work, accounting for thermal fluctuations will

be explored by using the Langevin force equations to include a thermal noise

term (also referred to as Langevin force term or thermal fluctuation term)

in the Time-Dependent Ginzberg Landau equation (the energy minimization
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equation) of the PFDD model.

5.1 PFDD background

The Time-Dependent Ginzburg-Landau (TDGL) phase field (PF) approach

has proven to be a powerful technique for probing the kinetics and dynamics

of a system [152, 90, 31, 153, 154]. PF formulations utilize a set of order

parameters that track a property of interest as the system evolves spatially

and/or temporally. Systems in which researchers have employed PF theory

include, but are not limited to, phase transformation [155], microstructure

formation [156], phase nucleation/decomposition [157], fracture [158], and

defect processes [33]. In this work, we utilize PF formulation for the study of

dislocation movement, known as Phase Field Dislocation Dynamics (PFDD)

[31]. Detailed overviews of the mesoscale PFDD methodology can be found

elsewhere [31, 38, 95], but briefly, a set of order parameters are introduced

into the formulation to track slipped vs. unslipped regions during dislocation

glide. The system evolution is governed by a minimization of total energy,

and the order parameter is solved for at each time step as the system moves

towards equilibrium.

Initially, the PFDD formulation was limited to simulations of FCC crystal

structures, which provided insight into the nucleation and motion of defects

(e.g., screw-, edge-, and mixed-type dislocations, twins). More recently, sig-

nificant advancements have been made to study BCC [41, 96] and HCP [1, 2]

crystal structures, multiple slip systems [159], and chemically disordered crys-

tals [160, 159, 161](i.e., multi-principal element alloys). In this chapter, we

introduce a thermal component to the previously static (0 K) PFDD code

to capture the role that temperature plays on dislocation nucleation, mi-
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gration, and glide. Though temperature capabilities have been successfully

introduced into PF phase transformation models [162, 163, 164, 165], ap-

plications to dislocation dynamics have not yet been reported in literature.

This work is the first treatment of thermal fluctuations in PF dislocation

mechanics. We demonstrate the viability of the thermal noise addition with

three exemplar HCP crystal systems. Thermal and applied stress effects are

investigated on the multiplication of dislocations from a Frank-Read source.

Ultimately, the thermal addition to the PFDD model will help to elucidate

the temperature- and stress-dependent deformation mechanisms in metals

and metal alloys.

5.2 PFDD formulation

As previously mentioned we will be using a computational approach, using

a phase field dislocations dynamics PFDD model. In this section we will

review the PFDD formulation through the lens of potential development to

include thermal fluctuations. The subsequent advancement of the PFDD to

account for thermal noise will then be reviewed in the next section

PFDD is a mesoscale model that uses an energy-minimization phase field

approach to study dislocations in FCC, BCC, and HCP metals [1, 160, 31].

The energetics used in the PFDD method are informed by first principle

calculations.

The PFDD model uses a non-conserved scalar order parameter ζα(r) to

track the dislocation structure, where r = (x, y, z) is the position in space and

α is the slip system with normal mα and slip direction sα. At any point r,

ζα(r) will describe the structural state at that point, equalling 0 if unslipped

and 1 if slipped by a dislocation. Points that lie along the boundary between
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the slipped and unslipped regions have an ζα(r) with an intermediate value,

which corresponds to the presence of a dislocation core, including stacking

faults. The total energy of the dislocation system is expressed in terms of

the order parameters.

E(ζ) = Eelas(ζ) + Elatt(ζ) − Eext(ζ) (5.2.1)

where Eelas is the internal elastic strain energy from dislocation interac-

tions with obstacles and other dislocations, Elatt is the energy penalty of the

strained lattice around the core of a dislocation, and Eext is the external

energy resulting from an applied stress. In order to relate the internal elastic

energy and the external energy to the system describing order parameters,

the plastic strain is utilized. The plastic strain, expressed in terms of the

order parameter is

ϵϵϵp(ζ) =
1

2

n∑
α=1

bαζα
dα

(sα ⊗mα + mα ⊗ sα) (5.2.2)

where n is the number of active slip systems, b is the magnitude of the Burgers

vector corresponding with each slip system, and dα is the interplanar spacing

for the slip plane. The standard expression for the elastic and external energy

are expressed as

Eelas(ϵ, ζ) =
1

2
[ϵ− ϵp(ζ)] ·C[ϵ− ϵp(ζ)] (5.2.3)

Eext(ζ) = σappl · ϵp(ζ) (5.2.4)

where C is the elastic stiffness tensor, ϵ is the total strain, and σappl is the

externally applied stress tensor [90]. In general, the lattice energy Elattice can

be written as

Elatt =
n∑

α=1

ϕα(ζ1(r), ..., ζi(r)) (5.2.5)
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where ϕα(ζ1(r), ..., ζi(r)) is a periodic potential describing either the γ−surface

in the case of the basal plane which requires the use of three order parameters

(i = 3), or the generalize stacking fault energy GSFE profile in the case of

the pyramidal II plane, which only requires one order parameter (i = 1) [1].

The PFDD formulation is general and application to different material

systems falls largely on choice of energetic terms, and their parameters and

functional forms. Up to now research has focused on deterministic effects,

but the PFDD model should also account for stochastic forces. The conven-

tional phase field dynamics equations, i.e. time-dependent Ginzburg Landau

(TDGL) equation, are athermal deterministic, describing only dissipative

processes because the time derivatives of the total energy functional, by in-

tegrating the dynamic equations, are always non-positive

∂ζ(r, t)

∂t
= −L

δE(ζ)

δζ(r, t)
(5.2.6)

where ζ is a scalar order parameter used to describe the state of a system i.e.

dislocation events, L is the coefficient of mobility, and E is the total athermal

energy of the system i.e. elastic interaction energy, lattice energy, externally

applied stress energy. Thus, modeling thermally aided events i.e. emission of

a dislocation loop from a Frank-Read FR source, requires incorporation of ad-

ditional physical terms that describe thermally activated processes. This can

be achieved using the Langevin force approach [166, 167]. The approach is an

analogue to the treatments for Brownian motion in non-equilibrium statis-

tical mechanics, which mimics the thermal interactions between the system

and the environment in terms of phenomenological force terms [168, 163].

That is to say, when there is a process that dissipates energy, turning it into

heat (i.e. friction), there is a reverse process related to thermal fluctuations

(noise). Both friction and noise come from the interaction with the environ-
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ment, related by the Fluctuation-Dissipation Theorem [169, 170, 171].

The essence of Langevin’s method is to rewrite his Newtonian-like equa-

tion of motion of the random variable describing the dynamics of a represen-

tative point in phase space in variables corresponding to the desired observ-

able(s). Then one averages the new equation over its realizations, yielding

the deterministic evolution equation for the observable(s). Once a potential

is involved, the Langevin equation generates coupled stochastic differential-

recurrence equations which, when averaged using the properties of Gaussian

white noise, become a deterministic hierarchy of coupled equations for the

observables [172].

The TDGL equation (Equation 5.2.6), used in the phase field dislocation

dynamics PFDD model, assumes the rate of evolution of a field is a linear

function of the thermodynamic driving forces. This allows for the addition of

a Langevin thermal force term , θ(r, t), to the TDGL equation to reproduce

thermal fluctuations [89] as

∂ζ(r, t)

∂t
= −L

δE(ζ)

δζ(r, t)
+ θ(r, t) (5.2.7)

In the next section we will look at the derivation of θ(r, t) from the

Langevin force equations.

5.3 Langevin force equations

The effects of the fluctuating force due to thermal noise θ can be summarized

by giving its first and second moments, as averages in space and time over

infinitesimal space and time intervals [165, 163, 173]. The Langevin force

terms are assumed uncorrelated in both space and time, requiring their first

and second moments to satisfy

⟨θ(r, t)⟩ = 0 (5.3.1)

144



⟨θ(r, t)θ(r′, t′)⟩ = 2kBTLδ(t− t′)δ(r− r′) (5.3.2)

where kB is Boltzmann’s constant, relating the average kinetic energy for each

degree of freedom of a physical system in equilibrium to its absolute tem-

perature in Kelvin, T ; L is the mobility coefficient from the time-dependent

Ginzburg-Landau equation; r and t represent any point in space and time

respectively, and r′ and t′ also represent any point in space and time re-

spectively. The delta function in space and time indicate that there is no

correlation between impacts in any distinct time and space intervals [169].

Thermal noise is a statistical noise and is often described as a Gaussian

white noise, in which the values at any pair of times are identically distributed

and statistically independent (and hence uncorrelated). Thus, thermal noise

has a probability distribution function equal to that of a Gaussian distribu-

tion. The results of a calculation using the Langevin equation are expected

to be independent of the initial state and to involve only the statistical dis-

tribution of the noise [163]. In this view, the averages in Equations 5.3.1 and

5.3.2 come from averages over initial states, yielding a Gaussian distribution

in discrete form as

⟨θ(n,m)⟩ = 0 (5.3.3)

⟨θ(n,m)θ(n′,m′)⟩ = 2kBTL
δmm′

∆t

δnn′

dxdydz
(5.3.4)

where n (and n′) and m (and m′) are respectively the indices of discrete

spatial position corresponding to the structured grid of the simulation cell,

and the indices of discrete temporal moments corresponding to the time step

interval over which the simulation is evolved; d is the grid spacing in the x,

y, and z direction; ∆t is the time step; and δij is the Kronecker delta.

145



In order to write these discrete Langevin equations into the PFDD model,

the Kronecker deltas can be expressed with a computer-generated Gaussian

distribution [163]. If {ρ : ρi, i = 1, ...} represents a series of computer-

generated Gaussian distributed random numbers that satisfy ⟨ρi⟩ = 0 and

⟨ρiρi′⟩ = δii′ then the discrete Gaussian thermal noise term can be rewritten

as

θ(n,m) =

√
2kBTL

dxdydz∆t
ρ (5.3.5)

satisfying the same first and second moment requirements given in Equations

5.3.3 and 5.3.4.

The PFDD model will be able to evolve the metastable states of the phase

field, accounting for the additional Langevin force perturbations associated

with temperature. At these metastable states, the balance between this

perturbing Langevin force and the restoring total phase-field energy gradient

determines the fluctuation amplitude of the phase fields according to the

fluctuation–dissipation theorem.

5.4 Addition of thermal noise to the energy

functional in PFDD

Now that we have thoroughly covered the PFDD formulation (Section 5.2)

and the derivation of the Langevin force equations (Equation 5.3.1 and 5.3.2)

into a thermal noise term (Equation 5.3.5), we will walk through the addition

of this thermal noise term to the PFDD code, accounting for normalizations

and scaling factors utilitzed in the code.

To start, the free energy density e =⇒ [J/m3] = [Pa] is

146



e = ework + elattice + eelastic (5.4.1)

Our TDGL equation is

ζ̇ = −L
e

ζ
+ θ (5.4.2)

where ζ is a non-conserved order parameter, L =⇒ [1/Pa.s] is a mobility

coefficient, and θ is the Langevin force term on ζ due to thermal fluctuations.

In discrete form the TDGL equation is

∆ζ = −L∆te′ + θ∆t (5.4.3)

Note, that L∆t are a product and that e′ = ∆e/∆ζ = e′work + e′lattice +

e′elastic. Each order parameter ζ corresponds with a voxel volume Ω = dxdydz

around a point in our simulation cell. The discrete TDGL per voxel is then

expressed as

∆ζ =
−L∆t

Ω
Ωe′ + θ∆t =

−L∆t

Ω
E ′ + θ∆t (5.4.4)

where E ′ = e′Ω is the change in free energy in ζ

If we normalize the time and energy, we need to choose a material con-

stant, which we’ve chosen to be the effective shear modulus µ

∆ζ =
−L∆t

Ω
E ′µ

µ
+ θ∆t

Lµ

Lµ
(5.4.5)

The TDGL equation written in normalized terms now looks like

∆ζ = ∆t∗E ′∗ + θ∗∆t∗ (5.4.6)

where the normalized time increment ∆t∗ is

∆t∗ = Lµ∆t = µL∆t (5.4.7)
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and the normalized free energy change is

E ′∗ = E ′/ϕ (5.4.8)

where ϕ is an energy scaling factor

ϕ = Ωµ =⇒ [J ] (5.4.9)

We express the normalized Langevin force term θ∗ as

θ∗ = θ/Lµ (5.4.10)

We start with the Langevin term θ in real dimension

θ =

√
2kBTL

Ω∆t
ρ (5.4.11)

where ρ is a set of random numbers with a Gaussian distribution. Our

normalized Langevin term in the code is

θ∗ =
θ

Lµ
=

√
2kBTL

ΩL2µ2∆t
ρ =

√
2kBT

ϕ∆t∗
ρ (5.4.12)

Note that kBT/ϕ is dimensionless

We generate the Gaussian distributed random numbers using the Box-

Muller transform. Since the PFDD model is parallelized, we generate the

Gaussian distributed random number set for the entire simulation cell on the

master processor and send equipartitioned slices to the parallel processors.

An ad hoc convergence criterion is chosen for ∆t∗ = Lµ∆t above which

the PFDD model fails to run properly as the timestep is too large to mean-

ingfully capture the evolution of our simulation.
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Table 5.4.1: Normalized quantities in the PFDD code.

Physical parameters Normalized quantity

timestep, ∆t (s) ∆t∗ = ∆tLµ

energy, E (Pa m3) E∗ = E/Ωµ

Langevin force term, θ (1/s) θ∗ = θ/Lµ

5.5 Results

We consider dislocation behavior at various temperatures in Mg, Ti, and

Zr, as they are the more commonly studied of the HCP materials, with Mg

being the most studied. We focus on the pyramidal II plane and start with

a Frank-Read dislocation source with an initial edge Burgers vector. Since

different deformation processes turn on at higher temperatures we limit the

temperatures we explore to T/Tm ≤ 0.5, where Tm is the melting temperature

for each material. i.e. we would expect diffusion processes to turn on for

temperatures above T/Tm = 0.5 and the PFDD model does not account for

these diffusion processes so any results would not fully capture all that is

physically taking place at those higher temperatures. For Mg with a melting

temperature less than half of that of Ti and Zr we consider T = 0K, 4.2K,

77K, 100K, 200K, 300K, and T/Tm = 0.5, where TMg
m = 923.1K. We chose

4.2K and 77K since they are the liquid temperatures for helium and nitrogen,

respectively, the primary cooling agents used in experiments. While 300K

is approximately room temperature. For Ti and Zr with T T i
m = 1941K and

TZr
m = 2128K we consider T = 0K, 4.2K, 77K, 100K, 200K, 300K, 400K,

500K, 600K, 700K, 800K, and T/Tm = 0.5 .

Our empirical convergence criterion for the pyramidal II plane in all mate-
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rials is ∆t∗ = Lµ∆t = 0.02. Our mobility coefficient L is calculated by taking

the inverse of the single crystal drag coefficients calculated for pyramidal slip

in Reference [174].

Table 5.5.1: Values used in PFDD.

Material mobility, L (Pa−1s−1) shear modulus, µ (Pa) timestep, ∆t (s)

Mg 2.591 × 10−5 19.260 × 109 4.009 × 10−18

Ti 1.124 × 10−5 35.667 × 109 4.626 × 10−18

Zi 1.764 × 10−5 30.226 × 109 3.758 × 10−18

One of the benefits of the PFDD model is it is set up to mathematically

evolve the simulation at every timestep ∆t, but we are able to speed up the

process by not saving that data at every ∆t, instead choosing to save the data

for every ith timestep. Each output file occurs at what we call a normalized

time τ . e.g. if we set our output files to capture every 10th timestep (i = 10),

then the normalized time of τ = 5, is the 50th timestep, and the amount

of time that has actually passed is t = τi∆t = 5 ∗ 10 ∗ 3.758 × 10−18s =

1.8790 × 10−16s. So our normalized time τ = t/i∆t. This is the measure of

time we refer to in all subsequent result graphs.

5.5.1 FR simulation set-up

The FR source is created by considering two slip systems in the PFDD for-

mulation with the same Burgers vector but perpendicular slip plane normals.

Figure 5.5.1 depicts this configuration. The first slip plane has a normal in

the z-direction and corresponds to the slip plane of interest. The second slip

plane has a normal in the x-direction. In the case of a pyramidal II plane
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of interest, both planes have a ⟨c + a⟩ Burgers vector. A “prismatic loop” is

created on the second plane that spans between z = 0 and z = Nz/2, where

Nz is the number of grid points in the z-direction. The width of the prismatic

loop is considered for a length of 40 grid points. The order parameters for

the second slip system are set to 1 for grid points within the prismatic loop,

while all other order parameters are set to 0. Only the plane at z = Nz/2 is

allowed to evolve during the simulation, so the prismatic loop remains sta-

tionary while a dislocation on the first slip system bows out onto the habit

plane.

Notice we use a different color bar in this work than in previous visualiza-

tions to further emphasize the dislocation dissociation (instead of the order

parameter values for slip and unslipped regions). Here the partials (in white),

the stacking fault (in red), and the perfect HCP lattice structure (in blue)

are easy to identify and track through the system evolution. This proves

helpful when multiple dislocation loops are emitted from the FR source. For

multiple dislocation loops the stacking faults are given different colors to help

differentiate between loops.

The simulation cell with dimension Nx×Ny ×Nz are set as 512× 1024×

64 for these series of simulations. This extended length in the y-direction

allows us to observe the expanding loop without mirror image dislocation

interactions across the periodic boundaries. Since we are only interested on

the unconfined slip plane at Nz/2 we are able to reduced the height of the

simulation cell, cutting down on the simulation run time. We have made

sure to keep Nz large enough that the interaction between mirror image slip

planes across periodic boundaries is negligible.

We apply a shear stress large enough to overdrive our FR source at all

temperatures (σ > σc from Chapter 4) to ensure the dislocation emissions are
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Figure 5.5.1: Schematic of the evolved, bowed-out dislocation emitted from

a Frank-Read source under a shear stress a) as it is initialized in the PFDD

simulation cell by the input of a prismatic dislocation loop (in green) and b)

a closer look at the slip plane where the stacking fault (red) is preceded by a

leading partial (white) and followed by a trailing partial (white).

under enough stress to reach a steady-state loop formation and not ”stall”

dislocation glide. We set the shear stress for all simulations (every material

at every temperature) to be σ = 0.055µ so we can better compare between

each material and temperature effects. Where µ is the shear modulus for

each material used to normalize the applied stress. We set the number of

timestep evolutions between output files to be i=50, which is small enough to

capture key moments in the dislocation loop expansion at all temperatures

simulated.

5.5.2 Frank-Read results

First we label some key moments in the FR dislocation loop evolution as

shown in Figure 5.5.2 (shown for first and second dislocation loops from the
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FR source): emission of leading (a,g) and trailing partials (b,h) from the FR

source; critical bowing shape (c,i), after which the loop has overcome the re-

sistant force of the FR source (lowest energy configuration as a straight line

between the two pinned ends of the FR source) from which it was emitted;

the leading partials meeting (d,j) to form a partial dislocation loop that is

separated from the FR source bordering a stacking fault SF that is still at-

tached to the FR source along with the trailing partial; complete dislocation

loop formation (e,k) where the trailing partials have also met, annihilating

along the small section of meeting, and separating the dislocation loop from

the FR source; this leaves a remaining portion of the initial dislocation emis-

sion (that has been detached from the outer loop) to be attracted back into

alignment with the pinned ends of the FR source (f,l) before bowing out as a

2nd full dislocation from the FR source. This process will continue over and

over again, producing successive concentric dislocation loops, as long as the

FR source is under a shear stress that exceeds the critical stress needed to

bow out beyond the critical shape, which is again depicted in 5.5.2 (c,i). As

mentioned earlier, we set our shear stress to be σ = 0.055µ in all simulations.

Using Figure 5.5.2 as a reference for important events captured in each

simulation, we made note of the times for each snapshot in each material at

each temperature. When considering the time it took for a complete loop

to form around the FR source, we first measured from the time the whole

dislocation (leading and trailing partials) began to bow out from the FR

source (b,h) to the time that the dislocation loop had detached from the

FR source (e,k). This time to loop formation was measured for the first

and second dislocation emissions for each material at each temperature, the

plots for which are shown in 5.5.3 (a). We noticed the similar shape of the

curves between the first and second loops and thought to redefine the time
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Figure 5.5.2: Snapshots of dislocation loops emitting from a FR source

of 40 grid points in length on the pyramidal II plane in Mg at T= 77K

under constant shear stress of σ = 0.055µ. The top row (a-f) show the first

loop evolution and the bottom row (g-l) show the second loop. The left three

snapshots in each row are a close up on the FR source (a-c,g-i), while the right

snapshots have zoomed out to the full width of the simulation cell (Nx = 512)

to capture the full loop evolution (d-f,j-l). The leading partial is emitted for

loops 1 and 2 in (a) and (g) respectively. The complete dislocation emission

occurs in (b) and (h) when the trailing partial is finally emitted. In (c) and (i)

the dislocation has reached its critical bowed out shape. The leading partials

first merge, forming a SF loop in (d) and (j). The full dislocation forms a

loop in (e) and (k) when the trailing partials meet, detatching the dislocation

loop from the FR source. (f) and (l) just show the loop as it continues to

expand around the FR source.

to loop formation to be measured from the time from the critical bowing

shape 5.5.2 (c,i) to the loop (e,k). This not only collapsed the graphs for
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each loop onto one another (as shown in 5.5.3 (b)), meaning each successive

loop once exceeding the critical shape behaved with the same mobility, but

we also noted that at higher temperatures T/Tm ≥ 0.4 the trends for each

material aligned, implying that perhaps some kind of ”terminal velocity” for

dislocation glide exists at high temperatures where the resistance from the

lattice energy is negligible.

Figure 5.5.3: The normalized time to loop formation for the first and sec-

ond loops emitted from a FR source plotted against the temperature at which

each simulation was run, normalized by the melting temperature for each ma-

terial (Mg, Ti, Zr). In (a) the time to loop formation was measured from

the moment a full dislocation was emitted from the FR source until the full

dislocation loop was detatched from the FR source (See Figure 5.5.2 (b and

h) to (e and k)). In (b) the time to loop formation was measured from the

critical bow-out shape of the dislocation to the full dislocation loop was formed

(See Figure 5.5.2 (c and i) to (e and k)).

We notice when comparing the loop shape for each material that the

dislocation loops are smaller at increasing temperatures (see Figure 5.5.4

and Appendix 5.B). This makes sense when we consider the internal stress
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field the two parallel legs of the dislocation bow-out will feel due to one

another (see Figure 5.B.2). At higher temperatures this attractive stress field

will result in quicker glide and annihilation of the two legs of the dislocation

bow-out, before the rest of the loop can expand, which explains the reduction

in loop size as temperature increases (see Figure 5.B.1). This trend begins

to break down when temperatures near T/Tm = 0.5 for Ti and Zr, where we

notice a more dramatic oblong shape with a smearing of the stacking fault

along the screw portion of the loops (see 5.5.4(d,f).

Figure 5.5.4: For each material Mg, Ti, and Zr we compare the FR loop at

the time of full formation at the temperature of liquid helium T=4.2 (a,c,e)

and at T/Tm=0.5 (b,d,f)

This lead us to question how the mobility of dissociated screw and edge

dislocations behave differently at different temperatures. We explore this

further in the next section where we consider pure edge and screw dislocations

using the dipole set-up used in Chapter 3.
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5.5.3 Straight edge and screw dislocations

Because of the unique shape of the dislocation loop from the FR source. We

wanted to conduct a second set of simulations where we consider infinitely

long dislocations with pure edge or pure screw character under the same

shear stress of σ = 0.055µ and at the same various temperatures as were

used in the FR source simulation. We initialized the same dipole set-up as

in Section 3.1.3 with a cell size of 1024 × 4 × 64. The only parameter we

changed for this set-up was the number of timesteps between output files,

which we decreased to i = 10, since the infinitely long pure dislocation will

glide faster than the dislocation loop pinned on both end of the FR source.

This allows us to capture in more detail the evolution of the dislocation as it

glides across the pyramidal II plane. In Figure 5.5.5 the normalized velocities

of pure edge and screw dislocations are plotted for each material with respect

to the normalized temperatures.

Figure 5.5.5: The normalized velocity of edge and screw dislocations in Mg,

Ti, and Zr at a shear stress of σ = 0.055µ, with respect to T/Tm

157



Notice in Figure 5.5.5 how the screw dislocations glide with a greater

normalized velocity than the edge dislocations. This explains why the shape

of the loop from the FR source is oblong, with the screw portions of the loop

traveling faster than the edge portions (See Figure 5.5.2 and 5.5.4). Also

note that in this graph for T/Tm > 0.2 the screw plots velocity increases

exponentially. This is because the leading partial breaks away from the

trailing partial, which can be seen in Figure 5.5.4 (d) and (f), where the loop

seems to smear out along the screw portions of the loop. This break-away of

a leading partial from the trailing partial is something that J. A. Venables

has explored as a potential source for deformation twinning in fcc materials

[175], but to the extent of this author’s knowledge it has not been observed

or studied in hcp materials, until this work.

This simulation was re-run for Mg at the lower shear stress of σ = 0.035µ

at T= 400K to see if breakaway occurred for the leading screw partial in

a similar fashion as was observed at σ = 0.055µ. We did not observe any

breakaway of the leading partial for the leading screw dislocation at this

lower stress, indicating the breakaway phenomenon is also stress dependent,

in addition to being temperature and character dependent.

5.6 Conclusions

Implementation of the Langevin force equations into the PFDD model through

the addition of a thermal noise term to the energy minimization equation is

used to study temperature dependent dislocation behavior across materials.

We find that the mobility of dissociated screw and edge dislocations in HCP

materials on the pyramidal II plane have different temperature dependen-

cies. Screw type dislocations glide with velocities increasingly greater than
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edge dislocations as temperatures increase. When under a shear stress of

σ = 0.055µ at temperatures T/Tm ≥ 0.2 we observe for a pure screw disloca-

tion a breakaway of the leading partial dislocation from the trailing partial,

resulting in an increasing stacking fault width. This is the first time this

author has observed this in HCP materials. The study of this breakaway

leading partial in FCC materials and it’s potential link to twinning [175]

suggests that there could be a similar link in HCP worth further exploration.

At lower stresses (σ = 0.035µ) the temperature at which this breakaway oc-

curs is higher, so the breakaway phenomenon is also stress dependent. With

a greater understanding of how this breakaway phenomenon impacts defor-

mation and material properties, there is potential to be able to turn it on and

off as desired depending on the stress and temperature combination chosen.

When we considered a FR dislocation source we observed that the mixed

character of the expanding dislocation loop under the shear stress of σ =

0.055µ held the screw portion of the leading partial from breaking away

until nearing temperatures of T/Tm = 0.5. We also noticed that at every

temperature tested, all subsequent dislocation loops from a FR source glide

with the same time to loop formation after they have exceeded their critical

bowing shape. The steady-state time to loop formation was calculated from

the time of the first loop formation until the second loop formation. This

means the amount of slip we could expect from a single FR source on a

pyramidal II plane under stress will scale linearly over time for temperature

0 ≤ T/Tm0.5.

All of this suggests that slip on the pyramidal II plane is strongly depen-

dent on temperature, stress, and the majority character type for dislocation

ensembles. It is no wonder then that dislocation behavior on the pyrami-

dal II plane has been so much more difficult to study and understand than
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dislocation behavior on the close-packed planes (basal or prismatic) in HCP

materials. There is still much more to understand about dislocation slip

along the pyramidal II plane and the overall deformation in HCP materials,

but the addition of the Langevin thermal term to the PFDD model offers

another layer of fruitful insight into the temperature dependencies of the

dislocation mobilities that govern plasticity in materials.
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Appendix

5.A Steady-state time to loop formation

By comparing (a) and (b) in Figure 5.5.3, we can also infer that the result

of the first loop must in some way slow down the progression of the second

dislocation bowing out from the FR source to the critical shape. Where the

previous loop will always have a similar effect on the dislocation from emission

to critical shape for every subsequent loop. Only the first loop would behave

differently since there are no other loops interacting with it. From this we

consider what the steady-state time to loop formation is for every loop after

the first loop. We measure the time it takes from the first loop formation

(Figure 5.5.2(e)) to the second loop formation (k). We have plotted this for

each material in Figure 5.A.1 and we see that Ti and Zr act very similarly

across all temperatures. They have very similar GSFE profiles (see Appendix

5.A). However, the GSFE curve for Mg is noticeably different, but for T/Tm ≥

0.1 the Mg plot aligns fairly well with those for Ti and Zr. The shear moduli

(see Table 5.5.1) is a good estimation of the elastic differences between the

materials, but if that were the reason for the differences in the steady-state

time to loop formation we would expect to see some more variation between

the three materials. So we have considered the lattice and elastic energy,

two of the three energy terms from the Ginzburg-Landau equation. The
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only remaining energetic consideration is the externally applied stress, the

normalized value of which is the same in every simulation. More materials

will need to be modeled to further explore the impact of the various energetics

on steady-state time to loop formation.

Figure 5.A.1: The normalized steady-state time to loop formation for every

subsequent loop after the first loop, plotted with respect to the normalized

temperature. The steady-state time is measured from the time that the first

loop is fully formed until the time that the second loop is fully formed (See

Figure 5.5.2)
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Figure 5.A.2: GSFE curves for Mg, Ti, and Zr.

5.B FR loop shape

Let τ be the number of timesteps that each snapshot has evolved, normalized

by the number of timesteps per each output file, i.e. if we set our output

files to capture every 10th timestep (i = 10), then at τ = 5, it is the 50th

timestep, and the amount of time that has actually passed is t = τi∆t.

Consider Figure 5.B.2, which shows the loop evolution of a dislocation from

a FR source on the pyramidal II plane in Zr at T = 0K. In this simulation

i = 50, at τ = 192 (e) the loop has fully separated from the FR source,

and the amount of time that has actually passed is t = τi∆t = 192 ∗ 50 ∗

3.758 × 10−18s = 3.6077 × 10−14s. At higher temperatures the ”legs” of

the FR dislocation loop feel the same attractive interaction energy due to

one another as at t = 0K, however the resistance due to the lattice energy

due to the unstable stacking fault energies in GSFE curves are more easily

overcome when thermal fluctuations are accounted for. Thus the loop closes

at a smaller shape at higher temperatures, which is what we see in 5.B.1.
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Figure 5.B.1: Snapshots of the complete dislocation loop shape right after

it separates from the FR source for each material Mg (a-c), Ti (d-f), Zr(g-i)

at increasing temperatures.
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Figure 5.B.2: Zr FR source at T = 0K, snapshots of the dislocation loop

wrapping around the FR source creating ”legs”, dislocations with the same

Burgers vector and opposite line sense, that experience an attractive interac-

tion force due to one another. (a) is at τ =115, (b) 135, (c) 155, (d) 175.
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Chapter 6

Conclusions

This work spanned 6 years and followed the evolution and application of the

phase field dislocation dynamics PFDD model through several code develop-

ments to account for 1) the lower symmetry of hexagonal close-packed HCP

crystallography and its unique slip plane energetics, 2) elastic anisotropy, and

3) thermal fluctuations. This work explores dislocation dissociation, eSFW,

mobility, dSFW, and morphology on the basal, prismatic and pyramidal II

slip planes in HCP materials, taking a special focus on the relatively un-

studied pyramidal-II plane. 10 different HCP materials are modeled over the

course of this work, but special attention is given to understanding disloca-

tions in Mg for its potential in lightweighting applications, as well as Ti and

Zr which are also the more commonly studied of the HCP materials. The

temperature dependencies of dislocation glide are studied by the addition of

a stochastic thermal noise term to the energy minimization framework of the

model.

The PFDD model is first extended to determine the properties of discrete

dislocations belonging to all types of slip modes in the HCP crystal, such

as the basal ⟨a⟩, prismatic ⟨a⟩, and pyramidal ⟨c + a⟩ slip modes [1]. The

166



dissociation simulations using the HCP PFDD method incorporate directly

density functional theory DFT-calculated generalized stacking fault energy

GSFE surfaces and curves for the different HCP slip planes and employ

isotropic elasticity. The results demonstrated good agreement with available

results from molecular statics MS, DFT, or experimental observations of

dislocations structures in Mg.

In our deeper exploration of the pyramidal II plane, we employed an elas-

tically anisotropic version of the PFDD approach [95], to compute the equi-

librium structures of pyramidal-II ⟨c + a⟩ dislocations in ten HCP metals:

Be, Co, Mg, Re, Ti, Zn, Cd, Hf, Y, and Zr. In all these metals, the ⟨c + a⟩

pyramidal dislocations dissociated into two partials that separate in plane,

creating extended structures, with nm-sized splitting distances referred to as

equilibrium stacking fault widths eSFW. The eSFWs for these 10 metals scale

inversely with their normalized intrinsic stacking fault energy I from their

GSFE curves. In most cases, the dislocation partial core widths and Burgers

vectors were not ideally equal. These asymmetries in the dislocation struc-

tures are explained by deviations in the pyramidal II GSFE landscape from

that expected of a metal with an ideal c/a ratio and symmetric landscape.

Metals with higher levels of elastic anisotropy showed a wider separation dis-

tances (20–35%) for both screw and edge character dislocations than what

is expected with effective isotropic constants.

The application of an external shear stress resulted in dislocations on

the pyramidal II plane with dynamic stacking fault widths dSFW that are

directionally dependent due to the asymmetries in GSFE curves and the

decomposition of the Burgers vector. We explored this further by using a

Frank-Read source to generate expanding dislocation loops. We considered

both the basal and the pyramidal II plane and found the loop shape is dom-
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inated by screw type sections to minimize the line tension energy of the

expanding loop.

In our final PFDD development we derived the Langevin force equations

for the phase field framework to account for thermal fluctuations at variable

temperatures. This produced a thermal noise term that we added to the

energy minimization equation in the PFDD model. This advanced PFDD

model with thermal capabilities is then used to explore how temperature ef-

fects the time to dislocation loop formation from a Frank-Read FR source.

We studied Mg, Ti, and Zr. We also looked at the velocity of infinitely long

screw and edge type dislocations under the same applied shear stress. We find

the leading partial for the screw dislocation ”breaks away” at a greater veloc-

ity than the trailing partial at lower temperatures creating a growing dSFW.

In the FR source simulations this resulted in the screw portions ”smearing”

out at higher temperatures. This breakaway phenomenon observed on the

pyramidal II plane is both stress and temperature dependent.

All of this suggests that slip on the pyramidal II plane is strongly depen-

dent on temperature, stress, and the majority character type for dislocation

ensembles. It is no wonder then that c-axis deformation in HCP materials

has been the hardest to predict and control in fabrication and application.

There is still much to be understood about HCP materials, especially

so much more that can be explored about the activation of slip, dislocation

morphology, and the competing dependencies on dislocation dynamics in

the pyramidal II plane. However, with this more advanced and capable

PFDD model we have a valuable tool to continue the work of expanding our

understanding.
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Chapter 7

Recommendations for future

work

The PFDD model has been further advanced to account for the lower sym-

metry of HCP materials, parameterization of its unique slip planes, elastic

anisotropy, and thermal fluctuations at variable temperatures. With these

new advances to the PFDD model there are many promising possibilities for

future applications. There is still so much to learn and understand about

dislocation morphology and mobility in HCP materials especially on the

pyramidal II plane. There are different set-ups and dislocation ensembles

to explore. There are different materials to explore at different processing

temperatures.

Circling back to the initial motivation in lightweighting with Mg alloys.

We could used PFDD to paint more detail onto the picture linking the

atomic/quantum energetics of a material with the dislocation dynamics that

impact material properties (i.e. ductility, strength, and formability). We

would need to use DFT to calculate the γ-surfaces or GSFE curves for the

slip planes of interest in promising Mg alloys. If there is a novel material
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with promising properties we could determine the stiffness tensor through

experimentation. The PFDD model, accounting for the aforementioned en-

ergetics, could help us understand how dislocation mobility on each plane

contributes to the (un)desireable properties through variable temperatures.

If the material hasn’t been successfully manufactured yet, we could also use

DFT to best calculate the elastic stiffness tensor terms for input into the

code, along with the lattice parameters (i.e. a⃗, c⃗, which are used to calculate

important normalization constants in the PFDD code, such as, the Burgers

vectors and inter-planar spacing). By analysing the dislocation dynamics

on these theoretically possible materials, we can save material manufactures’

time and money, by prioritizing manufacturing the novel materials that show

the most promising dislocation dynamics in PFDD simulations for increased

ductility. This would also require collaboration with larger scale modeling

and experimentalists to better understand the connection between the PFDD

observed dislocation mobility and morphology in each slip plane with the ma-

terial properties. With PFDD linking the quantum/atomic energetics with

the material properties, we can map out the ideal combination and ranges

of material energetics that will produce a material with the desired material

properties.

We can also use the PFDD model to explore various set-ups, different

than the previously studied infinitely long dipole dislocations and the Frank-

Read dislocation loop source. For example, we can study dislocation mobility

through various fields of obstacles (i.e.inclusions). Is there some kind of

combination between the favorable governing energetics in an alloy and a

field of strategically placed obstacles where we can slow down dislocations on

close-packed planes (i.e. basal, prismatic) without slowing down or better yet

speeding up dislocation glide on the pyramidal II plane. This would increase
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the number of independent active slip systems, meeting the requirements for

plastic deformation.

Additionally, there are a number of PFDD applications beyond the pur-

suit of lightweighting with HCP materials. Dislocation dynamics can be

modeled in any number of materials if we know the input energetics, slip

planes, and lattice parameters for the material of interest. Group members

Lauren Fey and Morgan Jones are currently using PFDD to study refractory

multi-principal element alloys MPEAs, which are promising material candi-

dates for high-temperature, high-strength applications [160, 176]. With our

addition of the Langevin thermal noise term to the PFDD formulation, dis-

location dynamics in these promising MPEAs can be studied at the various

running temperatures for material applications.

Finally, if we combine the thermal noise term additions from this work

with the additional PFDD advancements by other collaborators to model

dislocation cross-slip, we can further explore the temperature dependency of

dislocation cross-slip, which can have a significant impact on material prop-

erties. All of these PFDD model advancements make this a strong versatile

tool for understanding the scalable physics the drive dislocation mediate

plasticity.

171



References

[1] C. Albrecht, A. Hunter, A. Kumar, and I. J. Beyerlein. A phase field

model for dislocations in hexagonal close packed crystals. J. Mech.

Phys. Solids, 137:103823, 2020.

[2] Claire Albrecht, Anil Kumar, Shuozhi Xu, Abigail Hunter, and Irene J.

Beyerlein. Asymmetric equilibrium core structures of pyramidal-II c +

a dislocations in ten hexagonal-close-packed metals . Physical Review

Materials, 5(4):43602, 2021.

[3] C. Shen and Y. Wang. Incorporation of γ-surface to phase field model

of dislocation: simulating dislocation dissociation in fcc crystals. Acta

Mater., 52:683–691, 2004.

[4] M. M. Savin, V. M. Chernov, and A. M. Strokova. Energy factor of

dislocations in hexagonal crystals. Phys. Status Solidi A, 35:747–754,

1976.

[5] Yanqing Su, Shuozhi Xu, and Irene J. Beyerlein. Density functional the-

ory calculations of generalized stacking fault energy surfaces for eight

face-centered cubic transition metals. J. Appl. Phys., 126(10):105112,

September 2019.

172



[6] Xiaowang Wang, Shuozhi Xu, Wu-Rong Jian, Xiang-Guo Li, Yan-

qing Su, and Irene J Beyerlein. Generalized stacking fault energies

and peierls stresses in refractory body-centered cubic metals from

machine learning-based interatomic potentials. Comput. Mater. Sci.,

192:110364, 2021.

[7] G. Simmons and H. Wang. Single Crystal Elastic Constants and Calcu-

lated Aggregate Properties: A Handbook. The M.I.T. Press, Cambridge,

Massachusetts, 1971.

[8] ShunLi Shang, Hui Zhang, Swetha Ganeshan, and Zi-Kui. Liu. The

development and application of a thermodynamic database for magne-

sium alloys. JOM, 60(12):45–47, 2008.

[9] Tresa M. Pollock. Weight loss with magnesium alloys. Science, 328:986–

987, 2010.

[10] Z. Yang, J. P. Li, J. X. Zhang, G. W. Lorimer, and J. Robson. Review

on Research and Development of Magnesium Alloys. Acta Metallurgica

Sinica (English Letters), 21(5):313–328, 2008.
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[68] S. Sandlöbes, M. Friák, S. Zaefferer, A. Dick, S. Yi, D. Letzig, Z. Pei,

L. F. Zhu, J. Neugebauer, and D. Raabe. The relation between duc-

tility and stacking fault energies in Mg and Mg-Y alloys. Acta Mater.,

60(6):3011–3021, April 2012.

[69] M. Itakura, H. Kaburaki, M. Yamaguchi, and T. Tsuru. Novel cross-

slip mechanism of pyramidal screw dislocations in magnesium. Phys.

Rev. Lett., 116:225501, 2016.

180



[70] D. Buey, L. G. Hector Jr., and M. Ghazisaeidi. Core structure and

solute strengthening of second-order pyramidal ⟨c + a⟩ dislocations in

Mg-Y alloys. Acta Mater., 147:1–9, 2018.

[71] D. H. Kim, F. Ebrahimi, M. V. Manuel, J. S. Tulenko, and S. R.

Phillpot. Grain-boundary activated pyramidal dislocations in nano-

textured Mg by molecular dynamics simulation. Mater. Sci. Eng. A,

528(16-17):5411–5420, 2011.

[72] R. L. Bell and R. W. Cahn. The dynamics of twinning and the in-

terrelation of slip and twinning in zinc crystals. Proc. R. Soc. A,

239(1219):494–521, 1957.

[73] S. Mendelson. Dislocation dissociations in hcp metals. J. Appl. Phys.,

41(5):1893–1910, 1970.

[74] K. Yaddanapudi, B. Leu, M. A. Kumar, X. Wang, J. M. Schoenung,

E. J. Lavernia, T. Rupert, I. J. Beyerlein, and S. Mahajan. Accom-

modation and formation of {1̄012} twin tips in an Mg-Y alloys. Acta

Mater., 204:116514, 2021.

[75] Y. Dou and J. Zhang. Effects of structural relaxation on the general-

ized stacking fault energies of hexagonal-close-packed system from first-

principles calculations. Comput. Mater. Sci., 98(15):405–409, 2015.
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