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Abstract

Accurate  co-receptor  tropism  (CRT)  determination  is  critical  for  making  treatment  decisions  in  HIV
management. We created a genotypic tropism prediction tool by utilizing the case-based reasoning (CBR)
technique that attempts to solve new problems through applying the solution from similar past problems.
V3 loop sequences from 732 clinical samples with diverse characteristics were used to build a case library.
Additional  sequence  and  molecular  properties  of  the  V3 loop were  examined and  used  for  similarity
assessment.  A similarity  metric  was defined  based  on  each  attribute’s  frequency  in  the  CXCR4-using
viruses. We implemented three other genotype-based tropism predictors, support vector machines (SVM),
position specific  scoring matrices (PSSM),  and the 11/25 rule,  and evaluated their performance as the
ability  to  predict  CRT compared  to  Monogram’s  enhanced  sensitivity  Trofile® assay  (ESTA).  Overall
concordance of the CBR based tropism prediction algorithm was 81%, as compared to ESTA. Sensitivity to
detect CXCR4 usage was 90% and specificity was at 73%. In comparison, sensitivity of the SVM, PSSM,
and the 11/25 rule were 85%, 81% and 36% respectively while achieving a specificity of 90% by SVM,
75% by PSSM, and 97% by the 11/25 rule. When we evaluated these predictors in an unseen dataset, higher
sensitivity was achieved by the CBR algorithm (87%), compared to SVM (82%), PSSM (76%), and the
11/25 rule (33%), while maintaining similar level of specificity. Overall this study suggests that CBR can
be utilized as a genotypic tropism prediction tool, and can achieve improved performance in independent
datasets compared to model or rule based methods. 
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Introduction

Human Immunodeficiency Virus type 1 (HIV-1) gains entry into the human host cell by using CXCR4 (X4)
or CCR5 (R5) co-receptors [1]. Given the availability of CCR5 antagonists as a treatment option [2], it is
critical to have diagnostic assays available that quickly and accurately determine the co-receptor tropism in
a clinical setting. Several studies have been conducted to identify the genetic basis for virus’ preference in
co-receptor usage, and narrowed down the primary determinant of tropism to the 35 amino-acid of the third
hypervariable (V3) loop of HIV-1 envelope [3].  Genotype based prediction of virus tropism utilizing the
sequence of the V3 loop offers a rapid test for co-receptor usage.  To date, many bioinformatics methods for
tropism prediction have been developed and tested.  These bioinformatics predictors include support vector
machines (SVM)  [4, 5], neural networks (NN)  [6], decision trees  [7], random forest  [8], instance based
reasoning [9], position specific scoring matrices (PSSM) [10], multiple linear regression [11], and the 11/25
rule [12]. However, these methods generally are developed by fitting a model onto the respective training
set, and might not perform as well in independent or unseen datasets [13]. Moreover, as previously reported
[14], some of these methods were trained on clonal sequences, and may not be adequate for tropism testing
in clinical isolates that are often heterogeneous and have high levels of sequence ambiguity.

In this study, we developed a novel bioinformatics algorithm for genotypic tropism prediction utilizing the
case-based reasoning (CBR) technique.  CBR  [15, 16] originated in the early eighties  and was quickly
adopted  into  a  wide  range  of  disciplines,  from  solving  routine  resource  disputes  as  implemented  in
MEDIATOR [17] to assisting with medical diagnosis  [18].  A case-based reasoner attempts to solve new
problems with an unknown solution by adapting established solutions to similar problems. CBR appears to
be  particularly  promising  as  a  genotype  based  tropism  prediction  method,  as  it  directly  utilizes  the
genotypic  information  from  clinical  specimens  generated  thru  bulk  or  clonal  sequencing,  without
extrapolating a model or rule set from the data. The high dimensionality of the genetic space as well as the
complexity of the co-receptor usage pose a challenge for inferring a good mathematical fit or a set of rules
to explain the tropism. CBR operates as a heuristic process that performs guided retrieval and utilization of
prior experiences, particularly, pairs of a V3 sequence with the phenotypic CRT assessment to perform in-
silico tropism prediction.

Methods

Case-Based Reasoning
Case-Based Reasoning (CBR) is an artificial intelligence technique that solves new problems based on the
solutions to similar past problems. Following steps were performed to build a CBR algorithm for genotypic
tropism prediction: 1) a case library of HIV-1 specimens was compiled from which V3 sequences and
phenotypic  tropism assessments  were  obtained;  2)  the input  problem was characterized  by identifying
amino-acid sites and physiochemical characteristics of the V3 sequence highly associated with tropism, and
weights were assigned to each selected feature for use in similarity assessment; 3) finally, a process for
retrieving relevant cases from the library and generating a tropism prediction according to the most similar
cases was implemented. These steps are outlined in detail in the following sections.

Data Collection and Construction of the Case Library
All V3 sequences available in Monogram’s database were obtained; these include  samples from the patient
testing database for  which genotypic data  was available,  as well  as a  cohort  of treatment  experienced
patients (TORO), plus a treatment naïve cohort (LTM) [19]. In order to eliminate potential influences from
data variability, sequences and tropism assessments from a central lab (Monogram) with consistent quality
were used in all analyses performed in our study. V3 sequences were derived using population sequencing
in Monogram’s research lab. In the case of amino-acid mixtures, the ambiguity was resolved in favor of the
amino-acid more prevalent in the X4 tropic set using a PSSM model we developed based on the previously
described method [10]. Amino acid insertions and deletions were coded with an insertion or a gap character
(Z and -), respectively. All final sequences were of length 35 to allow comparison of amino-acid sequences
position by position. Duplicate sequences were removed from this set.  Phenotypic co-receptor tropism was
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determined by the Monogram Biosciences’ Enhanced Sensitivity Trofile® Assay (ESTA) [20]. In all, 1012
unique V3 sequences were identified from as many patients, resulting in 595 R5 tropic and 417 Dual/Mixed
(DM) or X4 tropic viruses. Out of these, 732 (406 R5, and 326 X4/DM) predominantly subtype B samples
were selected for training purposes. Two sets of samples were set aside for testing, both with unknown
treatment  history:  a  set  of  152 commercial  samples  of  mostly subtype B,  and one  set  of  128 clinical
specimens with subtype C.

Subsequently, we examined additional sequence characteristics, such as the count of nucleotide and amino-
acid mixtures in the original sequence and peptide statistics, and performed statistical analysis to evaluate
the importance of these attributes relative to tropism determination. 

Given  that  the  co-receptors  CCR5  and  CXCR4  are  different  proteins  with  different  physiochemical
characteristics in the local environment of their V3 binding sites, we were interested to explore whether
there were significant physiochemical shifts in the nature of the V3 peptide that correlated with co-receptor
usage.  Physiochemical  properties  of  the  V3  amino-acid  peptides  were  determined  using  the  Pepstat
program [21].  

Profile Hidden Markov Models (pHMM) are statistical models of multiple sequence alignments. It was of
particular  interest  to  isolate  the  R5  specific  characteristics  (or  “R5-ness”)  of  the  sequence  in  a
measurement. We therefore used treatment naïve, R5-using samples to minimize the possible impurity of
the virus population resulting from treatment exposure. Using this subset of samples, a multiple sequence
alignment was created and was used to generate a pHMM by applying the HMMR 3.0 application suite
[22-24]. 

We then examined these additional  attributes using univariate analysis to identify features significantly
associated with co-receptor usage. 

Univariate Analysis for Feature Selection
In order to identify significant associations between a given attribute and co-receptor usage, Fisher’s Exact
Test (FET) was performed and an odds ratio was calculated based on presence or absence of a feature in the
X4-using set. Mutations and attributes with strong association with tropism, as identified by FET, were
included as the data fields of the case library. We used the log of the odds ratio to assign a weight to every
position in the amino-acid sequence as well as all selected features.

Similarity Metric and Adaptation
To evaluate a query sequence against the case library, the query was compared to each member of the case
library.  All amino-acid positions were examined for a match between the query sequence and the case in
the library. For attributes that describe the sequence characteristics as a continuous value, similarity was
defined as a range for the absolute difference. Based on the log of the odds ratios calculated in the FET
analysis, we generated an array of weights for the 35 amino-acid sites as well as the additional features in
the case library.  When performing the comparison between a new problem and the cases stored in the
library, for each identical amino-acid and for every similar feature, the respective weight was added to
calculate a total similarity score. 

The adaptation strategy was fine-tuned to  maximize the X4 sensitivity.  Based on the similarity  scores
calculated for all cases in the library, if any of the top three scoring cases is DM or X4, then the query is
predicted to be X4-using, otherwise it is called R5-using. 

Evaluation of the Method
We obtained  performance  characteristics  for  the  CBR system using  a  leave-one-out  (LOO)  approach,
excluding the query sequence from the case library and executing the test on the remaining cases in the
library. Accuracy of the CBR system was evaluated as the ability to predict CRT compared to ESTA. We
used 2 independent datasets to further evaluate the algorithm in unseen data: one comprised of 152 mostly
subtype B, and one set of 128 subtype C samples.
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In addition, we compared the performance of CBR with SVM, PSSM, and the 11/25 rule [12], to include
previously utilized bioinformatics methods with a range of reported performance characteristics. To allow a
fair comparison between the methods, we used the same training set as the CBR system to generate PSSM
and SVM models, rather than utilizing available methods such as geno2pheno with their existing models
[5]. 

To construct the SVM, the V3 sequences were coded into a vector of length 35 x 22 containing 0 or 1 at 
each position to describe the amino-acid composition.  Counts of selected nucleotide and amino-acid 
ambiguities were used as additional input parameters.   The SVM model was trained using libsvm in R 
package e1071 (linear kernel; cost=0.35).  The cutoff for SVM decision values was optimized through 
ROC analysis [25]. The PSSM model was developed according to the previously published method [10]. 
We also applied the 11/25 rule [12], which is based on the presence of amino-acids K or R at position 11, 
and R at position 25, on our datasets.

Results

A case-based reasoning (CBR) system was constructed to perform tropism prediction based on the V3 loop
of the HIV-1 sequence. Our CBR algorithm consists of a case library of 732 V3 sequences with a matched
phenotype as  determined  by ESTA.  We first  extracted  sequence  characteristics  that  provide  additional
information about the co-receptor usage. The following groups of sequence features were evaluated: 1)
count of nucleotide and amino-acid mixtures in the V3 loop; 2) peptide statistics; 3) score generated from
the pHMM developed based on a set of treatment-naïve and R5-tropic samples. 

Sequence and Physiochemical Characteristics
The correlation between sequence length as well as amino-acid and nucleotide mixtures and tropism was
evaluated using univariate analysis. As displayed in Figure 1A, a strong association was found between DM
tropism and presence of the nucleotide ambiguities R, Y, W, and K, as well as mixed amino-acids (X).

The  Pepstats  program  was  used  to  analyze  each  sequence  in  the  case  library  and  to  determine  its
physiochemical profile. Among the characteristics calculated were molecular weight, net charge (charge)
and isoelectric point (iep).  Additionally the molar composition by biochemical class (aliphatic, aromatic,
polar/non-polar, charged, basic, acidic, tiny and small) of the V3 peptide was evaluated. The distribution of
each characteristic across the three tropism groups is shown in Figure 1B. The graphs for net charge and iep
show similar profiles, as does the charged amino-acid group. This is expected since the isoelectric point is
driven by the net charge, which is in turn driven by the percentage of charged residues that comprise a
peptide. Inferences about the nature of the charged residues are made by comparing the basic and acidic
composition graphs, with the graph for basic residues resembling the pattern for charged, charge and iep.
This suggests a preference for X4/DM tropic viruses to have V3 sequences that are more basic in nature
and to have a more basic local isoelectric point.  Among the peptide statistics, charge, basic, iep, and small
groupings showed strong distinction between X4/DM and R5 tropisms (odds ratios=5.1, 5.0, 4.1, and 0.3
respectively; Bonferroni corrected p-values < 0.001).

In an attempt to capture the “R5-ness” of the virus, we obtained and examined a score generated based on a
pHMM that we developed using a subset of treatment naïve and R5-using samples. This score is referred to
here as the HMM Score.  As shown in Figure 1C, pure X4-tropic viruses have distinctly lower HMM scores
compared to the R5 and DM sets, while scores derived from DM viruses are generally lower than R5-using
samples, but higher than the X4-tropic set. 

Amino acid  positions  and  substitutions  as  well  as  quantity  and  quality  of  sequence  ambiguities  were
evaluated  using  Fisher’s  Exact  test.  Graphical  representation  of  the  features  significantly  (Bonferroni
adjusted p-value<0.05) associated with co-receptor tropism and their weight,  as derived from the odds
ratios, is shown in Figure 2. 
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Figure 1:  Physiochemical and sequence characteristics:  A) Sequence length and count  of nucleotide and amino-acid ambiguities
grouped by tropism as determined by ESTA.  Abbreviations NT = nucleotide ambiguity, AA = amino-acid ambiguity.  Len refers to
sequence length.  All other letters correspond to IUPAC ambiguity codes. B) Distribution of physiochemical characteristics grouped
by tropism as determined by ESTA.  mw= molecular weight, charge = Net charge, iep = Isoelectric point, Tiny = (A,C,G,S,T), Small =
(A,B,C,D,G,N,P,S,T,V),  Aliphatic  =  (A,I,L,V),  Aromatic  =  (F,H,W,Y),  Nonpolar  =  (A,C,F,G,I,L,M,P,V,W,Y),  Polar  =
(D,E,H,K,N,Q,R,S,T,Z), Charged = (B,D,E,H,K,R,Z), Basic = (H,K,R), Acidic = (B,D,E,Z).  C)  Distribution of R5 HMM score in the
case library grouped by tropism. 
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Figure 2: Selected features and weights based on Fisher’s Exact test results.  Red to light pink = high to 
low association with X4-usage, Blue to light-blue = high to low association with R5-usage.
  

Performance
The predictive power of the CBR system was evaluated by performing LOO process in which each of the
732 cases was temporarily removed from the case library and was then presented to the CBR tool as a case
for  tropism prediction.  We obtained  true  positive  (TP)  rate  or  sensitivity,  true  negative  (TN)  rate  or
specificity, number of false positive (FP) and false negative (FN) cases, and the overall concordance as
compared to ESTA. These results are shown in Table 1A. The CBR algorithm achieved a specificity of
73.2%, a  sensitivity  of  89.6% and an overall  accuracy of  80.5% in the training set.  Furthermore,  the
training set of 732 V3 sequences was used to construct a PSSM, and a SVM model. The 11/25 rule was also
applied to this dataset. For comparison, the performance of these additional predictors is shown in Table
1A.  The  sensitivity  of  the  CBR  algorithm  was  the  highest  among  the  bioinformatics  predictors  we
investigated.
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Table 1A: Comparison of performance in the training set

Training

set

(N=732)

Prediction

Method TN FP FN TP Concordance Spec. Sens.

CBR 297 109 34 292 80.5% 73.2% 89.6%

SVM 366 40 48 278 87.9% 90.1% 85.3%

PSSM 305 101 63 263 77.6% 75.1% 80.7%

11/25 Rule 392 14 208 118 69.7% 96.5% 36.2%
 

Table 1B: Comparison of performance in an unseen dataset
Unseen

set

Comm.

Dataset

(N=152)

Prediction

Method TN FP FN TP Concordance Spec. Sens.
CBR 81 26 6 39 78.9% 75.7% 86.7%
SVM 75 32 8 37 73.7% 70% 82.2%
PSSM 81 26 11 34 75.7% 75.7% 75.6%

11/25 Rule 101 6 30 15 76.3% 94.4% 33.3%
Table 1. A) CBR performance in the training set, and comparison with SVM, PSSM, and the 11/25 rule. B)
CBR performance in the independent dataset 1, and comparison with SVM, PSSM, and the 11/25 rule. 
Abbreviations: Spec=Specificity; Sens=Sensitivity; CBR= Case-Based Reasoning; PSSM=Position 
Specific Scoring Matrices; SVM=Support Vector Machines.

Since the similarity metric of the CBR algorithm was generated and fine-tuned based on the training set, we
examined the performance of the CBR tool in other independent datasets. Additionally, we compared the
sensitivity, specificity, and overall concordance in this unseen dataset with other algorithms investigated in
this  study.  Results  are  shown in  Table 1B.  In this  test,  CBR outperformed all  other  methods  in  both
sensitivity and overall accuracy, achieving a sensitivity of 86.7% compared to 82.2% for SVM, and 75.6%
for PSSM. The sensitivity of the 11/25 rule remained very low, missing two thirds of the X4-tropic viruses.

In order to examine the robustness of the CBR tool and the case library for tropism prediction in sub-
optimal conditions, a group of 128 subtype C V3 sequences was used to test the tool’s predictive power.
The results are shown in Table 2A.  Given that the case library is comprised of predominantly subtype B
samples,  the  CBR  performed  well  with  a  specificity  of  80.5%,  sensitivity  of  69.6%  and  an  overall
concordance of 76.6%. The CBR performance in this subtype C set was also compared to the same SVM
and PSSM models, as well as the 11/25 rule.  While the specificity of all these methods was very high
(>95%), the sensitivity to detect X4 usage was inadequate, missing almost half of X4-tropic samples in the
dataset. Moreover,  to demonstrate the artificial intelligence capability of the CBR tool, and the ease of
learning from new experiences, we added the subtype C sequences to the case library and evaluated the
performance.  The  results  improved  substantially  as  shown in  Table  2B,  with  a  specificity  of  84.1%,
sensitivity of 73.9% and an overall concordance of 80.5%, a 6% increase.

Table 2A: Comparison of performance in subtype C dataset

Subtype C

(N=128)

Prediction

Method TN FP FN TP Concordance Spec. Sens.

CBR 66 16 14 32 76.6% 80.5% 69.6%
SVM 78 4 20 26 78.9% 95.1% 56.5%
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PSSM 79 3 35 11 70.3% 96.3% 23.9%

11/25 Rule 81 1 34 12 72.7% 98.8% 26.1%

Table 2B: Comparison of performance in subtype C dataset using an enhanced case library

Subtype C

(N=128)

Prediction

Method TN FP FN TP Concordance Spec. Sens.
CBR Using 

Case Lib+C 69 13 12 34 80.5% 84.1% 73.9%
Table 2. A) CBR performance on the subtype C dataset, and comparison with SVM, PSSM, and the 11/25
rule. B) CBR performance on the subtype C dataset when including subtype C samples into the case library.
Abbreviations:  Spec=Specificity;  Sens=Sensitivity;  CBR=  Case-Based  Reasoning;  PSSM=Position
Specific Scoring Matrices; SVM=Support Vector Machines.

Finally, we explored the feasibility and possible benefits of combining these bioinformatics methods [26].
Due to the poor performance of the 11/25 rule, only CBR, SVM, and PSSM were included in this analysis.
Tropism predictions made by each method were examined, and the true positive and true negative calls
were investigated in the form of a Venn diagram. Figure 3A shows the calls made within X4 using (X4 or
DM tropic)  viruses,  and 3B displays the predictions within R5-tropic subset.  As shown in Figure 3A,
among 326 X4 using viruses there are 23 correctly called positive by solely CBR, compared to 1 by SVM
and 3 by PSSM. In contrast, among 406 R5 viruses, 27 were correctly identified by SVM, and 2 by PSSM
that  were  falsely  called  positive  by  CBR (Figure  3B).  The  non-overlapping  sets  of  true  positive  and
negative samples led us to believe that combining the predictions from different algorithms may improve
the  classification  accuracy.  We  have  implemented  2  ensemble  algorithms  by  voting,  utilizing  the  3
classifiers that showed reasonable performance in this study (CBR, SVM, and PSSM) and predicting X4
usage if: (1) at least 1 method calls the sample X4 (anyX4), and (2) if ≥2 out of 3 predict X4 (majorityX4).
Concordance of anyX4 and majorityX4 with ESTA were 77% and 87%, with sensitivity of 94% and 79%
and specificity of 66% and 92%, respectively.
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Figure 3:  Venn diagram for tropism calls made by CBR, SVM, and PSSM models:  A) within X4 using
viruses (X4 or DM tropic),  B) within R5 tropic viruses.  CBR= Case-Based Reasoning; PSSM=Position
Specific Scoring Matrices; SVM=Support Vector Machines.

Discussion

Performing in-silico prediction of HIV-1 co-receptor usage on the basis of the V3 loop is a challenging task
due to the high variability of the viral  envelope.  We present a novel approach utilizing the case-based
reasoning (CBR)  technique  to  perform genotypic  tropism prediction.  Additionally,  the  performance of
several bioinformatics techniques utilized as research tools or in the clinical practice are investigated and
compared to CBR. In the training set,  CBR achieved a higher sensitivity (89.6%) than SVM (85.3%),
PSSM (80.7%), or the 11/25 rule (36.2%). The specificity of the CBR tool (73.2%) was lower than SVM
(90.1%) and the 11/25 rule (96.5%), but comparable to PSSM (75.1%). The CBR adaptation strategy was
adjusted to have high X4 sensitivity, since it would be important to identify patients who are not good
candidates for CCR5 antagonist therapy and may have better treatment options. As a trade-off to higher
sensitivity, CBR achieved lower specificity. When these methods were evaluated in an independent dataset,
sensitivity to detect X4 usage was considerably better for CBR (86.7%), compared to SVM (82.2%), PSSM
(75.6%), and the 11/25 rule (33.3%), while specificity dropped or remained at a comparable level as the
training set. Since models such as SVM and PSSM are developed by generating a mathematical fit based
on the training set, lower performance is expected when the model is applied on unseen datasets. CBR
seems to have an advantage in that aspect since the core knowledge base is stored as a set of cases with
their solution, and even though the similarity metric and adaptation strategy need to be fit to the training
set, the main database is not extracted into a different format where sub-optimal extrapolation might be
performed.

Diagnostic accuracy of CBR depends on the distribution of the study population stored in the case library,
and can be improved by including a large spectrum of V3 sequences with diverse characteristics into the
library. In our study, the accuracy of the algorithm for predicting tropism in a subtype C dataset improved
by 6% when a set of samples with subtype C were added to the case library. This also demonstrates the ease
of implementing and maintaining a CBR system. Existing databases of matched phenotype and genotype
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can be utilized as a case library.  Furthermore,  the CBR algorithm can learn from new experiences  by
adding informative cases to the library. Instance based reasoning (IBR) which is a subclass of the case-
based reasoning family has been implemented by Prosperi  et al  [9], but hasn’t  demonstrated improved
performance as compared to SVM. This may be at least partly due to the implementation of the IBR system
in that study utilizing Euclidean distance rather than a weighted similarity metric which was used in our
CBR and allowed us to take advantage of the detailed significance levels of the features associated with the
viral tropism.

We examined the granularity of the tropism predictions made by the CBR, SVM, and PSSM algorithms.
Among 732 samples in the training set, we found 24 DM- tropic viruses that none of the algorithms could
correctly identify as X4-using. We speculate that the X4 determination for these viruses may lie outside of
the V3 loop [27, 28]. Additional studies with the entire gp160 sequence are necessary in order to confirm
and  identify  other  regions  that  influence  co-receptor  usage.  For  the  remaining  cases,  correct  tropism
predictions were made by each individual algorithm that were false negative or positive by others. This
suggests that each method has unique strength, and therefore, applying sophisticated boosting techniques
[29, 30] may lead to better results. We implemented simple ensemble algorithms by voting. While using
anyX4 improved the sensitivity  to  detect  X4-using viruses  to  94%,  the specificity  took a  hit  and was
reduced  to  66%.  The reverse  happened for  majorityX4 that  achieved  improved  specificity  (91%),  but
decreased sensitivity (79%). It would be worth investigating other, more complex meta algorithms such as
bagging [31] and decision trees, utilizing the scores generated by all these techniques and combining them
to improve the accuracy of the predictions.

We demonstrated that  different  sites and amino-acid substitutions in the V3 loop as well  as additional
physiochemical and sequence attributes influence the co-receptor tropism differently. We found evidence,
as examined by Fisher’s Exact test, that mutations 7Y, 7K, 8I, 9K, 11R, and 30V are amongst amino-acid
changes  strongly  associated  with  X4  usage  (odds  ratio  >  20,  Bonferroni  corrected  p-value<0.001).
Additionally, we have shown that amino-acid and certain types of nucleotide mixtures occur substantially
more within DM samples, which is expected given the inherent nature of Dual/Mixed viruses. We also
evaluated  peptide  statistics  extracted  from  the  V3  sequence,  and  found  that  increased  total  charge,
isoelectric point, and basic values, as well as decreased value measured in the small grouping are strongly
associated  with  X4  tropism.  In  general,  we  found  a  set  of  sequence,  physiochemical,  and  molecular
characteristics of the V3 peptide that correlated with tropism. Here, we present this biologically relevant
data, and were able to leverage this information and utilized the additional properties of the V3 loop to
better assess similarity in the context of tropism. Some of these additional sequence characteristics could
not easily be incorporated into the SVM and PSSM models, which may contribute to the lower accuracy of
these models compared to CBR. Additional studies correlating the predictions with the clinical outcome of
patients  who had undergone CCR5 antagonist  therapy would be required  to assess  the algorithm as a
predictor of response [32].

In conclusion, case-based reasoning could be utilized as a genotypic tropism prediction algorithm. We were
able to achieve improved sensitivity and specificity in independent datasets when comparing CBR with
other bioinformatics predictors, in particular, SVM, PSSM, and the 11/25 rule. Further prospective studies
are necessary in order to evaluate the feasibility of applying a CBR based tropism prediction tool prior to
utilization in a clinical setting. 

Page 10 of 13



Author’s information:

Haddad (MH): Bioinformatics/Biostatistics, Monogram Biosciences Inc., South San Francisco, CA 94080,
USA, Tel: (650) 616-3645
Evans (ME): Bioinformatics/Biostatistics, Monogram Biosciences Inc., South San Francisco, CA 94080,
USA, Tel: (650) 624-4181
Paquet (AP): Bioinformatics/Biostatistics, Monogram Biosciences Inc., South San Francisco, CA 94080,
USA, Tel: (650) 624-4106
Huang (WH): Research & Development, Monogram Biosciences Inc., South San Francisco, CA 94080,
USA, Tel: (650) 866-7229
Frantzell (AF): Research & Development, Monogram Biosciences Inc., South San Francisco, CA 94080,
USA, Tel: (650) 866-7449
Toma (JT): Research & Development, Monogram Biosciences Inc., South San Francisco, CA 94080, USA,
Tel: (650) 624-4282
Napolitano (LN): Clinical Research, Monogram Biosciences Inc., South San Francisco, CA 94080, USA,
Tel: (650) 866-7433
Coakley (EC): Clinical Research, Monogram Biosciences Inc., South San Francisco, CA 94080, USA
Whitcomb (JW): Operations,  Monogram Biosciences Inc., South San Francisco,  CA 94080, USA, Tel:
(650) 866-7433
Goetz (MBG): VA Greater Los Angeles Healthcare System and David Geffen School. of Med. at UCLA

Acknowledgement:  The authors would like to acknowledge the Monogram Biosciences clinical reference 
and R&D laboratories for performance of all phenotype and genotype assays. The CPCRA and INSIGHT 
networks are funded by the National Institutes of Health (U01 AI-42170, U01 AI-46362, U01 AI-68641).

Author Discloser statement: MH, ME, AP, WH, LN, AF, JT, ES, CP, JW, and EC received salary in the 
past 5 years from Monogram Biosciences.

Authors’ Contributions: Mojgan Haddad designed and led the study, performed statistical analysis, and 
wrote the paper. Mark Evans performed the bioinformatics analysis, generated the parameters used for the 
study, and co-wrote the Methods section. Agnes Paquet performed statistical analysis and coding. Wei 
Huang, Arne Frantzell, and Jon Toma performed the genotypic experiments. Laura Napalitano and Eoin 
Coakley participated in the clinical data analysis. Eric Stawiski contributed to the bioinformatics analysis 
and coding. Matthew Goetz managed one of the clinical cohorts used in this study. Christos Petropoulos 
and Jeannette Whitcomb managed the phenotypic and genotypic experiments in the research and clinical 
labs.  

Page 11 of 13



References

1. Deng  H,  Liu  R,  Ellmeier  W,  Choe  S,  Unutmaz  D,  Burkhart  M,  et  al.
Identification of a major co-receptor for primary isolates of HIV-1.  Nature
1996,381:661-666.

2. Dorr P, Westby M, Dobbs S, Griffin P, Irvine B, Macartney M, et al. Maraviroc
(UK-427,857),  a  potent,  orally  bioavailable,  and  selective  small-molecule
inhibitor  of  chemokine  receptor  CCR5  with  broad-spectrum  anti-human
immunodeficiency  virus  type  1  activity.  Antimicrob  Agents  Chemother
2005,49:4721-4732.

3. Lin NH, Kuritzkes DR. Tropism testing in the clinical management of HIV-1
infection. Curr Opin HIV AIDS 2009,4:481-487.

4. Pillai S, Good B, Richman D, Corbeil J.  A new perspective on V3 phenotype
prediction. AIDS Res Hum Retroviruses 2003,19:145-149.

5. Sing T, Low AJ, Beerenwinkel N, Sander O, Cheung PK, Domingues FS, et al.
Predicting  HIV  coreceptor  usage  on  the  basis  of  genetic  and  clinical
covariates. Antiviral therapy 2007,12:1097-1106.

6. Resch W, Hoffman N, Swanstrom R. Improved success of phenotype prediction
of the human immunodeficiency virus type 1 from envelope variable loop 3
sequence using neural networks. Virology 2001,288:51-62.

7. Masso M, Vaisman, II.  Accurate and efficient gp120 V3 loop structure based
models  for  the  determination  of  HIV-1  co-receptor  usage.  BMC
Bioinformatics,11:494.

8. Dybowski JN, Heider D, Hoffmann D. Prediction of co-receptor usage of HIV-1
from genotype. PLoS computational biology 2010,6:e1000743.

9. Prosperi  MCF,  Fanti  I,  Ulivi  G,  Micarelli  A,  De  Luca  A,  Zazzi  M.  Robust
supervised and unsupervised statistical learning for HIV type 1 coreceptor
usage analysis. AIDS research and human retroviruses 2009,25:305-314.

10. Jensen  MA,  Li  FS,  van  't  Wout  AB,  Nickle  DC,  Shriner  D,  He  HX ,  et  al.
Improved coreceptor usage prediction and genotypic monitoring of R5-to-X4
transition by motif analysis of human immunodeficiency virus type 1 env V3
loop sequences. J Virol 2003,77:13376-13388.

11. Briggs DR, Tuttle DL, Sleasman JW, Goodenow MM. Envelope V3 amino acid
sequence  predicts  HIV-1  phenotype  (co-receptor  usage  and  tropism  for
macrophages). AIDS 2000,14:2937-2939.

12. De  Jong  JJ,  De  Ronde  A,  Keulen  W,  Tersmette  M,  Goudsmit  J.  Minimal
requirements for the human immunodeficiency virus type 1 V3 domain to
support  the  syncytium-inducing phenotype:  analysis  by single  amino acid
substitution. J Virol 1992,66:6777-6780.

13. Jensen MA, van 't Wout AB. Predicting HIV-1 coreceptor usage with sequence
analysis. AIDS Rev 2003,5:104-112.

14. Low AJ, Dong W, Chan D, Sing T, Swanstrom R, Jensen M, et al. Current V3
genotyping algorithms are inadequate for predicting X4 co-receptor usage in
clinical isolates. AIDS 2007,21:F17-24.

15. Kolodner  J.  Case-Based  Reasoning.  San  Mateo,  CA:  Morgan  Kaufmann
Publishers, Inc.; 1993.

Page 12 of 13



16. Schank  RC.  Dynamic  Memory:  A Theory  of  Learning  in  Computers  and
People. New York: Cambridge Univ. Press; 1982.

17. Kolodner  JLaS,  R.L.  The mediator:  a  case  study of  a  case-based problem
solver:  School  of  Information  and  Computer  Science,  Georgia  Institute  of
Technology; 1988.

18. Haddad  M,  Adlassnig  KP,  Porenta  G.  Feasibility  analysis  of  a  case-based
reasoning system for automated detection of  coronary heart  disease  from
myocardial scintigrams. Artif Intell Med 1997,9:61-78.

19. Goetz  MB,  Leduc  R,  Kostman  JR,  Labriola  AM,  Lie  Y,  Weidler  J,  et  al.
Relationship  between  HIV coreceptor  tropism  and  disease  progression  in
persons with untreated chronic HIV infection.  J Acquir Immune Defic Syndr
2009,50:259-266.

20. Whitcomb  JM,  Huang  W,  Fransen  S,  Limoli  K,  Toma  J,  Wrin  T,  et  al.
Development and characterization of a novel single-cycle recombinant-virus
assay  to  determine  human  immunodeficiency  virus  type  1  coreceptor
tropism. Antimicrob Agents Chemother 2007,51:566-575.

21. Rice P,  Longden I,  Bleasby A.  EMBOSS: The European Molecular Biology
Open Software Suite. Trends Genet. 2000,16:276-277.

22. Eddy  SR.  Multiple  alignment using hidden Markov models.  Proc Int  Conf
Intell Syst Mol Biol 1995,3:114-120.

23. Eddy SR. Hidden Markov models. Curr Opin Struct Biol 1996,6:361-365.
24. Eddy SR. Profile hidden Markov models. Bioinformatics 1998,14:755-763.
25. Vandekerckhove LP, Wensing AM, Kaiser R, Brun-Vezinet F, Clotet B, De Luca

A, et al. European guidelines on the clinical management of HIV-1 tropism
testing. Lancet Infect Dis,11:394-407.

26. Chueca N, Garrido C, Alvarez M, Poveda E, de Dios Luna J, Zahonero N , et al.
Improvement  in  the  determination  of  HIV-1  tropism  using  the  V3  gene
sequence and a combination of bioinformatic tools. J Med Virol 2009,81:763-
767.

27. Huang  W,  Eshleman  SH,  Toma J,  Fransen  S,  Stawiski  E,  Paxinos  EE,  et  al.
Coreceptor tropism in  human immunodeficiency  virus  type  1  subtype  D:
high prevalence of CXCR4 tropism and heterogeneous composition of viral
populations. J Virol 2007,81:7885-7893.

28. Huang  W,  Toma J,  Fransen  S,  Stawiski  E,  Reeves  JD,  Whitcomb JM,  et  al.
Coreceptor tropism can be influenced by amino acid substitutions in the gp41
transmembrane subunit of human immunodeficiency virus type 1 envelope
protein. J Virol 2008,82:5584-5593.

29. Saigo H, Uno T, Tsuda K.  Mining complex genotypic features for predicting
HIV-1 drug resistance. Bioinformatics 2007,23:2455-2462.

30. Schapire  R.  E.  SY.  Improved Boosting Algorithms Using Confidence-rated
Predictions. Machine Learning 1999,37:40.

31. Breiman L. Bagging predictors. Machine Learning 1996,24:123–140.
32. McGovern  RA,  Thielen  A,  Mo  T,  Dong  W,  Woods  CK,  Chapman  D,  et  al.

Population-based V3 genotypic tropism assay: a retrospective analysis using
screening  samples  from  the  A4001029  and  MOTIVATE  studies.
AIDS,24:2517-2525.

Page 13 of 13



Page 14 of 13


	Abstract
	
	Methods
	Discussion



