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From the 2004 Symposium of Computational Geometry

An Energy-Driven Approach to Linkage Unfolding
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cantarel@math.uga.edu edemaine@mit.edu iben@eecs.berkeley.edu job@eecs.berkeley.edu

*University of Georgia
**Massachusetts Institute of Technology
***University of California, Berkeley

Abstract

We present a new algorithm for unfolding planar polygonal link-
ages without self-intersection based on following the gradient flow /
of a “repulsive” energy function. This algorithm has several ad-

vantages over previous methods. (1) The output motion is repre- [
sented explicitly and exactly as a piecewise-linear curve in angle
space. As a consequence, an exact snapshot of the linkage at any
time can be extracted from the output in strongly polynomial time
(on a real RAM supporting arithmetic, radicals, and trigopnomet-
ric functions). (2) Each linear step of the motion can be computed
exactly inO(n?) time on a real RAM where: is the number of
vertices. (3) We explicitly bound the number of linear steps (and
hence the running time) as a polynomiakitand the ratio between

the maximum edge length and the initial minimum distance be-
tween a vertex and an edge. (4) Our method is practical and easy
to implement. We provide a publicly accessible Java apg]ehfpt
implements the algorithm. © @

(@) (b)

Categories and Subject Descriptors:1.3.5 [Computer Graphics]: Figure 1. A sample unfolding of a polygonal arc produced by our

Computational Geometry and Object Modeling algorithm. By following the gradient of a repulsive energy function,
Keywords: Carpenter’s rule problem, linkage reconfiguration, un- the linkage evolves from its initial configuration shown in (a), through
folding, gradient flow, knot energy, computational geometry. a series of non-intersecting intermediate configurations represented

by (b) and (c), to a final straight configuration (d). Throughout the
motion all segments preserve their length, but the figure uniformly

1 Introduction scales each configuration to fit in the same image area.

1.1 Linkage Reconfiguration 2. hydraulic tube bending, where the goal is to manufacture a

Consider a planar linkage of rigid bars connected at flexible joints particular shape out of an initially straight tube;

to form a collection of tangled but noncrossing arcs and cycles 3+ Protein folding, where the backbone of the protein can be

(polygonal chains). The linkage may move in any way that pre- modelgd asanarcor cycle, and the goalis Fo under;tfind how

serves the bar lengths and causes no two bars to cross. Higure the amino acids q_wc.kly and precisely fold into a minimum-

shows four frames from an example of such a motion. energy configuration; and ) o
4. computer graphics, where the goal in key-frame animation is

1.2 Motivation to smoothly interpolate between two shapes of an underlying

skeleton (linkage).
Arc and cycle linkages and their motions arise throughout science

and engineering in a variety of contexts, including: In the past few years, tremendous progress has been made on

understanding convexifying motions for arc and cycle linkages,
1. robotic-arm folding, where the goal is to fold the arm from specifically in FOCS 20009[ 12]. However, the algorithms be-
one configuration to another; hind these motions are relatively complex and slow. The goal of
this paper is to improve this situation by presenting a simple and
efficient method for computing convexifying motions of planar arc

. . ) ) and cycle linkages.
Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are : :
not made or distributed for profit or commercial advantage and that copies 1.3 Existence of Motions
bear this notice and the full citation on the first page. To copy otherwise, to A natural question asks for a characterization of the shapes into

republish, to post on servers or to redistribute to lists, requires prior specific |\ ih 5 linkage can fold. The most fundamental version of this
permission and/or a fee. . o .
SoCG'04,June 811, 2004, Brooklyn, New York, USA. question asks whether the linkage can fold ieteery non-self-

Copyright 2004 ACM 1-58113-885-7/04/000655.00. intersecting configuration. In the context of arcs and cycles, this
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guestion is equivalent to whether the arcs can be straightened andake weakly polynomial time. The running time of the algorithm
the cycles can be convexified. This fundamental question has beenis strongly polynomial in theutput size(n times the number of
resolved in all cases: every valid configuration is reachable for ev- steps in the output motion), and we prove that the output size is
ery arc or cycle in 2D9,12] and in 4D and higher dimensiong|[ polynomial inn and the geometric features mentioned above.
whe(eas not every g(_)nfiguration i$ reachable for some arcs and cy-  On the practical side, our algorithm is simple and easy to imple-
clesin 3D B, 5]. Intuitively, 4D chains have a “lot of space” (com-  ment, involving a straightforward computation of the gradient of
paring the dimensions of the configuration space and the barriersapn energy function. We have implemented the algorithm as a Java
preventing a motion), 3D chains can be geometrically “knotted” applet fi] and in C++. Our timings indicate that our algorithm runs

(but still topologically trivial), and 2D chains can kspandedin- dramatically faster than an implementation 8f. [(The algorithm

til they unfold (consequently avoiding crossings). of [12] has not been implemented to our knowledge.) The algo-
) rithm is inspired by a natural physical process, in which vertices

1.4 Algorithms repel edges (and vice versa) as if they all were objects with similar

In 4D, we have an essentially ideal situation: there are strongly €lectrostatic charges.

polynomial-time algorithms to compute a polynomial number of On the mathematical side, our techniques construct a natiral
succinctly describable moves (algebraic curves of constant degree)unfolding motion. In contrast, the motions o] [and [12] are

for an arc or cycle 7). (Strongly polynomial imeneans that the ~ piecewiseC" and piecewise&>, respectively. Our motions are
running time on a real RAM is polynomial in the numbeof ver- not always expansive, but this seems key to achieving our results.
tices in the linkage, and independent of the bit complexity of the

input.) In 3D, it is PSPACE-hard to decide whether a 3D arc can 1.6 OQverview

be folded from one configuration to anoth&, [though it remains o . . )

open how quickly we can determine whether an arc can be straight- 1 "€ basic idea of our approach is to defineemergy functioron

ened ). the configurations of a linkage, satisfying four properties:

In contrast, the algorithmic side remains relatively undeveloped 1. expansive motions decrease energy;
in 2D. The original 2D theorem of] is algorithmic but requires 2. the energy is infinite when the linkage crosses itself;
solving an ordinary differential equation where the right-hand side 3. the energy is minimum when the linkage is in the desired
is defined implicitly by a convex optimization. This motion is configuration (straight or convex);
“canonical’, in particular preserving any symmetries presentinthe 4. as two connected components of the linkage grow in dis-
original linkage; it also expands all distances between pairs of ver- tance, their interaction energy decreases.

tices. Although the algorithm is finite for any specified output error

tolerance (and even output error can likely be avoided), no time The first property, together with the existence of expansive mo-
bounds have been established. The alternative approact@lof [  tions [9], establishes the existence of motions that decrease energy.
gives a motion involving polynomially many algebraic motions of We follow the negative gradient flow to find a motion that decreases
degreed(n). This motion is expansive and involves conceptually €nergy. The second property implies that this energy-decreasing
simple motions, but does not preserve symmetries in the linkage. motion will avoid self-intersection. The third property along with
Unfortunately, computing each algebraic motion requires exponen- the existence of energy-decreasing motions implies that we eventu-
tial time and is accurate only up to a specified error tolerance. ally reach the desired configuration. The fourth property prevents
Nonetheless, that exponential bound is the current best time boundmultiple components from flying apart from each other so quickly

on any algorithm for this problem. that they never actually straighten or convexify.
We begin in Sectio2 with background and definitions. Then in
1.5 Our Results Section3 we define the precise constraints we need of an energy

function and give examples of such energy functions. Sedtiest

In this paper, we introduce a novel energy-driven approach for tablishes the main mathematical result, that gradient flow produces

straightening 2D arcs and convexifying 2D cycles that establishes the desired smooth motion. Sectiérdescribes the algorithm to

stronger algorithmic, practical, and mathematical results. - find an exact piecewise-linear motion and proves that its running
On the algorithmic side, we obtain the first polynomial-time al-  time is finite. Sectiors gives explicit bounds on the running time

gorithm for linkage unfolding where the polynomial dependswon  j, terms ofn and geometric features of the input. Sectiode-

and geometric features of the initial configuratforSpecifically, scribes experiments with an implementation of our approach, and

H : H 79,.26 i 7 H . . . . . .
the running time i) (n"r~") wherer is the ratio of the maximum  shows the resulting animations and running times. We conclude in
edge length over the minimum elliptic distance between a vertex gections

and an edge in the initial configuration. (Elliptic distance is defined

in Section3.2) In particular, if the input vertices are chosen from

an integerN x N grid, then this time bound igseudopolynomial 2 Background: Arc-and-Cycle Sets

in the sense that it is polynomial inand V. This algorithm is also ) ) . )

the first that outputs an explicit, exact representation of a motion, W& now define the objects of interest. Arc-and-cycle set! is

in the sense that an exact snapshot of the linkage at any time during? finité collection of planar polygonal arcs and polygonal closed

the motion can be extracted from the output in strongly polynomial Curves. AconfigurationV’ = [v1, vs, ... ] of A is an assignment of
time. Specifically, the motion is piecewise-linear in angle space. coordinates to vertices such that the edge lengths match thdse in

Each linear step in the motion can be computedim?) time, It A hasn vertices, theconfiguration spacef 4, denotedX (A),
whereas previous approaches required linear programming or con-can be viewed as the algebraic subvarietyR3f determined by
vex programming to compute even an infinitesimal motion, which fiXing the length of each edge. Thenbeddedonfigurations of
A—configurations without self-crossing—are denofedl (A).
1our model of computation is a real RAM supportitg —, X, <, /i, A configuration of an arc-and-cycle setasiter-convexf each
andarcsin. outermost connected-componentAis either straight (when it is
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an arc) or convex (when it is a cycle). A motion of a configura- 3.2 Example
tion is strictly expansivéf it does not decrease any vertex-to-vertex

distance, and strictly increases all of the vertex-to-vertex distances
between pairs of vertices that are not forced to have constant dis-

tance because they are connected by a straight chain of edges O ediately leads to the charge property: as a distance approaches
because they are on or inside a common convex cycle. A motion Y 1€ ge property. . Ppr
zero, the reciprocal approacheso. We use a particular definition

is merelyexpansivewhen it does not decrease any vertex-vertex ! .
. - . of distance between a vertex and edge so that the energy function
distance, and increases at least one such distance. oo

The main result ofg] establishes the existence of such motions,
which we use extensively:

We now give an example of an energy function that obeys our cri-
teria. The basic idea is to sum powers of reciprocals of distances
etween vertices and edges of the arc-and-cycle set. This idea im-

Specifically, theelliptic-distance energpf an arc-and-cycle set
A with vertex sefl” and edge seF is defined by
THEOREM 1. Any arc-and-cycle set admits a strictly expansive 1

motion until it is outer-convex. E(A):= >
edge {v,w}

(lu=vll + llu=w]| = [lv=w]})*"

vertex u¢ {v,w}

3 Energy Functions @

where the denominator is the squaedigptic distancebetween ver-

tex u and edge{v, w}. For any edggv, w}, the level sets of the

n- summand in the elliptic-distance energy, as we vary the position
of vertexu, are a family of ellipses with foci at and w which
converge at zero to the edge, w}.

Next we consider energy functions whose minimization forces the
linkage to “repel itself”. The gradient of any such function will
then define a motion of the linkage towards an outer-convex co
figuration that avoids crossings as desired.

3.1 Definition and Required Properties PropPoOsITION 1. Elliptic-distance energy is admissible.

An energy functionis a function from embedded configurations
EX(A) to the nonnegative real numbeRs™. We call an energy
functionadmissibléf it has four properties defined below: it must
be C?, charge, repulsive, and separable. (We can define a version
of admissibility for C*>! functions instead o2, but it is much
harder to work with.)

PrROOF This energy isC°° on the interior ofE X (A) and is there-

fore alsoC?. Because the denominator of the summand vanishes
precisely when vertex is on the edgév, w}, the energy is charge.
Any expansive motion cannot increase any of the summands, and
it must increase a positive term in at least one of the denominators,
while leaving all negated terms alone. Thus the energy is repul-
sive. Finally, because we can split the sum up according to which

3.1.1 Charge connected-component of the edge{v, w} and the vertex: be-

An energy function¥ is chargeif it approachestoo on the bound- long to, while the derivative of the summand approaches zero as
ary of EX(A), that is, if it becomes infinite as the linkage ap- the distanceglu — v|| and ||ju — w|| become large, the energy is
proaches any self-crossing configuration. separable. O

This requirement is an adaptation of an idea from the literature
of knot energies (cf.J0]) to capture the idea that our energy func- 4 Gradient Flow Almost Unfolds Linkages
tional must avoid self-crossing configurations. The inspiration for ] ) ) .
the name “charge” comes from electrostatics, where it takes an in- 1hiS section proves our main mathematical result: for any

finite amount of work to pull a pair of point charges together until 0. the negative gradient flow of any admissible energy functional
they coincide. moves any linkage configuration to within distancef an outer-
convex configuration in finite time.
3.1.2 Repulsive ] )
I . i 4.1 Existence of Gradient Flow
An energy functior¥ is repulsiveif it decreases to first order under
any strictly expansive motion of. We first observe that the gradient flow is well-defined:

This requirement captures the idea that the vertices and edges obroposiTion 2. Given any embedded arc-and-cycle setthe
the linkage should roughly repel each other under the gradient flow gownhill gradient flowA(t) of A under any admissible energy
of the energy. function E exists for all timet > 0 and is as smooth (in) as

the energy functior (in space).
3.1.3 Separable 9y (in space)

F d le set with ted " PROOF Because energy only decreases under gradient flow, we
Aor an arc-an ;cyctg ?E W Cont?le.(f:i cont’)lpongtrt\ b " can restrict to the closed subspaket(A4) of EX(A) where
‘ n, @ €Nergy functiont 1S separablat it can be written in the E < E(A)+1. Becausé® is C?, the integral curvé/ (t) of —-VE
orm through A exists for all time, unless it approaches the boundary of
~ this space. But energy approacheso along the boundary and en-
E(A) = Z Eij(Ai, Ag), @) ergy strictly decreases along the path, so this cannot happeh)
i,j=1
where eaclwo-component energy;; is an energy functiononthe 4.2 Main Theorem
arc-and-cycle sefl; U A; that itself isC?, repulsive, and charge;
and furthermore the contribution d@¥;; to the gradient ofE' ap-

proaches zero as the distance betwdeand A; grows. THEOREM 2. If A is an arc-and-cycle-set an is an admissible

This requirement enforces that, as connected components of  energy function orEX (A), then for anye > 0 the motionA(t)
become far away from each another, the repulsion between themgefined by the downhill gradient flow &f carries A(0) to within e
has little impact on the gradient of the energy. of an outer-convex configuration in finite time.

We now prove our main theorem:
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PrROOF A standard result in dynamical systems says that any tra-

jectory of the negative gradient flow(¢) either weakly converges
to some configuration afl that is critical forE or A(t) leaves any
compact neighborhood of(0) in finite time.

Becausé? is repulsive, Theorertimplies that any critical con-

figuration of A is outer-convex. So in the first case there is nothing

more to prove.

We focus on the second case. We can sgliinto n sublink-
agesA;(t), so that the components of eaeh remain within a
bounded distance of one another for all time. In this casg)
remains within a compact subspacefoK (A;). We define a com-

The major virtue of this parameterization is that it is exact: any
set of parameter values corresponds precisely to a linkage configu-
ration in X (A), and linear interpolation between two “snapshot”
positions in angle space yields a one-parameter family of exact
linkage configurations joining snapshots.

We can define a norm of the angle parameterization as follows.
If® =[61,...,0,,_1], then

1© —©'|| =" min{lo; — 0], 27 — |0: — 0i]} (&)

pact subspace of this space by restricting our attention to the spacerhis norm is different from the norm o (A) as a subvariety of

EX*(A;) of configurations withE;; < E(A(0)) + 1. Here we
have used separability df to write E(A) = 3°, . Ei;(Ai, Aj)
where eachE;; is a C?, repulsive, charge energy function on
EX(A; UA;j).

Now removing are-neighborhood of the outer-convex configu-
rations leaves a subspaggon which||V E;;|| is bounded below by

someG; > 0, because this removes a neighborhood of the critical

configurations fo;; (by Theoreni and becausg;; is repulsive).

Because thed; are drifting further apart, and is separable,
for eachFE;; there is some finite time after which eafW E; ;|| <
G;/2n. After this point, the gradient flow off must reduce each
E;; atrate at least?; /2. But eachE;; (A4;(t)) is finite at this point
and must always be non-negative, so fortgjreater than somg,
A;(t) must be outsidé;.

By definition, the complement of; consists of configurations
with E; > E(A;(0)) and configurations withire of an outer-
convex configuration. BuE;; (A4;(t;)) < E(A;(0)), so we must
be in the second cased;(t) is close to an outer-convex configu-
ration fort > t;. So for anyt > max;t;, A(t) is close to an
outer-convex configuration, completing the proof. [

5 Algorithm

R2": a small angular move is magnified by the length of the edge it
turns. However, we can relate the two norms as follows./Lgt

be the maximum edge lengtihax; ¢;. Let V' = [v, v, ..., v;,]
denote the point parameterization of the configuration represented
by angle parameterizatig®’. Then

IV =Vl < lmx]© — ). 5)

5.2 Parameterizing Cycles

For cycles, the situation is more complicated: we must change
our parameterization to ensure that the length of the closing edge
en = {vn,v1} is preserved. Refer to Figub)-2(c). We re-
movef,,_, from the set of independent variables, and determine
it in terms of the other independent variablé,, 62, . . . , 6,—2],

by computing the location of,, as the intersection of the circle

of radius/,, centered at; with the circle of radiug,,—; centered
atv,—1. We can compute,, with

I — Gy + )

- 12 (B —15_y +d||?)?
v,=vrkd n n
2|\d||?

+d -
lldl|? 4|d[|*

(6)
whered = v,,_1 — v1 and-* denotes rotation bg0 degrees. Be-

This section presents an algorithm for computing a piecewise-linear causev; andv,,_; are not co-located (no self-intersections), there
motion from an initial configuration to an outer-convex configura- will be zero, one, or two real solutions for, depending on whether
tion. This path is computed by first selecting a particular admissible ||v1 —v,—1|| is greater than, equal to, or less than 1 4 ¢,,. When
energy function, expressing the energy function in terms of a suit- there are two possible solutions, one will causeto be a convex
able parameterization, and then applying Euler integration along vertex, and the other will caussg, to be reflex.

the downward gradient path to get a series of “snapshots” of our
linkage with decreasing energy which can be joined by linear in-
terpolation in our parameter space. The algorithm terminates when
we are sufficiently close to an energy-critical configuration to com-

We arrange for there always to be two solutions and choose
among those solutions by the following procedure. At the ini-
tial configurationA,, we letv,, be the vertex of maximum abso-

plete the motion by linear interpolation. As shown in Sectipn

any critical configuration is guaranteed to correspond to an outer-

convex configuration as desired.

5.1 Parameterizing the Configuration Space of an
Arc

We start by considering the case whédrconsists of a single arc
of n — 1 edges. Refer to Figurg(a) LetV = [vi,v2,...,vn]
denote the positions of the vertices and let; denote the edge
between vertices; andv;1. We parameterize the system Gy=
[01,02,...,0,_1] whered; measures the angle between edge
and ther axis. The locations of the other vertices are given by

, W — 1}7 (3)

where/; is the constant length of the edgg andw, is arbitrarily
set to the origin. If we wish, we may also assufhdo be zero.

Vit1 = v; + Li[cos ;,sin6;], i€ {1,...
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lute turn angle, and use this to define an angle-space parameteri-
zation©,. Now any closedq-sided polygon has a vertex whose
absolute turn angle is at lea&t /n, so we may assume the abso-
lute turn angle at, is at leastx/n. If the polygon has minimum
edge lengthi,in, a calculation reveals that, remains convex or
reflex in all configurationd’”” with ||V — V|| < 2€min/n (in the
vertex-space norm). So if the next angle-space positi@y jsand

10 — O1] < 2lmin/(n*fmax), then by Equatiors there will still

be two real solutions for,, and maintaining the convex/reflexness

of v,, will let us interpolate continuously betweé&np and©;. Then

in O(n) time we choose a new angle-space parameterizatien of

so that,, is again the vertex of maximum absolute turn angld in

and continue. lterating this procedure yields a well-defined angle-
space parameterization for any snapshgtand retains the prop-
erty that linear interpolation between these angle space positions
yields a one-parameter family of exact linkage configurations join-
ing snapshots, as long as the vertex-space distance between succes-
sive configurations remains less thah,in /1.



(a) Open chain. (b) Closed chain. (c) Forcing closure in a closed chain.

Figure 2. Parameterization of chains in terms of angles.

5.3 Computing the Gradient of Energy at a Con- 5.5 Generating Snapshot Configurations

figuration

) g ) . . . By Theoren, the negative gradient flow of any admissible energy
Simple inspection shows that the elliptic energy function requires moyes every arc-and-cycle set to an outer-convex configuration.
computingO(n”) terms. Néve computation of the gradient in e now demonstrate a discretized version of this flow which gen-
angle space for an arc would require computing the derivative of g 5teg g piecewise-linear path, O O to an outer-convex

2 : . ,01,...,

thoseO(n") terms with respect to each of t@(n) parameteri-  ¢onfiguration in a bounded number of steps. We generate this path
zation variables, for a total cog(n”). However, there are many  py ysing Euler integration to trace the streamline in the gradient
common subexpressions and after some algebraic manipulation th&;a|q downward frome,. Because Euler integration will accumu-

total work to compute the gradient can be reducedfa”). (We late positional error as it advances, our path may diverge substan-

omit the details.) o o tially from the true streamline, and the two only converge as the
For closed cycles, the contribution @f is distributed to the rest  gep_sjze approaches zero. Regardless of how well the discrete path

of © by applying the chain rule to Equatiordsand 6. We use matches the streamline, it is constructed so that is still arrives at an

this gradient for our theoretical results, but from a practical stand- oyter-convex configuration in a bounded number of steps.
point it is numerically inefficient. The partials of Equatiércan

over emphasize the motion of,, slowing convergence. Instead Our primary goalis to choose our steps so #16®;) —£(O1)
we can compute the gradient of the closed-chain energy using the™> AE > 0 for someAE. Once we can establish such a bound on
open parameterization with edgg accounted for by explicit con- ~ €nergy decrease, our algorithm will terminate after at most

straint projection. We then discard the gradient termgfpr; and E(©9)/AE steps because the energy is initiaBy©o ) and is al-
determinev,, with Equation6. This procedure still preserves all ~Ways nonnegative.

edge-lengths exactly, but is numerically more efficient. As in the proof of the main theorem, we can restrict our at-
i . . . tention to embedded configuratio® whose energy is at most
5.4 Picking Step Size to Avoid Self-Intersection E(©0) and whose distance to an outer-convex configuration is at
Before we can generate snapshots by following the gradient, we leastD;/(n*¢max). Such configurations form a compact subSet
must show that we can choose step sizes to ensure that we can linef EX (A). BecauséV E can vanish only on outer-convex config-
early interpolate between snapshot configurations while avoiding urations, by compactness there are positive const@raadC' so
self-intersections. Suppose our initial configuration has engrgy  that||VE|| > G and||V2E|| < C.

Because the energy functional is charge, the Euclidean distance be- . A ) _

tween the compact set of configurations with enesgy and the Define®.+1 = 8: — At - VE(©:)/[|VE(®,)]. Then we can
compact set of non-embedded configurationgl 6§ strictly larger
than someD; > 0. By Equation5, we obtain a corresponding dis-

expandE(©;1) using Taylor's Theorem arourfdl;:

tance bound)s / (n*fmax) > 0 in angle space. (In Sectidhwe E®in) = E(©:) - At[VE®©.)]
explicitly compute these bounds for elliptic-distance energy.) + E(At)QVQE(@i — (A)VE)|ul?.
We use two consequences of this fact. First, if the energy de- 2

creases monotonically on the sequence of snapghgtand the
distanc2e between successive snapsttend ©;4, is less than
D./(n“lmax ), then the path of exact configurations interpolatin / ;
bet\//\geen the)snapshots gvoids self-intersecgt’ion. Second, iFf)any sr?a gt least twice the second-order term, so the decrease in eAdzgy
shot is withinDs / (n?£max) Of an outer-convex configuration, then Is at leas(At)(G/2).

the algorithm may terminate: we can move to the outer-convex We now have three distinct a priori upper bounds on
configuration by linear interpolation and this motion avoids self- At: 20min /(7> lmax ), Ds/(n%mayx), andG/C. The minimumlU
intersection. of all three of these bounds is the largest allowed step size.

for some0 < (At)* < At and whereu is the unit vector given by
—VE(©,)/||VE(©;)|. If At < G/C, then the first-order term is

138



A basic form of our algorithm is as follows: i.e.,

1. SetAt := U, k := 0, and©, to the angle parameterization d||v; — vk w?(6;) dv;
of A. a2 et =% Y
2. Until © leavess: Ik
(a) Compute the gradie¥ E at©y,. Because each term in the sum is nonnegative, we know that some
(b) SetOri1 := Oy — At- VE(O,)/||[VE(O)| term in the sum, say, k, is at least the average. The number of
(c) In the output motion, linearly interpolate from,, to terms is at most”. Thus
Okt1. d||v; — vkl| w?(0;) dv;
(d) Recompute the angle-space parameterization s@fhat —a e T 666503 ix‘ a |,y (7

has maximum absolute turn angle.
Now we consider the first-order change in energy under this mo-

tion. Because the motion is expansive, no term in the energy func-

tion increases. Thus the absolute first-order change in energy is at

3. Inthe output motion, linearly interpolate fro8y, to the clos-
est outer-convex configuration.

The discussion above and our choiceof proves that the mo-  |east the absolute first-order change in a term involVing— v ||.
tion avoids self-intersection and that the algorithm terminates after Suppose{v;,v;} is a bar incident ta; but notv. (If such a bar
at mosE(0¢)/(GAt) steps. does not existy; is an end of a chain ang, is its neighbor; we in-

In practice, this gradient descent can be implemented in many terchange the labels of andwv; and then such a bar exists.) Then
more efficient ways, although it is difficult to obtain stronger worst- we have
case bounds. For example, instead of moving at a distdxice

. ; . . d(||vg — vs v — v = £;:) 72
along the gradient direction, we can perform binary search around —| < (o I+ o = vl = £i5)

U to find the At < min{fumin/(n%fmax7), Ds/(n*lmax)} that dt |1~ dt t=0
decreases energy the most (steepest descent). This approach is

taken by our implementations. Although it is easy to show that the d|jvr — i) d|jvr — vj| dl;;
number of steps is no more than the straightforward algorithm, the = dt + dt dat
worst-case bound remains the same. Another more sophisticated =0 = =9
approach, conjugate gradient, likely converges even faster, but we >0 Eq. 7 =0
have not yet experimented with it. We note that by the analysis (=2) - (flok — il + [Jor — v — €i5) 3
above, any method of choosing steps which decreases energy and w3 (O, d

respects the step-size bounds required for valid linear interpolation < w(6:) - max || & ,

is an unfolding algorithm. 33305ax1° dhax (©3) dt l,—o

wheredmax(0;) is the maximum elliptic distance between a vertex
6 Bound on Number of Steps and an edge i®;. We can upper bound elliptic distances in terms

. . . - of vertex-vertex distances using the triangle inequality:
In this section we give explicit bounds on the number of steps 9 9 q y

taken by the algorithm described in the previous section for elliptic- vk — vil| + |lve — vl — €35 (8)
distance energy on an arc or cycle linkage. Our bound is in terms
of the following geometric parameters of the configuratin

IN

lve — vill + [l — vill + lvi — v;|| — €35

. ZHUk — ’Ul“
1. lmax: maximum edge lengthnax; ¢;.

2. dumin(6:): minimum elliptic distance between a vertex and Thus, dmax(©;) is at most twice the maximum distance between

an edgemin, ; (||v; — v; || + [|vi — vji1 || — lv; — vj11)- two vertices, which was earlier observed to be at mdst.x. So

3. w(O;): width of the linkage, i.e., the minimum width of a dmax(©:) < 2nlmax. _
strip, bounded by two parallel lines, that contains the linkage. ~ Next we boundmax, ||dvm /dt||,_,. Because the expansive
motion is normalizedy"  ||dv/dt||;_, = 1, and so we have

m

We also define more convenient forms for two of the parameters:

. ) N s max, ||dvm /dt||7_, > 1/n. This result in turn tells us that
L(©;) = max{1,lmax(©;) } andD(0;) = min{1, dmin(0;)}. macy, |[dom/dt]| o > 1)/,
THEOREM 3. Combining all bounds, we obtain that

(IVE(©:)| > dmin(©:)w?(0:)/(5328 n®545 ).

ProOF Recall that||VE(©;)] is the rate at which the energy
decreases under normalized gradient motion in the direction
—VE(©,;)/||VE(©;)||. We bound this quantity by first proving As described above, this bound on energy decrease holds also
a lower bound on the energy decrease under any normalized ex-of the normalized gradient motion over point spaeéV E(V)/
pansive infinitesimal motion. Then the result follows because the |[VE(V)||. To convert this derivative from point space to angle
normalized gradient motion must decrease energy to the first orderspace, we use the chain rule twice—once to convert from vertex

Bl —uw’(6)
dt |,_, ~ 2664705565,

faster than any other normalized motion. spaceV = [v1,v2, ...,v,] tO real-vertex spac&l’ = [v1,ve,
Consider a normalized expansive infinitesimal motion defined at . .., v,—1], and again to convert from real-vertex sp&Eeto angle
time ¢ = 0 that fixes the edge; = {vi,v2}. Observe that the  spaceo:
diameter of the arc or cycle linkage, i.e., the maximum distance 9E OE OV ow
B:t;/r\]/(;en two vertices, is at mastna.x. Then B, Lemma 15] tells 20 "V oW 88"
3 The first termOE /0V is what we already bounded:E /dt|,_,.
max dv < 666 (%) Z dllv; — vkl , The second termV//OW is a Jacobian providing a scale factor
i t=0 w(©:) dt t=0 between vertex spadé and real-vertex spad®. The2(n — 1) x

gk
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2(n—1) submatrixdv; /0v;l;, j<n iS an identity matrix. The rest of
the Jacobian is just two additional columns which can only increase
the scale factors

The third term&2- |s a Jacobian providing a scale factor between
point space and angle space. Each e@;-y is a vector whose
length matches the bar controlled by an@je Thus, eachg% is

J
at least/min, the length of the shortest bar. By Equat®)r,in >
%dmin(ei)-

Thus, 0E/0O > Ldmin(©

lows.

i)(0E/90V) and the theorem fol-
O

THEOREM 4.
IV2E(©;)(u,u)|| < 61920n°L7(0;)/D"2(6;).

The proof of this bound is essentially a much more tedious com-
putation along the lines of Theore®n One of the main challenges
is that the relatio®V/0W between vertex spadé and real-vertex
spacdlV must be bounded above. We omit the details from this ab-
stract.

These bounds are almost all we need. However, we are inter-

ested in the values af..in andw at the initial configuratior®o,
dmin(©0) andw(BOy), not their values at some intermediate con-
figuration®;. Fortunately, we can bound the change of these pa-
rameters. {min does not change.)

LEMMA 1. The elliptic-distance energy of any configurati®nis
at mostn? /dumin (o).

PROOF The energy of ang; is at most the initial energ¥z (o).
There are at mosi? terms in the energy expressidi(Q,), and
each term is at modt/dmin (©0).

LEMMA 2. For any configuratior®;, dmin (0:) > dumin(60)/n>.

PROOF. By Lemmal, E(O;) < n?/dmin(©0). Hence the max-
imum term in £(©;) is at mostn?/dumin(60), SO the minimum
elliptic distance between a vertex and an edg®inis at least
dmin(©0)/n>. O

LEMMA 3. The Euclidean distance between any valid configura-
tion ©; and any self-intersecting configuration is at led3t =

dmin(eo)/(2n2).

PROOF By Lemmaz2, the minimum elliptic distance between a
vertex and an edge i®; is at leastdmin(9o)/n?. Now for any
ellipse with focie; andes, the closest points on the ellipse to
the line segment joining the foci are the endpoints of the major
axis. But at these points, this distance is half of the elliptic dis-

tance. Thus the minimum (Euclidean) distance between any vertex

of ©; and any edge not incident to that vertexlisi, (Q0)/(2n?),
and some vertex 0P; must move at least this far to cause a self-
intersection. [}

LEMMA 4. For any configuratior®; whose angle-space distance
to an outer-convex configuration is at ledst / (n*£max ), the width
w(0;) is at least2dZ ;. (0;)/ (Nfmax).

PROOF First we argue that some vertex in the linkage has absolute
turn angle bounded away frot If the linkage contains a cycle,
then at least one vertex has absolute turn anglg at leas2r /n.

If the linkage consists only of arcs, &t be the maximum abso-
lute turn angle of all vertices (excluding endpoints of arcs). The
linkage has angular distance at m@st> from an outer-convex
configuration, because the absolute ariglef each edge, needs
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to rotate at mosI'n to reach the same angle as the first edge in that
arc (and hence straighten). Hen@®? > D/(n*fmax). Thus,

the absolute turn angle at some vertexs at leastDs /(n® fmax ).
Therefore, in either case, we have a ventexvhose absolute turn
angleT is at leasimin{27/n, Ds/(n®fmax) }.

Consider the two neighbors_1 andv;4+1 of v; that form the
angle atv;. The width of the linkage is at least the width of the
triangle formed by these three vertiegs 1, v;, vi+1, which in turn
is at least twice the in-radius of the triangle. The in-radius of the
triangle is the area divided by half the perimeter. The perimeter is
at mostd/m.x. It remains to prove a lower bound on the area of the
triangle.

If T < 7/2, then the interior angle at; is betweenr/2 and
m — 27 /n. Suppose among;—1 andv;+1 thatv; 11 has the larger
interior angle in the triangle. Then the interior anglef v;; is
betweenr/n andw /2. Becaus# < 7/2,sinf > 20/7 > 2/n.
The altitude fromv; is ||v; — vit1||sin @ > 2€min /N > dmin/n by
Equation8. The base of this altitude i&;—1 — vit1]| > dmin/2
by Equatior8. Thus the area is at leadt,;,, /(2n) in this case.

If T > =/2, then the altitude of one of the other vertices, say
v;—1, is inside the triangle. Hence the altitude fram , is also the
Euclidean distance between vertex , and edge{v;, vi+1}. By
Lemma3, this distance is at leagd,. The base of this altitude is
||[vi+1 — vs]] > lmin > dmin/2 by Equation8. Thus the area is at
leastDsdmin /2 in this case.

Hence in either case the area of the triangle is at leds{ D,
dmin (© )}dmm( :)/(2n). By Lemmas2 and 3, this area lower
bound equalg?,;,(0;)/(2n), concluding the proof. |

As described in SectioB.5 the number of decent steps is at
MostE(©y)/(GAt). Using the observation th& > dumin (0;) >
dmin(©0)/n?, a computation shows thab®dis, (©0)/(5320-
61920)n*°L'? is a lower bound forA¢. Substituting this and
our bounds forE(©¢) andG into the boundE(©,)/(GAt), and
writing w in terms ofdmin (©0), n, and L by Lemmad, we arrive
at the following final bound:

COROLLARY 1. The number of steps in our algorithm is at most
1752484608000 79 L%/ D?*%(0y).

This statement of the bound has the disadvantage of being large
when the linkage is scaled very small or very large, because the
definitions of L and D force values of at least and at mdstun-
necessarily blowing up the ratio/ D. Fortunately, the actual num-
ber of steps made by our algorithm is invariant under scaling of the
linkage, so we can choose a scaling that avoids this disadvantage:

COROLLARY 2. The number of steps in our algorithm is at most
117607251220365312000 7" (Cmax /dmin (©0))%C.

ProoF Uniformly scale the linkage and the initial configuration
O by a factor ofl /£max(O0). The resulting configuratio®; has
Linax(00) = 1 anddmin(0)) = dmin(©0)/Lmax(O0). In particu-
lar, L(06) = fmax(0}). Next we comparéd(0§) anddmin (7).
Consider any vertex; connected by bars to two other vertiegs
andv. By Equation8, the elliptic distance between vertex and
bar {v;,v;} is at most2||lvx, — vj|| = 265 < 2lmax(00) = 2.
Thereforedmin(©p) < 2 and thusD(05) > 1dmin(05). Apply-
ing Corollary1, we obtain an upper bound of

1752484608000 12" / (2dmin (©5))*°
67108864 - 1752484608000 1% /d25,, (©)
117607251220365312000 1" (£imax (©0) /dmin (O0))*°
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Doubled tree® = 50) Teeth . = 29)

l Method #steps[ Time (sec)[ Time/step[ Error #steps[ Time (sec)[ Time/step[ Error
CDR 463 5,927.0| 12.8010| 0.654% 322 187.6 0.5826 | 14.131%
Energy || 79,681 289.2 0.0036 n/a 5,032 7.9 0.0016 n/a

| Ratio [ 0.00s8]  2049] 3555] nia] 0.0639]  23.74] 364.13] n/a

Table 1. Running times for the examples in Figure 3, measured in CPU seconds. Computation times for both methods were measured in CPU
seconds on a 930 MHz Pentium |ll. CDR running times just measure time spent during the CPLEX barrier optimizer for quadratic programs,
which ignores the (relatively short) time to prepare the input to CPLEX. Energy running times measure the entire execution of a C++ program.
Our C++ implementation runs about 6 times faster than our Java implementation which is accessible on the Internet [1].

7 Experiments Energy method

. | Example #steps\ Time (sec)\ Time/step
7.1 Comparison to CDR Spiral (n = 34) 5,080 7.7| 0.0015
We compared a C++ implementation of our energy approach to Tentacle £ = 380) || 2,481 1,159.0| 0.4672
an implementation of9] based on the CPLEX barrier solver for Spider ¢ = 380) 2,274 870.7] 0.3829
quadratic progranfs on two examples of closed chains. The re- Cover (o = 17) 10,390 41| 00004

sulting animations and running times are shown in Figaiand
Tablel, respectively. The running times are measured imperfectly, Table 2. Running times for the C++ implementation of the energy

as described in the caption of Tallgbut in a way that only favors QSS‘Z%C gﬁg!%dn t;’ ;gg &X:;“Séism';‘n':l'l?ures 1 and 4, measured in

the CDR method. '

The comparison in Tabl# is difficult to interpret, because the
methods we are comparing have fundamental differences. At therespectively. Some of these example contain several hundred ver-
superficial level, for each example, the CDR method uses many tices and would have been prohibitively expensive to run using the
fewer steps, but the cost for computing each step is several orders ofCDR method.
magnitude slower, so that overall the CDR method is much slower
than the energy method. But a more careful analysis shows that the .
energy methogdyis even better. g 8 Conclusion

In particular, the number of steps are chosen in fundamentally We have presented a simpler, more efficient, and more practical
different ways with the two methods. In the energy method, we method to unfold linkages made up of arcs and cycles. While the
can move conservatively in accordance with the step bound usedmotion is not globally expansive, its minimization of energy at-
in Section6 or we can use a more aggressive numerical method. tempts to balance distances and reconfigure the linkage more “or-
Regardless of how the steps are chosen the link lengths are preganically”.
served exactly. In the CDR method however, the steps are approx- - one interesting question about our motion is to determine the
imating a complex motion, and small steps are necessary 10 keepshape of the final minimum-energy configuration of a cycle. In con-
the approximation close and preserve the edge lengths. Becausgast to p] or [12], which have unpredictable final configurations,
the CDR implementation does not include constraint stabilization, e might expect that our energy method results in a cycle that best
the edge lengths drift, and this drift accumulates over the motion. 5nnroximates a regular polygon, that is, causes the joints to lie on
The final configurations have more tha@% relative error in the a common circle. See] for other results along these lines. From
edge lengths. To obtain much smaller errors with the CDR method o experiments, this expectation seems false, but a combination of
would require many more steps, and significantly more computa- oyr energy function with a term involving the area of the polygon
tion ime. may lead to such a result.

The time per step is easier to compare, although again this com- £ e\en faster algorithms, an interesting approach which we
parison is not necessarily the “right” thing. The primary Costin pjan to explore is minimizing the energy function with a more
the CDR method is solving a convex program wéiin~) linear sophisticated optimization procedure such as conjugate gradient.
constraints, where is the number of joints. Such a program can - 1 girection should lead to motions that involve fewer steps and
be solved up to error toleraneein O(n /e)2wor§t-casg time by ywould be faster overall. We also note that our repulsive energy
the classic ellipsoid method1), or in O(n”/¢) time with high behaves very much like light energy or gravitational attraction as it
probability by a new random-sampling methad. [ In contrast, radiates. Itis quite likely that the same hierarchical multipole meth-
the running time of the energy method to compute a step dependsy g that have been used for largdody gravitational simulations,
quadratically om, and does not depend on any error tolerance. o4 realistic rendering, and fast evaluation of radial splines could
be used to efficiently solve very large linkage systems as well.

In Section5.3we briefly touched on the idea that any of many
To illustrate the scalability of the energy approach, we show some downward directions can be used in our minimization procedure. In
additional examples and their performance in Figuaad Table2, particular, different choices of admissible energy function and pa-
rameterization will yield different gradient directions that could be
“The convex objective function ir] is not exactly quadratic, but CPLEX  used to construct a variety of unfolding motions. These choices can
does not support such objective functions. We use a quadratic relaxationye gngineered to have different desirable properties such as numer-
of the objective function because it is much faster to compute, in particular ical stability or symmetry preservation. For example, the methods

because we can then use CPLEX. This relaxation makes the running timesd ibed ab d . b hod b d
of [9] only smaller. It is also perhaps a fairer comparison, because the deScribed above do not preserve symmetries, but a method base

objective function in §] was not chosen with efficiency in mind, but rather 0N @ parameterization using positions with explicit algebraic con-
for convenience in the proof. straints for each edge does preserve symmetries.

7.2 Additional Examples
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(a) Teeth with energy method.

W 0 ! 0 6 [

(b) Teeth with CDR method.

LR

(c) Doubled tree with energy method.

LA A

(d) Doubled tree with CDR method.

Figure 3. A comparison of convexification by our method and by CDR. To maximize visibility, the animation zooms as time proceeds; in fact, all
edge lengths remain constant.
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Figure 4. Other examples of straightening and convexification computed with our method. To maximize visibility, the animation zooms as time
proceeds; in fact, all edge lengths remain constant.
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