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Abstract

Purpose: Two-dimensional radiotherapy is often used to treat cervical cancer
in low- and middle-income countries, but treatment planning can be challeng-
ing and time-consuming. Neural networks offer the potential to greatly decrease
planning time through automation, but the impact of the wide range of hyperpa-
rameters to be set during training on model accuracy has not been exhaustively
investigated. In the current study, we evaluated the effect of several convolu-
tional neural network architectures and hyperparameters on 2D radiotherapy
treatment field delineation.

Methods: Six commonly used deep learning architectures were trained to delin-
eate four-field box apertures on digitally reconstructed radiographs for cervical
cancer radiotherapy. A comprehensive search of optimal hyperparameters for
all models was conducted by varying the initial learning rate, image normaliza-
tion methods, and (when appropriate) convolutional kernel size, the number of
learnable parameters via network depth and the number of feature maps per
convolution, and nonlinear activation functions. This yielded over 1700 unique
models, which were all trained until performance converged and then tested on
a separate dataset.

Results: Of all hyperparameters, the choice of initial learning rate was most
consistently significant for improved performance on the test set, with all
top-performing models using learning rates of 0.0001. The optimal image nor-
malization was not consistent across architectures. High overlap (mean Dice
similarity coefficient = 0.98) and surface distance agreement (mean surface
distance < 2 mm) were achieved between the treatment field apertures for all
architectures using the identified best hyperparameters. Overlap Dice similarity
coefficient (DSC) and distance metrics (mean surface distance and Hausdorff
distance) indicated that DeepLabv3+ and D-LinkNet architectures were least
sensitive to initial hyperparameter selection.

Conclusion: DeepLabv3+ and D-LinkNet are most robust to initial hyperpa-
rameter selection. Learning rate, nonlinear activation function, and kernel size
are also important hyperparameters for improving performance.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.
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1 | INTRODUCTION

Cervical cancer develops in over half a million women
every year worldwide. Most new cases occur in low- and
middle-income countries (LMICs) where routine cervical
cancer screenings are not common clinical practice.'>
Therefore, patients with cervical cancer in LMICs usually
present with advanced disease. In a recent report, the
American Society of Clinical Oncology and the Interna-
tional Atomic and Energy Agency recommended the use
of afour-field box radiotherapy technique as the primary
intervention for invasive cervical cancer in LMICs*® Fol-
lowing these guidelines, clinicians manually define these
treatment fields based on standard bony landmarks,
which can be seen on a patient’s digitally reconstructed
radiographs (DRRs). Although the treatment field def-
inition process can be performed quickly, it could take
up to a few days to complete after patients’ computed
tomography (CT) images become available, potentially
delaying treatment commencement, which has been
linked to poorer overall survival outcomes® In addition,
staff shortages and a lack of resources have hin-
dered the availability and access to these treatments in
LMICs.

To address these problems, Kisling et al. developed
the first fully automated treatment planning tool for
external-beam radiotherapy in locally advanced cervical
cancers? In that study, the authors introduced a deploy-
able treatment planning solution for gross tumor and
at-risk regions in the pelvis. Bony anatomy in the pelvis
(pelvic bones,femoral heads, sacrum,and L4 and L5 ver-
tebral bodies) is segmented using a multi-atlas—based
approach,”>~"" projected into each beam’s eye view, and
used to automatically identify visible bony landmarks
and set the beam aperture’s borders using user-defined
rules. Although this approach provided clinically accept-
able treatment fields for more than 90% of patients, it
was a computational bottleneck in the fully automated
process and, due to the manual nature of designing
and implementing hard-coded rules; it showed a lack of
robustness toward outliers.

Recently, deep convolutional neural networks
(DCNNSs) have become the state of the art for medical
imaging segmentation. In the context of radiotherapy
treatment planning, DCNNs have been very promising
for the automation of various contouring and planning
tasks.'? '3 Nevertheless, very few studies have focused
on the auto-segmentation of radiotherapy treatment
targets’3~"° and, to the best of our knowledge, only our
previous studies have thoroughly investigated the use
of DCNNs to auto-segment treatment fields for use in
three-dimensional (3D) conformal radiotherapy.'®"” The

reliability of these segmentation tasks is particularly
important because their predicted outcomes could have
important ramifications for tumor control and related
toxicities.

In addition, many studies focus on architectural nov-
elty. These compare the performance of a specially-
designed approach with a few general-purpose archi-
tectures and do not report the impact of a wide
range of hyperparameter choices on their results. While
this is typically done for consistency, this creates a
lack of information in the literature of the impact of
hyperparameter choices on model performance and
may lead future researchers to initialize hyperparam-
eters based upon convention rather than empirical
results.

Therefore, the aims of the current study are twofold.
Our primary focus is not architectural novelty but rather
identifying the combinations of six classes of hyper-
parameters that led to the best performance in six
commonly-used 2D DCNN autosegmentation models,
and to show which architectures are most robust to initial
hyperparameter selection. We additionally identified the
best-performing model for automatically defining radio-
therapy treatment fields on DRR images. Because many
radiotherapy treatment sites also employ DRR-defined
field apertures (e.g., rectum, brain) for treatment plan-
ning, we expect the findings of the current study to be
translatable to other treatment sites using 3D conformal
radiotherapy.

2 | MATERIALS & METHODS
2.1 | Patient data and model input
generation

Simulation CT scans and radiotherapy treatment plans
from 310 patients with cervical cancer previously
treated at our institution were retrospectively used in
this study after institutional review board approval. All
patients had physician-approved four-field box radio-
therapy treatment plans generated by the Radiation
Planning Assistant, an automated treatment planning
platform.’® DRRs were created using the Radiation
Planning Assistant'®1° and had an isotropic pixel length
of 0.68 mm with a resulting matrix size of 512 x 512
(field of view 350 mm). The treatment fields were defined
on four orthogonal fields [right-lateral (RL), left-lateral
(LL), anterior-posterior (AP), and posterior-anterior (PA)
views] using their respective DRRs. These treatment
fields were converted to binary masks using in-house
software (Figure 1) to prepare for segmentation.
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DRR Mask

Four-field conversion process for the 310 digitally reconstructed radiographs (DRRs) used in our study. AP, anterior-posterior; CT,

computed tomography; PA, posterior-anterior; RL, right-lateral; LL, left-lateral.

The 310 cases used in the study were randomly split
into training (n = 230), validation (n = 25), and final test
(n = 55) datasets. The validation set was used to evalu-
ate each model’s performance during training, and final
results were reported for the final test dataset, which was
excluded from any training and evaluation done during
the training phase. The DRRs were the image inputs to
all models, and one-hot encodings of the treatment field
binary masks were the autosegmentation ground truths.
All models were trained on three orthogonal fields (AP,
PA,and RL) as separate inputs; LL DRRs were excluded
as they were simply horizontally mirrored images of
the RL treatment fields and therefore do not require
autosegmentation to generate.

2.2 | Training and model parameters
investigated

Six commonly used deep learning architectures
were evaluated: (1) DeeplLabv3+ with Xception
backbone2?2" (2) D-LinkNet?? (3) Res-U-Net with
residual connections (both element-wise addition
and concatenation), (4) U-Net?®> with ReLU activation
function, (5) U-Net with PRelLU?* activation function,
and (6) U-Net with VGG19%° backbone. A variety of
parameters were investigated for these architectures
(summarized in Table 1); U-Net and Res-U-Net pro-
vided the largest combination of possible parameters.
All inner convolutions were immediately followed by
batch normalization?® and a nonlinear activation func-
tion (either ReLU or PReLU). All models used softmax
as the output activation function and were trained using
a batch size of 4 and Dice loss function?” Adam?® was
chosen as the optimizer for all architectures using the
default « and B8 values. The impact of training models
with different learning rates was explored (learning
rate values included 0.01, 0.001, and 0.0001). Network
depth was explored for all U-Net—like architectures; for
our analysis, network depth was defined as the number

of down sampling steps plus the bottleneck layer of the
encoder-decoder architecture. Depth values explored
ranged from 3 to 6 levels. Additionally, kernel sizes of
3x3 and 5x5 were evaluated for these architectures, as
well as the initial number of filters (16, 32,48, and 64) as
permitted by graphics processing unit (GPU) memory.

The impact of image normalization was also investi-
gated. When DRRs are generated, the DRR’s pixel val-
ues represent the x-ray attenuation by voxels encoun-
tered along each projection ray from the virtual image
source; therefore, absolute image intensities lack phys-
ical meaning (unlike Hounsfield units in CT which are
related to attenuation coefficients) and image intensity
histograms vary widely between patients depending on
patient size and other anatomic factors. Three intensity
normalization techniques were evaluated in our analy-
sis; these included z-score normalization (Equation 1),
histogram stretching (Equation 2), and L, normalization
(Equation 3):

1=1
Inew=Tl (1)

- Ibottom

Inew = (Inew,max - Inew,min) + Ibottom (2)

/ top — / bottom

I
Inow = —— 3
new ”I”2 ( )

For z-score normalization, both global and local
statistics were evaluated using intensity mean (/) and
standard deviation (o)) values, which were calculated
using the pixel intensities of all training images or
using individual image’s pixel intensities, respectively.
For histogram stretching, intensity values were normal-
ized such that new intensities were within [0, 1] (i.e.,
Inew,max = 1and lpey, min = 0). Four combinations of inten-
sity values were chosen for /yuit0m and Iy, [global values
(Ipottom: Ttop) = (0, 49), (0, 90), or (25, 60), and local val-
ues (/hottoms /top) = (Imins Imax), where Ipj, and I,y are the
minimum and maximum intensity values, respectively, for
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TABLE 1 Architectures and architecture-specific parameters evaluated in our study.
Learning
Architecture rates Depth Kernel size No. of filters Variations
DeeplLabv3+ 0.01,0.001, - - - 21
0.0001
D-LinkNet 0.01,0.001, - - - 21
0.0001
Res-U-Net (concat) 0.01,0.001, 3,4,5,6 3x3, 5x5 16, 32 336
0.0001
Res-U-Net (add) 0.01,0.001, 3,4,5,6 3x3, 5x5 16,32 336
0.0001
U-Net 0.01,0.001, 3,4,5,6 3x3,5%x5 16,32,48,64 560
0.00012
U-Net (PReLU) 0.001, 3,4,5,6 3%3, 5x5 16, 32,48, 64 448
0.0001°
U-Net (VGG19) 0.01,0.001, - - - 21
0.0001

20nly 0.001 and 0.0001 learning rate values were evaluated for the 5x5 kernel size.
5Only 0.001 and 0.0001 learning rate values were evaluated for this architecture.

an individual DRR image], and all values > /i, were
set to have intensity values equal to /;,,. For L, nor-
malization, we calculated the Euclidean norm (||/||, =
\/P+ 15+ +135) using individual DRR pixel intensi-
ties. Following the nomenclature previously established,
this was a local statistic, and no attempts were made
to normalize on a global scale. Combined, a total of 7
intensity normalization schemes were evaluated.

All models were trained on a 16-GB Nvidia Tesla V100
GPU with Keras 2.2.2 (TensorFlow 1.11.0 backend).?%-3°
Models were trained to 1500 epochs using early-
stopping regularization based on loss metrics calculated
on the validation dataset.

2.3 | Evaluation metrics

The predicted treatment fields were compared with the
clinically defined treatment fields. The Dice similarity
coefficient’’ (DSC), mean surface distance (MSD), and
Hausdorff distance (HD) were calculated. These metrics
are defined as follows:

2+ |AnB|
DSC = ———F—— 4
A1+ 1B @
1 - -
MSD = 5 (dA,B + dB,A) (5)
HD = max (dA,BdB,A) (6)

where |A| and |B| are the number of voxels from con-
toured volumes A and B, respectively; |AnB| denotes the
number of voxels included in the intersection between
volumes A and B; dj g is a vector containing all mini-
mum Euclidian surface distances from the surface point

from volume A to B;and dj g is the average value in the
vector d.DSC values range from 0 (no overlap) to 1 (per-
fect overlap); for both MSD and HD, values closer to zero
represent better agreement between two contours’ sur-
faces. The raw model predictions (no post-processing
was applied) were used to calculate these metrics. Pear-
son correlation coefficients were calculated to identify
trends in quantitative metrics during data analysis.

3 | RESULTS

In total, 1743 of 2527 potential models were trained
to exhaustively evaluate individual architectures,
architecture-specific parameters, learning rates, and
image normalization approaches (Table 1). GPU mem-
ory limitations prevented the remaining 784 potential
models from training; these included the U-Net-based
models that used 5x5 kernel sizes with an initial number
of filters greater than 32.

There was a slight negative correlation between the
initial learning rate and overall performance based on
DSC values (Pearson correlation coefficient = —0.24;
Figure 2) and a slight positive correlation between
learning rate and MSD and HD values (Pearson cor-
relation coefficient = 0.14 for MSD and 0.12 for HD),
but some architectures were more robust to the inves-
tigated learning rates (Figure 2, second row). Model
performance was less sensitive to the intensity normal-
ization approaches investigated, and no clearly superior
intensity normalization scheme was identified.

The mean DSC, MSD, and HD values for the archi-
tectures investigated are summarized in Table 2. On
average, the DeeplLabV3+ and D-LinkNet architectures
provided the most consistent results during the hyper-
parameter search; this was most notable in the HD
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FIGURE 2 Dice similarity coefficient (DSC) values for each architecture (rows) by learning rate and image intensity normalization scheme
(columns). Normalization schemes are abbreviated as follows: a, z-score normalization with global values (« = 25 and o = 30); b, z-score
normalization with individual image values; c, histogram stretching (/pottom = 25, liop = 60); d, histogram stretching (/pottom = 0, liop = 45); €,
histogram stretching (Ipottom = 0, liop = 90); f, histogram stretching (/hottom = Imin, ltop = Imax); 9, L2 normalization. The middle column
(Normalization) contains results for models trained with all learning rates, while the right column (Normalization*) includes only results for
models trained with a learning rate value of 0.0001.
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TABLE 2 Performance of the architectures examined in our study.

Mean + SD across all models Mean + SD for the best models
Architecture DSC MSD, mm HD, mm DSC MSD, mm HD, mm
DeepLabv3+ 0.958 + 0.111 30+54 125 +215 0.978 + 0.011 1.8+0.38 6.9+5.1
D-LinkNet 0.963 + 0.037 31+32 12.7 £+ 14.9 0.978 + 0.013 1.8+12 9.3+10.3
Res-U-Net (concat) 0.965 + 0.030 3.1+26 19.8 +21.1 0.978 + 0.013 1.8+1.0 72+6.0
Res-U-Net (add) 0.964 + 0.032 32+27 19.9 +21.8 0.978 + 0.017 1.8+1.2 74+6.6
U-Net 0.920 + 0.161 53+5.1 31.6 £32.9 0.978 + 0.013 1.8+1.0 75+56
U-Net (PReLU) 0.961 + 0.031 36+27 215+21.4 0.979 + 0.015 1.7+1.1 82+95
U-Net (VGG19) 0.709 + 0.305 12.3 + 111 53.1 +£47.8 0.975 + 0.014 20+11 89+79
Abbreviations: DSC, Dice similarity coefficient; HD, Hausdorff distance.; MSD, mean surface distance; SD, standard deviation.
TABLE 3 Hyperparameters associated with models showing the best performance? in the test dataset.

Image Learning Kernel Initial Total

Model normalization rate size Depth filters parameters
DeepLabv3+ z-score (per image) 0.0001 - - - 4.13x107
D-LinkNet z-score (global) 0.0001 - - - 4.86x107
Res-U-Net (concat) Lo 0.0001 3x3 6 16 6.42x107
Res-U-Net (add) L, 0.0001 5x5 6 16 7.81x107
U-Net z-score (global) 0.0001 5x5 6 64 3.26x108
U-Net (PReLU) z-score (per image) 0.0001 5x5 6 16 4.06x107
U-Net (VGG19) Histogram stretching 0.0001 - - - 1.63x108

(global)

a0ptimal performance was determined by average dice similarity coefficient values.

values. After selecting optimal hyperparameters on the
test dataset, we noticed no statistical difference between
the top models’ performance (Table 3).

The effects of depth, kernel size, and number of
initial filters on DSC values in the test data for the
U-Net-based architectures are shown in Figure 3.
Overall, better segmentation accuracy was observed
when the depth was increased in the U-Net archi-
tecture (Pearson correlation coefficient 0.38 for DSC,
—0.48 for MSD, and —0.52 for HD; Figure 3a). Simi-
larly weak correlations were observed when kernel size
was increased from 3x3 to 5x5 (Pearson correlation
coefficient 0.16 for DSC, —0.18 for MSD, and —0.19
for HD), although increasing the number of filters used
in the first convolutional layer of the U-Net did not
result in a noticeable change in segmentation accu-
racy (Pearson correlation coefficient —0.05 for DSC,
0.07 for MSD, and 0.05 for HD). For activation func-
tions (Figure 3b), PReLU resulted in statistically superior
segmentation agreement to the ground-truth compared
with ReLU (p < 0.0001 for all metrics, paired t test;
p < 0.05 was considered statistically significant); dif-
ferences in mean DSC, MSD, and HD values were
0.01, —=1.33 mm, and —7.92 mm, respectively. Choos-
ing between concatenating and element-wise addition
of feature maps from residual connections at each
convolutional block (Figure 3c) resulted in small mean

differences in DSC, MSD, and HD values (—0.001,
0.05 mm, and 0.50 mm, respectively) with minimal
improvement using the concatenated networks.

Beam aperture orientation showed differences in
automatically defined fields (Figure 4). The performance
of all models was statistically better for AP and PA fields
than for lateral (RL) fields (p < 0.0001 for all metrics,
paired t test). Mean DSC, MSD, and HD values improved
by 0.03, —1.1 mm, and —4.7 mm, respectively, for AP
beam apertures compared with lateral fields, and by
0.03, —1.3 mm, and —5.7 mm, respectively, for PA beam
apertures compared with lateral fields.

4 | DISCUSSION

In the current study, we performed an exhaustive search
of optimal architecture and hyperparameter selection to
automatically define cervical cancer radiotherapy treat-
ment beam apertures. Our analysis highlighted some
hyperparameter adjustments that were associated with
better performance, such as increasing the kernel size,
using the PRelLU over the RelLU activation function,
and increasing network depth for U-Net-like architec-
tures. On average, the best performing models resulted
in DSC values of 0.98 and MSD values of < 2 mm.
These results showed that radiotherapy treatment beam
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Angle vs. Performance (Learning Rate = 0.0001)
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apertures can be automatically defined with high
agreement to clinically acceptable beams and could
potentially be integrated into fully automated treatment
planning workflows 218

It is worth noting that simply increasing the parameter
count is not necessarily enough to improve perfor-
mance (Table 3). One exception was for U-Net with the
ReLU activation function, where the model with the most
parameters (3.26x10%) also had the best performance.
This is reasonable considering that this architecture
has relatively few trainable parameters compared with
the Res-U-Nets and U-Net with PReLU architectures.
Our results suggest that increasing the number of
parameters through larger kernels, repeated convolu-
tions at different receptive fields, or trainable activation
functions may generally be more effective than increas-
ing the number of filters to achieve similar parameter
counts. Also, two of the best-performing architectures
(DeepLabv3+ and D-LinkNet), as measured by the aver-
age DSC values across all possible model parameter
combinations, had the second- and third-fewest parame-
ters; only U-Net with PReLU activation function achieved
its best results at a lower parameter count (Table 2). A
high learning rate (0.01) consistently yielded poorer per-
formance than lower learning rates. This is consistent
with values observed in the literature, where the learn-
ing rate for adaptive optimizers is frequently initialized
with a magnitude of 1x10~3 or lower, although non-
adaptive optimizers such as stochastic gradient descent
often do well with a learning rate of 0.01. Furthermore,
while a learning rate scheduler was not used in the cur-
rent study to maintain consistency during training, many

studies report improved performance with the use of
schedulers 3236

Patient features can also affect prediction accuracy,
especially the presence of surgical hardware or other
high-density materials such as fecal impaction due to
the patient’s diet (Figure 5). In these cases, the aperture
border may appear distorted in or near these high-
intensity regions. It is worth noting that the current
analysis intentionally did not use any post-processing
so that models could be directly compared. Simple post-
processing routines would very likely reduce or eliminate
the distortions observed with these patient features.

Direct comparison with the literature is challenging
owing to differences in anatomic sites or imaging modal-
ities. Using a similar DRR approach, Han et al. described
a technique to predict field apertures for whole-brain
radiotherapy'® using DeepLabv3+. In a similar 3D CT to
2D planar image projection, Netherton et al. segmented
vertebral bodies using X-Net,>” a double-stacked resid-
ual U-Net with the bottleneck level shared between the
residual U-Nets. Segmentation on 2D x-ray images is
also frequently described in the literature; for instance
in lungs,®“% various phantom or human anatomic
structures*! and recently in COVID-19 lesions.*? How-
ever, to the best of our knowledge, no previous study has
extensively evaluated selection of architecture or hyper-
parameters as we have described here;thus, translation
across datasets or anatomic sites may be restricted.

The current study has a few limitations. As noted, per-
formance on the lateral fields was slightly lower than on
the AP and PA fields. This is likely due to the presence
of high-density materials (e.g., bone, contrast agent,
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surgical implants), which frequently created image inten-
sity distributions that were less homogenous than those
for the AP or PA fields in the DRR projections. The
lower foreground (patient anatomy) to background (air)
ratio for RL fields may have similarly contributed to the
lower performance. Additionally, as previously noted, the
choice of optimizer influences the selection of the learn-
ing rate. Although Adam performed better with smaller
learning rates, it is important to note that this may
not generalize to all optimization methods, particularly
nonadaptive methods.

GPU memory limitations prevented a subset (784)
of U-Net-like models from training; specifically, Res-U-
Net with more than 32 filters in the initial convolution.
We believe this had little effect on the final result
because the best-performing models used 16 filters
in the initial convolution. Similarly, although U-Net-like
architectures performed best when network depth was
set to 6 (the deepest evaluated), it is unknown if this
trend would have continued because GPU memory did

not permit deeper networks to be trained. Because
depth implies additional resampling operations and thus
allows the network to learn correlating features at addi-
tional scales, it is not unreasonable to explore the impact
of deeper networks on more capable hardware. How-
ever, U-Net-like architectures often double the number
of convolutional filters at each down sampling operation.
As previously discussed, increasing parameter count
often does not yield better performance; in fact, some
studies show comparable performance to state-of-the-
art algorithms while significantly restricting parameter
count through control of the number of convolutional
filters.*3

In conclusion, the current study, which required over
30,000 computing hours to train 1743 models, is to
the best of our knowledge the first to report such an
exhaustive search for optimal deep learning architec-
tures and hyperparameters for fully automated beam
aperture definition. Of the models evaluated, we iden-
tified DeepLabv3+ and D-LinkNet as the most robust to
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hyperparameter initialization; however, none of the archi-
tectures provided statistically significant improvements
when optimal hyperparameters were selected. Among
the sets of hyperparameters we identified as providing
the best performance, learning rate affected perfor-
mance for all models. Other optimal hyperparameters
varied on a per-architecture basis, although all U-Net—
like architectures benefited from deeper networks. When
using the identified best hyperparameters, our approach
is capable of integration into a fully automated treat-
ment planning workflow such as the Radiation Planning
Assistant.’® Furthermore, all predictions may be vali-
dated through a secondary fully automated system for
increased confidence.!”
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