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REPORT

MagicalRsq-X: A cross-cohort transferable
genotype imputation quality metric

Quan Sun,1 Yingxi Yang,2 Jonathan D. Rosen,3 Jiawen Chen,1 Xihao Li,1 Wyliena Guan,1

Min-Zhi Jiang,4 Jia Wen,3 Rhonda G. Pace,5 Scott M. Blackman,6 Michael J. Bamshad,7,8

Ronald L. Gibson,7 Garry R. Cutting,9 Wanda K. O’Neal,5 Michael R. Knowles,5 Charles Kooperberg,10

Alexander P. Reiner,11 Laura M. Raffield,3 April P. Carson,12 Stephen S. Rich,13 Jerome I. Rotter,14

Ruth J.F. Loos,15,16 Eimear Kenny,15 Byron C. Jaeger,17 Yuan-I Min,18 Christian Fuchsberger,19,20,*
and Yun Li1,3,20,*

Summary

Since genotype imputation was introduced, researchers have been relying on the estimated imputation quality from imputation soft-

ware to perform post-imputation quality control (QC). However, this quality estimate (denoted as Rsq) performs less well for lower-fre-

quency variants. We recently published MagicalRsq, a machine-learning-based imputation quality calibration, which leverages addi-

tional typed markers from the same cohort and outperforms Rsq as a QC metric. In this work, we extended the original MagicalRsq

to allow cross-cohort model training and named the new model MagicalRsq-X. We removed the cohort-specific estimated minor allele

frequency and included linkage disequilibrium scores and recombination rates as additional features. Leveraging whole-genome

sequencing data from TOPMed, specifically participants in the BioMe, JHS, WHI, and MESA studies, we performed comprehensive

cross-cohort evaluations for predominantly European and African ancestral individuals based on their inferred global ancestry with

the 1000 Genomes and HumanGenome Diversity Project data as reference. Our results suggest MagicalRsq-X outperforms Rsq in almost

every setting, with 7.3%–14.4% improvement in squared Pearson correlation with true R2, corresponding to 85–218 K variant gains. We

further developed a metric to quantify the genetic distances of a target cohort relative to a reference cohort and showed that suchmetric

largely explained the performance of MagicalRsq-X models. Finally, we found MagicalRsq-X saved up to 53 known genome-wide signif-

icant variants in one of the largest blood cell trait GWASs that would bemissed using the original Rsq for QC. In conclusion, MagicalRsq-

X shows superiority for post-imputation QC and benefits genetic studies by distinguishing well and poorly imputed lower-frequency

variants.

Genotype imputation has become an essential step for

genome-wide association studies (GWASs) and other

downstream genetic analyses. Post-imputation quality

control (QC) has always been performed to remove poorly

imputed genetic variants.1–4 In imputation settings with

no true genotypes available and thus no true imputation

quality (true R2), scientists have been relying on estimated

quality metrics given by imputation engines for QC pur-

poses. The most widely used estimated imputation quality

metric is Rsq, a standard output fromMaCH and mimimac

series5–8 that is included in the default output from Mich-

igan and TOPMed imputation servers. However, Rsq per-

forms less well for uncommon variants with minor allele

frequency (MAF) <5% and will likely lead to information

loss and/or inclusion of noise.9–12 We recently developed

MagicalRsq, which we showed to be a better metric

compared to the standard Rsq.12 However, MagicalRsq

only focused onwithin-cohort applications requiring addi-

tional genotypes (for example, whole-exome sequencing

[WES] or whole-genome sequencing [WGS] data) in at least

a subset of the imputation target samples. For practical pur-

poses, we need pre-trained models to accommodate argu-

ably the most common real-life scenario where the target

samples have only one set of genotype data available. In
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this work, we proposed MagicalRsq-X, which modifies

some variant-level features from the original model. Specif-

ically, we removed estimated MAF and added linkage

disequilibrium (LD) scores from TOP-LD13 and recombina-

tion rate from 1000 Genomes Project (1000G)14 (Figure 1A;

supplemental notes). MagicalRsq-X allows model training

from a completely different cohort (cross-cohort model

training), making it more broadly applicable in diverse

real-life scenarios. The design ofMagicalRsq-X is for studies

without additional genotypes, and thus, borrowing infor-

mation from other studies is mostly needed. Because of

the design, MagicalRsq-X does not require additional geno-

types from the target cohort.

The original MagicalRsq model takes both imputation

summary statistics (Rsq, estimated MAF) and population

genetics statistics (ancestry-specific MAF,13 S/HIC fea-

tures15) as input, divides variants into three commonly

used MAF categories (common, MAF >5%; low frequency,

MAF 0.5%–5%; and rare, MAF <0.5%),1,12 and trains an

XGBoost model16 separately in each MAF category. It re-

quires, among the imputation target samples, additional

genotypes (e.g., from a different genotyping platform or

WES or WGS) not used when performing the imputation.

In this work, MagicalRsq-X adopts the same framework

(Figures 1C and 1D) but modifies the variant-level features

to allow training models from a different cohort, i.e., cross-

cohort training (Figure 1A; supplemental notes). We

removed the estimated MAF feature (estimated from

imputed data) because this feature is susceptible to subtle

differences between training and testing cohorts, espe-

cially for rare variants where substantial discrepancies

may exist across cohorts (Figures S1 and S2). Note that

ancestry-specific MAFs from TOP-LD13 remain in the

model. We also added population-specific LD scores calcu-

lated based on TOP-LD13 at both 1-Mb and 100-kb win-

dows to reflect longer- and shorter-range LD patterns.

Moreover, we added the recombination rate from the

1000G14 as an additional feature (supplemental notes).

A B

C

D

Figure 1. MagicalRsq-X overview
(A) Feature modification from the original
MagicalRsq model. We first removed the
estimated MAF feature derived from impu-
tation output, which we refer to as
MagicalRsq-X model v1. We then added
recombination rate from 1000G and long-
range LD scores (5 1Mb) of four continen-
tal populations from TOP-LD, leading to
MagicalRsq-X model v2. Finally, we added
short-range LD scores (5 100 Kb) of the
same four populations from TOP-LD, re-
sulting in MagicalRsq-X model v3, which
is the final model showing the best and
most robust performance.
(B) Overview of study cohorts in our evalu-
ations. We leveraged TOPMedWGS data of
four studies, BioMe, MESA, JHS, and WHI,
as our internal evaluation cohorts. We first
inferred local and global ancestry of indi-
viduals in these studies and then selected
individuals who are primarily of European
ancestry or admixed African ancestry based
on inferred global genetic similarity
(detailed in supplemental methods). We
also added the CF participants as an
external evaluation cohort.
(C) Data preparation for MagicalRsq-X ex-
periments. We first thinned the WGS data
to array genotype density and then per-
formed genotype imputation, which out-
puts individual-level imputed data and
Rsq. We then calculated true R2 comparing
imputed data with WGS data for imputed
markers (i.e., those in WGS but not
included in the thinned dataset).
(D) Model training and evaluation using
BioMe EUR for training and MESA
EUR for testing as an example. Starting
from BioMe EUR WGS data, we performed
imputation as demonstrated in (C). After

obtaining all the external variant-level features, which were further combined with true R2 and Rsq, we trained MagicalRsq-X models.
For the testing cohort, MESA EUR in this example, we similarly performed data thinning and imputation. We then applied the models
pre-trained from BioMe EUR to calculate MagicalRsq-X for MESA EUR. In our experiments, we similarly calculated true R2 in MESA EUR
and evaluated the performance of MagicalRsq-X compared to Rsq. The dashed square around ‘‘true R2’’ in testing set means it is not
required in real-life application and was used in our evaluation purpose.
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We tested MagicalRsq-X models leveraging WGS data of

four studies from the Trans-Omics for Precision Medicine

(TOPMed) project. Specifically, we included participants

from BioMe Biobank (BioMe),17 the Multi-Ethnic Study

of Atherosclerosis (MESA),18 the Jackson Heart Study

(JHS),19,20 and the Women’s Health Initiative (WHI)21 for

cross-validation. Based on genetic ancestry estimates

from RFMix22 with combined 1000G and Human Genome

Diversity Project (HGDP) as reference, we selected individ-

uals with primarily European ancestry (EUR, estimated

European global ancestry >85%) or admixed individuals

with both European and African ancestry (estimated

European and African global ancestry both >10% and

summation >50%) (supplemental methods). For narrative

simplicity, we hereafter refer to these admixed individuals

as admixed African (AA), but we note that this grouping,

derived from estimated genetic ancestry, should not be

equated with self-identified population descriptors (such

as African American). With this genetic ancestry-based

grouping, we have three EUR cohorts and four AA cohorts

(Figure 1B; supplemental methods; Table S1). An example

of our MagicalRsq-Xmodel training and testing framework

is illustrated in Figures 1C and 1D. We first thinned the

WGS data to mimic array genotypes and then performed

imputation separately for the four EUR cohorts with the

Haplotype Reference Consortium (HRC) reference panel

and for the three AA cohorts with the 1000G reference

panel (supplemental methods). After calculating true R2,

we trained MagicalRsq models separately for each cohort

and separately for variants in three MAF categories (com-

mon, low frequency, and rare). In our experiments, for

each MAF category, we randomly selected 10 K, 50 K, 100

K, 200 K, 500 K, and 1 M variants for model training,

with five repeats each to assess model stability. We then

performed cross-validation within EUR or AA to evaluate

MagicalRsq-X models (supplemental methods).

We first note that the modified features in MagicalRsq-X

both ranked high in feature importance (supplemental

notes; Figures S9 and S10) and improved model perfor-

mance (supplemental notes; Figures S3–S8). Similar to our

prior MagicalRsq study, we evaluated model performance

using two sets of metrics: the squared Pearson correlation,

root mean squared error (RMSE), and mean absolute

error (MAE) with true R2 for direct comparison, as well as

counts of variant net gains for comparison of the ability

to perform post-imputation QC (supplemental methods).

Among the three EUR cohorts, our experiments

show that MagicalRsq-X outperforms Rsq for every pair

of training-testing datasets for almost all scenarios

(Figures 2A, S11, and S12; Tables S2 and S3). For example,

leveraging low-frequency variant models trained from

BioMe EUR,MagicalRsq-X improves squared Pearson corre-

lationwith trueR2by4.8%–7.3%and4.4%–6.9%,decreases

RMSE by 12.6%–20.9% and 18.2%–31.6%, and decreases

MAE by 5.4%–14.6% and 10.0%–24.0% for MESA EUR

and WHI EUR, respectively, compared to standard Rsq

(Table S2). For common variants where the original Rsq

already shows decent performance, MagicalRsq-X is still

more consistent with true R2 than Rsq (Figure 2C).

MagicalRsq-X also shows advantages as a quality-filtering

metric to distinguish well-imputed variants from poorly

imputed ones. For instance, it leads to net gains of 16–24

K common, 45–68 K low-frequency, and 19–236 K rare var-

iants across five repeats compared to Rsq in the BioMe EUR

cohort (Table S3), leveraging models trained on the other

two EUR cohorts. Note that such net gains come from two

parts: saving truly well-imputed variants excluded by Rsq

and excluding truly poorly imputed variants included by

Rsq. Contributions of the two components depend on

whether Rsq overestimated or underestimated true R2,

which may vary depending on the target cohort. Further-

more, we notice that MagicalRsq-X trained with only 50 K

variants already shows rather stable results, consistent

with our previous observations.12 For models trained with

R50 K variants, the minimum net gains for MagicalRsq-X

in BioMe EUR are �80 K for rare variants.

The performance of MagicalRsq-X for the AA cohorts is

similarly satisfying, leading to overall mean improvement

of 6.1%, 10.2%, and 8.3% in squared Pearson correlation,

20.3%, 18.7%, and 9.5% in RMSE, and 20.1%, 16.3%, and

5.5% in MAE, for common, low-frequency, and rare vari-

ants, respectively (Figures 2B, 2D, 2E, S13, and S14;

Tables S4 and S5). For a specific example, rare variants in

MESA AA could benefit from MagicalRsq-X trained on

BioMe AA, JHS, and WHI AA 50 K–1 M variant models by

7.8%–9.9%, 7.3%–9.5%, and 8.5%–10.9% in terms of

squared Pearson correlation with true R2 (Table S4), corre-

sponding to 85–170 K, 119–204 K, and 99–218 K net gains

of variants (Table S5), respectively.MagicalRsq-Xalso shows

satisfyingperformance for commonand low-frequencyvar-

iants (Figures S13 and S14), with the only exceptions be-

tween BioMe AA and JHS. We note that the genetic back-

ground of our defined AA cohorts is complicated, and the

difference between BioMe and JHS is the largest among all

the pairs (Figure S15). BioMe AA is the most genetically

diverse cohort, which is not surprising as it is a biobank-

based study from a diverse region of the U.S. (New York

City) with individuals born in locations across the globe,23

while JHS is the most homogeneous, likely due to its

geographical-centralized recruitment in Mississippi, with

substantially less recent migration from diverse geographic

regions. Such differential levels of genetic ancestry match-

ing between cohorts is likely a driving factor affecting

cross-cohort MagicalRsq-X performance. We then per-

formed experiments to include only individuals in BioMe

AA that could be reasonably matched with JHS samples

based on the harmonized principal components (PCs)

(n ¼ 2,219) (supplemental methods) and observed marked

improvement (Figures S16–S21; Table S6; supplemental

notes). For example, applying models trained from JHS in-

dividuals to the whole BioMe AA set, MagicalRsq-X is infe-

rior to Rsq in terms of squared Pearson correlation by up

to 22.3% and 27.4% for common and low-frequency

variants, but it shows clear advantages over Rsq with

992 The American Journal of Human Genetics 111, 990–995, May 2, 2024



7.3%–8.7% and 12.9%–14.4% improvement in the subset

of matched individuals for common and low-frequency

variants, respectively (Figures S16 and S17; Table S6), sup-

porting our speculation that the aforementioned lower per-

formance is likely driven by substantial dissimilarity in the

distribution of genetic profiles in the two cohorts. To quan-

tify such cross-cohort dissimilarity, we developed a quanti-

tativemetric to characterize how different a target cohort is

compared to a reference cohort based on harmonized PCs

(supplemental methods). We found that such a PC-based

metric could largely explain why we observed minimal

or no improvement for some MagicalRsq-X models,

where larger dissimilarity in PC metric would result in

worse MagicalRsq-X performance (Figures S22 and S23;

Table S7).Our proposedmetric provides guidance regarding

the choice of MagicalRsq-X reference models. In practice,

we recommend users to be cautious when applying

MagicalRsq-X between cohorts with the PC-based dissimi-

larity metric >0.03 based on our evaluations.

We also tested our models on the cystic fibrosis (CF) sam-

ples of European ancestry24 as an external cohort to vali-

date the performance of MagicalRsq-X outside of the

TOPMed studies (supplemental methods). Our evaluations

resulted in similarly satisfying results (Table S8; Figures S24

and S25). For example, leveraging models trained from

WHI EUR cohorts with 100 K variants, MagicalRsq-X im-

proves squared Pearson correlation with true R2 in CF

samples by 6.0%–6.4%, 6.4%–6.5%, and 6.2%–6.4% for

common, low-frequency, and rare variants, respectively.

The results further support the advantages of applying

MagicalRsq-X to external cohorts, suggesting the broad

practical utility of MagicalRsq-X.

Encouraged by the improved accuracy of MagicalRsq-X

as a post-imputation quality-filtering metric, we then per-

formed experiments to evaluate its benefits in down-

stream association analysis. We assembled known GWAS

significant variants for 15 blood cell traits from prior ana-

lyses using TOPMed WGS data,25–27 resulting in 8,321

A C

D

E

B

Figure 2. Cross-cohort MagicalRsq-X model performance
(A) Performance across the three EUR cohorts (BioMeEUR, MESA EUR, and WHI EUR) for low-frequency variants (MAF [0.5%, 5%]). We
trained MagicalRsq-X models with randomly selected 10 K, 50 K, 100 K, 200 K, 500 K, and 1 M variants (x axis), each with five repeats.
y axis is the squared Pearson correlation between MagicalRsq-X and true R2. Each row represents a testing cohort, and each column rep-
resents a training cohort. The diagonal components aremissing on purpose because we only assess cross-cohort model performance. Red
dashed lines represent squared Pearson correlation between standard Rsq and true R2, which serves as the benchmark.
(B) Performance across the four AA cohorts (BioMe AA, JHS, MESA AA, and WHI AA) for rare variants (MAF <0.5%).
(C–E) Comparison between true R2 vs. Rsq and true R2 vs. MagicalRsq-X for MESA EUR common variants (C), MESA AA low-frequency
variants (D), andMESAAA rare variants (E) on chr10, whereMagicalRsq-X shownwas calculated frommodels trainedwith 100K variants
from BioMe EUR (C) andWHI AA (D and E). For the smooth scatterplots, the darker the color, the larger the number of variants. Outliers
are plotted separately. Red lines are 45-degree lines, and blue lines are the fitted lines.
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variants in total, including rare variants revealed from

burden tests. After overlapping with variants in the

imputed data, 3,251, 3,287, and 3,316 variants remained

in BioMe AA, WHI AA, and JHS, respectively. We calcu-

lated MagicalRsq-X for these variants separately in the

three cohorts with MagicalRsq-X models trained on

MESA AA and compared MagicalRsq-X and Rsq in terms

of squared Pearson correlation with true R2 and the

net gains of variants under different thresholds (supple-

mental methods). Overall, MagicalRsq-X improved

squared correlation with true R2 from 0.92 to 0.94 for

BioMe AA, from 0.89 to 0.92 for WHI AA, and from

0.89 to 0.91 for JHS, indicating better alignment with

true R2. For filtering variants, we found MagicalRsq-X

achieved net gains of 9–53 variants for these associated

variants (which can be viewed as positive control associa-

tion signals) under commonly used thresholds (Table S9).

For example, rs9273039 at HLA locus was found to be

significantly associated with hematocrit25 and was well

imputed in both JHS and MESA AA (true R2 ¼ 0.97 for

both cohorts), but the original Rsqs were only 0.45

and 0.44. In contrast, MagicalRsq-X could successfully

rescue this association signal with values of 0.88 for

both cohorts. These results again illustrate the advantages

of MagicalRsq-X over standard Rsq in downstream

analyses.

In summary, we present MagicalRsq-X, which signifi-

cantly extends our previously published MagicalRsq by al-

lowing cross-cohort applications without the need for

additional genotype data from the target cohort. Note

that the features we added (LD scores and recombination

rate) are highly influential to the model performance. We

additionally found that variants with low LD scores or

residing in regions with high recombination rate benefit

the most from MagicalRsq-X (Figures S26 and S27). Our

comprehensive experiments and evaluations demonstrate

the advantages of MagicalRsq-X as a quality-filtering

metric and its benefits in downstream analyses. Similar

to our original MagicalRsq, MagicalRsq-X is robust to

different choices of number of variants used for model

training where multiple repeats with different randomly

selected variants showed minimal variations. In addition,

MagicalRsq-X performs similarly well or even better in

some cases compared to MagicalRsq, especially for com-

mon and low-frequency variants (Figure S28), emphasizing

the value of this extension compared to MagicalRsq,

as in many real studies we do not have the luxury of per-

forming internal training with MagicalRsq. We release

our pre-trained models for the convenience of other re-

searchers but note that our pre-trained models were all

trained on U.S.-based cohorts due to data availability.

It warrants future investigations about whether these

U.S.-based models could also benefit other populations.

We encourage other investigators to train MagicalRsq-X

models whenever relevant data are available. MagicalRsq-

X software and our pre-trained models are freely available

at https://github.com/quansun98/MagicalRsqX.

Data and code availability

MagicalRsq-X is freely available at https://github.com/

quansun98/MagicalRsqX. Our pre-trained models could

also be downloaded at ftp://yunlianon:anon@rc-ns-ftp.

its.unc.edu/MagicalRsqX/models/ in addition to the

GitHub page.

Supplemental information

Supplemental information can be found online at https://doi.org/

10.1016/j.ajhg.2024.04.001.
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COVID-19 HGI Projected PC: https://github.com/covid19-
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MagicalRsq: https://github.com/quansun98/MagicalRsq

MagicalRsq-X: https://github.com/quansun98/MagicalRsqX

Michigan imputation server: https://imputationserver.

sph.umich.edu/

TOP-LD: http://topld.genetics.unc.edu/

TOPMed: https://topmed.nhlbi.nih.gov/
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