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Abstract

We discuss utilization of kinetic schemes for description of open interacting systems,

focusing on vibrational energy relaxation for an oscillator coupled to a nonequilibirum

electronic bath. Standard kinetic equations with constant rate coefficients are obtained

under the assumption of timescale separation between system and bath, with the bath

dynamics much faster than that of the system of interest. This assumption may break

down in certain limits and we show that ignoring this may lead to qualitatively wrong

predictions. Connection with more general, nonequilibrium Green’s function (NEGF)

analysis, is demonstrated. Our considerations are illustrated within generic molecular

junction models with electron-vibration coupling.
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Introduction. Development of experimental techniques on the nanoscale has made studies

of single molecule junctions possible. These experiments yield unique possibilities to explore

physical and chemical properties of molecules by measuring their responses to external per-

turbations. Following experimental advances, there was rapid development of theoretical

approaches. Today a variety of techniques, ranging from diagrammatic expansions (such as,

e.g., nonequilibrium Green function (NEGF),1,2 quantum master equation,3,4 and Hubbard

NEGF5,6) to approximate treatments of strongly correlated systems (e.g., dynamical mean

field theory7 and beyond8) and to numerically exact methods (e.g., renormalization group

techniques9–12 and continuous time quantum Monte-Carlo13–15) are available. Implementa-

tion of such schemes, particularly the numerically exact approaches, is often expensive and

their applications for simulations of realistic systems is limited.

At the same time, simple kinetic schemes have been widely and successfully utilized in de-

scription of rate phenomena in open molecular systems (for example, donor-bridge-acceptor

(DBA) molecular complexes).16–23 Such schemes lead to description of system states con-

nected by rate processes whose Markov limit description provides “rate coefficients” which

enter into the kinetic description (master equation) of the system evolution. Such Markov

limit descriptions rely on timescale separation between the observed system evolution and

dynamic processes that determine the rates, the latter usually involves the dynamics of

relaxation in the bath. Obviously the details of such kinetic schemes depend on the way

system-bath separation is defined and used. The general practice dictated by balance be-

tween simplicity and rigor, takes “the system” to be comprised by the observed variables

together (when possible) with other variables whose inclusion makes the dynamics Marko-

vian. This practice should be exercised with caution because even if conditions for timescale

separations are established in a given range, they may become invalid in other domains of

operation. Such situations are well known in classical dynamics. For example, transition

state theory (TST) of molecular rate processes assumes that molecular degrees of freedom

except the reaction coordinate are at thermal equilibrium (and therefore can be taken to be
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part of the thermal environment). TST breaks down when the observed rate is of the order

of, or faster than, the rate of thermal relaxation in the molecule, as demonstrated in the

Kramers theory of activated rate processes.24

Importantly, even if the assumed timescale separation holds near equilibrium it might fail

far from it. The reason is that systems interacting with their equilibrium surrounding remain

within the energetic domain of thermal energy, while systems coupled to non-equilibrium en-

vironments, e.g., under optical illumination or voltage bias, may be driven to energy domains

where timescale separation does not hold. Thus, while situations of the first kind (such as

activated barrier crossing) are well understood and documented, mathematically equivalent

circumstances have been often overlooked. One such case is the vibrational dynamics of

molecules adsorbed at or bridging between metallic interfaces due to coupling to the ther-

mal electronic baths. Molecular vibrational motion is sensitive to the electronic occupation

of the molecule, which in turn is affected by the molecule and metal electronic structure,

their mutual coupling and the junction voltage bias. A common approximation, equivalent

to the fast bath assumption discussed above, is to disregard the effect of vibrational dy-

namics on the electronic subsystem, representing the latter by a thermal electronic bath or,

for a biased (current carrying) junction, by the corresponding steady-state electronic dis-

tribution, assumed unaffected by the vibrational process. This level of description, which

effectively takes the molecular electronic degrees of freedom as part of the (generally non-

equilibrium) electronic bath,25–27 has been recently used to discuss bias induced vibrational

instabilities.28–30 While the limitations of such treatments are sometimes pointed out,30 in

other publications they are ignored. Indeed, such instabilities were recently claimed31 to be

generic properties of wires whose conduction is dominated by distinct electronic resonances

(or, in the language of Ref.31 by “separated” electronic states).

It should be noted that in general, zero order treatments of the kind described above

are known to violate conservation laws.32,33 Thus, notwithstanding their usefulness in many

applications, such treatment should be regarded with caution, in particular when unusual
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behavior are observed. For example, the observation of negative sign of vibrational dissi-

pation rate at an apparent steady-state of a molecular junction should not be regarded an

indicator of a true vibrational instability in the system, but (like in linear stability analysis

of non-linear differential equations) as an indication of failure of the underlying assumptions

that lead to such result. It should be emphasized that (again, as in linear stability analysis)

such analysis can be useful as an indicator that a real stable state exists elsewhere (which in a

real anharmonic molecule may or may not lie beyond a bond breaking threshold). Still, many

low order treatments28,29 of vibrational instabilities in harmonic bridge models of molecular

junctions leave the reader with the message that the observed “runaway behavior” describes

the full physical behavior.

Exact numerical solutions43 are obviously capable of exploring the correct physical pic-

ture. Here we show that an approximate self-consistent treatment that does not violate

conservation laws can already avoid the qualitative pitfalls of a linear theory. We con-

sider simple junction models with electron-vibration coupling (see Fig. 1), treated within

the nonequilibrium Green’s function (NEGF) theory. In this framework the consequence of

interaction between a system of interest (here the vibrational mode) and its environment

(here the electronic subsystem) enters through self-energy terms that (a) directly describe

relaxation and driving of the system of interest by its environment and (b) modify the

Green functions that enter into the definition of these self-energies. A full calculation must

therefore be self-consistent and take into account the mutual influence between system and

environment, namely the effect of environment on the system as well as the back-action from

the system on the environment. We show that the basis of the zero order approximation,

the assumption of timescale separation between molecular electronic and vibrational degrees

of freedom (i.e. ability to neglect back action of molecular vibration on electronic bath),

does not hold automatically, and in fact has a limited range of validity. Consequently, while

regimes of significantly enhanced vibrational heating can be found in biased junctions with

electron-phonon coupling (and heating transient spikes may occur following sudden parame-
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ter change), instabilities identified as appearance of negative vibrational dissipation rate do

not occur. In our consideration below, the molecular vibration (system) is weakly coupled to

the electronic degrees of freedom (bath), which is the usual setup in considerations of system

and bath separation. We stress that even in this favorable situation kinetic considerations

may lead to qualitative failures.

Below, after introducing the model, we discuss its general treatment using NEGF and

its connection to simple kinetic considerations. We consider the steady-state of such model

under voltage bias and illustrate failures of standard kinetic description within numerical

examples.

Figure 1: Molecular junction with electron-phonon interaction. Shown are models for (a)
single level junction with polaronic coupling and (b) two-level junction with non-adiabatic
coupling. Note that setup (b) favors phonon heating, which is maximized when the level
spacing ε1 − ε2 is close to the vibrational frequency.

Model and method. We consider a junction consisting of a molecular bridge M coupled

to two contacts, L and R (Fig 1). Besides electronic degrees of freedom, a molecular vibra-

tion, modeled as a harmonic oscillator of frequency ω0 coupled to the molecular electronic

subsystem, is included. The contacts are reservoirs of free charge carriers, each at its own
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equilibrium. The model Hamiltonian is

Ĥ = ĤM +
∑

K=L,R

(
ĤK + V̂KM

)
(1)

ĤM =
∑

m1m2∈M

HM
m1m2

d̂†m1
d̂m2 + ω0â

†â (2)

+
∑

m1,m2∈M

Um1m2

(
â+ â†

)
d̂†m1

d̂m2

ĤK =
∑
k∈K

εkĉ
†
kĉk (3)

V̂KM =
∑
k∈K

∑
m∈M

(
Vkmĉ

†
kd̂m +H.c.

)
(4)

where d̂†m (d̂m) and ĉ†k (ĉk) creates (annihilates) electron in level m of the bridge and state

k of contacts, respectively. â† (â) creates (annihilates) vibrational quanta. Vkm = Vk1

when k ∈ L and Vk2 when k ∈ R is molecule-contact transfer matrix element and Um1m2 is

electron-phonon coupling strength. Below we consider two special cases of this Hamiltonian:

A single bridge level with polaronic coupling to the vibrational mode, whereupon the last

term in Eq. (2) takes the form U(â + â†)d̂†d̂ (Fig. 1a) and a bridge comprising two coupled

electronic levels, each coupled to its respective lead, with electron-vibration coupling of the

form U(â+ â†)(d̂†2d̂1 + d̂†1d̂2).

We treat the electron-vibration coupling, last term in Eq.(2), within standard diagram-

matic technique. According to the rules for building conserving approximations32,33 one

starts from the Luttinger-Ward functional,2,34 whose functional derivatives with respect to

the electron and phonon (vibration) Green functions yield the electron self-energy due to

coupling to vibrations, Σ(ph), and the phonon self-energy due to coupling to electronic degrees

of freedom, Π(el), respectively. For our discussion it is important to stress that the electron

and phonon Green functions in the functional are full (dressed) functions, with back-action

of electrons on vibration and vice versa taken into account. Explicit expressions at second
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order of the diagrammatic technique in electron-phonon interaction are35,36

Σ(ph)
m1m2

(τ1, τ2) = iD(τ1, τ2)Tr
[
UG(τ1, τ2)U

]
(5)

Π(el)(τ1, τ2) = −iTr
[
UG(τ1, τ2)UG(τ2, τ1)

]
(6)

where the Tr[. . .] is over electronic degrees of freedom in M and

Gm1m2(τ1, τ2) = −i〈Tc d̂m1(τ1) d̂
†
m2

(τ2)〉 (7)

D(τ1, τ2) = −i〈Tc â(τ1) â
†(τ2)〉 (8)

are the electron and phonon (vibration) Green functions (here Tc is the Keldysh contour or-

dering operator and τ1,2 are the contour variables). Below (for simplicity and to compare with

previous studies) we will consider the quasiparticle limit for the phonon Green function.37

Solving together the coupled Eqs. (5) and (6) constitutes the self-consistent Born approxima-

tion (SCBA)1. Dynamical characteristics are obtained by projecting these Keldysh functions

onto real time. Lesser and greater projections of the self-energies (5)-(6) describe respec-

tively in- and out-fluxes into the corresponding degree of freedom due to its coupling to the

other degrees of freedom in the system, while the retarded projection describes dissipation

induced by the interaction. These projections are related by

Π(el)>(t1, t2)− Π(el)<(t1, t2) = Π(el) r(t1, t2)− Π(el) a(t1, t2) (9)

where Π(el) a(t1, t2) = [Π(el) r(t2, t1)]
∗ is the advanced projection and t1,2 are physical times

corresponding to the contour variables τ1,2. A similar relation holds for the electron self-

energies obtained as projections of (5) onto the physical time.

At steady state, when correlation functions depend on time differences, one can Fourier
1Note that within SCBA, the electron self-energy contains also the Hartree term, which comes from an

additional contribution to the Luttinger-Ward functional and is responsible for shift of electronic levels due
to the interaction. For relatively weak electron-vibration coupling the shift is small and can be disregarded.
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transform (9). The right side of the expression is identified to be the vibrational dissipation

rate due to coupling to electronic degrees of freedom

γel(ω) = i

(
Π(el)>(ω)− Π(el)<(ω)

)
(10)

which at quasiparticle limit should be taken at ω = ω0. The energy flux between the

electronic and vibrational subsystems can be expressed by either of the two fluxes38,39

I
(el)
ph = −

∫ ∞
0

dω

2π

(
Π(el)<(ω)D>(ω)− Π(el)>(ω)D<(ω),

)
(11)

I
(ph)
el =

∫
dE

2π
Tr
[
Σ(ph)<(E)G>(E)− Σ(ph)>(E)G<(E)

]
(12)

which can be shown, by substituting for the self-energies Σ and Π the corresponding projec-

tions of Eqs. (5) and (6), respectively, to be equal in magnitude and opposite in sign. These

fluxes are caused by the electron-phonon interaction. Eq. (11) expresses the energy flux

(in terms of vibrational quanta) into the vibrational system, while (12) expresses the flux

for population redistribution between energy levels of the electronic subsystem. Because of

charge conserving character of electron-phonon interaction this flux vanishes, which at the

quasi-particle limit leads to40

Nω0 = iΠ(el)<(ω0)/γel(ω0) (13)

Here Nω0 = 〈â†â〉 is the nonequilibrium average phonon population.

As discussed above, zero order treatments that lead to standard kinetic schemes for this

problem assume timescale separation between electronic and vibrational equilibration times

(usually treating the vibrational subsystem as much slower than its electronic counterpart),

thus disregarding back action of the phonon on the electronic subsystem. Mathematically

this is manifested by disregarding contribution to the electron self-energy due to coupling

to vibration, Eq (5), and employing the resulting zero order electronic Green functions in
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evaluation of phonon self-energy (6). While the argument of timescale separation seems

reasonable, it may lead to erroneous predictions. We note in passing that within diagram-

matic perturbation theory, substituting full (dressed) Green function with the bare one in

the Luttinger-Ward functional leads to violation of conservation laws in the system.41 In the

Markov limit, when self-energies simplify into transition rates, such substitution corresponds

to statement that rates are kept constant irrespective to actual state of the system.

Below we illustrate some consequences of breakdown of such time scale separation as-

sumption with numerical examples for the model junctions shown in Fig. 1. Model (a)

comprises a single molecular electronic level coupled to the two metal electrodes and to a

single vibration, with HM
mm → ε and Umm → U . Model (b) involves two molecular levels and

one vibrational mode with HM
m1m2

= δm1,m2εm1 − (1− δm1,m2)t, Um1m2 = (1− δm1,m2)U , and

Vkm is Vk1 when k ∈ L and Vk2 when k ∈ R.

Numerical results. We start with model (a) - single electronic level coupled to a molecular

vibration (Fig. 1a). Electron escape rates to contacts are taken ΓL = ΓR = 0.1 eV. The

frequency of the molecular vibration is set to ω0 = 0.1 eV and for the electron-vibration

coupling we take U = 0.05 eV. The contacts temperature is taken as T = 300 K. The Fermi

energy is chosen as the energy origin EF = 0. We apply a bias Vsd = 3 V across the junction

symmetrically (µL = 1.5 eV and µR = −1.5 eV) and consider the steady state of the system

when level ε is moved in and out of the bias window. Calculations are performed on energy

grid spanning the range from −4 to 4 eV with step 10−4 eV. We compare the results of

zero order simulation, where rate (10) and population (13) are obtained utilizing the zero

order electron Green function in (6), with SCBA results, where the self-consistent procedure

takes into account the mutual influence of electron and vibrational degrees of freedom in the

system is taken into account. In the latter case convergence is assumed to be reached when

difference in values of electron density matrix at subsequent steps is less than 10−12.

Figure 2a shows phonon dissipation rates as function of gate voltage. As expected,

the rate is maximum when level ε crosses the lead chemical potential where the possibility
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of effective creation of electron-hole pairs exceeds that of destruction which leads to strong

dissipation of vibrational energy; the rate is much lower away from chemical potentials where

both creation and destruction of electron-hole pairs have similar probability. Qualitatively

both schemes give the same behavior. However, self-consistency of the SCBA allows to

account for multiple phonon scatterings, which results in significantly higher dissipation

rate for the vibration within the bias window. As a result, the standard kinetic scheme

significantly overestimates heating of molecular vibration by electron flux, as is demonstrated

in Fig. 2b. This results in underestimation of stability of molecular junction when analyzed

within kinetic scheme.

Discrepancy between SCBA and standard kinetic scheme is even more pronounced for

non-adiabatic electron-phonon coupling (model b). This is the two-level model (Fig. 1b) used

in Refs.28,29,31 to demonstrate bias induced vibrational instabilities. As above, we consider

stable steady-state and its characteristics - rate (10) and population (13). We note that

phonon back action on the electron degrees of freedom, characterized by the self-energy (5),

is proportional to populationNω0 . That is, within the harmonic oscillator model, any electron

pumping can be compensated by phonon back action when big enough Nω0 is reached. Thus,

one expects that a stable steady state will be always achievable, and no phonon runaway

will be observed. Taking into account that molecular vibrations are not harmonic at high

excitations, the reasonable question to ask is if Nω0 compensating for electronic pumping is

big enough to actually break molecular bond. We note that SCBA analysis of the model was

performed in the literature previously.35,42 Our goal here is comparison between the SCBA

and kinetic scheme predictions.

The electronic levels are chosen at equilibrium as ε1 = −0.15 eV and ε2 = 0.55 eV.

Following Ref.28 we assume that the two electronic levels are pinned to their respective baths,

so that positions of the levels are shifted with bias together with corresponding chemical

potentials. Electron escape rates to contacts are ΓL = 0.3 eV and ΓR = 0.1 eV. The other

parameters are as in Fig. 2.
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Figure 3 compares zero order and SCBA results for the phonon dissipation rate γel,

Eq. (10). In agreement with previous considerations,28,29,31 the zero-order calculation pre-

dicts instability for resonance condition, showing runaway heating of the vibration when

the electron hopping matrix element t is small (see low right corner of the dissipation rate

map shown in Fig. 3a). The corresponding SCBA results are shown in Fig. 3b: no insta-

bility (negative dissipation rate) is observed in this case. To make the comparison easier,

Fig. 2c shows horizontal cuts of the two maps for t = 0.05 eV. The inset in this panel shows

the nonequilibrium population of the mode at this time. While the zero-order simulation

predicts negative damping (and hence instability), SCBA result indicates finite heating of

the mode with bias. Note that the population at Vsd = 1 V is about Nω0 = 20, which for

ω0 = 0.1 eV gives total vibrational energy of 2 eV (190 kJ/mol) – insufficient for breaking

most molecular bonds.

The qualitative nature of this results, that is, the absence of true instability in the

models considered, does not depend on the parameters used in the calculation. We note that

phonon back action on the electron degrees of freedom, characterized by the self-energy (5), is

proportional to population Nω0 . That is, within the harmonic oscillator model, any electron

pumping can be compensated by phonon back action when big enough Nω0 is reached. Thus,

one expects that a stable steady state will be always achievable, and no phonon runaway will

be observed. Depending on the actual molecular forcefield, the corresponding compensating

for electronic pumping may be quite large43 and, depending on the molecule, may be beyond

the bond-breaking threshold of the real anharmonic molecule. Such bond-breaking should not

however be deduced just from the prediction of negative vibrational dissipation rate obtained

from the standard kinetic analysis. Note that negativity of vibrational dissipation rate in a

steady-state situation is an indication of qualitative failure of the zero order treatment.

Figure 4 shows the electronic energy distribution in levels (a) ε1 and (b) ε2 calculated

with (solid line - SCBA) and without (dashed line - zero order) vibrational back action

taken into account. In this calculation we have used t = 0.05 eV and Vsd = 0.9 V. These
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parameters correspond to the most unstable (most negative dissipation rate) prediction of the

Born (zero order) calculation (Fig. 3c). One sees that electron-vibration coupling promotes

redistribution of electron population between levels ε1 and ε2; the effect is significant even

for U � ΓL,R. We note in passing that effect of the coupling on electronic coherence (not

shown) is even more drastic.

Conclusions. Standard rate theories that are very useful in the analysis of many chemical

dynamics phenomena, usually rely on timescale separation between the system of interest

and its environment. Failure of such separation in treatments of systems interacting with

equilibrium environments is usually handled by redefining the boundaries between system

and bath. Extra care is needed when the system is driven by a non-equilibrium environment,

where the driving may move the system into regimes where timescale separation does not

hold. We have discussed the implications of the common timescale separation assumption

used in analyzing the time evolution vibrational energy in biased molecular junctions. Using

such treatments outside their range of validity can lead to qualitatively wrong predictions.

As an example, we have consider generic models of molecular junctions with electron-phonon

interaction treated within the NEGF-SCBA level of theory. Standard timescale separation

argument suggests that phonon back-action on electronic degrees of freedom can be disre-

garded. Such approximation, however, formally violates conservation laws and can fail both

qualitatively and quantitatively when inadvertently carried into regimes where timescale

separation does not hold. Not accounting for this back action leads to an overestimated

heating of molecular vibrations in the standard single electronic level model of current car-

rying molecular junctions as compared with the renormalized (SCBA) treatment (Fig. 1a).

This discrepancy with the SCBA is even more pronounced for non-adiabatic electron-phonon

coupling model (Fig. 1b). Analysis of this model within the timescale separation assumption

has indicated the existence of bias induced vibrational instability in molecular junctions,

which was associated with appearance of negative vibrational dissipation rate. However, a

self-consistent calculation, here carried at the NEGF-SCBA level, shows that stable steady-
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state is reached for any set of parameters (any electronic heating rate).

Depending on the molecular forcefield, the molecule-metal coupling and potential bias,

the molecular energy at the steady state obtained in such a (harmonic model) calculation,

which can be high,43 may or may not exceed the actual bond-breaking threshold of the real

anahrmonic molecule. We note that sudden changes in electronic system (such as fast switch

on of bias) can lead to transient heating spikes that, for a harmonic oscillator, will eventually

relax to the new steady state but in real molecules can lead to bond breaking even if the

steady-state population is below the breaking threshold. For slow switch-on of the bias,

observation of vibrational instabilities in calculation done under the standard system-bath

timescale separation assumption should be taken as indications that this assumption fails

and that higher-level studies are needed for reaching conclusions about actual bond-breaking.

Rate theories using standard kinetic schemes are often a method of choice that has

been repeatedly reliable and useful for modeling chemical dynamics. Extra caution should

be exercised when employing such methods in nonequilibrium systems, since they usually

disregard back action of the system onto its bath(s) which, as we showed, may lead to

erroneous predictions. Development of advanced kinetic schemes for the latter systems is a

goal of future research.
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