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ABSTRACT 

This paper develops and evaluates strategies for organizing vehicles into platoons, with 

the objective of maximizing the distance that platoons stay intact.  Fundamentally, this 

entails grouping vehicles according to their destination.   We evaluate various strategies 

in which vehicles are sorted on entrance ramps, with respect to platoon sizes, throughput 

and queueing characteristics.   
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EXECUTIVE SUMMARY 

Automated Highway Systems (AHS) are intended to increase the throughput and 

safety of roadways through computer control, communication and sensing.  In the 

“platoon” concept for AHS, vehicles travel on highways in closely spaced groups. To 

maximize benefits, it is desirable to form platoons that are reasonably large (five or more 

vehicles), and it is also desirable to ensure that platoons remain intact for considerable 

distances. This paper develops and evaluates strategies for organizing vehicles into 

platoons, with the objective of maximizing the distance that platoons stay intact.  

Fundamentally, this entails grouping vehicles according to their destination.   We 

evaluate various strategies in which vehicles are sorted on entrance ramps, with respect to 

platoon sizes, throughput and queueing characteristics.   

 Among four strategies investigated, a static grouping of destinations provided the 

largest throughput in most situations.  However, with a small number of lanes (2 or 3) 

and the uniform trip length distribution, dynamic grouping performed better.  The 

flexibility of dynamic grouping appears to be important when the ratio of number of lanes 

to number of exits is a small number.  The random assignment strategy, as could be 

expected, produced the smallest platoon ratio and throughput in all cases.  We also 

found that throughput is not a strictly increasing function of the number of entrance lanes 

in all cases.  
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INTRODUCTION 

Automated Highway Systems (AHS) are intended to increase the throughput and 

safety of roadways through computer control, communication and sensing.  In the 

“platoon” concept for AHS, vehicles travel on highways in closely spaced groups.  

Within a platoon, vehicles are separated by very short distances (on the order of 1m)  

Spacing from platoon to platoon can be considerably longer, to minimize the likelihood 

that platoons collide with each other.  The advantages and disadvantages of platoon 

operation are discussed in Browand and Michaelian (2000), Shladover (1979), Tsao and 

Hall (1994), Tsao et al (1993), and Rajamani et al (2000).   

To maximize benefits, it is desirable to form platoons that are reasonably large (five 

or more vehicles), and it is also desirable to ensure that platoons remain intact for 

considerable distances.  Unfortunately, when an individual vehicle needs to exit from the 

highway, it may need to be separated from its platoon.  The separation process can force 

vehicles to travel farther apart, consuming more highway capacity.  It also exposes 

vehicles to additional safety risk.  Thus, the frequency in which vehicles enter and exit 

platoons can affect highway performance. 

As a simple illustration, suppose that a highway is homogeneous with respect to 

origin/destination patterns, has an average trip length of L, spacing between exits of x and  

platoons designed to be size N.  The probability that a randomly selected vehicle will 

choose to leave the highway at an exit is then x/L.  If platoons are formed through an 

independent selection process, the probability that a platoon has no exiting vehicles is (1-

x/L)N.   Example calculations are shown in Table 1. 
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Table 1.  Probability that Platoon Remains Intact at Exit 

   Designed Platoon Size (N)  
x/L 1 2 3 4 5 6 7 8 9 10

0.20 0.80 0.64 0.51 0.41 0.33 0.26 0.21 0.17 0.13 0.11
0.10 0.90 0.81 0.73 0.66 0.59 0.53 0.48 0.43 0.39 0.35
0.05 0.95 0.90 0.86 0.81 0.77 0.74 0.70 0.66 0.63 0.60

 

For example, with exits spaced 2 miles apart, an average trip length of 20 miles and a 

platoon size of 5, there is only a 59% chance that a platoon will remain intact between 

one exit and the next, thus creating considerable instability.  On the other hand, if 

vehicles are grouped by destination, platoons would remain intact over longer distances, 

adding to the safety and throughput of the highway. 

This paper develops and evaluates strategies for organizing vehicles into platoons, 

with the objective of maximizing the distance that platoons stay intact.  Fundamentally, 

this entails grouping vehicles according to their destination.  There are, however, many 

ways to accomplish this goal, along with significant trade-offs with respect to 

construction costs, queueing and throughput.  Within this paper, both analytical and 

simulation results are provided.  We limit the research to strategies for sorting vehicles at 

highway entrances.  Future research will examine strategies for sorting vehicles on 

highway lanes.  Our analysis is limited to a single class of vehicles, thus precluding 

sorting vehicles by characteristics other than destination (such as size; see Hall and Li, 

1999, for instance). 

A variety of authors have developed capacity estimates under platooned 

operation.  In the interest of brevity, we simply list some of the related work: Rao et al 

(1993), Rao and Varaiya (1993, 1994) and Tsao et al (1993), Tsao and Hall (1994), 

Broucke and Varaiya (1995), Hall (1995b),  Hall (1996a,b), Hall and Caliskan (1997), 
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Hall and Li (2000), Hall et al (2001), Alvarez (1997), Ramaswamy (1995, 1997) and 

Tsao et al (1997),    

The current paper is most similar to the entrance models developed in Hall et al 

(2001), Hall and Li (2000) and Hall and Li (1999) in which the entrance capacity of an 

AHS was evaluated via simulation.  The focus here, however, is on grouping vehicles by 

destination in order to increase the distance that platoons can travel without splitting 

apart.  Unlike these prior papers, we do not explicitly model the merging of vehicles on 

the entrance ramp with vehicles on the mainline and instead concentrate on the formation 

and characteristics of platoons that can be created on ramps.   

 
System performance is evaluated on the following dimensions: 

 
 
Platoon Ratio:  Ratio of vehicle miles traveled to platoon miles traveled 
 
Platoon Distance:  The average distance traveled by platoons before separating. 
 
Highway Throughput:   Upper bound on highway throughput, derived from the platoon 
ratio, combined with inter- and intra- platoon spacing parameters. 
 
Waiting Time:   Average waiting time for platoon formation. 

Policies are classified according to the following factors: 

 

Platoon Splitting:  Whether an exiting vehicle causes the entire platoon to split apart, or 

whether continuing vehicles can remain as a platoon until subsequent splits. 

Static/Dynamic:  Whether the rules for classifying vehicles into platoons are constant 

over time, or whether they dynamically respond to the state of the system. 

 
The following section presents a set of policies for sorting vehicles and develops 

analytical models for some system characteristics.  Section 3 simulates the policies with 
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respect to a greater range of performance characteristics and situations.  Section 4 

provides interpretations and conclusions. 

  
 
 
 

Strategies for Forming Platoons at Entrances 

The focus of this section is first to define a set of platoon formation strategies, and 

second to develop analytical models for performance measures.  The analytical models 

are limited to a set of special cases and approximations.  For instance, in some cases an 

exponential trip length distribution is used and in other cases a uniform trip length 

distribution is used.  More detailed results are presented later, based on a series of 

simulations, and based on different types of trip length distributions. 

In this paper, we do not permit platoons to form on the highway itself (strategies in 

which platoons are formed on the highway are investigated in a subsequent report).  

Thus, once a vehicle splits from its platoon, it stays split for the remainder of its journey.  

Several strategies are examined for forming platoons on ramps, which are described in 

the subsections.  All strategies assume that vehicles are grouped by lanes, and that each 

platoon represents an uninterrupted sequence of vehicles within an individual lane. 

  

Destination Group (DG) 

Under the DG strategy, platoons are formed at the entrance ramp on the basis of 

destination groups.  Each entrance lane represents one group, which comprises a set of 

adjacent highway exits.  Each exit is assigned to exactly one destination group.   Vehicles 

enter the highway as platoons, which remain intact until a distance y upstream from the 
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first ramp in the group.  At this point, the platoon separates, and vehicles travel 

individually until reaching their exits.  The distance y must be sufficient for completion of 

de-platooning maneuvers, and to maneuver into appropriate exit lanes.   

 

Distance Traveled by Platoon 

 To optimize highway capacity, it is desirable to form destination groups that 

maximize distance traveled by platoon.  The following terminology defines the 

optimization problem: 

 

p(i) = proportion of demand that is destined for ramp i 

x(i) =  distance from entrance to ramp i 

m   =  number of exit ramps 

n   =  number of destination groups 

bj  =  index for the first ramp in destination group j 

     (b1 < b2 < … < bn) 

We assume that x(1) < y and x(b2) > y.   The expected distance traveled by platoon can 

then be calculated through the following objective function.: 

                                     n    bj+1 -1 
 Max   P  =  Σ    Σ  (x(bj)-  y)p(i)     (1) 
                 bj                j=2    i=bj 
 
The problem posed by Eq. 1 is equivalent to finding the following longest path.   Let: 

 
aij   =  length of arc (i,j) 
             j-1      

      =   Σ  (x(i) - y)p(k)  ,                 x(i) > y     (2a) 
                  k=i     

       =    0             x(i) < y     (2b) 
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di,l  =  length of longest path from node i to node m+1, allowing for no more than l arcs 

          =      max  {aij + dj,l-1}  ,            l < m-i+1 ,  i < m   (2c) 
                   m+1>j>i 
 
dm+1,0  =   0         (2d) 
 
The solution is found through solving the backward recursion in Eqs. 2 by dynamic 

programming.  d1,l defines the optimal path, and optimal destination grouping, for l 

destination groups.  That is, any arc (i,j) in a path defines a destination group: i, i+1, ..., j-

1.     

 A necessary condition for optimality is that P cannot be increased by switching an 

exit ramp from its assigned group to an adjacent group.   First, consider switching the 

first ramp in a group to the prior group.  This would have the effect of decreasing platoon 

distance for the switched ramp and increasing platoon distance for the remaining ramps in 

the group (Figure 2).  The necessary condition for optimality is that: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Effect of Switching Destination Into another Group 
 

x(bj-1) x(bj) x(bj+1) 

Platoon Distance Decreases 
Platoon Distance Increases 

Group j-1 Group j 
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Decrease in Platoon Distance for First Ramp in Group >  

Increase in Platoon Distance for Remaining Ramps ,  or 
 
                            bj+1-1 
 [x(bj)– x(bj-1)]p(bj) > [x(bj+1) – x(bj)]    Σ   p(i) , j = 3,4,…,n  (3) 
                 i=bj+1 
 
Eq. 3 depends on a combination of four factors: (1) distance between the start of the prior 

destination group and the start of destination group j; (2) proportion of trips that are 

destined for bj; (3) distance from ramp bj to the next downstream ramp, and (4) 

proportion of trips that are destined for other ramps in group j.     

 A similar necessary condition can be written for switching the last ramp in a 

destination group into the subsequent group:   

 

Increase in Platoon Distance for Last Ramp in Group <  

Decrease in Platoon Distance for Remaining Ramps ,  or 

 
                                         bj+2-1 
[x(bj+1-1)- x(bj)]p(bj+1-1) < [x(bj+1) – x(bj+1-1)]    Σ   p(i)  ,     j = 2,3,…,n-1  (4) 
                     i=bj+1 
 
Because of the y parameter, necessary conditions must be expressed differently for ramp 

b2 and b2-1.  In the interest of brevity, results are omitted. 

 
 
Continuous Approximation 
 
 The principles for formation of destination groups are more clearly seen through a 

continuous approximation.  Let: 

 
 f(x)  =  probability density function for trip destinations, based on distance 
 F(x)  =  probability distribution function for trip destinations, based on distance 
 zj     =  location where destination group j begins 
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We define F(zn+1) = 1, where n is again the number of destination groups.    Then our 

objective becomes: 

                                          n 
 Max   P  =      Σ  (zj-y)[F(zj+1) – F(zj)]     (5) 
                 zj                     j=2 
 
Assuming continuity for the distribution function, the optimal values of zj can be derived 

from the following recursion, once the optimal value of z2 is determined.  The recursion 

is derived from the derivative of Eq. 5 with respect to zj: 

 
 (zj- zj-1)  =   [F(zj+1)-F(zj)] / f(zj) ,   j = 3,4 …, n  (6a) 
 
 (zj-y)  =   [F(zj+1)-F(zj)] / f(zj) ,   j = 2   (6b) 
 
 
or   
 
 zj+1  =   F-1 [F(zj) + f(zj) (zj - zj-1) ] ,   j = 3, … , n   (6c) 

 z3  =   F-1 [F(z2) + f(z2) (z2 - y) ] ,       (6d) 
 
Figure 2 provides a graphical interpretation of Eq. 6c, using the exponential distribution 

as an example. 

Figure 2. Graphical Interpretation of Equation 6c (continuous) for Exponential Distribution 
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zn is a special case, which can be simplified to the following: 

 zn = zn-1  +   [1- F(zn)] / f(zn) ,  n > 3      (7) 
 
 
Following the recursion, the entire solution can be determined through a one-dimensional 

search for z2.   

 
 
A Special Case: Exponential Distribution 
  

The exponential distribution is of special interest because it captures an empirical 

trend seen in trip length distributions: that the likelihood of a given trip length declines as 

trip length increases.  For this special case, Eqs. 6 and 7 can be simplified to the 

following: 

 (zj- zj-1)  =   (1/λ)[1- e –λ(zj+1 –zj)]   j = 3, …, n  (8a)  
 (z2- y)     =   (1/λ)[1- e –λ(z3– z2)]       (8b) 
 

 zj+1 =  zj  -  (1/λ)ln[1 - λ(zj-zj-1)]   j = 3, …, n  (9a) 
 z3 =  z2  -  (1/λ)ln[(1 - λ(z2-y)]       (9b) 
 

 zn  =  zn-1  +  1/λ        (10) 

Beginning from Eq. 10, a backward recursion can be formed, resulting in the following 

pattern: 

 zn-1 = zn-2 + (1/λ)(1- 1/e) ,   n > 4      (11a) 

 zn-2 = zn-3 + (1/λ)[1- e-(1-1/e)] ,  n > 5 , …     (11b) 

For the special case where y = 0, these equations lead to the following numerical values 

for zj and P (expected distance traveled by platoon).  zj is expressed as a ratio to the mean 

trip length (1/λ).   
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Table 2.  zj/(1/λλλλ) 

j n =      2 3 4 5 6 7  

 2  1 .632 .469 .374 .312 .268  

 3  -- 1.63 1.10 .842 .686 .580 

 4  -- --- 2.10 1.48 1.16 .954 

 5  -- --- --- 2.48 1.79 1.42 

 6  -- --- --- --- 2.79 2.06 

 7  -- --- --- --- --- 3.06 

 P/(1/λ)  .368 .531 .626 .688 .732 .765  

The last row of Table 1 shows that, with two destination groups, less than 37% of the trip 

length is traveled by platoon; even with six destination groups less than 75% of distance 

is traveled in platoon.  These results do not factor in splitting of platoons prior to exits 

(represented by the parameter y), which would further reduce the percentages.  On the 

other hand, non-exponential trip length distributions should support more platooned 

travel, especially if a large portion of traffic shares a common destination (as is 

sometimes the case when major trip generators are located near highways).   

 It can also be observed that with y = 0 and the exponential distribution, the 

following property is satisfied for an optimal destination grouping: 

 1-F(z2) = P*/(1/λ)       (12) 

or, the probability that a vehicle enters a platoon equals the proportion of total vehicle 

mileage that is traveled within platoons.  The validity of this relationship is easily seen 

for the following special case with two destination groups 
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z2* =  1/λ                  (13a) 

1-F(z2)   =  e-λ(1/λ)  =  e –1      (13b) 

  P  =  (1/λ)[1-F(z2)] =  (1/λ)(e-1)     (13c) 

Because of the memoryless property of the exponential distribution, the relationship also 

holds for larger numbers of destination groups.   

 

Queueing Considerations 

 Vehicle queues build at the entrance ramp as part of the platoon formation 

process.  Consider two policies, a fixed time release and a fixed queue size release, and 

let: 

 

 τ =  time gap between platoon releases 

 N =  platoon size for fixed queue size release 

 

For a fixed time release and Poisson arrivals, average wait in queue is simply τ/2.  For 

fixed platoon size, average wait in queue is derived from Little’s formula and equals  (N-

1)/(2λ), where λ is the arrival rate per lane.  The average platoon size for the former is λτ, 

while the average platoon size for the latter is N.  In both cases, additional queueing can 

occur as vehicles wait to enter gaps in the highway traffic stream.   

 Allowance for multiple entrance lanes can cause average platoon size to decrease, 

average waiting time to increase, or both.  It should be noted that the policies set forth for 

grouping destinations do not assure equal allocations of traffic among lanes, and therefore 

waiting times and platoon sizes can vary among lanes.  It should also be noted that 
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creating more destination groups requires more entrance lanes, and therefore more space 

to accommodate queued vehicles at the entrance.     

 It is also possible to form platoons through a two (or more) staged sorting process, 

which can reduce the width of the entrance ramp (Figure 3).  For instance, stage one 

could divide vehicles into three groups, and stage two could subsequently divide each 

group into three subgroups.  Thus, three lanes would produce nine destination groups.  

Suppose that the process follows a fixed cycle (length T), divided into n1 phases (or 

groups).  At the start of each phase, the queued vehicles in one lane are sent to phase 2, 

where vehicles are sorted into n2 sub-groups.   The sub-groups are released to the 

highway as soon as the vehicles from stage 1 are sorted in stage 2, and the process repeats 

with the next lane in the cycle.  The principle drawbacks of this approach are a drop in 

entrance throughput (due to loss time switching between phases), along with additional 

entrance delay as vehicles are processed through multiple stages.   

 

Figure 3.  Multi-stage Sorting, First Grouped 1-2-3, then into subgroups a-b-c. 

 

Dynamic Grouping (DYG) 

 Under the dynamic grouping strategy, destination groups are not permanently 

assigned to lanes.  We propose the following policy: 

1

1c 1c

1b

1a 1a
1b

22

3 3
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! Platoons are constrained to have a maximum destination range of r, representing the 

difference in index between the closest and the furthest destinations in the group.   

! An arriving vehicle is assigned to a feasible platoon (i.e., satisfying the range r), if 

one exists.   If no feasible platoon exists, the largest waiting platoon is released, and 

the arriving vehicle initiates a new platoon in this lane.  

! If more than one feasible platoon exists, the arriving vehicle is assigned to the platoon 

with the “closest boundary.” 

 

To illustrate the closest boundary concept, suppose that one group currently has 

destinations {1,2}, another currently has {5} and destinations are equally spaced.  Also, 

suppose that r =2.  If the newly arriving vehicle has destination 3, it is assigned to the first 

group, even though it would be feasible to assign it to the second.  Ties are broken 

arbitrarily.   Because a platoon can serve vehicles destined for either further, or closer, 

destinations than its first vehicle (or vehicles), the effective range is larger than r.  This 

means that when platoons are small, the probability that a new arrival generates a release 

is smaller than would be indicated by range alone (leading to somewhat larger average 

platoon sizes than fixed destination groups).   

 EDG has the potential to create more tightly spaced groups of destinations 

without adding to the number of lanes.  However, it is more difficult to form large 

platoons, unless the range and the number of lanes are large enough to cover all 

destinations.  Thus, to make room for a new arrival, a platoon may be forced to depart 

prior to reaching its maximum size.   
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 As an illustration, consider a simple case with a single lane.  Further assume that r 

<< m (thus minimizing end effects), all destinations are equally likely and independent, 

and that entrances are spaced at unit distance.  The system can be modeled as a Markov 

process, where the state, r’, represents the destination range among the vehicles currently 

in the queue.  A state transition occurs when each vehicle arrives.  The matrix below 

shows transition probabilities, which we label as pjk: 

  

 Table 3.  Transition Probabilities (pjk) 

  To 
 From  0 1 2 3 …. Departure (0) 

 0  p 2p 2p 2p … 1-(2r+1)p 

 1  0 2p 2p 2p … 1-(2r)p 

 2  0 0 3p 2p … 1-(2r-1)p 

 … 

For example, if the current range is one and r = 3, any of four events is possible: 

Event          Probability  

New arrival falls in existing destination group, and range remains the same 2p 

New arrival falls one outside existing group, and range increases by one  2p 

New arrival falls two outside existing group, and range increases by two  2p 

New arrival falls more than two outside existing group; 
Current platoon is released, new arrival forms new group, and range  
Returns to state 0         1-6p 

Proportion of Distance Traveled by Platoon 

 If all platoons reach the maximum range r, and destinations are spaced at unit 

distance, then each vehicle will approximately travel, on average, a distance r/2+y outside 
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of a platoon (This presumes that destinations are symmetrically distributed within the 

range of r).    With destinations that are equally likely and equally spaced, the average trip 

length is (m+1)/2.  Thus, the proportion (m+1-r-2y)/(m+1) will be spent traveling in 

platoon.  In reality, a somewhat higher portion of distance will be spent in platoon, as not 

all platoons will reach the maximum range before being released.   

 

Expected Platoon Size 

By ignoring end effects, an upper bound on the expected platoon size can be 

computed from state transition probabilities.  Let: 

 Pik = probability that a platoon eventually reaches size i with range k.   

   k 
  = Σ Pi-1,jpjk ,      i > 1, k < r     (14) 
                                   j=0 

   =   1,  i = 1, k = 0 

  = 0,  i = 1, k > 0 

Then, if platoon size is unrestricted: 

           ∞   r 
 E(platoon size) = Σ Σ  iPik       (15) 
         i=1 k=0 

The model (Table 4) tends toward over-estimating E(platoon size) for small n, as it does 

not account for end effects.  For instance, if the first arrival in a platoon has destination 1, 

then the probability that the following arrival generates a release is 1- (r+1)/n, which is 

larger than assumed. 
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 Table 4. E(platoon size) [upper bound] 

 n =  8 10 15 20 large n 

 r=2  2.07 1.76 1.43 1.30 1+(2r+1)/n 

 r=3  3.20 2.40 1.71 1.47 1+(2r+1)/n 

The limiting equation (large n) is a first-order approximation, applicable when it is very 

unlikely to form platoons larger than size two.  

 A lower bound on the departure probability is created for equally likely 

destinations by assuming that each lane is always limited to accommodating exactly r 

destinations.  (Recall that the effective range can be larger when a single vehicle is in 

queue).    The lower bound follows: 

  

E(platoon size) >  n/[n-(r+1)]       (16) 

 

It should be noted that the tightness of this bound increases as r+1 approaches n.  When 

r+1 equals n, the lower bound predicts an infinite queue size, which is effectively exact 

(new arrivals would always fall in the existing destination group).   For n = 8, the lower 

bound equals 1.6 for r = 2 and 2.0 for r=3.  Other results follow. 

 

Table 5.  E(platoon size) [lower bound] 

 n =  8 10 15 20 large n 

 r=2  1.6 1.43 1.25 1.18 1 

 r=3  2.0 1.67 1.36 1.25 1 
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 It should be apparent that when all destinations are equally likely, a single lane is 

unlikely to form very large platoons, unless r is quite large relative to n.  However, when 

r is large relative to n, platoons will be unable to travel far before they need to separate.  

By expanding the state space, similar stochastic models can be created for multiple lanes.  

We have instead created simulations to represent these situations, to be presented later. 

 

Dynamic Grouping and Platoon Splitting (DGPS) 

We now consider a dynamic policy for grouping destinations that permits 

platoons to continue after some vehicles split off.  This is accomplished by ensuring that 

vehicles in each platoon are sorted, front to back, in order of non-increasing destination.  

Thus, the same vehicle can remain as platoon leader through the platoon’s lifetime, while  

the platoon “drops off” vehicles that have closer destinations.  This also provides 

flexibility to group vehicles with a greater range of destinations within a single platoon, 

which provides flexibility in the entrance process.   

Suppose there are n lanes, and let dj be the destination index for the last vehicle in 

lane j.   The policy is implemented through three rules, representing (1) lane assignment, 

(2) platoon release, and (3) platoon splitting.   

 

Lane Assignment 

 Upon arrival, a vehicle with destination θ is assigned to the lane for which: 

dj > θ, and dj – θ is minimized.  If no lane satisfies dj > θ, then platoon release is invoked.  

 



 

 18

Platoon Release 

 A platoon is released when any of the following events occurs: 

• The elapsed time since the first vehicle arrived equals the release time τ 

• The number of vehicles in the platoon reaches the maximum N, or 

• An arrival cannot be assigned to any current platoon, and the platoon has the 

smallest value of dj 

 

Platoon Splitting 

 A platoon is split when reaching a distance y before the destination of the last 

vehicle in the platoon.  Vehicles with more distant destinations remain in the platoon 

until reaching a distance y before their destinations. 

Suppose, without loss in generality, that lanes are numbered according to the 

destination indexes: d1 < d2 <…< dn .   If θ > dn, then platoon one is released, and θ is 

inserted at the end of the sequence, creating a state vector of (d2, d3,…,dn, θ).  Otherwise, 

θ is inserted at the end of one of the platoons.  For instance, if θ is greater than d1, but 

less than or equal to d2, the state becomes:  (d1 , θ ,d3,…, dn).    If τ and N do not 

constrain queue length, P(release) is then defined by P(θ > dn), and the expected platoon 

size is defined by 1/P(θ >dn).  

 

Calculation of Platoon Sizes 

 Consider the simple case where there is a single lane, and platoon size is 

unbounded by τ and N.  Then the last vehicle in the queue will always be the last vehicle 

that arrived.  The probability that a new arrival causes a platoon to be released is the 
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probability that the new arrival has a more distant destination than the last vehicle that 

joined the queue.  If independence can be assumed: 

                                                     m               m 
 P(release)  =   Σ  p(i)  Σ  p(j)       (17) 
                                                    i=1            j=i+1 

A continuous approximation for Eq. 17 would be: 

                                                   ∞          ∞                                          ∞ 
 P(release) =  ∫f(x) ∫  f(z)dzdx  =  1 -   ∫ f(x)F(x)dx    (18) 
                                                0          x                                            0 

The expression is equivalent to computing the expectation of the function F(X), where X 

is a random variable with density function f(x).  For any continuous distribution, F(X) 

varies in value from 0 to 1, with mean ½.  Therefore, the P(release) = ½ and expected 

platoon size equals two (inverse of P(release)).  For discrete destinations, P(release) is 

somewhat less than ½, as a new vehicle has a non-zero probability of having an identical 

destination as the currently queued vehicle.  Nevertheless, the P(release) is reasonably 

large and the expected platoon size would be only slightly larger than 2.  Clearly, the 

policy is ineffective at forming large platoons when there is just one lane. 

 For more than two lanes we can approximate the expected platoon size by 

assuming that, at any time, the probability that dj = i equals p(i) for all j, and that dj are 

independent among lanes.  Then the probability of release is defined by: 

  
                                                                                            m                 i-1              
 P(release) = P(max{dj}< θ)  = Σ  p(i) [ Σ p(k)]   .    (19) 
                                                                                            i=2          k=1 

where θ is the destination for a randomly arriving vehicle.  If destinations are equally 

likely, P(release) equals the values in Table 6: 
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Table 6.  P(Release) for DGPS When New Vehicle Arrives 
                m 
L  5 10 15 20 ∞∞∞∞     
1  .4 .45 .47 .48 .50 
2  .24 .28 .30 .31 .33 
3  .16 .20 .22 .23 .25 
4  .11 .15 .17 .18 .20 
5  .08 .12 .14 .14 .17 

With three entrance lanes, the approximation produces expected platoon sizes in the 

range of four to six (inverse of P(release)).  The policy is reasonably robust with respect 

to changing the number of destinations, and approaches the limiting value of 1/(m+1) as 

m becomes large (a continuous approximation result).  However, the policy will not 

produce very large platoons (on the order of 10) unless the number of entrance lanes is 

quite large (five or more).     

 These results are premised on equally likely destinations.  Demand concentrations 

around a limited number of destinations would improve results. 

  
  

SIMULATION 
 
 A simulator was developed to evaluate platoon formation policies with respect to 

a greater range of performance measures, and for a greater range of scenarios.  The 

following features were common for all policies: (1) Vehicles arrive by stationary 

Poisson process, (2) Platoon size is constrained not to exceed N, and (3) Vehicle waiting 

time was constrained not to exceed τ.  In our simulation, N was set at 8 and τ was set at 

180 seconds. 

 Performance was evaluated with respect to: Platoon Ratio, Highway Throughput, 

and Waiting Time.  For comparison, we also evaluated a policy in which vehicles were 



 

 21

randomly assigned to lanes.  In this policy a platoon was split as soon as the first vehicle 

needed to exit.   

 The policies were evaluated for a set of scenarios, defined as follows: 

 

Trip length was exponentially distributed, uniformly distributed or clustered.  For 

clustered, (1) 20% of the exits accounted for 50% of demand; (2) demand was identical 

within each group (those with high demand and those with low demand); and (3) demand 

followed a repeating pattern, with four low demand exits between each pair of high 

demand exits.   

Exit Spacing was either large (5 miles) or small (1 mile)   

Number of Entrance Lanes varied from 2 to 7 

Average Trip Length equaled 10 miles in all cases 

Highway Length depended on the trip length distribution.  For exponential, the highway 

was limited to 60 miles (6 x mean trip length); for uniform, the highway was limited to 

20 miles (e.g., 20 exits with 1-mile spacing).   

 

Throughput Calculation 

 An upper bound on highway throughput was calculated from spacing parameters 

and expected platoon sizes.  We assume that different types of platoons are intermixed in 

lanes, and that throughput can be derived from the platoon ratio (which is averaged across 

all highway segments).  In this model, spacing is defined by the time-separation between 

fronts of vehicles, which eliminates the need to parameterize vehicle sizes.  Let: 
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 a = intra-platoon time spacing, front-to-front (seconds) 

 b = inter-platoon time spacing, front-to-front (seconds)  

 Π = expected platoon size 

 µ1 = vehicle flow per lane 

 µ2 = platoon flow per lane = µ1/Π  

Then 

 a µ1 +   (b-a) µ2  < 3600       (20a) 

or 

 µ1  < 3600/ [a    +  (b-a)/ Π]            (20b) 

For expected platoon size, we use the platoon ratio (expected vehicle miles divided by 

expected platoon miles).  Following Hall and Li (2000), we evaluated throughput for a = 

.26 s and b = 1.36 s.   

 

Dynamic Grouping Range (DYG) 

 For the DYG strategy, the range was adjusted to produce the maximum 

throughput in each situation.  This was accomplished by simulating system performance 

for different values of r, and selecting the best quantity.  For 5 miles spacing, a range of 2 

was used in all cases.  For 1 mile spacing, the range varied from 2 to 7, depending on the 

trip length distribution and number of lanes.  The optimal range increased as the number 

of lanes increased, and was larger for exponential trip lengths than uniformly distributed 

or clustered trip lengths.  
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Simulation Results 

 Figures 4 to 13 provide results for a range of cases.  As a general trend, adding 

lanes tends to provide longer average waiting time, larger platoon ratios and larger 

throughput.  Waiting times increase because each lane handles fewer vehicles, meaning it 

takes longer to form a platoon of a given size.  The platoon ratio increases because 

platoons can serve a smaller range of destinations, and because (for some strategies) 

larger platoons can be formed.  Throughput increases because the platoon ratio increases.   

However, the benefits of adding lanes diminish rapidly beyond four entrance lanes. 

 The maximum attainable platoon ratio is 8 in all cases, which is the maximum 

allowed platoon size in the simulations.  The maximum is attained for DG (destination 

grouping) when the number of entrance lanes equals the number of exits (e.g., when exit 

spacing is 5 miles and there are four entrance lanes and trip length distribution is 

uniform).   

 Among the four strategies, DG provided the largest platoon ratio and throughput 

in most situations.  However, with a small number of lanes (2 or 3) and the uniform trip 

length distribution, dynamic grouping (DYG) performed better.  The flexibility of 

dynamic grouping appears to be important when the ratio of number of lanes to number 

of exits is a small number.  The random assignment strategy, as could be expected, 

produced the smallest platoon ratio and throughput in all cases.  It should be noted 

that throughput is not a strictly increasing function of the number of lanes for DGPS.  The 

range of destinations within a platoon can be smaller with fewer lanes, meaning that 

platoons remain intact over longer distances.   
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Figure 4.  Average Waiting Time Versus Number of Lanes, Exponential Trip Length with 5-mile Exit 
Spacing 
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Figure 5.  Average Waiting Time Versus Number of Lanes, Exponential Trip Length with 1-mile Exit 
Spacing 
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Figure 6.  Platoon Ratio Versus Number of Lanes, Exponential Trip Length with 5-mile Exit Spacing 
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Figure 7.  Highway Throughput Versus Number of Lanes, Exponential Trip Length Distribution and 5-mile 
Exit Spacing 
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Figure 8.  Highway Throughput Versus Number of Lanes, Exponential Trip Length Distribution and 1-mile 
Exit Spacing 
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Figure 9. Average Waiting Time Versus Number of Lanes, Uniform Trip Length Distribution and 5-mile 
Exit Spacing 
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Figure 10.  Platoon Ratio Versus Number of Lanes, Uniform Trip Length Distribution and 5-mile Exit 
Spacing 
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Figure 11.  Throughput Versus Number of Lanes, Uniform Trip Length Distribution and 5-mile Exit 
Spacing 
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Figure 12.  Average Waiting Time Versus Number of Lanes, Clustered Pattern with 1-mile Exit Spacing 
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Figure 13.  Platoon Ratio Versus Number of Lanes, Clustered Pattern with 1-mile Exit Spacing 
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 Average waiting time is a nearly linear function of number of lanes in most cases.  

When vehicles are split into more categories, it takes longer to form a platoon of a given 

size.  And although platoon size is also a function of number of lanes, the relationship is 

fairly insensitive.  DYG tends to produce the smallest expected waiting time, though the 

range among strategies is not so great as the range for platoon ratio or throughput.  

However, shorter waits do not seem sufficient to compensate for lower throughput 

(relative to DPGS and DG).   

 

CONCLUSIONS 

To maximize highway throughput, it is desirable to create platoons that are large 

in size, and that remain intact over long distances.  Sorting vehicles by destination at the 

entrance is one way to accomplish this objective.  Toward this end, this paper evaluated a 

range of strategies, and determined how to optimize a dedicated assignment of vehicles to 

entrance groups.  For the cases studied in this paper, dedicated assignment performed 

better than dynamic assignments with respect to platoon ratio and throughput.  However, 

average waiting time at entrance was somewhat larger. 

In future research, we will examine the integration of vehicle sorting at entrances 

with vehicle sorting on highways.  In combination, the strategies will group vehicles 

according to exit, to facility egress from the highway. 
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