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Behavioral/Cognitive

Dissociable Neural Mechanisms Underlie the Effects of
Attention on Visual Appearance and Response Bias

Sirawaj Itthipuripat (ศิรวัจน์ อิทธิภูริพัฒน์),1,2 Tanagrit Phangwiwat (ธนกฤต ผังวิวัฒน์),1,2,3
Praewpiraya Wiwatphonthana (แพรวพิรยา วิวัฒน์พรธนา),1,4 Prapasiri Sawetsuttipan (ประภาสิริ เศวตสุทธิพันธ์),1,2,3
Kai-Yu Chang,5 Viola S. Störmer,6 Geoffrey F. Woodman,7 and John T. Serences8
1Neuroscience Center for Research and Innovation, Learning Institute, King Mongkut’s University of Technology Thonburi, Bangkok, 10140,
Thailand, 2Big Data Experience Center, King Mongkut’s University of Technology Thonburi, Bangkok, 10140, Thailand, 3Computer Engineering
Department, Faculty of Engineering, King Mongkut’s University of Technology Thonburi Bangkok, 10140, Thailand, 4SECCLO Consortium,
Department of Computer Science, Aalto University School of Science, Espoo, 02150, Finland, 5Department of Cognitive Science, University of
California–San Diego, La Jolla, California 92093-1090, 6Department of Psychological and Brain Science, Dartmouth College, Hanover, New
Hampshire 03755, 7Department of Psychology, Center for Integrative and Cognitive Neuroscience, and Interdisciplinary Program in Neuroscience,
Vanderbilt University, Nashville, Tennessee 37235, and 8Neurosciences Graduate Program, Department of Psychology, University of California–San
Diego, La Jolla, California 92093-1090

A prominent theoretical framework spanning philosophy, psychology, and neuroscience holds that selective attention pene-
trates early stages of perceptual processing to alter the subjective visual experience of behaviorally relevant stimuli. For exam-
ple, searching for a red apple at the grocery store might make the relevant color appear brighter and more saturated
compared with seeing the exact same red apple while searching for a yellow banana. In contrast, recent proposals argue that
data supporting attention-related changes in appearance reflect decision- and motor-level response biases without concurrent
changes in perceptual experience. Here, we tested these accounts by evaluating attentional modulations of EEG responses
recorded from male and female human subjects while they compared the perceived contrast of attended and unattended vis-
ual stimuli rendered at different levels of physical contrast. We found that attention enhanced the amplitude of the P1 com-
ponent, an early evoked potential measured over visual cortex. A linking model based on signal detection theory suggests
that response gain modulations of the P1 component track attention-induced changes in perceived contrast as measured with
behavior. In contrast, attentional cues induced changes in the baseline amplitude of posterior alpha band oscillations (;9-12 Hz),
an effect that best accounts for cue-induced response biases, particularly when no stimuli are presented or when competing
stimuli are similar and decisional uncertainty is high. The observation of dissociable neural markers that are linked to
changes in subjective appearance and response bias supports a more unified theoretical account and demonstrates an
approach to isolate subjective aspects of selective information processing.

Key words: alpha; attention; contrast; EEG; response bias; visual perception.

Significance Statement

Does attention alter visual appearance, or does it simply induce response bias? In the present study, we examined these com-
peting accounts using EEG and linking models based on signal detection theory. We found that response gain modulations of
the visually evoked P1 component best accounted for attention-induced changes in visual appearance. In contrast, cue-
induced baseline shifts in alpha band activity better explained response biases. Together, these results suggest that attention
concurrently impacts visual appearance and response bias, and that these processes can be experimentally isolated.
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Introduction
Selective information processing, or selective attention, leads to
faster and more accurate processing of sensory stimuli that are
cued to be behaviorally relevant (Posner, 1980; Desimone and
Duncan, 1995; Egeth and Yantis, 1997; Serences and Yantis,
2006; Carrasco, 2011; Anton-Erxleben and Carrasco, 2013;
Buschman and Kastner, 2015; Sprague et al., 2015). While the
effects of attention on the efficiency of sensory processing are
well established, the impact of selective attention on subjective
perceptual experience has long been debated (von Helmholtz,
1866; James, 1890; Fodor, 1984; Pylyshyn, 1999; Raftopoulos,
2001; Carrasco et al., 2004; Schneider, 2006, 2011; Prinzmetal et
al., 2008; Schneider and Komlos, 2008; Firestone and Scholl,
2014, 2015a,b; Beck and Schneider, 2017; Itthipuripat et al.,
2019a). In the past two decades, a growing body of psychophys-
ical evidence suggests that attended stimuli are perceived differ-
ently than physically identical, but unattended, stimuli (e.g.,
attended stimuli might be perceived as higher contrast or more
saturated than unattended stimuli) (Carrasco et al., 2004, 2008;
Tse, 2005; Ling and Carrasco, 2007; Fuller et al., 2008, 2009;
Prinzmetal et al., 2008; Störmer et al., 2009; Anton-Erxleben et
al., 2010, 2011; Cutrone et al., 2014; Firestone and Scholl, 2014,
2015a,b; Störmer and Alvarez, 2016; Carrasco and Barbot,
2019). That said, others have argued that attention does not alter
perceptual experience and that reports of such effects are instead
attributable to cue-induced response biases. For example, subjects
are more inclined to respond that an attended stimulus has a
higher contrast than an unattended stimulus, despite having an
equivalent subjective perceptual experience of the two stimuli
(Schneider, 2006, 2011; Prinzmetal et al., 2008; Schneider and
Komlos, 2008; Beck and Schneider, 2017; Schneider and Malik,
2021a,b; Mari�c and Domijan, 2022).

As a partial resolution to this debate, recent studies suggest
that the relative influence of selective attention on visual appear-
ance and response bias may depend on low-level stimulus attrib-
utes, such as luminance and contrast (Schneider, 2006, 2011;
Carrasco et al., 2008; Prinzmetal et al., 2008; Schneider and
Komlos, 2008; Beck and Schneider, 2017; Itthipuripat et al.,
2019a). When attended and unattended stimuli are near or below
detection thresholds, attentional cues may not alter the perceived
contrast because there is not enough baseline visual information
to upregulate. Thus, reported differences in the perceived contrast
of the attended stimulus must be because of response bias
(Prinzmetal et al., 2008). However, Carrasco and colleagues have
argued that cue-induced response biases do not substantively
impact measurements of the subjective experience of suprathres-
hold stimuli (Carrasco et al., 2008; Anton-Erxleben et al., 2010,
2011). This argument is based on the premise that attention has a
larger impact on neural responses evoked by suprathreshold stim-
uli because they provide sufficient sensory evidence to guide
perceptual judgments (di Russo et al., 2001; Kim et al., 2007;
Lee and Maunsell, 2009; Itthipuripat et al., 2014a,b, 2017,
2018, 2019b; Sawetsuttipan et al., 2023). Nonetheless, render-
ing two suprathreshold stimuli at similar contrast levels will
increase uncertainty and may induce a bias to report that a
cued stimulus is higher contrast, independent of the actual
subjective experience (Schneider, 2006, 2011; Schneider and
Komlos, 2008; Beck and Schneider, 2017). Thus, isolating
changes in subjective perceptual experience is challenging as
there are a variety of scenarios that might promote, or mask,
the contributions of response biases.

To address this issue, we recently conducted a psychophysical
study that systematically measured both cue-induced response

biases and changes in the perceived contrast of attended and unat-
tended visual stimuli across a wide range of contrast levels
(Itthipuripat et al., 2019a). Our findings revealed that, when both
the attended and unattended stimuli had very low or very high
contrasts, subjects tended to guess that the cued stimulus had a
higher contrast than the uncued stimulus, consistent with the cue-
induced response bias hypothesis (Itthipuripat et al., 2019a; see also
Schneider, 2006, 2011; Prinzmetal et al., 2008; Schneider and
Komlos, 2008; Beck and Schneider, 2017). However, the most no-
ticeable changes in perceived contrast occurred at low-to-mid-level
contrasts, consistent with prior results demonstrating that attention
can alter visual appearance (Itthipuripat et al., 2019a; see also
Carrasco et al., 2008; Anton-Erxleben et al., 2010, 2011). While
these findings suggest that attention can alter contrast appearance
in certain circumstances and induce response bias in others, here
we assessed different neural markers of visual processing to deter-
mine whether there are dissociable neural mechanisms that can be
quantitatively linked to these two processes. If so, this would fur-
ther suggest that attention impacts changes in appearance as well
as changes in response bias and that both processes contribute to
overall patterns observed in psychophysical data.

Using a paradigm adopted from our recent experimental work
(see Fig. 1) (see also Itthipuripat et al., 2019a), we conducted an
EEG study where we simultaneously measured attentional modu-
lations of two different EEG markers of early visual processing:
the amplitude of the P1 component and the amplitude of alpha
(a) band oscillations (9-12 Hz) over posterior occipital electrodes.
We focused on these neural markers because selective attention
modulates the amplitude of the P1 component (van Voorhis and
Hillyard, 1977; Mangun and Hillyard, 1990; Woldorff et al., 1997;
Hillyard and Anllo-Vento, 1998; Foster et al., 2021) and because a
oscillations track changes in the spatial focus of selective attention
(van Voorhis and Hillyard, 1977; Mangun and Hillyard, 1990;
Woldorff et al., 1997; Foxe et al., 1998; Hillyard and Anllo-Vento,
1998; Fries et al., 2001, 2008; Sauseng et al., 2005; Kelly et al., 2006,
2009; Klimesch et al., 2007; Foster et al., 2016, 2017, 2021). To
assess the relationship between attention-related neural modula-
tions of these markers and changes in behavior, we used quanti-
tative linking models based on signal detection theory (SDT)
(Tanner and Swets, 1954; Pestilli et al., 2011; Cutrone et al., 2014;
Itthipuripat et al., 2014a, 2017; Itthipuripat and Serences, 2016).

Our results indicate that attention-related modulations of the
P1 amplitude were predictive of attentional effects on perceived
contrast at low-to-mid-level stimulus contrasts. In contrast,
changes in a band activity were associated with response bias in
the psychophysical data when cued and uncued stimuli were both
rendered in either very low or very high contrasts. Together, our
findings suggest that dissociable neural mechanisms underlie the
effects of attention on visual appearance and response bias. More
importantly, these dissociable neural modulations demonstrate that
changes in appearance and changes in response bias simultaneously
operate — to varying degrees depending on bottom-up stimulus
factors— in the context of selective information processing.

Materials and Methods
Subjects
We recruited 22 neurologically healthy male and female human observ-
ers who had normal or corrected-to-normal vision from the local com-
munity at the University of California–San Diego. In accordance with
the local institutional review board at University of California–San
Diego, subjects provided written informed consent before participating
in the study. Two subjects terminated their participation before complet-
ing the experiment, resulting in 20 subjects included in the final analysis
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(9 female, 18-25 years old, 2 left-handed). Given that we used a single-
session EEG recording approach unlike previous studies that used a mul-
tiple-recording session approach, the sample size of 20 we used in the
present study was relatively higher than those used in the prior studies
(N values¼ 3-14 in Pestilli et al., 2011; Itthipuripat et al., 2014a,b, 2017;
Sawetsuttipan et al., 2023).

Experimental design and statistical analysis
Stimuli and task. We presented stimuli using the Psychophysics

Toolbox (Brainard, 1997; Pelli, 1997) and MATLAB (The MathWorks)
run on the personal computer with the Windows XP operating system.
Participants were seated 60 cm from the gray background CRT monitor
(34.51 cd/m2, 120Hz refresh rate) in a dimly lit sound-attenuated room
where they performed the comparative contrast judgment task (see Fig. 1)
(Itthipuripat et al., 2019a). In this task, they were asked to judge the relative
apparent contrast of two Gabor stimuli (spatial frequency¼ 3 c/°, SD of
the Gaussian envelope¼ 2.18°, stimulus radius¼ 6.53°) that were pre-
sented in the left and right lower quadrants (eccentricity¼ 13.74°).
Subjects reported whether the stimulus with the higher contrast was tilted
45° clockwise (CW) or counterclockwise (CCW) from vertical. Responses
were made by pressing one of four buttons on a standard QWERTY key-
board. The responses corresponded to a CCW left stimulus, a CW left
stimulus, a CCW right stimulus, and a CW right stimulus with their left
middle, left index, right index, and right middle fingers, respectively. To
examine the impact of covert spatial attention on subjective reports about
the perceived stimulus contrasts, we presented an exogenous cue consist-
ing of a horizontal black bar (0.36° � 3.63° length � thickness) located
to the left or right of fixation 2.04° above the outer edge of the cued stim-
ulus. The cue was presented for 50ms followed by a 50 ms blank screen
and the two oriented Gabor stimuli, which were presented for 40ms

(50% left-cued and 50% right-cued trials). The contrast values of the two
stimuli were fully crossed and drawn from seven contrast levels (0%, 5%,
10%, 20%, 40%, 80%, 100% Michelson contrasts). There was no response
deadline. Following a button press response, there was an intertrial inter-
val of 300-800ms. Trial order was pseudo-randomized so that subjects
were unable to predict the cued side or the contrast of each stimulus.
Each subject completed 2940 trials in total. There were 30 trials for each
combination of cue location (left or right), left stimulus contrast (7 levels
from 0% to 100%), and right stimulus contrast (7 levels from 0% to
100%).

Analysis of behavioral data. Past psychophysical studies that exam-
ined the effects of attention on visual appearance typically presented one
stimulus (either in the left or the right hemifield) at a fixed level of con-
trast (termed as the “standard contrast”). Another stimulus would be
simultaneously presented on the other side of fixation and at a variable
contrast level (termed the “test contrast”) (e.g., Carrasco et al., 2004,
2008; Ling and Carrasco, 2007; Fuller et al., 2008, 2009; Störmer et al.,
2009; Anton-Erxleben et al., 2010, 2011). This method yields an estimate
of the relative perceived contrast of each test stimulus compared with
the standard stimulus, which can be expressed as the probability
p(test . standard) for each test stimulus chosen over a given standard
stimulus.

In the present study, we adopted a slightly modified approach using
a fully crossed design where the contrasts of the cued and the uncued
stimuli were drawn from a full range of contrast values (0%, 5%, 10%,
20%, 40%, 80%, and 100%). To make contact with previous research, we
computed the probability that each stimulus (termed here the stimulus
of interest or the test stimulus) was reported as having a higher contrast
than the stimulus on the opposite side of the screen (termed here the
paired or the standard stimulus). This calculation was performed

The contrast level of the uncued test stimulus (%)

T
he contrast level of 

the cued test stim
ulus (%

)

0              5             10           20             40           80          100     

Attention cue
(50ms duration + 

50ms blank)

Stimuli
(40ms duration)

b

a

Response period
(until respond + 
300-800ms ITI)

Which stimulus
has a higher 

contrast?
   0        5       10       20      40     80     100    

Figure 1. Task and stimuli. a, The attention-cueing comparative contrast judgment task (see a similar method in Itthipuripat et al., 2019a). Subjects had to report the orientation of the stimulus they
perceived as having a higher contrast. b, Depiction of all contrast pairs in the cue-left condition. The same fully crossed contrast manipulation was also used in the cue-right condition. The values in the
horizontal gray-green box are the possible contrast levels used for the uncued test stimuli. The contrast values in the vertical gray-purple box represent the contrast levels of the cued test stimuli.
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separately for cued and uncued test stimuli, as well as when the test
stimulus was paired with different contrast levels of the standard
stimulus. We performed two types of analyses where the probability
values were based on all trials (all-trials condition) or only on trials
where the reported orientation of the test contrast was “correct” (i.e.,
correct-only conditions). When the test stimulus was rendered at 0%
contrast, we randomly labeled the direction of the orientation offset
(CW or CCW) before the start of the experiment. This was done
because no physical stimulus was actually presented in the 0% con-
trast stimulus condition. The “correct” responses in this condition
were then determined based on a match to these randomly assigned
labels. The effect of exogenous cues on guessing and baseline-offset
response bias was then determined by the difference between the
probability of choosing a cued versus an uncued test stimulus on
these 0% test contrast trials.

Next, we fit the probability functions across different test contrasts
separately for each standard contrast and each attention condition
(cued/uncued), separately for each subject, with a variant of the Naka–
Rushton (NR) equation using a maximum likelihood estimation method
as follows:

P cð Þ ¼ Gr � Cq

Cq1Gq
c
1B (1)

where P(c) is p(test . standard) for a given test contrast value (c). Here,
B is the baseline-offset (indexing response bias), Gc is the contrast gain
factor that controls the horizontal shift of the curve (indexing perceived
appearance), Gr is the response gain factor that controls the vertical shift
of the psychometric function, and q is the exponent fixed at 2 (see, e.g.,
Carandini and Heeger, 2011). In addition, we constrained the fit so that
0�Gr � 1, 0.Gc , 100, P(100)� 1, and P(0)� 0. We did not use
another version of the NR function, termed a baseline-input model
(Cutrone et al., 2014), because in prior work we found that it yielded
worse fits compared with the baseline shift model and the baseline-input
model gave B values that were out of the realistic range (i.e., values that
were �1), making it difficult to interpret the results (Itthipuripat et al.,
2019a). If there is an increase in contrast appearance driven by the atten-
tional cue, we expect an increase in contrast gain or a decrease in Gc,

which will result in a leftward shift of the psychometric function (see
Fig. 2a) (see also Carrasco et al., 2004; Itthipuripat et al., 2019a). A
decrease in Gc leads to a leftward shift because Gc is the denominator of
the NR function so as Gc decreases P(c) will increase at the low-to-mid-
level contrast values. That said, if the cue only induces response bias,
there should be an increase in the baseline-offset (B) of the psychometric
function without concurrent changes in contrast gain (see Fig. 2b). Since
the probability values of the psychometric function cannot exceed 1, an
increase in the baseline-offset parameter should result in smaller values of
response gain (Gr) as the slope of the psychometric function will get
necessarily smaller. The attentional cue could also induce changes in
both subjective appearance and response bias. This would lead to a
decrease in Gc, an increase in B, and an accompanying decrease in Gr

(see Fig. 2c).
Next, we used two-way repeated-measures ANOVAs to evaluate

main effects of attention and main effects of standard contrast, as well as
interactions between these factors on the B, Gr, and Gc parameters that
best characterize the observed psychrometric functions (see Fig. 3).

EEG recording and preprocessing. EEG data were recorded using a
512Hz sampling rate with a Biosemi ActiveTwo system containing 64
pin-type active EEG electrodes and 8 flat-type active external electrodes
that were made of sintered Ag-AgCl. The 64 pin-type electrodes were
mounted on the elastic head caps with the 10-20 layout that is in accord-
ance with the international 10-20 system (Jasper, 1958; Chatrian et al.,
1975, 1985; American EEG Society, 1980a,b,c,d). Two flat-type external
electrodes were placed on top of the left and right mastoids. Two addi-
tional external electrodes were placed near the outer canthi of the left
and right eyes to monitor horizontal eye movements. To monitor blinks
and vertical eye movements, four more external electrodes were placed
on the forehead just above the left and right eyebrows and on the cheeks
right below the left and right eyes. To reduce the impedance of the

electrodes, high conductive gel was applied to all EEG and external elec-
trodes to ensure good contact with the skin. We kept signal offsets
below 20 mV relative to the CMS-DRL reference, which is standard
practice for the Biosemi ActiveTwo system. While EEG signals were
being recorded, subjects were asked to minimize blinks, eye move-
ments, and head and body movements. They were seated on a com-
fortable chair in a dimly lit sound-attenuated electromagnetically
shielded room.

EEGLAB version 2019.1 and in-house MATLAB (R2020a) scripts
were used to preprocess the EEG data offline. First, the continuous EEG
data were rereferenced to the mean of the left and right mastoid electro-
des, followed by the application of 0.25 Hz high-pass and 55 Hz low-
pass Butterworth filters (third order). Then, we segmented the continu-
ous EEG data into epochs extending from �1000ms before to 2000ms
after the cue onset. Next, we used independent component analysis (Bell
and Sejnowski, 1995; Makeig et al., 1996) to correct prominent eye blink
and muscle artifacts. Finally, we used visual inspection and threshold
rejection to discard epochs contaminated by residual eye blinks and
saccades (.650-200mV deviation from zero, with thresholds chosen
for each individual subject), horizontal eye movements (.650-75mV
deviation from zero), muscle activity, or drifts (8.8946% of trials were
rejected,69.2797% SEM).

The visually evoked P1 component and a band oscillations. To exam-
ine the effects of attention on visual information processing, our study
focused on two EEG signals believed to reflect different aspects of visual
cortical processing: the P1 component and the a band oscillations (;9-
12 Hz). The P1 component is an early evoked response thought to origi-
nate from extrastriate visual areas. Its amplitude is known to be
enhanced by selective attention (van Voorhis and Hillyard, 1977;
Mangun and Hillyard, 1990; Woldorff et al., 1997; Hillyard and Anllo-
Vento, 1998). Notably, attention-induced increases in the P1 amplitude
have been associated with improved perceptual detection and discrimi-
nation as well as increases in perceived contrast (Mangun and Hillyard,
1990; Störmer et al., 2009, 2019; Itthipuripat et al., 2014a, 2017). On the
other hand, selective attention has been found to reduce the amplitude
of a band oscillations in posterior occipital electrodes contralateral to
the attended location (Foxe et al., 1998; Fries et al., 2001, 2008; Sauseng
et al., 2005; Kelly et al., 2006, 2009; Klimesch et al., 2007). The reduction
in a amplitudes has been shown to track changes in response bias (i.e.,
response criterion), but not changes in perceptual sensitivity (Limbach
and Corballis, 2016; Benwell et al., 2017, 2018, 2020; Iemi et al., 2017;
Foster and Awh, 2019). While previous studies have associated changes
in the amplitude of the P1 and a band activity with changes in perceived
contrast, they have not taken into account potential contributions from
response bias in their psychophysical measurements (Störmer et al.,
2009, 2019; Balestrieri and Busch, 2022).

Following the EEG preprocessing steps described in the previous sec-
tion, we baseline-corrected the artifact-corrected EEG data to their mean
EEG response from�200 to 0ms relative to the cue onset. We then real-
igned the epoched EEG data to the onset of the stimulus. The baselined
EEG data were then sorted into the following 98 conditions: left versus
right cued stimuli (2 conditions) � 7 cued contrast levels (0%-100%) �
7 uncued contrast levels.

Next, we averaged the stimulus-locked EEG data in each of these
conditions to obtain the ERPs. At this step, the ERPs contained both
cue-evoked and bilateral stimulus-evoked responses. Therefore, we
adopted the ERP subtraction method to (1) isolate the early sensory
responses associated with a single stimulus from the bilateral stimu-
lus presentation and (2) subtract the cue-related response from the
stimulus-evoked ERPs, under the assumption that these stimulus-
and cue-related responses combine linearly (see similar methods in
Greenwood and Goff, 1987; Iragui et al., 1993; Kiss et al., 1998;
Chica et al., 2010; Itthipuripat et al., 2014a, 2017, 2019b; Störmer et
al., 2019).

As illustrated in Figures 4 and 5a, we subtracted the ERPs from the
cue-only trials (0% contrast) from the ERPs related to the cued stimuli of
all contrast levels (0%-100%). We also extracted the stimulus evoked
responses related to the uncued stimuli of different contrast levels by
subtracting the ERPs on trials where the uncued stimulus was rendered
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at 0% contrast. These steps allowed us to isolate a P1 component, which
we obtained the signals from five contralateral posterior occipital electro-
des (O2, PO4, PO8, P2, and P4 for the left stimulus and O1, PO2, PO6,
P1, and P3). These electrodes were selected because they had the highest
baseline-subtracted P1 amplitude collapsed across attention conditions
and contrast levels. The time window of the P1 was selected around the
peak of the subtracted P1 data collapsed across attention conditions and
contrast levels (i.e., 60-90 ms after stimulus). Next, we computed the
mean amplitude of the P1 component over 60-90 ms, in each cue and
contrast condition from individual subjects. The electrodes and time
window of the P1 component in this present study were consistent with
those used in previous studies that examined attentional modulations of
the P1 component and early sensory-evoked responses (van Voorhis
and Hillyard, 1977; Mangun and Hillyard, 1990; Woldorff et al., 1997;
Hillyard and Anllo-Vento, 1998; Störmer et al., 2009, 2019; Itthipuripat
et al., 2014a, 2017). Then, we plotted the mean amplitude values as a
function of test contrast, resulting in a P1-based contrast response func-
tion (CRF) for each attention condition and standard contrast level (see
Fig. 5a).

Next, we fit the P1-based CRFs with the NR equation (Eq. 1) to
determine whether these P1-based CRFs underwent contrast gain, multi-
plicative response gain, or changes in baseline-offset (see Fig. 2d-f). For
individual attention conditions and standard contrast levels, this fitting
procedure was performed using MATLAB’s “fmincon” function to mini-
mize the root mean squared error between the data and the fit function
with three free parameters, including the contrast gain (Gc), response
gain (Gr), and baseline-offset parameters (B). We used the root mean
squared error method to fit the neural data instead of using the maxi-
mum likelihood estimation method like we did for fitting the behavioral

data because the neural responses are continuous values unlike the be-
havioral outputs that are discrete values. Here the exponent q of the NR
equation was fixed at 2 (Carandini and Heeger, 2011). The guess values
for Gr, Gc, and B were 1% contrast, the difference between the maximum
and minimum values of the P1 amplitudes across all test contrast levels,
and the minimum value of the P1 amplitude, respectively. The contrast
gain parameter (Gc) was constrained so that it could vary only between
0% and 100% contrast (i.e., the realistic range of the physical contrast
value).

Hypothetically, a decrease in Gc will lead to an increase in contrast
gain or the neural CRF shifting horizontally in the leftward direction
(see Fig. 2d). On the other hand, an increase in Gr will lead to an increase
in multiplicative response gain or the slope of the neural CRF (see Fig. 2e).
Alternatively, an increase in B will lead to an increase in the baseline-offset
of the neural CRF or an additive shift in overall neural activity of the func-
tion without changing its slope (see Fig. 2f). The Gc and Gr parameters
could in principle exceed the realistic range of stimulus contrast (0%-
100% contrast), making it difficult to interpret the results. Therefore,
instead of directly comparing these two parameters, we obtained parame-
ters that indicated the contrast at which neural responses reached half
their maximum (the semisaturation constant; C50) and the maximum
neural responses relative to baseline (Rmax) to track changes in contrast
gain and response gain, respectively. Finally, we used two-way repeated-
measures ANOVAs to test main effects of attention (cued vs uncued),
main effects of standard contrasts (0%-100%), and their interactions on
the B, C50, and Rmax (see Fig. 5b).

Since the ERP subtraction method relied on an assumption of linear
summation, we evaluated whether similar patterns of attentional modu-
lations of the P1-based CRFs were obtained without performing the
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Figure 2. Predictions. a-c, Alternative predictions for the behavioral results. a, Attention increases the perceived contrast of visual stimuli via a leftward shift in the behavioral CRFs. In this
scenario, attention should only decrease the contrast gain factor (Gc) and there should not be any changes in the baseline-offset (B) or response gain (Gr). b, Attention induces a baseline-offset
response bias (B; upward shift at the baseline-offset) without changes in a leftward shift of the CRFs (i.e., no change in Gc). This corresponds to a bias to respond to the cued stimulus without
a change in subjective appearance. c, Attention could induce changes in both subjective appearance and response bias as indexed by changes in both Gc and B, respectively. d-f, Alternative pre-
dictions for the neural CRFs. Since the estimated Gr and Gc parameters could extend beyond the realistic range of stimulus contrast values (.100%), the response gain and contrast gain of
neural CRFs were reparameterized as the maximal response (Rmax or the response at 100% contrast minus the baseline-offset) and the semisaturation contrast (C50 or the contrast at which the
response reached half-maximum), respectively. d, Attention increases neural contrast sensitivity or contrast gain as indexed by changes in the semisaturation contrast factor (C50). e,
Alternatively, attention could increase the multiplicative response gain, corresponding to the slope of the neural CRFs, as indexed by the maximum neural response (Rmax). f, Last, attention
could shift the baseline-offset of the neural CRFs so that overall responses to the cued stimulus are enhanced in a manner that is independent of stimulus contrast. Gray boxes below individual
figures contain the NR equation (Eq. 1) with the parameters that change in each scenario marked in red and the arrows indicating the direction of changes.
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subtraction. To do so, we obtained the nonsubtracted P1 responses at
the same set of electrodes and time windows as those of the subtracted
P1 data and plotted them as a function of test contrast. We then per-
formed the same fitting procedure and statistical analysis to test whether
the nonsubtracted P1-based CRFs underwent contrast gain, multiplica-
tive response gain, or changes in baseline-offset (see Fig. 5c,d).

In order to assess cue-induced changes in in posterior a band
activity, we first wavelet-filtered the artifact-corrected epoched
EEG data using a Gaussian filter centered at 1-40 Hz (in 1 Hz steps)
with a fractional bandwidth of 0.2 Hz and computed the absolute
value of the wavelet coefficients to obtain a measure of amplitude
for each frequency. This resulted in event-related time-frequency
representations from 1 to 40 Hz (see Fig. 6) (see also Canolty et al.,
2006, 2007; Itthipuripat et al., 2013).We then selected the data
from 9 to 12 Hz and sorted them into each of the 98 experimental
bins. As illustrated in Figure 7, for each of these experimental bins,
we then computed the mean percent change in a amplitude rela-
tive to baseline activity from 200 to 600ms before the cue onset (or
300 to 700 ms before the stimulus onset) using the following
equation:

Percent signal change ¼ a amplitude� Baseline activity
Baseline activity

� 100%

(2)

To obtain a-based CRFs, we then took the averaged values of the a
data from 100 to 700 ms after the cue onset (0-600 ms after the stimulus
onset) across the same set of contralateral posterior electrodes used in
the P1 analysis. We then plotted mean a amplitudes as a function of test
contrast for each attention condition and each standard contrast level
for each subject (see Fig. 8a). Since the poststimulus reduction in a band
activity occurred over an extended temporal epoch, we averaged over a
longer time window (i.e., 0-600 ms after stimulus onset) compared with
the window used for the P1 component. Also, the electrodes and time
window of the a band activity used in the present study were consistent
with those used by prior studies (e.g., Foxe et al., 1998; Fries et al., 2001,
2008; Sauseng et al., 2005; Kelly et al., 2006, 2009; Klimesch et al., 2007;
Nelli et al., 2017). The a-based CRFs were then fit with an NR equation
(Eq. 1). The fitting routine was similar to that conducted in the P1 data
analysis, except that the seed value for Gr was determined based on the
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Figure 3. Behavioral data. a, The probability that subjects reported the test stimulus (i.e., the stimulus of interest, either cued or uncued) as having a higher contrast than the standard stim-
ulus (i.e., the paired cued or uncued stimulus) termed here as p (test. standard) plotted as a function of test contrast for all possible standard contrast levels. b, The corresponding best-fit
parameters from an NR function. Left, We used B to index the baseline-offset response bias that the cued stimulus had a higher contrast than the uncued stimulus even when the cued stimulus
was not physically present (i.e., presented at 0% contrast) (Prinzmetal et al., 2008; Itthipuripat et al., 2019a). Overall, we found a significant attention-induced increase in response bias when
the contrast of the standard was relatively low, with a decreasing effect of response bias as the contrast of the standard increased. Middle, The response gain parameter (Gr) controls the slope
of the psychometric function. Gr and B are conflated because behavioral response probabilities could not exceed 1. At low-to-mid level standard contrasts, there were large attentional effects
on B (Left). Thus, this increase in B must also lead to a decrease in slope, or Gr, given the fixed ceiling of the psychometric response functions. Instead, attention increased Gr without changing
B at higher contrasts (i.e., 80%-100%). Right, The contrast gain parameter (Gc) controls the horizontal position of the psychometric function, which we used to index changes in contrast
appearance. Attention reduced Gc, as indexed by a leftward shift in the psychometric functions, which should correspond to an increase in perceived contrast, predominantly at low-to-mid-lev-
els of standard contrast. Error bars indicate the within-subject SEMs (61 SEMs). Attppp, Cttpp, and Att � Cttppp represent the significant main effects of attention, standard contrast, and
the interaction between the two factors, respectively (all p values, 0.001).
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difference between the minimum and maximum values of the postcue a
activity across all test contrast levels because of the fact that the a band
activity got smaller as a function of test contrast (instead of larger like
the P1). Finally, we used two-way repeated-measures ANOVAs to test
main effects of attention (cued vs uncued), main effects of standard con-
trasts (0%-100%), and their interactions on the B, C50, and Rmax (see Fig.
8b).

Recent research has suggested that traditional practices for analyzing
changes in the power or the amplitude of brain oscillations may not truly
reflect changes in the periodic components of the underlying oscilla-
tions. Instead, apparent changes in amplitude might reflect changes in
the slope of the aperiodic 1/f noise in EEG signals (Donoghue et al.,
2020). Thus, we performed an auxiliary analysis where we fit the precued
and poststimulus power spectra of EEG signals recorded from the con-
tralateral posterior occipital sites (see Fig. 7c) using the FOOOF function
(i.e., fitting oscillations & one over f) (Donoghue et al., 2020). This fitting
procedure allowed the parametrization of the periodic components of a
band oscillations, including log power, central frequency, and bandwidth
as well as the aperiodic components of the 1/f, including the aperiodic
exponent and offset (see Fig. 9a-e). Before using the FOOOF function, we
converted a amplitude into a power (squared amplitude). Finally, we
used four-way repeated-measures ANOVAs to test the main effects of pe-
riod (precued vs poststimulus periods), attention (cued vs uncued), test
contrast, and standard contrast as well as their interactions on each of
these periodic and periodic exponents.

Since we found a significant three-way interaction between period,
attention, and test contrast on the log a power, we subtracted the precue
baseline from the poststimulus a activity and fit the neural CRFs based
on the log a power with respect to the precue baseline (see Fig. 8f) using
the NR equation (Eq. 1). Last, we performed two-way repeated-measures
ANOVAs to test main effects of attention (cued vs uncued), main effects
of standard contrasts (0%-100%), and their interactions on the B, C50,
and Rmax (see Fig. 9g).

Modeling behavioral data using attentional modulations of the P1
and a band activity. Next, we examined how different patterns of atten-
tional modulations, specifically attention-induced increases in multipli-
cative response gain of the P1-based CRF and attentional modulations of
the baseline-offset of the a-based CRF could be linked to the attentional
effects in our psychometric data. We recently demonstrated that quanti-
tative models assuming changes in the response gain of hypothetical
neural CRFs can capture attention-induced changes in contrast appear-
ance via modulations in the contrast gain factor (Gr) of the psychometric
data (Itthipuripat et al., 2019a) (see Fig. 2a,e). However, this did not
account for the baseline-offset in response biases (Itthipuripat et al.,
2019a). On the other hand, models assuming shifts in the baseline-offset
of the hypothetical neural CRFs could better account for cue-induced
changes in the baseline-offset response bias in the behavioral data
(Itthipuripat et al., 2019a) (see Fig. 2b,f). Based on these results, we
hypothesized that the multiplicative gain of the P1-based CRFs (see Fig. 5)
should account for attention-induced increases in contrast appearance as
reflected by the leftward shifts of the psychometric functions which
occurred predominantly when the standard stimuli were rendered at low-

to-mid-level contrasts (see Figs. 2a, 3b-right). On the other hand, modula-
tions of baseline-offsets in the a-based CRFs (see Fig. 8) should better
account for changes in the baseline-offset response bias in the behavioral
data (Itthipuripat et al., 2019a) (see Figs. 2b, 3b-left).

To test these predictions, we adopted a quantitative linking model
based on SDT (Cutrone et al., 2014; Itthipuripat et al., 2019a). In brief,
we estimated our psychophysical data, or p(test . standard), based on
the amplitude difference between neural responses (either the P1 data,
the a data, or both) evoked by test and standard stimuli that can be
drawn from the measured neural CRFs given a certain level of hypotheti-
cal neuronal noise (or trial-by-trial variability), shared across all experi-
mental conditions (see Fig. 10a).

For the P1-based model, we collapsed the Gc and B values across dif-
ferent attention and standard contrast levels so that the same Gc and B
values were shared across all of these conditions and could not contrib-
ute to changes in the predicted behavioral results. On the other hand,
different Gr values obtained from the original fitting routine were
assigned to different attention and standard contrast conditions. These
steps ensured that the pattern of attentional modulations in the pre-
dicted behavioral results were selectively because of changes in response
gain of the P1-based CRFs and were not influenced by spurious differen-
ces in other factors (B or Gc) that may occur in single-subjects. In each
resampled iteration, the simulated P1-based CRFs were normalized
using the following formula:

NormalizedData ¼ Data�minðDataÞ
maxðDataÞ �minðDataÞ (3)

where min(Data) and max(Data) were the minimum and the maximum
values of the simulated P1-based CRFs across all attention and standard
contrast conditions.

For the a-based model, we only collapsed the Gc parameters across the
different attention conditions and standard contrast levels since there were
neither main effects of these factors nor their interaction on Gc. That said,
different B and Gr values were directly obtained from the original fitting
routine and assigned to different attention and standard contrast conditions.
Here, both B andGrwere allowed to be different across experimental condi-
tions because the baseline shifts in the a-based CRFs were the result of the
baseline-offset (B) becoming more negative with attention and the response
again (Gr) becoming smaller with attention (i.e., Gr became less negative so
the negative slope was less steep). Since the amplitude of the a band activity
was generally reduced as a function of attention and stimulus contrast, we
flipped the sign of the simulated a-based CRFs and normalized the data
using Equation 3. This sign-flipping step allowed us to perform the linking
model in the similar way as the P1-based model and to combine the P1 and
a data to examine the joint contribution of the attentional modulations of
these two different electrophysiological signals to predict the effects of atten-
tion on the behavioral data. Finally, for the combined P1 and a model, we
computed the sum of the normalized P1-based and a-based CRFs sepa-
rately for individual attention conditions and standard contrast levels.

To compare the predictive power of different linking models (e.g.,
the P1-only model, the a-only model, and the combined model), we
conducted a cross-validation and bootstrapping analysis. For each mod-
eling iteration, we first shuffled the trial order of the data from each sub-
ject and then assigned the first 80% of trials in the shuffled data to a
training set and the last 20% trials into a holdout set (note: using the
term “holdout” set here as opposed to the more common “test” set to
avoid confusion with the “test stimulus” and “standard stimulus” termi-
nology used elsewhere). Training data and holdout data from each subject
were then combined to create a meta-training set and a meta-holdout set.
We then computed the magnitude of the P1 response and a response for
each contrast and attention condition using only data from the training
set (following methods described above). Assuming a maximum likeli-
hood decision rule, p (test. standard) based on the behavioral data from
the holdout dataset was estimated based on the probability that the test-
evoked neural response was higher than the standard-evoked neural
response in the training dataset in 1000 simulated trials for individual con-
trast levels and attention conditions, where each simulated trial was

/

the baseline subtracted data shown in a, b, except that the baseline of the nonsubtracted
data was reduced with attention (d, left). This was because of the overlapping temporal win-
dows between the negative-going N1 component associated with the cue and the positive-
going P1 component associated with the stimulus in the nonsubtracted data. Cttp, Attp,
and Att� Cttp represent significant main effects of contrast and attention, as well as a sig-
nificant interaction between attention and standard contrast, respectively (p values, 0.05).
a, c, The fit curves were not obtained by fitting the grand-averaged P1-based CRF data per
se (i.e., a, c, diamonds and squares). Instead, they were reconstructed based on the averaged
fit parameters computed at the individual-subject level (b, d, diamonds and squares). We
did this so that the fit curves represent the statistics we performed on the fit parameters
obtained from fitting individual subjects’ data. b, d, Error bars indicate within-subject SEMs
where the mean value of each attention condition was subtracted before computing the
SEMs. a, c, Shaded areas of the fit curves in represent the variation of the fit data across sub-
jects based on within-subject SEMs of fitting parameters shown in b, d.
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generated by sampling from normal distributions with means derived
from the training dataset and SDs derived from exhaustively sampling
noise values from 0 to 0.7 in 71, 0.01-increments to maximize log-likeli-
hood estimates. This procedure was then repeated 5 times with successive
blocks of 20% of trials from each subject used as a holdout set (i.e., fivefold
cross-validation). We then took the average of the log-likelihood estimates
and goodness-of-fit (R2) across all 5 folds. After one fivefold cross-valida-
tion iteration was complete, we reshuffled the data from each subject and
then repeated the exhaustive process of assigning 80% of trials to a train-
ing set and 20% to a holdout set. This process was repeated 1000 times,
with each iteration yielding different results because the trial shuffling and
cross-validation procedure ensured that different trials went into each
training and holdout dataset on each iteration. Finally, we created boot-
strap distributions based on these 1000 iterations to derive 95% CIs

associated with the predictions of the linking models as well as the corre-
sponding log-likelihood estimates and R2 values. We could directly com-
pare R2 values and log-likelihood estimates of different models because all
of these models only had one free parameter, which was the neuronal
noise shared across all standard and test contrast levels as well as across
the different attention conditions. To evaluate the difference between the
performance of the P1 and a models, we compiled the bootstrap distribu-
tions of the differences in the R2 and log-likelihood estimates between the
two models and computed the percentage of values in the tails of this dis-
tribution that were more or,0 (two-tailed) (see Fig. 10b-d). We also per-
formed a similar statistical analysis to compare the performance of each of
the P1 and the amodels in relation to the combined model.

In addition, we ran an additional analysis where the weights of the P1
and a data were varied systematically before computing the combined
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Figure 6. Time-frequency representations of induced EEG oscillations. a, Changes in induced EEG amplitude with respect to precue baseline. b, Non–baseline-corrected data.
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response to examine the relative contributions of the P1 and a data at
explaining changes in the psychophysical data. To do so, we ran an auxil-
iary analysis where the weights of the P1 and a data were varied systemati-
cally before computing the combined response. Specifically, we multiplied
the normalized P1 and the normalized a-based CRFs with two different
sets of weights (0, 1, 2, ..., 10 for the P1’s weight and 10, 9, 8, ..., 0 for the
a’s weight), yielding 11 models with different combinations of weights
associated with the P1 and a data. After summing the weighted responses,
we normalized the summed activity again to control for the range of mini-
mal and maximal response values across these 11 models. The model with
the P1 weight set to 0 and the a weight set to 10 is equivalent to the a
model in the main analysis. The model with the a weight set to 0 and the
P1 weight set to 10 is equivalent to the P1 model in the main analysis. The
model with equal weights for both the P1 and the a data are equivalent to

the combined model in the main analysis. Here, we performed similar
cross-validation and bootstrapping procedures similar to those conducted
in the main analysis to compare the predictability of different models.

It is important to note that, in our modeling routine, the neuronal
noise parameter, or the SD of the normal distribution, was assumed to
be the same across all standard and test contrast levels as well as across
the different attention conditions. This assumption is based on the previ-
ously established modeling methods (Cutrone et al., 2014; Itthipuripat et
al., 2019a). At the first glance, this assumption may seem counter to
some previous findings from single-unit studies in nonhuman primates,
which demonstrated that attention could change neuronal noises or
trial-by-trial variability of neuronal activity (Mitchell et al., 2007, 2009;
Cohen and Maunsell, 2009; Cohen and Kohn, 2011; Niebergall et al.,
2011; Luo and Maunsell, 2015). That said, studies in humans that used
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quantitative linking models to study the relationship between attention
effects on behavior and population-level neural activity, such as EEG and
fMRI, have reported negligible contributions of trial-by-trial variability of
EEG/fMRI activity on the attentional modulations of behavioral data (e.g.,
Pestilli et al., 2011; Hara and Gardner, 2014; Itthipuripat et al., 2014a). In
one recent EEG study from our group, we found that noise varied across
conditions only when human subjects underwent extended training (;10
testing sessions spread over ;1month of training) (Itthipuripat et al.,
2017). To prevent potential training effects on noise modulations in the
present study, we only had human subjects perform an 1 h task in 1 d,
which did not require extensive training as protocols used in our recent
human EEG study (Itthipuripat et al., 2017) and in the aforementioned
monkey studies, where subjects were trained for many months (Mitchell
et al., 2007, 2009; Cohen and Maunsell, 2009; Cohen and Kohn, 2011;
Niebergall et al., 2011; Luo and Maunsell, 2015). Therefore, under the lim-
ited amount of behavioral training, it is reasonable to assume that neuro-
nal noise levels were approximately the same across different experimental
conditions, at least at the level measured with EEG.

Results
The present study investigated the neural mechanisms that under-
lie the effects of attention on perceived contrast and response bias.

We used a comparative judgment task where the contrast of cued
and uncued visual stimuli was fully crossed and systematically
manipulated from 0% to 100% Michelson contrast (Fig. 1; see
Materials and Methods) (Itthipuripat et al., 2019a). In this task,
subjects used button press responses to report whether the cued or
the uncued visual stimulus subjectively appeared to have a higher
contrast value. EEG signals and behavioral responses were concur-
rently measured across the full range of contrast values for both
cued and uncued stimuli. The simultaneous recording of the be-
havioral and EEG data allowed us to examine attentional modula-
tions of behavioral and neural responses as a function of contrast
(i.e., the neural CRF) and to quantitatively link the attentional
modulations of neural CRFs to changes in perceived contrast and
response bias in the psychometric data (Fig. 2).

Attention induces changes in contrast appearance and
response bias as measured with behavior
To examine the effects of attention on changes in perceived con-
trast and response bias, we performed two complementary analyses
that compared the probabilities of reporting either the cued or the
uncued stimulus as having a higher contrast. First, we computed
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the probability of reporting a cued stimulus at each contrast level
as having a higher perceived contrast than the uncued stimulus at
all other contrast levels. For example, we computed the probability
of reporting a 5% contrast cued stimulus as having a higher con-
trast than a 0%, 5%, 10%, . . ., 100% uncued stimulus, and we
repeated this exhaustive analysis for each possible contrast level of
the cued stimulus. We then performed an analogous analysis quan-
tifying the probability of reporting an uncued stimulus at each con-
trast level as having a higher perceived contrast when it was paired
with a cued stimulus of all possible contrast values. For purposes of
data exposition, we always refer to the stimulus being held constant
in a plot as the standard stimulus and the stimulus being varied in
a plot as the test stimulus. Thus, in the example above, the 5% con-
trast cued stimulus would be the standard stimulus that is compared
with uncued test stimuli that ranged in contrast systematically from
0% to 100%. Importantly, both the cued and uncued stimuli served
as standard and test stimuli depending on the nature of the analysis
being performed. This allowed us to plot summary data for cued
and uncued stimuli on the same axes as shown in Figure 3, with
data from the cued stimulus plotted in green and data associated
with the uncued stimulus in purple.

To better quantify these behavioral data, we fit each psycho-
physical function using an NR equation (Eq. 1) to estimate the
baseline-offset (B), contrast gain (Gc), and response gain (Gr),
which control the baseline, the horizontal position (e.g., leftward
shift), and the slope of the behavioral CRFs, respectively (see Fig.
2a-c; Materials and Methods) (Heeger, 1992; Geisler and Albrecht,
1997; Kim et al., 2007; Itthipuripat et al., 2019a). Here, we used
changes in the baseline-offset (B) to track the magnitude of cue-
induced response biases because reporting the contrast of the cued
stimulus as higher than the contrast of the uncued stimulus, when
the cued stimulus was rendered at 0% contrast, likely reflects bias
(because no stimulus was actually presented) (Prinzmetal et al.,
2008; Itthipuripat et al., 2019a). On the other hand, we used
changes in contrast gain (Gc) to index changes in contrast appearance
because this parameter controls left/right translations along the x
axis, which would be expected if the actual physical contrast of the
test stimuli increased or decreased, respectively. We focused on Gc

instead of the point of subjective equality (PSE) because others have
suggested that PSE overestimates changes in contrast appearance
when there are significant amounts of cue-induced response bias
(Schneider, 2006, 2011; Prinzmetal et al., 2008; Schneider and
Komlos, 2008; Itthipuripat et al., 2019a; Schneider andMalik, 2021b).

Consistent with a recent report from our group, we found
that the effects of attention on contrast appearance and response
bias depend on the overall level of stimulus contrast and stimulus
uncertainty (i.e., whether the test and standard stimuli were ren-
dered at the similar contrasts) (Itthipuripat et al., 2019a). When
there was a 0% contrast stimulus presented at both the cued and
the uncued locations, subjects were more likely to report that the
cued location had a higher contrast than the uncued location
(although no stimulus was presented on either side in this condi-
tion, see Fig. 3a, leftmost panel). This response bias resulted in an
increase in the baseline-offset parameter (B) of the psychometric
function. Importantly, this response-bias-induced baseline-offset

became smaller as the contrast of the uncued standard stimulus
increased. To statistically evaluate these effects, we performed a
two-way repeated-measures ANOVA with attention (cued vs
uncued) and the contrast of the standard as factors. There were a
significant main effect of attention on B: F(1,19)¼ 60.82, p, 0.001,
a significant main effect of the contrast of the standard stimulus
on B: F(6,114)¼ 159.93, p, 0.001, and a significant interaction
between attention and the contrast of the standard stimulus on B:
F(6,114)¼ 114.94, p , 0.001. An analogous ANOVA was also per-
formed on only the correct trials (i.e., we only counted the
responses on trials where subjects correctly discriminated the ori-
entation offset of the chosen visual stimulus). This analysis
revealed the same pattern of results: there were a significant main
effect of attention on B: F(1,19)¼ 61.73, p, 0.001, a significant
main effect of the contrast level of the standard stimulus on B:
F(6,114)¼ 128.96, p values, 0.001, and a significant interaction
between attention and the contrast of the standard stimulus on B:
F(6,114)¼ 100.88, p , 0.001. Post hoc paired t tests revealed that
attention effects on B were significant for standard contrast levels
of 0%, 5%, 10% and 20% (t(19) values¼ 3.26-24.00 and 2.88-24.57
for all trials and correct-only trials, respectively, all p values
� 0.0042, Holm–Bonferroni-corrected). However, differences in B
were not significant for standard contrast levels of 40%, 80% and
100% (t(19) values¼ 1.36-1.80 and 1.38-1.88 for all trials and cor-
rect-only trials, respectively, all p values � 0.0751). Overall, these
results suggest that attention induced significant response bias,
especially for low-contrast standard stimuli.

To measure changes in contrast appearance, we next exam-
ined attentional modulations of the contrast gain parameter (Gc)
that controls the horizontal shift of the psychometric functions.
We found that attention reduced the Gc parameter, which led to
a leftward shift of the psychometric functions. However, these
leftward shifts were most pronounced at low-to-middle standard
contrast levels and then became smaller as the standard contrast
approached 100%. A two-way repeated-measures ANOVA on Gc

with attention and standard contrast as factors revealed a signifi-
cant main effect of attention: F(1,19) values ¼ 48.08 and 35.42,
p values , 0.001, a significant main effect of standard contrast:
F(6,114) values¼ 111.89 and 103.21, p values, 0.001, and a signif-
icant interaction between the two factors: F(6,114) values¼ 9.64
and 9.34 for all trials and correct-only trials respectively, with
p values , 0.001. Post hoc paired t tests showed that, in the all-
trial analysis, attention effects on Gc were significant for standard
contrast levels of 5%, 20%, 40%, and 80% (t(19) values¼ �2.77 to
�9.15 p values � 0.0122, Holm–Bonferroni-corrected), but were
not significant for standard contrast levels of 0%, 10%, and 100%
contrasts (t(19) values ¼ 1.36-1.80, p values � 0.0153, not passing
the corrected threshold of 0.0125). For the correct-only trials, atten-
tional modulations of Gc were significant for standard contrast lev-
els of 10%-80% contrast (t(19) values ¼ �9.15 to �2.77, p values
� 0.0122, Holm–Bonferroni-corrected) but were not significant for
standard contrast levels of 0% and 100% contrast (t(19) values ¼
�0.96 and �2.14, p values � 0.0457, not passing the corrected
threshold of 0.025). These results suggest that attention alters con-
trast appearance but does so primarily at low-to-mid-level contrasts.

The lack of a significant contrast gain modulation (Gc) at the
highest standard contrast was in part because the psychometric
functions in this condition did not reach the maximum possible
value of 1 (i.e., p(stimulus of interest . paired stimulus) was
,1). Thus, attentional modulations of the psychophysical func-
tions at the highest standard contrast (100%) manifested as an
increase in the response gain parameter (Gr), corresponding to a
steeper slope (t(19) values¼ 10.93 and 10.23 for all trials and

/

main analysis shown in Figure 8. a-e, g, Error bars indicate the within-subject SEMs where
the mean values between attention conditions were removed before computing the SEMs. f,
Shaded areas of the fit curves represent the variation of the fit data across subjects based on
within-subject SEMs of fitting parameters shown in g. Attppp signs represent the significant
main effects of attention (p values, 0.001).
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correct-only trials, respectively, p values , 0.001, two-tailed,
Holm–Bonferroni-corrected). A recent study demonstrated that
attention-induced gain changes measured at high standard con-
trasts might not exclusively reflect changes in appearance per se.
Instead, these gain changes might be influenced by response bias
related to high stimulus uncertainty as subjects were unsure
which of the two already high contrast stimuli had a slightly
higher contrast (thus; they were biased to follow the attentional
cue) (Itthipuripat et al., 2019a).

Possible neural mechanisms driving attention-related
changes in stimulus appearance
Several neural mechanisms have been proposed to explain atten-
tion-related modulations in information processing and attention-

related changes in perceptual performance and stimulus appear-
ance (Fig. 2d-f) (Reynolds et al., 2000; di Russo et al., 2001;
Martínez-Trujillo and Treue, 2002; Carrasco et al., 2004; Williford
and Maunsell, 2006; Buracas and Boynton, 2007; Kim et al., 2007;
Murray, 2008; Lee and Maunsell, 2009; Reynolds and Heeger,
2009; Herrmann et al., 2010; Lauritzen et al., 2010; Pestilli et al.,
2011; Wang and Wade, 2011; Cutrone et al., 2014; Hara and
Gardner, 2014; Itthipuripat et al., 2014b, 2015, 2017, 2018, 2019a,b;
Sprague et al., 2018). The contrast gain account posits that atten-
tion shifts the neural CRFs horizontally to the left, consistent
with attention increasing the contrast sensitivity of neural
responses that respond to cued stimuli (Fig. 2d) (Reynolds et al.,
2000; Martínez-Trujillo and Treue, 2002; Carrasco et al., 2004;
Itthipuripat et al., 2014b). In addition, multiplicative response gain
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models posit that attention can amplify neural activity to increase
the slope of neural CRFs, thereby increasing sensitivity to detect
small differences in contrast (Fig. 2e) (di Russo et al., 2001; Kim et
al., 2007; Lee and Maunsell, 2009; Itthipuripat et al., 2014b, 2017,
2018, 2019b; Sawetsuttipan et al., 2023). Last, an additive baseline
shift would suggest that attention can lead to increases in the baseline
activity of neural CRFs in a manner that is invariant to stimulus con-
trast (Fig. 2f) (Williford and Maunsell, 2006; Buracas and Boynton,
2007; Murray, 2008; Pestilli et al., 2011; Cutrone et al., 2014; Hara
and Gardner, 2014; Sprague et al., 2018; Itthipuripat et al., 2019b).

Although few studies have directly linked these attention-
related changes in neural activity with subjective visual appear-
ance, prior psychophysical studies have used ideal-observer
models to determine which modulations of hypothetical neural
CRFs might best explain attention-induced changes in the per-
ceived contrast of visual stimuli. One of the earliest studies
adopting this approach demonstrated that response gain (i.e.,
Fig. 2e) and contrast gain (i.e., Fig. 2d) failed to explain atten-
tion-induced changes in perceived contrast compared with a
model that only incorporated a baseline-offset at low contrasts
(and compression at higher contrasts, referred to as activity gain)
(Cutrone et al., 2014). However, this study did not take into
account the potential for response bias driven by exogenous cues,
especially when the visual stimulus was absent at the cued location
(i.e., effects of attention on 0% contrast stimuli). Recently, we sys-
tematically tracked attentional effects on both perceived contrast
and response bias and found that cue-induced response biases for
0% contrast stimuli were largely explained by shifts in the base-
line-offset of hypothetical neural CRFs (Itthipuripat et al., 2019a).
In contrast, attention-induced changes in appearance for low-to-
mid contrast stimuli were better explained by changes in response
gain (Itthipuripat et al., 2019a). However, there is still a lack of
neural evidence that can inform linking models to relate neural data
with perceptual experience. Here we tested whether (1) dissociable
patterns of attentional modulations in different neural markers of
visual processing, such as the P1 component and a band activity,
could be observed; and (2) if dissociable neural components explain
attention-induced changes in contrast appearance and response
bias measured with behavior. Our modeling approach was based on
SDT and adopted from previous psychophysical studies (Cutrone et
al., 2014; Itthipuripat et al., 2019a). The primary difference was that
we used EEG data in the present study— the P1 and a band activ-
ity — instead of using hypothetical neural CRFs. Thus, we could
directly link changes in behavioral responses with concurrent mod-
ulations in simultaneously collected EEG data.

Motivation for linking the amplitude of P1 and a band
responses with behavior
Here, we targeted two EEG indices that are thought to track dif-
ferent aspects of visual information processing: (1) the P1 com-
ponent, which is an early visually evoked potential that peaks
;60-90 ms ms after stimulus onset; and (2) the amplitude of
posterior occipital a band oscillations (i.e., EEG oscillations in
the ;9-12 Hz band). We used these two EEG markers because
they have been previously linked to bias in subjective contrast
perception (Störmer et al., 2009, 2019; Balestrieri and Busch,
2022). That said, we hypothesized that the attentional modula-
tions of the visual P1 component and a band activity would dif-
ferentially relate to the effects of attention on visual contrast
appearance and response bias for several reasons. First, attention
enhances the amplitude of the P1 component (van Voorhis and
Hillyard, 1977; Mangun and Hillyard, 1990; Woldorff et al.,
1997; Hillyard and Anllo-Vento, 1998), and attentional gain of

P1 amplitude has been linked to improved detection and dis-
crimination for low-level visual features, such as contrast and
object shape (Mangun and Hillyard, 1990; Itthipuripat et al.,
2014a, 2017). Recent studies have also found that selective atten-
tion induces a multiplicative response gain of neural CRFs based
on P1 amplitude (see Fig. 2e), and quantitative models suggest
that these gain modulations predict attention-related changes in
perceptual contrast discrimination thresholds (Itthipuripat et al.,
2014a, 2017). Importantly, especially for the present experiment,
attentional gain of P1 amplitude has been previously related to
an increase in the perceived contrast of cued compared with
uncued visual stimuli (Störmer et al., 2009, 2019). Although
changes in subjective experience were not quantitatively linked
to changes in P1 amplitude using a formal linking model, this find-
ing (Störmer et al., 2009, 2019), coupled with suggestive earlier
work (Itthipuripat et al., 2014b, 2017; Störmer et al., 2019), is con-
sistent with the hypothesis that multiplicative response gain of the
P1 is tightly coupled with attention-induced changes in perceived
contrast (Itthipuripat et al., 2019a).

In addition to changes in perceived contrast, attention is also
thought to influence other aspects of behavioral performance
that may be more closely tracked by other neural markers, such
as a band oscillations. For example, prior work suggests that
attention cues, particularly the peripheral cues used in most
comparative judgment tasks, can induce a bias such that subjects
are more likely to select the cued stimulus as having a higher
contrast, independent of the perceptual experience of the subject
(Schneider, 2006, 2011; Schneider and Komlos, 2008; Beck and
Schneider, 2017; Itthipuripat et al., 2019a; Schneider and Malik,
2021b). A large corpus of prior studies demonstrates that endog-
enous attention cues decrease a amplitude in posterior visual
areas contralateral to the attended visual field (Foxe et al., 1998;
Fries et al., 2001; Sauseng et al., 2005; Rihs et al., 2007; Yamagishi
et al., 2008; Kelly et al., 2009; Händel et al., 2011; Bosman et al.,
2012; Keefe and Störmer, 2021). Recent studies using exogenous
cues presented at the peripheral locations also report similar cue-
induced decreases in contralateral a band activity. Together,
these findings suggest that lateralized a activity reflects visuo-
cortical biasing across both exogenous and endogenous attention
(Song et al., 2014; Keefe and Störmer, 2021).

In addition to these well-documented topographic modula-
tions related to the locus of spatial attention, we hypothesized
that a might also track attention-induced changes in response
bias. First, past studies have found that a amplitude at the time
of stimulus onset predicts shifts in response bias (i.e., response
criterion) but not shifts in perceptual sensitivity in some visual
detection and discrimination tasks (Limbach and Corballis,
2016; Benwell et al., 2017, 2018, 2020; Iemi et al., 2017; Foster
and Awh, 2019). Second, attention has been shown to reduce the
amplitude of contralateral posterior occipital a band oscillations,
even in the absence of visual stimuli, suggesting that it may sim-
ply reflect top-down inputs from downstream areas in visual cor-
tex onto early sensory areas and does not tract the interaction
between attention and sensory inputs (Itthipuripat et al., 2019b;
Foster et al., 2021). Consistent with this idea, recent studies have
found that attention shifts the baseline-offset of CRFs based
on the amplitude of a oscillations, reflecting a shift in general
arousal or responsiveness that does not interact with the actual
intensity of the stimulus (Fig. 2f) (Itthipuripat et al., 2019b;
Foster et al., 2021). Based on these observations, we predicted
that a shift in the baseline-offset of a-based CRFs would be
systematically linked with attention-induced response bias
(Itthipuripat et al., 2019a).
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Attention amplifies response gain of the early visually
evoked P1 component
We first sought to isolate stimulus-specific P1 activity from activ-
ity evoked by the presentation of the attention cue. Thus, we
computed ERPs from trials where the cue was followed by 0%
contrast cued and uncued stimuli (termed cue-only trials). We
then subtracted this cue-only ERP from the ERPs evoked on tri-
als that contained a cue plus a stimulus. This subtraction was
performed separately for stimulus-present trials from each atten-
tion condition and contrast level (Fig. 4a; see Materials and
Methods) (see similar methods in Greenwood and Goff, 1987;
Iragui et al., 1993; Kiss et al., 1998; Chica et al., 2010; Itthipuripat
et al., 2014a, 2017, 2019b; Störmer et al., 2019). This procedure
yielded a clear P1 component that peaked ;60-90ms after stim-
ulus over posterior occipital electrodes that were contralateral to
the stimulus of interest. Next, we plotted the mean amplitude of
the isolated P1 component as a function of stimulus contrast
(i.e., test contrast) to obtain the P1-based CRFs for each attention
condition and contrast level of the standard stimulus (Fig. 5a).
Then, we fit these P1-based CRFs with an NR equation (Eq. 1) to
examine changes in the baseline-offset (B), response gain (Gr)
and contrast gain (Gc) of the neural CRFs. Since the estimated Gc

parameters can potentially go beyond the realistic range of stim-
ulus contrast (�100%), the contrast gain parameter was allowed
to vary only between 0% and 100% contrast (i.e., the realistic
range of the physical contrast value). Moreover, we reparameter-
ized the response gain and contrast gain of neural CRFs as the
maximal response (Rmax or the response at 100% contrast minus
the baseline-offset) and the semisaturation contrast (C50 or the
contrast at which the response reached half-maximum), respec-
tively (see Early sensory-evoked response).

As illustrated in Figure 5a, the best fit curves from the NR
equation (Eq. 1) explain the observed baseline-subtracted P1-
based CRFs reasonably well (goodness-of-fit R2 ¼ 0.7977).
Importantly, we found that attention increased the maximum
response (i.e., Rmax) of the P1-based CRF (main effect of atten-
tion: F(1,19)¼ 4.46, p¼ 0.0482) (Fig. 5b). In addition, there were
larger attentional modulations at the low-to-mid-level standard
contrasts (5%-20%) compared with when the standard was
absent (0% contrast) and when the standard had a higher con-
trast (40%-100%). This gave rise to a significant interaction
between attention and the contrast of the standard stimulus
(F(6,114) ¼ 2.24, p ¼ 0.0441). Importantly, attention had a selec-
tive effect on the Rmax parameter of the P1 response, as there
were no changes in any other parameters (Fig. 5b; main effect
of attention: F(1,19)¼ 2.20, p¼ 0.1546 for B, F(1,19)¼ 1.51,
p¼ 0.2973 for C50; main effect of standard contrast level:
F(6,114)¼ 1.05, p¼ 0.3961 for B, F(6,114)¼ 1.91, p¼ 0.0854 for
C50; interaction between the attention and standard contrast:
F(6,114)¼ 0.24, p¼ 0.9614 for B; F(6,114)¼ 1.03, p ¼ 0.4079 for
C50). The elevated response gain of the P1-based CRFs (i.e.,
Rmax) at low-to-mid-level contrast levels was consistent with the
fact that changes in appearance, as indexed by changes in con-
trast gain (Gc), were observed most prominently at these con-
trast levels (Fig. 3b). The best fit curves illustrated in Figure 5a
were not obtained by fitting the P1-based CRF data after aver-
aging across all subjects (i.e., Fig. 5a, diamonds and squares).
Instead, the best fit curves were reconstructed based on the
averaged fit parameters computed at the individual-subject
level (Fig. 5b, diamonds and squares). We adopted this
approach so that the best fit curves better represent the sta-
tistics we performed on the parameters obtained from fit-
ting individual subjects’ data separately.

Since the ERP subtraction method is based on the assumption
that the stimulus- and cue-evoked responses linearly sum
(Greenwood and Goff, 1987; Iragui et al., 1993; Kiss et al.,
1998; Chica et al., 2010; Itthipuripat et al., 2014a, 2017,
2019b; Störmer et al., 2019), we did additional analyses to
determine whether a similar pattern of response gain modulations
was observed without performing the ERP subtraction (Fig. 5c,d).
Overall, we found that the NR equation (Eq. 1) fit the nonsub-
tracted CRF data slightly better than the subtracted CRF data with
R2 ¼ 0.8305. In addition, the overall pattern of attentional modu-
lations were consistent across the subtracted and nonsubtracted
data: there were still a significant main effect of attention (F(1,19)¼
5.03, p ¼ 0.0371) and a significant interaction between attention
and standard contrast on Rmax (F(6,114) ¼ 2.57, p ¼ 0.0225).
However, attention and the contrast of the standard had no signif-
icant impact on the C50 parameter and the two factors did not
interact (all F values� 1.91, p values¼ 0.1030-0.5503).

For the baseline-offset parameter (B), we found that the atten-
tion cue reduced the baseline value of the nonsubtracted P1-
based CRF (it became more negative), resulting in a significant
main effect of attention on the baseline-offset (F(1,19)¼ 5.88, p¼
0.0255). This was expected because the stimulus-elicited P1 com-
ponent overlaps with the early negative N1 component evoked
by the cue that was presented just 100ms before stimulus onset
(see Fig. 4a) (see also similar results in Itthipuripat et al., 2019b).
The baseline-offset value also increased as a function of standard
contrast (F(6,114)¼ 2.87, p¼ 0.0121). This is also expected
because the nonsubtracted responses contained positive evoked
potentials elicited by both test and standard stimuli. The in-
creased baseline-offset values as a function of contrast observed
at the contralateral posterior-occipital sites could be a result of
the spread of activity elicited by the standard stimulus from the
opposite hemisphere (see topographic maps showing more
spread of activity for the nonsubtracted P1 data in Fig. 4b), and
this is why we subtracted out the baseline activity to isolate brain
activity related to the stimulus of interest (i.e., the test stimulus).
We also found a significant interaction between attention and
standard contrast on the baseline values of the nonsubtracted P1
CRFs (F(6,114) ¼ 2.82, p¼ 0.0136). This interaction was driven by
a higher degree of attention-induced reduction in baseline values
on trials with low compared with high standard contrasts and
compared with 0% standard contrast.

Overall, there was a consistent pattern of response gain mod-
ulations in the baseline-subtracted and non–baseline-subtracted
P1 data, suggesting that the baseline subtraction method did not
change the pattern of modulations of the response gain in early
sensory responses.

Attention induces an additive shift in the amplitude of
posterior occipital a oscillations
Next, we examined the effects of attention on the contralateral
posterior occipital a band activity (i.e., EEG oscillations at ;9-
12Hz), another commonly used neural index of visuospatial
attention (Foxe et al., 1998; Fries et al., 2001, 2008; Sauseng et al.,
2005; Kelly et al., 2006, 2009; Klimesch et al., 2007; Rihs et al.,
2007; Bosman et al., 2012; Foster et al., 2016, 2017; Samaha et
al., 2016; Voytek et al., 2017; Hakim et al., 2019; Itthipuripat
et al., 2019b; Wang et al., 2021). Consistent with previous
observations, we found a significant cue-related reduction in the
amplitude of a oscillations, compared with a precue baseline pe-
riod, that grewmore pronounced as the contrast of the test stimulus
increased. These a amplitude modulations were most prominent
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over the posterior occipital electrodes that were contralateral to the
stimulus of interest (Figs. 6 and 7).

Figure 8 shows the a data plotted as a function of both test
and standard contrast levels to form CRFs. Overall, the best fit
curves from the NR equation (Eq. 1) explain the observed a data
reasonably well (goodness-of-fit R2 ¼ 0.8289). In contrast to the
P1 data, we found that attention cues modulated the baseline-off-
set (B) of the neural CRFs based on the postcue reduction of
the posterior occipital a activity (main effect of attention;
F(1,19)¼ 39.35, p, 0.001). These lateralized a changes likely
reflect a mixture of low-level sensory-evoked activity elicited by
the peripheral visual cues as well as a changes because of atten-
tional biases. This cue-induced reduction in a band activity
occurred to a comparable degree across all standard contrast lev-
els (no main effect of standard contrast level: F(6,114)¼ 0.71,
p¼ 0.6384; no interaction between attention and standard con-
trast: F(6,114)¼ 0.65, p¼ 0.6912). Since the degree of cue-induced
modulation of a amplitude was relatively more robust at the low
compared with the high test contrasts, the Rmax parameters
describing the a-based CRFs became less negative with attention
(i.e., the negative slope of the a-based CRFs became shallower,
main effect of attention: F(1,19)¼ 18.96, p¼ 0.0003). On the other
hand, Rmax became more negative with increasing standard con-
trast (main effect of standard contrast: F(6,114) ¼ 3.83, p¼
0.0016). However, there was no interaction between attentional
cue and contrast on Rmax (F(6,114) ¼ 1.00, p¼ 0.4314). While
there were attention-induced changes in response gain modula-
tions, these modulations occurred in opposition to the effects
related to the contrast of the test stimulus, resulting in the CRFs
pinching/saturating at the highest test contrast. Thus, unlike the
P1-based CRFs where the slope of cued condition was steeper
than that of the uncued condition, the slope of the cued a-based
CRF was actually shallower than the uncued a-based CRF.
Interestingly, past studies have reported a similar pattern of
results in fMRI data measured in early visual cortex, suggesting
that increases in baseline responses and reductions in response
gain at high contrast levels may reflect the influence of top-down
attention and response saturation induced by overly strong stim-
ulus inputs into early visual areas, respectively (e.g., Pestilli et al.,
2011; Itthipuripat et al., 2019b). Finally, there was no main effect
of the attention cue or the contrast of the standard on the semisa-
turation contrast parameter (C50), and no interaction between
the two factors (all F values� 0.98, all p values � 0.4391).
Overall, the shift in the baseline-offset of the a-based CRFs was
consistent with the robust baseline-offset response bias observed
in the behavioral data (Fig. 3).

Based on recent work, it is plausible that the attention effects
on the a band activity reflect changes in aperiodic components
of EEG signals rather than a change in the amplitude of a true
oscillation (Donoghue et al., 2020). For example, a global rota-
tion of the 1/f fall-off of the EEG power spectrum might lead to
erroneous conclusions that energy in a specific frequency band
increased or decreased. To address this issue, we ran additional
analyses to independently examine attention effects on the peri-
odic and aperiodic components of a oscillations following the
algorithm described by Donoghue et al. (2020). First, we ob-
tained the spectrogram from the contralateral posterior occipital
electrodes during the precue baseline and the poststimulus pe-
riod (Fig. 7c). Next, we fit the spectrogram in each experimental
condition, each time period, and each subject using the FOOOF
toolbox developed by Donoghue et al. (2020). This step yielded
estimates of the periodic components of a oscillations, including
log power, central frequency, bandwidth, as well as the aperiodic

offset and exponent. We then computed the differences between
these periodic and aperiodic parameters across the stimulus ver-
sus precue periods to estimate changes of these parameters with
respect to the precue baseline (Fig. 9a-e).

The modulatory pattern of the log power of the a band activ-
ity was very similar to the main analysis where we found atten-
tion reduced the a band amplitudes more prominently at the
baseline-offset (i.e., 0% test contrasts), and this pattern of data
was consistent across all standard levels (Fig. 9a). We found a
significant main effect of period, showing that a log power
decreased significantly during the stimulus period compared with
the precue baseline (F(1,19)¼ 51.12, p¼ 0.0004). Importantly,
we found significant interactions between attention and period
(F(1,19) ¼ 389.26, p, 0.0001), and between the attention, period,
and test contrast (F(6,114) ¼ 7.86, p, 0.0001) with no main effect
of standard contrast and no interactions between standard con-
trast and any other factors (p values. 0.1038). This set of statisti-
cal results could be described by the significant reduction in log a
power during the stimulus period with respect to the precue
period.

Next, we fit the neural CRFs based on log a power to com-
pare the response gain, contrast gain, and baseline-offsets across
attention and standard contrast conditions. We found results
similar to the main a-based CRF analysis (compare Figs. 8a, b
and 9f, g). Specifically, we found that attention significantly
increased the baseline-offset of the CRF based on the reduced a
log power with respect to the precue baseline (F(1,19) ¼ 38.65,
p, 0.0001). Since the reduction of log a power saturated at high
test contrast levels, we found no differences in attentional modu-
lations at high test contrasts. This led to a decrease in the
response gain parameter that controls the slope of the a-based
CRFs (F(1,19)¼ 16.27, p¼ 0.0007). Importantly, there were no
significant main effects of standard contrast and no interactions
between attention and standard contrast on the baseline-offset
and response gain parameters (p values. 0.065), suggesting that
the patterns of attention modulations of the a-based CRFs were
independent of the level of standard contrast. In addition, there
were no changes in contrast gain (p values . 0.1143). Together,
the main analysis of the neural CRFs based on a amplitude and
this additional analysis of log a power, which separated out the
periodic components of a band oscillations from the aperiodic
components of the 1/f activity, provides converging evidence
that the attentional modulations of a amplitude/power undergo
the baseline shift in the neural CRFs.

The other periodic components, including the central fre-
quency and bandwidth of a band oscillations, reduced signifi-
cantly during the stimulus period with respect to the precued
baseline (F(1,19) values¼ 51.12 and 8.78 with p values ¼ 0.0004
and 0.0252, respectively) (Fig. 9b,c). For the central frequency,
there were no significant interactions between period and any of
other factors, including attention, test contrast, and standard
contrast, suggesting that the reduction in the central frequency
a band oscillations with respect to the precued baseline was
not modulated by attention, test contrast, or standard contrast
(p values . 0.223). For the bandwidth parameter, however,
attention also interacted significantly with period because of a
higher degree of bandwidth reduction with respect to the precue
baseline in the uncued compared with the cued conditions
(F(1,19)¼ 6.75, p¼ 0.0407). That said, there were no significant
interactions between period and the other factors, including test
and standard contrasts (p values. 0.1616).

The modulatory patterns of aperiodic components of the 1/f
were different from the patterns of periodic components of the a
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band oscillations reported above (see Fig. 9d,e). Both the aperi-
odic offset and exponent increased during the stimulus period
compared with the precue baseline (F(1,19) values ¼1600.71 and
3542.80, respectively, p values� 0.0001). The increased aperiodic
offset and exponent with respect to the precue baseline increased
as a function of test contrast (the interaction between period and
test contrast: F(6,114) values ¼ 10.92 and 5.81, p values , 0.0001
and¼ 0.0003), but they decreased with attention (the interaction
between period and attention: F(1,19) values ¼ 20.69 and 6.45,
p values ¼ 0.0039 and 0.044). Unlike the a log power data, the
degree of attentional modulations in the aperiodic offset and
exponent were larger at high compared with lower test contrasts.
Together, our results suggest that changes in the amplitude/
power of a band activity could not be explained by the modula-
tory patterns of the aperiodic components of the 1/f activity.

Quantitative linking models suggest that different
attentional modulations of neural data relate to different
modulations of behavioral data
Next, we used a quantitative model to link patterns of attentional
modulations of the P1-based and a-based CRFs and the pattern
of attentional modulations in the psychometric data (see
Materials and Methods) (see Tanner and Swets, 1954; Boynton
et al., 1999; Pestilli et al., 2011; Cutrone et al., 2014, 2018;
Itthipuripat et al., 2014b, 2015, 2017). The linking model used
the patterns of attentional modulations of the observed P1-based
and a-based CRFs to predict changes in contrast appearance and
response bias in the observed behavioral data. The model is
based on the assumption derived from the SDT where observers’
contrast discrimination accuracy relies on the difference in neu-
ral responses (DR) related to the standard (R_standard(c)) and
test stimuli (R_test(c)) divided by the trial-by-trial variability of
neural responses (termed as neuronal noise) (Tanner and Swets,
1954; Boynton et al., 1999; Pestilli et al., 2011; Cutrone et al.,
2014; Itthipuripat et al., 2014a, 2017, 2019a). For a given pair of
standard and test stimuli, the model computed the probability of
a test stimulus being perceived as having a higher contrast than a
standard stimulus ((p(test. standard)) using a maximum likeli-
hood decision rule with neuronal noise equally distributed across
the standard and test stimuli.

We first stimulated the behavioral data using the normalized
P1-based CRFs (termed here as the P1-based model) and com-
pared the simulated results with those predicted using the nor-
malized a-based CRFs (termed here as the a-based model; see
details in Materials and Methods). The amplitude of a band ac-
tivity generally got smaller with attention and stimulus contrast
(see Fig. 8) (see also Itthipuripat et al., 2019b; Foster et al., 2021).
Therefore, we flipped the sign of the normalized a-based CRFs
before estimating p (test . standard). Last, we compared the
results with those predicted by a model that sums the normalized
P1-based CRFs and the normalized a-based CRFs (with the flipped
sign) to predict the behavioral data based on the sum of the nor-
malized P1 and a responses. For each linking model, neuronal
noise was one free parameter shared across all contrast levels and
attention conditions. Thus, since each model had the same number
of free parameters, we directly compared the goodness-of-fit of
individual models (i.e., R2 values) and log-likelihood estimates to
compare how well they predicted the psychophysical data.

The fivefold cross-validation bootstrapping results demon-
strated that the P1-based model accounted for the psychophys-
ical data reasonably well, especially at the low-to-mid-level
contrasts (Fig. 10). That said, the P1 model could not capture
changes in the baseline-offset in the behavioral data at lower

standard contrast levels. This resulted in poorer model fits at
these contrast levels. The P1 model also performed poorly at
higher standard contrast levels. This poor fit occurred because
attentional modulations of the P1-based Rmax parameter
diminished with increasing standard contrast, although the
attentional modulations of the psychophysical data remained
robust at these contrast levels (Fig. 3).

Compared with the P1-based model, the a-based model
performed significantly worse at predicting the pattern of the be-
havioral data in general (p values , 0.001 for differences in both
log-likelihood estimates and R2). This is because the a-based
model could only capture attention-induced changes in the base-
line-offset of the psychometric functions at the low standard con-
trast levels, which only accounted for a small fraction of the
variance in the overall behavioral data. That said, when we used
the combination of the P1 and a data to predict the psychomet-
ric functions (i.e., the combined model), we were able to predict
the pattern of the behavioral responses significantly better than
using the P1 data or the a alone (p values, 0.001 for differences
in log-likelihood estimates and R2 between the combined and a
models as well as between the combined and P1 models). This
improvement in model performance was because the combined
model better captured the baseline-offset response bias at the low
and high standard contrast levels.

When modeled separately for each standard contrast level
(Fig. 10d), we found that the P1 and a models were equally bad
at predicting the data at low standard contrast levels and per-
formance did not differ between the models (p values ¼ 0.1000
and 0.3480 for 0% and 5% standard contrasts). Moreover, the
combined P11a model performed significantly better than ei-
ther the P1 (p values¼ 0 for both 0% and 5% standard contrasts)
or the a model on its own (p values ¼ 0 for both 0% and 5%
standard contrasts) (see the first two columns of Fig. 10a). This
occurred because the baseline-offset modulations of the a-based
CRFs help the combined model better account for changes in the
baseline-offset response bias in the psychometric data. On the
other hand, for the intermediate standard contrast levels, the P1
model performed very well and significantly better than the a
model (p values ¼ 0 for 10% and 20% standard contrasts). The
combined model, therefore, did not perform significantly better
than the P1 model alone (p values ¼ 0.8160 and 0.1660 for 10%
and 20% standard contrasts) (see the third and fourth columns
of Fig. 10a). Additionally, no differences between model per-
formance were observed between the P1 and a models at higher
standard contrast levels (p values ¼ 0.4060-0.8720). For 40%
standard contrast, the combined model was significantly better
than the P1 model (p¼ 0.0140, passing the Holm–Bonferroni-
corrected threshold of 0.0167), but it did not perform signifi-
cantly better than the a model (p¼ 0.1040). For 80% and 100%
standard contrasts, the combined model was slightly better than
the P1 model at explaining attentional modulations at of the psy-
chometric functions (see the last two columns of Fig. 10a); how-
ever, the two models did not significantly differ (p values ¼
0.1740-0.6060). Nonetheless, the combined model was marginally
and significantly better than the a model at the 80% and 100%
contrast levels, respectively (p values ¼ 0.0280 and 0.0140 with a
Holm–Bonferroni-corrected threshold of 0.0167).

In addition, we ran an auxiliary analysis where the weights
of the P1 and a data were varied systematically before computing
the combined response to examine the relative contribution of
the P1 and a data at explaining changes in the psychophysical
data (Extended Data Fig. 10-1). Overall, the results were consist-
ent with the main analysis where the combined model was
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significantly better than the P1 or the a model. The R2 and log-
likelihood estimates were the highest for the model with 6:4 P1/a
weight ratio. However, this model was not significantly better
than the combined model with equal weighting of the P1 and a
data. Together, these results suggest that, under the assumption
of linear summation with equal weights given to the P1 and
a data, the attentional modulations of these neural markers
sufficiently account for attention-induced changes in contrast
appearance and response bias. Specifically, the response gain
modulations of the P1 component explained attention-induced
changes in perceived contrast at the low-mid-level standard
contrasts but changes in the baseline-offset of a band activity
underlie cued-induced response bias at very low and very high
standard contrasts.

Discussion
The present study focused on investigating the relationship
between attentional modulations of two well-known neural
markers for visual information processing — the P1 component
and the a band activity— and changes in perceived contrast and
response bias. While attention increased the multiplicative
response gain (or the slope) of P1-based CRFs, it also shifted the
baseline-offset of the a-based CRFs. Quantitative linking models
suggest that the multiplicative response gain of the P1-based
CRFs could account for the increase in perceived contrast only
when the cued stimuli were rendered at low-to-mid-level con-
trasts. Notably, the range of contrasts where P1 modulations cor-
respond to changes in perceived contrast fall in a similar range to
previous demonstrations of a link between P1 amplitude and
contrast appearance (Itthipuripat et al., 2014a). In contrast, the
baseline-offset of the a-based CRF tracked shifts in the baseline-
offset of psychometric functions, consistent with a response bias
in favor of the cued stimulus when contrast was very low or 0%
(compare Prinzmetal et al., 2008; Itthipuripat et al., 2019a). This
shift in baseline-offset of the a band activity could also explain
response bias driven by high stimulus uncertainty specifically
when both the cued and uncued stimuli were rendered at high
contrasts (Itthipuripat et al., 2019a).

The current P1 data and the accompanying modeling results
are consistent with a theory proposed in a previous study that
the gain amplification of early visual responses can account for
the effect of attention on the subjective appearance of visual
stimuli (Störmer et al., 2009, 2019). In addition, we found that
gain amplification of the P1 and its contribution to changes in
contrast appearance were significant only across a specific range
of contrasts values for the competing, uncued, stimulus. These
observations are consistent with the idea that the gain amplifica-
tion of sensory responses depends on the strength of bottom-up
stimulus inputs (or the contrast of the competing stimulus in our
case) (Sundberg et al., 2009; Andersen et al., 2012; Khayat and
Martinez-Trujillo, 2015).

We found that attention selectively increased the multiplica-
tive response gain of the P1-based CRF. Response gain of early
visually evoked signals, like the P1 component and the steady-
state visually evoked potential, has been consistently observed
across many studies where subjects performed visual detection
and discrimination tasks (Mangun and Hillyard, 1991; Morgan
et al., 1996; Hillyard and Anllo-Vento, 1998; Müller et al., 1998;
di Russo et al., 2001; Kim et al., 2007; Wang and Wade, 2011;
Itthipuripat et al., 2014a,b, 2017, 2018, 2019b; Foster et al., 2021).
The consistency in the response gain modulations observed across
these studies, as well as in the present study, suggests that the

response gain of the early sensory response is a common neu-
ral mechanism that mediates the effects of attention on per-
ceptual performance and on the appearance of visual stimuli.
Interestingly, reductions in response gain of early sensory
responses have been shown to underlie sensory and attention
deficits in clinical populations, such as schizophrenia, neurofibro-
matosis, and amblyopia (Kantrowitz et al., 2009; Calderone et al.,
2013; Ribeiro et al., 2014; Hou et al., 2016; Lygo et al., 2021).
Based on these results and our recent findings, determining
whether these populations experience the same attention-related
changes in perception as measured with behavior may provide
an additional test of the link between early gain amplification
and subjective experience.

It is possible that our results may be influenced by sensory
interactions between the exogenous cue and visual stimuli rather
than the attentional effects of the cue per se. However, we view
this possibility as unlikely given that our experimental design
aimed to minimize potential confounds related to sensory inter-
action effects. For example, Schneider (2006) has argued that the
psychophysical effects of exogenous cues on visual appearance
were because of sensory interactions. In support of this idea, he
found that white and black exogenous cues had opposite effects
on contrast appearance, with the white cue enhancing perceived
contrast and the black cue reducing it (Schneider, 2006).
However, Carrasco’s group later provided evidence arguing
against this sensory interaction hypothesis (Ling and Carrasco,
2007; Carrasco et al., 2008). Specifically, they manipulated cue po-
larity and demonstrated that both black and white cues increased
the perceived contrast of visual stimuli (Ling and Carrasco, 2007;
Carrasco et al., 2008). Carrasco’s group proposed that the sensory
interaction effects observed by Schneider (2006) were potentially
influenced by the experimental design. Schneider (2006) presented
attention cues in the form of circular rings at the same eccentricity
as the stimulus location, which could act as forward metacontrast
masks causing sensory interactions. In contrast, Carrasco’s group
presented a small cue nearby, but not overlapping, with a much
larger visual stimulus to minimize potential confounds from sen-
sory interactions (Ling and Carrasco, 2007; Carrasco et al., 2008).
To avoid potential confounds from sensory interactions, we
adopted Carrsaco’s design, where we presented a black thin line
above a much larger circular grating with no spatial overlap. The
consistency of our experimental design and results with Carrasco’s
group supports the notion that attention, rather than sensory inter-
actions, is the primary driver of the observed behavioral and neural
effects in the present study.

In contrast to the P1 results, where attention modulated
response gain, we observed that attention mainly changed the
baseline-offset of contralateral a band activity measured in the
posterior occipital electrodes. This contralateral reduction in a
band activity has been previously used to track the allocation of
spatial attention following endogenous and exogenous cues
(Foxe et al., 1998; Fries et al., 2001, 2008; Sauseng et al., 2005;
Kelly et al., 2006, 2009; Klimesch et al., 2007; Rihs et al., 2007;
Bosman et al., 2012; Song et al., 2014; Foster et al., 2016, 2017;
Samaha et al., 2016; Voytek et al., 2017; Foster and Awh, 2019;
Hakim et al., 2019; Keefe and Störmer, 2021). The reduction of a
amplitude, which is thought to reflect increased cortical excitabil-
ity, has also been associated with an increase in the intensity of
stimulus inputs and selective attention, and behavioral perform-
ance in perceptual decision-making tasks (Foxe et al., 1998; Fries
et al., 2001, 2008; Sauseng et al., 2005; Kelly et al., 2006,
2009; Klimesch et al., 2007; Rihs et al., 2007; Bosman et al.,
2012; Song et al., 2014; Foster et al., 2016, 2017; Samaha et
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al., 2016; Nelli et al., 2017; Voytek et al., 2017; Foster and Awh,
2019; Hakim et al., 2019; Itthipuripat et al., 2019b; Keefe and
Störmer, 2021). Moreover, the topographic patterns of a reduc-
tion contain information about the attended location, even in
the absence of visual stimuli (Sauseng et al., 2005; Kelly et al.,
2009; Foxe and Snyder, 2011; Rohenkohl and Nobre, 2011;
Bosman et al., 2012; Foster et al., 2016, 2017; Green et al., 2017;
Foster and Awh, 2019). Consistent with these studies, recent
studies have found that attention shifted the baseline-offset of
a-based CRFs where no visual stimuli were presented
(Itthipuripat et al., 2019b; Foster et al., 2021). That said, we found
that the magnitude of baseline modulations of the a-based CRFs
was unaffected by the standard contrasts of the paired stimuli.

It is important to note that the amplitude of the induced a
oscillations decreased below the precue baseline for both of the
cued and uncued locations, which could be because of the behav-
ioral task that pittings cue-driven exogenous attention against
endogenous attention and working memory required to compare
the contrast levels of the two grating stimuli (compare Foxe et
al., 1998; Fries et al., 2001; Sauseng et al., 2005; Rihs et al.,
2007; Yamagishi et al., 2008; Kelly et al., 2009; Händel et al., 2011;
Bosman et al., 2012; Song et al., 2014; Foster et al., 2016;
Itthipuripat et al., 2019a; Keefe and Störmer, 2021). The degree
of a amplitude reduction also increased as a function of test
contrast, especially for the uncued condition. These distinct
patterns of attention and contrast modulations of a ampli-
tudes suggest that changes induced by a oscillations reflect
complex interactions between exogenous attention, endoge-
nous and processing of incoming sensory inputs that occurred
before influencing bias in postperceptual decision- and senso-
rimotor-related processing.

Interestingly, the overall pattern of the a band data observed
here is similar to the pattern of BOLD activity observed in similar
tasks. This is consistent with the idea that a band activity is
highly correlated with modulations of the BOLD response re-
corded in human visual cortex (Conner et al., 2011; Hermes et
al., 2017). Past studies using fMRI have shown that spatial atten-
tion increased BOLD activity in retinotopically organized areas
in early visual cortex overlapped with the attended locations,
even when visual stimuli were not physically presented (Kastner
et al., 1999), resulting in an additive shift in the baseline response
of the BOLD CRF in a manner similar to the attentional modula-
tion of the a-based CRF (Buracas and Boynton, 2007; Murray,
2008; Pestilli et al., 2011; Hara and Gardner, 2014; Sprague et al.,
2018; Itthipuripat et al., 2019b). Consistent with the present
study, attentional modulations of BOLD CRFs were unaffected
by the contrast level of the paired or nontarget stimulus (Sprague
et al., 2018). Previous fMRI studies have also shown that baseline
shifts of BOLD CRFs were not able to explain multiplicative
response gain (the slope) of the hypothetical neural activity
needed to account for attention-induced perceptual benefits in
variants of attentional-cueing contrast discrimination tasks
(Pestilli et al., 2011; Hara and Gardner, 2014). Our modeling
results of the a data suggest an alternative account in which
shifts in the baseline-offset of neural CRFs might instead medi-
ate preparatory attention and the motor-related processes that
give rise to response bias. In line with our modeling results,
reductions in a amplitude have been associated with modula-
tions of postperceptual processing, such as changes in decision
criterion, confidence, and visual awareness, but not changes in
perceptual sensitivity (Limbach and Corballis, 2016; Benwell et
al., 2017, 2018, 2020; Iemi et al., 2017; Samaha et al., 2017; Iemi
and Busch, 2018; Foster and Awh, 2019).

Most studies reporting an attention-induced baseline shift in
CRFs based on a band and fMRI activity used endogenous cues
to guide attention. However, we used exogenous cues in the pres-
ent study. Thus, changes in the baseline-offset of a-based CRFs
could also reflect bottom-up stimulus processing or visual pri-
ming associated with the peripheral cues. Related to this possibil-
ity, prior studies have argued that changes in visual appearance
could be because of low-level sensory interactions between
the cue and the stimulus, independent of an attention effect
(Schneider, 2006). That said, some of these a changes are likely
of attentional nature given our experimental design and given
that recent studies have found similar lateralized a activity using
auditory cues (Störmer et al., 2016; Keefe and Störmer, 2021).

Given the current design of our study, there are important
limitations that should be considered when interpreting the find-
ings. First, unlike past studies where fMRI and EEG signals were
recorded across multiple sessions and days (e.g., Pestilli et al.,
2011; Itthipuripat et al., 2014a,b, 2017; Sawetsuttipan et al.,
2023), we only recorded one session of EEG over 1-1.5 h. This
limited the amount of trials for each experimental condition in
the current design, especially given that we had to have many
conditions to measure EEG signals across a full range of stimulus
contrast. Accordingly, the sensory-evoked responses at the indi-
vidual-subject level are noisier than those obtained in the multi-
ple-session studies. That said, we limited our recording session
to only one session intentionally because previous work has
shown that training can attenuate attentional modulations of the
P1 and can alter the magnitude of neural noise (Itthipuripat et
al., 2017). Thus, we chose to use a relative larger sample size
(N¼ 20) than prior work that measured attention modulations
of the neural CRFs across multiple-recording sessions (N
values¼ 3-14 in Pestilli et al., 2011; Itthipuripat et al., 2014a,b,
2017; Sawetsuttipan et al., 2023).

Second, the ERP subtraction method used to isolate the P1
evoked by the cue from the P1 evoked by the stimulus relies on
the assumption of linear summation (Greenwood and Goff,
1987; Iragui et al., 1993; Kiss et al., 1998; Chica et al., 2010;
Itthipuripat et al., 2014a, 2017, 2019b; Störmer et al., 2019). It is
possible that neural responses related to the exogenous cue and
the contrast of visual stimulus may interact in a nonlinear fash-
ion (e.g., multiplicative reduction of the cue-only response as a
function of stimulus contrast). Indeed, we found that the stand-
ard contrast jointly modulated the degree of attentional modula-
tions on the response gain of the P1-based CRFs such that
attentional modulations at high contrasts were compressed. That
said, these attentional modulations of response gain of the P1
data were consistent between the subtracted and nonsubtracted
P1 data, which in part validated the linear summation assump-
tion of the ERP subtraction method. Last, our combined model
that linked attentional modulations of the P1 and a band activity
to the behavioral data also relies on the assumption of linearity,
which we assumed for simplicity. However, it is important to
note that P1 and a waves are typically analyzed and interpreted
separately because of their different origins and functional inter-
pretations. To our knowledge, the overall validity of summing
the P1 and a band responses has not been explored previously in
the literature. Thus, it is possible that the attentional modulations
of the P1 and a band activity might not equally contribute to
changes in the psychophysical data. Thus, we performed an aux-
iliary analysis where we systematically varied the weights of the
P1 and a before combining the signals. We found that varying
these weights did not make the linking model significantly better
than the combined model with equal weighting of the P1 and a,
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suggesting that, at least under the assumption of linearity, atten-
tional modulations of the P1 and a band activity reasonably
account for attention-induced changes in contrast appearance
and response bias.

In line with our findings, recent neurophysiological studies in
monkeys have found dissociate neural mechanisms that underlie
the effects of attention on sensitivity and criterion in a visual
detection task (Luo and Maunsell, 2015, 2019). Specifically,
attentional modulations in neural activity in V4 were correlated
with changes in sensitivity but not with changes in criterion (Luo
and Maunsell, 2015). Consistent with these monkey studies,
human EEG studies, have found that attentional modulations of
the P1 component, thought to be generated from the extrastriate
visual areas, are tightly associated with attention-induced changes
in behavioral sensitivity in low-level visual features, such as con-
trast and object shape (Mangun and Hillyard, 1990; Itthipuripat et
al., 2014a, 2017). The present study added that changes in the
response gain of the P1 component were directly linked to changes
in the perceived contrast of a visual stimulus and were not related
to response bias. Alternatively, changes in the baseline activity of
the a band activity track the influence of attentional cues on
response bias. The present study did not directly measure sensitiv-
ity and criterion; thus, the comparisons between these behavioral
measures and more subjective aspects, such as contrast appearance
and response bias, should be interpreted with caution; and the
direct links between changes in neural activity and these behav-
ioral measurements need further investigations.

In contrast to modulatory patterns in early sensory responses,
the attentional modulations of neural activity measured in the
lateral PFC were correlated with changes in both perceptual sen-
sitivity and response criterion (Luo and Maunsell, 2018, 2019). To
further explore brain processes outside visual cortex, we also
measured the anterior directing-attention negativity (ADAN) and
the lateralized readiness potential (LRP), thought to that track the
activity of frontal and pre-motor areas involved in response selec-
tion and preparatory motor activity, respectively (see ADAN and
LRP analyses and results on Open Science Framework: https://osf.
io/4kmcv/) (compare Eimer, 1993, 1995; Verleger et al., 2000;
Eimer et al., 2002; Praamstra et al., 2005; van der Lubbe et al.,
2006; Green et al., 2008; Störmer et al., 2009; Schankin and
Schubö, 2010; Baines et al., 2011; Cosman et al., 2016; Faugeras
and Naccache, 2016). We found similar patterns of response bias
in the ADAN and LRP emerging at ;250-500ms and ;750-
1000ms after stimulus onset, respectively. Interestingly, response
bias could be observed at very low and very high contrast levels,
where we observed no attentional modulations of the P1 data. It is
important to also note that past studies have also proposed that
ADAN might track the shift of visual spatial attention as ADAN
often emerges right after spatial attention cues (e.g., Nobre et al.,
2000; Eimer et al., 2002; Macaluso et al., 2003). That said, many
studies have argued that ADAN involves multiple neural genera-
tors that support response-selection mechanisms, such as saccadic
movements and motor-related preparatory processes, rather than
attention itself (Eimer, 1995; see also Praamstra et al., 2005; van
der Lubbe et al., 2006; Green et al., 2008). The consistent response
bias patterns in the ADAN and LRP results are thus likely to sup-
port the premise that response-selection mechanisms involve
multiple neural subcomponents in the frontal and premotor
brain areas.

Together, our results suggest that the different types of neural
computations that support visuospatial attention occur at different
stages of visual information processing and they underlie different
perceptual and behavioral effects of attention. While an increase

in the multiplicative response gain modulations of the early visu-
ally evoked potential supports attention-induced changes in per-
ceived contrast, the baseline-offset modulations of a band activity
correspond to biases driven by the attentional cue. Moreover,
under circumstances where there is prominent response bias, ex-
ogenous cues can directly trigger the cascading of cue-related neu-
ral signals from the frontal to premotor area to bias motor
responses without modulating the early visuocortical processing of
sensory inputs.
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