
UC Irvine
ICS Technical Reports

Title
Software pipelining of non-vectorizable loosely nested loops

Permalink
https://escholarship.org/uc/item/58w2r7f6

Authors
Kim, Ki-chang
Nicolau, Alexandru

Publication Date
1991

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/58w2r7f6
https://escholarship.org
http://www.cdlib.org/

Software pipelining of non-vectorizable - loosely nested loop§._

Ki-chang Kim and Alexandru Nicolau
-;::;,.-- --

Department of Information and Computer Science

University of California, Irvine

Irvine, CA. 92717

Technical Report #91-04

April 1991

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

z_
0
'

C3

•

Software pipelining of non-vectorizable loosely nested loops
Ki-Chang Kim and Alexandru Nicolau

Computer Science Department

University of California - Irvine

Irvine, CA 927171

(714)856-4079;kkim@ics.uci.edu,nicolau@ics.uci.edu

Abstract

This paper presents a new technique to parallelize non-vectorizable loosely nested loops.

Loosely nested loops represent the general form of nested loops. Previously, the attempt of

parallelizing nested loops, e.g. the wavefront method, has been limited to tightly nested loops, a

restricted class of general nested loops. Our method overcomes this limitation. It consists of two

steps: computing the exact time step of each statement instance and capturing and expressing

the parallel statement instances whose time steps are equal. We provide efficient algorithms for

both steps and illustrate their practieality by parallelizing the well-known SOR algorithm. The

parallel SOR was run on a Sequent machine with 1 to 7 physical processors resulting significant

speed-ups.

Key words: parallelizing compiler, nested loop parallelization, fine grain parallelization, software

pipelining, loop scheduling

1 Introduction

Parallelizing loops is essential to achieve a speed-up in parallel machines. Vectorization is a well-known

technique to exploit parallelism out ofloops. However, this technique is not applicable when the loop

is not vectorizable. For non-vectorizable loops, only some limited forms of loops are parallelizable

using the current loop parallelization techniques.

The first case is single loops - one-dimensional loops. A group of techniques, generally called

software pipelining [SDWX87][Lam88][AiNi88], have been developed to parallelize single loops whether

they are vectorizable or not. The basic method of these techniques is compaction. The loop is unfolded

and compacted, exposing parallelism between statements. The unfolding process is not indefinite; it

stops when the parallel form of the loop becomes predictable. One of them, Perfect Pipelining [AiNi88],

successfully parallelizes loops with arbitrary control flow near-optimally; if there is no if-statement in

the loop, it guarantees to parallelize the loop optimally.

The second case is tightly nested loops. An n-dimensional loop is tightly nested if all of its loops

are iterating over the same set of statements. For this case, the general parallelization technique is

wavefronting [Mura71][Lamp74][Wolf87J[Bane90][LaWo90]. This method can decide which iterations

can be done in parallel at each time step; these parallel iterations at each time step form the wavefront.

1

It is elegant and efficient, but it ignores the parallelism inside iterations and is limited to tightly nested

form.

We propose a technique that can parallelize loosely nested loops whether they are vectorizable

or not. Loosely nested loops represent the general form of n-dimensional loops. We note that

DOACROSS [Cytr86] can parallelize loosely nested loops, too. However, its schedule shows only

how to assign tasks (statements or iterations) to the processors; therefore, we know which processor

executes which tasks, but we do not know which tasks can be done in parallel at a certain time step.

As a result, synchronous machines, e.g. superscalar or VLIW machines, can accept our schedule but

not that of DOACROSS. In fact, our method is best suited for VLIW /superscalar machines since

it concentrates parallelism in innermost loops, but it applies to other asynchronous machines, too,

as we can see in Section 4. Another technique that handles loosely nested loops is Loop Quantiza

tion [Nico87]. The loop is unwound by some amount for each dimension and compacted, exposing

parallelism. However, the parallelism it exploits is limited by the unwinding sizes.

Our technique exposes parallelism without explicitly taking resource constraints into account.

However, since the parallelism is concentrated in inner loops, it is relatively easy to map our schedule

to fewer resources than those implied by the schedule initially produced by our algorithm.

· Basically, we schedule every statement instance1 individually at a certain time step and calculate

which statement instances are at the same time step. Computing the time step of each statement

instance (Section 3.2) and capturing and expressing the parallel statement instances whose scheduled

time steps are all equal (Section 3.1) are the critical tasks in this process and the two main topics. of

this paper. Section 4 shows an application of our method to a real problem.

2 Definitions

Before going into the details of our method, we need to define a few terms. Since we are dealing with

loosely nested loops, a new indexing scheme is introduced. We will use a tree, called loop tree, to

capture the structure of a nested loop. 2 In this tree, each node corresponds to a loop in the nested

loop. The index of each node, then, is represented by the path from the root to the corresponding

node. We represent the index of the outermost loop (the root node) by I 1 (we assume there is only

one outermost loop); therefore, the ith child loop of this outermost loop has index Ili, the ith child

loop of this child loop has index Ii;;, and so on. For example, the nested loop in Figure 1(a) will have

the loop tree in Figure l(b). In the figure, the index of each loop is shown next to the corresponding

1 We distinguish a "st.atement instance" and a "statement". In a loop, a "statement" is executed a number of times

with different indices at each execution. Each instance of this statement at each execution is called a "statement

instance".
2 We note that the structure of the loop tree is similar to the control dependence gra.ph[KMC72]. The difference lies

in index notation.

2

node.

As can be noted from the above example, we regard a simple statement as a loop with a single

iteration. Therefore, the outermost loop, whose index is represented by Ii, has three child loops whose

indices are ! 11 , ! 12 , and ! 13 • The first child is a statement; the other two, loops. Also, we assume all

loops are normalized such that the lower bounds are always zero's. The upper bounds are represented

by Npath - 1, where path shows the position of the corresponding loop in the loop tree, as in loop

indices. Note that all leaf nodes in the loop tree are simple statements.

For each node in the loop tree, we define three values: Hpath, dpath, and Spath· Hpath is the number

of child loops of loop Ipath (or node Ipath). 3 The second value, dpath is the amount of delay between

the iterations of loop Ipath. We will call this value the delay of loop Ipath. Finally, Spath is the size of

loop Ipath, which is defined as,

S _ { (Npath - l)dpath + S1,p1 , ... ,p.,,1 + ... + S1,p 1 , ... ,p.,,H,~,,..
path -

1

if node Ipath is a loop, not a statement

if node Ipath is a statement,

when path= (l,p1, ... ,p.,).

Note that

is the sum of the sizes of all the child loops of loop Ipath. We will use a short-hand representation

S1,p,,. .. ,p.,,• for this. For example, the size of loop Ili; is

These values are needed to transform the loop correctly. Especially, the delays, dpath, are what

preserve the semantics of the original loop after transformation. Since a statement can be surrounded

by several loops, and each of them has a delay of its own, the time step to execute an instance of .this

statement can be computed by accumulating the delays it suffers at each loop. An example is given

in Figure 2(a)-(b). In the figure, loop I1 has delay of 2, while loop I2 has delay of 1. Therefore, the

execution of statement instance A23, for example, is delayed by 2*2 time steps at the first dimension

and by 3*1 time steps at the second dimension.

A node in the loop tree is executed a number of times dictated by the upper bounds of its pre

decessors. For example, loop !121 is repeated by N1 x N12 . The partial iteration vector shows which

copy is active; that is, it shows the index values of the currently active surrounding loops. Therefore,

the instance of loop !121 at partial iteration vector (iv1 , iv12) is its copy when I1 = iv1, and ! 12 = iv12 .

3 Parallelizing loosely nested loops

As explained in the introductory section, two steps are needed to parallelize loosely nested loops:

computing the exact time steps of all statement instances and capturing and expressing the parallel

3 We will use node and loop interchangeably throughout the paper.

3

For 11 = 0 to N1 - 1
A
For 112 = 0 to N12 - 1

For 1121 = 0 to N121 - 1
c
D

Endfor
E
For 1123 = 0 to N123 - 1

F
End for

endfor
For /13 = 0 to N13 - 1

G
Endfor

Endfor

(a) An example loosely nested loop

11211

(b) Its loop tree

Figure 1: An example loosely nested loop and its loop tree.

4

For i1 = 0 to N1 - 1

For i2 = 0 to N2 - 1

A:A(il ,i2)=f(A(il,i2-1),B(il-1,i2))

B:B(il,i2)=g(A(il,i2))

Endfor

Endfor

(a) The source code

time

step schedule

0 AOO

1 BOO AOl

2 BOl A02

3 B02 A03

4 B03 A04

5 B04

6

7

8

9

AlO

BlO

A05

B05

(b) The execution schedule

All

Bll A12 A20

B12 A13 B20

B13 A14

B14 A15

B15

Figure 2: An example of execution schedule with delays.

5

A21

B21 A22

B22 A23

B23

statement instances whose time steps are equal. Computing time steps of the statement instances

is the problem of finding efficient delays for all nodes in the loop tree because the time step of a

statement instance depends on the delay values of its surrounding loops. We first assume all these

delay values are computed, and show how the process of capturing and expressing parallel statement

instances can be done. Then, we will present a method to compute efficient delay values for all nodes

in the loop tree.

3.1 Transformation

All nodes (except the root and leaf nodes) in the loop tree are transformed into parallel form as

follows. Suppose we want to transform node Ili; into parallel form. Assume it has three child loops.

Then, the Ilij loop below,

For l1ij = 0 to Ni;; - 1
For l1;j1 = 0 to Ni;;1 - 1

Endfor
For 11;12 = 0 to Ni;12 - 1

Endfor
For I1ij3 = 0 to N1ij3 - 1

Endfor
Endfor

will be transformed into

Forall l1;; = L1;1 to U1;3
Case ti;j - I1;3d1;; is
0 to S1;;1 - 1 : For Itijt = 0 to Ntijt - 1

Endfor
Sliit to S1;31 + S1;32 - 1 : For lli32 = 0 to N 1;32 - 1

Endfor
S1;31 + S1;32 to Slijt + S1;32 + S1;33 - 1 : For I1ij3 = O to Ni;;3 - 1

Endcase
Endforall

Endfor

Note that the inner loops ofloop Ilij are not parallelized yet. They can be parallelized by applying

the same process recursively. Spath is the size of the loop lpath as explained in Section 2. Llij and

U1;; are the new loop bounds. The value of tlij is computed by

where (iv1, iv1;) is the partial iteration vector of loop Ilij (see Section 2 for the definition of a

partial iteration vector).

6

TB is the starting time step of its argument loop at the designated partial iteration vector, whose

computation will follow shortly, while t is the global time step. Because iiiJ represents the time passed

since the instance of loop Ii;; at partial iteration vector (iv1, ivli) began, we call it the local time step

of loop I1;;.

The computation of TB proceeds as follows. Assume we want to compute the TB for loop l 1;; at

a partial iteration vector (iv1 , iv1;). If we draw the surrounding loops of loop I1ij , we get

For I1 = 0 to N1 - 1
For !11 = 0 to N11 - 1

Endfor
For !12 = 0 to N12 - 1

Endfor

For !1; = 0 to N1; - 1
For li;1 = 0 to N1;1 - 1

Endfor
For li;2 = 0 to N1;2 - 1

Endfor

For l1;1 = 0 to N1;1 - 1

Endfor

Endfor

Endfor.

We want to calculate the starting time step of the instance of loop I1;j when I1 = iv1, and

! 1; = iv1;. Since each iteration of I1 is delayed by d1, the iv1-th iteration will start at iv1d1 time step.

(Note the iteration count starts from zero.) At iv1-th iteration, we have to wait until all previous

loops before Ili are executed. Therefore, 811+ ... +81,i-l time steps should be passed. At this point,

we again have to wait for the iv1;-th iteration of Ili loop. This adds iv1;dH times steps to the delay

time accumulated so far. Finally, we have to wait until all the previous loops before Ilij loop at the

iv1;-th iteration are executed. So, the starting time step of the desired instance of loop Ilij is

The last variables we need to compute are Lli; and U1;;, the new loop bounds. Llij is the iteration

that spans tlij, the local time step of the current instance of loop llij, for the first time. Ulij is the

last iteration that spans tlij. Therefore, if Llij > 0, the ending time step4 of the iteration Llij - 1

should be strictly less than tli;, and the ending time step of the iteration Lli; should be greater than

4 Actually local ending time step. We a.re looking at only the current instance of loop l1ij. Every time step here,
while we a.re explaining the computation of L1;j and U1ij, refers to the local time step of the current instance of loop
llij·

7

{ MIN(N1,p1,. .. ,p,, -1, Lt1,pi, .. .,p.,/d1,p1,. ... p..,j)
Ni,p1 ,. . .,p., - 1

if the path p1, p2, ... , Px-1, Px is nil

if the path Pl, p2, ... , Px-1, Px is not nil

if di ,pi, .. .,p,, > 0
if di,p1,. .. ,p,, = 0

if d 1,p1 ,. . .,p.., > 0
if di,p1 , .. .,p,, = 0

S { (N1,pi. .. .,p.., - l)d1,p1,. . .,p.., + S1,pi, ... ,p,,,l + • • • + S1,p1, .. .,p,,,Hpath
l ,pi. ... ,p., = 1

if node l1,p1 ,. . .,p,, is a loop
if node /i,pi, ... ,p,, is a statement.

MAX-GLOBAL-TIME-STEP= S1 - 1

Figure 3: Transformation formula.

or equal to t 1;j. Also if U1ij < Nlij - 1, the starting time step of U1ij should be greater than or

equal to tlij, while that of Ulij + 1 should be strictly greater than t'i;j. Therefore, when L1ij > 0 and

U1;i < N1;j - 1, we get the following inequalities to be satisfied.

Solving these with the constraints that L1;j is an integer greater than or equal to zero, and U1;j

is an integer less than or equal to Niij - 1, we get

L1;j = M AX(O, f(t1;j + 1- S1;j.)/d1ij l),

and

Now, the same parallelization process can be repeated for all the intermediate nodes. The paral

lelization of the leaf nodes is simple: just leave them untouched. For the root node (the outermost

loop), we parallelize it following the above process, but this time add another loop on top of it. The

new outermost loop is a sequential loop, and its index is the global time step. At each global time step,

the sequential outermost loop specifies which statements of which loops can be executed in parallel.

The general formula for TB, L, U, and Sare in Figure 3. The derivations of the first three are

straightforward from the above explanations, and that of the last is borrowed from Section 2. Note

8

Fort= o to MAX-GLOBAL-TIME-STEP
Forall Ii = L1 to U1

Case t1 - I1 di is
O: A
1 to 512 :

Forall 112 = L12 to U12

Case t12 - I12d12 is
0 to 5121 - 1:

Forall 1121 = L121 to U121

Case t121 - 1121 d121 is
0: c
1: D
Endcase

Endforall
5121: E
5121 + 1 to 5121 + 5123:

Endcase

Forall 1123 = L123 to U123
F

Endforall

Endforall
512 + 1 to 512 + 513:

End case

Forall f13 = L13 to U13

G
Endforall

Endforall
Endfor

Figure 4: Parallel form for the loop in Figure l(a).

that TB(Ii) = 0, which is the case when the path p1,p2, . .. ,p,,_1 ,p., is nil, because by definition it

is the starting time step of the outermost loop. For completeness, we have included the formula for

MAX-GLOBAL-TIME-STEP in the figure. MAX-GLOBAL-TIME-STEP is the time step of the last

statement executed, or 1 time step less than the size of the root node (the outermost loop).

We show an example to illustrate the whole process of transformation. The loop in Figure l(a)

will be transformed into the loop in Figure 4. The outermost loop (with index t) is the sequential

loop; all loops inside are parallel. Assuming that d1 = 3, d13 = 1, and all other delays are zero's

(the computation of delays are discussed in Section 3.2), the unknown variables in Figure 4 can be

calculated as follows.

First, let's compute all Spath values. Since a single statement has a size of 1, Su = S1211 = S1212 =
S122 = S1231 = S131 = 1. And at the next level, S121 = (N121 - l)d121+2, S123 = (N123 - l)d123 + 1,

and S13 = (N13 - l)d13 + 1. Based on these values,

S12 = (N12 - l)d12 + (N121 - l)d121+2+1 + (N123 - l)d123 + 1,

and finally

S1 =(Ni - l)d1+1 + (N12 - l)d12 + (N121 - l)d121+2+1 + (N123 - l)d123 + 1 + (N13 - l)d13 + 1

= (N1 - l)d1 + (N12 - l)d12 + (N121 - l)d121 + (N123 - l)d123 + (N13 - l)d13 + 6.

g

Then,

MAX-GLOBAL-TIME-STEP= (Ni - 1)3 + (Ni3 -1) + 6 - 1 = 3Ni + N13 + 1,

ti =t-TB(I1) =t,

Li= MAX(O, f(t + 1- Si,.)/31) = MAX(O, f(t - Ni3 - 4))/31),

Ui = MIN(Ni - 1, lt/3J),

ti2 = t -TB(Ii2, (li)5) = t -(Iid1 +Su)= t - 3/i -1,

Li2 = 0, Ui2 = Ni2 - 1,

Li2i = 0, U121 = N121 - 1,

Li23 = 0, U123 = Ni23 - 1,

t 13 = t -TB(/13, (11)) = t - (I1d1 +Su+ S12) = t - (311+1+4) = t - 3li - 5,

L13 = M AX(O, f(t - 311 - 5 + 1 - S1,3,.)/11) = M AX(O, t - 311 - 5),

U13 = MIN(N1 -1, t - 311 - 5).

Therefore, the final instantiated parallel loop is as shown in Figure 5. The original sequential

version of this loop requires ((2N121+1+N123)N12+1 + N13)N1 time steps. The parallel one requires

3N1 + N 13 + 1 time steps (given a sufficient number of processors).

3.2 Computing delays

As can be seen in Section 3.1, the parallel execution time of our transformed loop, MAX-GLOBAL

TIME-STEP, depends on the delays and loop bounds of the nesting loops. Since loop bounds are not

adjustable, we need to compute a set of delays that will minimize the parallel execution time.

To ensure correctness, the delays should satisfy a set of inequalities, explained as follows. Suppose

loop Ilik depends on loop Iii/ with dependence distance vector (v1, vli).7 Then, the instance of

loop Ilik at some iteration vector (iv1 + v1, ivli + V!i) can not start until the instance of loop Ili; at

(iv1 , ivli) completes its execution. Therefore, we have

5 The partial iteration vector of the current instance of loop Ji2 is given by index 11
6 Actually, some statement in loop 11ik depends on some other statement in loop !iii.
7 By (Wolf82], dependence information is available only for the common nesting loops of the involved tasks; in this

case, we are looking at the dependence between loop 11 ik and llij, and the common nesting loops of both are loop Ji
and loop Ji;. Therefore, the dependence distance vector between loop liik and 11ij can have only two elements in it
corresponding to the two common loops.

10

•

For t = 0 to 3N1 + N13 + l
Forall Ii= MAX(O, f(t - N13 -4))/31) to MlN(N1 -1, lt/3J)

Case t - 311 is
O: A
1 to 4:

Forall 112 = 0 to N12 - 1
Case t - 311 - 1 is
0 to 1:

Forall 1121 = 0 to N121 - 1
Case t121 - 1121 d121 is
0: c
1: D
Endcase

Endforall
2: E
3 to 4:

Forall 1123 = 0 to N123 - 1
F

Endforall
End case

Endforall
5 to 4 + N13:

Forall 113 = M AX(O, t - 311 - 5) to M 1 N(N1 - 1, t - 311 - 5)
G

Endforall
End case

Endforall
Endfor

Assuming k :::; j,

Figure 5: Fully instantiated parallelized form.

= TB(li,i,J-2, (iv1, iv1;)) + S1,i,J-2 + S1,i,J-1

= TB(I1,i,J-U-kl• (iv1, iv1;)) + S1,i,i-U-k) + ... + S1,i,J-1

= TB(li,i,k, (iv1, iv1;)) + S1,i,k + ... + S1,i,J-l·

Furthermore, from Figure 3,

Therefore, after simplification, the inequality to be satisfied is

11

Now, if k > j,

Therefore, the inequality in this case is

In general, the inequality to be satisfied due to the dependence between I1,p 1,. .. ,p,.,i and I1,p 1, ... ,p,.,k

with a dependence distance vector (v1, v1,p1, ... , v1,p 1, ... ,p.,) is, assuming the latter depends on the

former,

{
S1,p 1, ... ,p.,,1: + S1,p1, ... ,p,.,1:+1 + ... + S1,p1, ... ,p,.,i-1 + S1,p1, ... ,p,.,i - 1

-S1,p1, ... ,p,.,1:-1 - S1,p1, ... ,p,.,1:-2 - ... - S1,p 1, ... ,p,.,i+2 - S1,p1, ... ,p,.,i+1 -1

The derivation is straightforward and tedious, so it is omitted.

if k $ j

if k > j
(1)

For each dependence, we should have a separate inequality as above. Subject to this set of inequal

ities, the delays should minimize the MAX-GLOBAL-TI!\1E-STEP. Note that the MAX-GLOBAL

TIME-STEP is a function of all delays. This is an integer programming problem. We show an efficient

method to solve this problem.

For convenience, let's rename the delays for the purpose of this section. Instead of indexing the.m

with their paths, we number them by top-to-bottom and left-to-right order in the loop tree. For

example, the following loop tree

will have a delay set (di, d2, da, d4) which corresponds to (di, d11 , d12, di21) in our old notation.

With this new indexing scheme, since Spath is a linear combination of the delays (see Section 2),

Inequality 1 can be rewritten

where mis the cardinality of the new delay set, and c is some constant. Assuming M dependences to

be satisfied, we will have M inequalities below.

12

Algorithm. dvector.
Input. uf and er, where uf is a set of u;; such that i EI and j E J, and er is a set of c; such that i EI. I
and J are two integer sets with cardinalities MAXI and MAXJ, respectively.
Output. d1, a set of d; such that j E J.
Comment. In the algorithm, c~, is er; - Lze(J-Ji) ur,.,d.,. Initially the algorithm starts with
I= (1, 2, ... , M) and J = (1, 2, ... , m), where M is the number of dependences, and m is the cardinality of
the delay set, d.
Method.

1. If all the elements of the column vector u 1i are positive,
d1; = M AX(f c1Ju1,J; l ' r C[MAXI/urMAXIJj l)
d., = 0, Vx E J except J;

Else
J' = {I1c s.t. ur,.11 = O}
f = {J1c, Vk =;f 1}
call algorithm dvector with u{ and c1• to calculate d 1 •.

d1; = MAX(f c~JUfiJ1 l, · · ·, f c~MAx1/u1MAx11i l).

Figure 6: Algorithm to compute the delays.

(2)

Now, let's look at how u;; are formed for a particular row, i. From the formula in Inequality 1,

the first few terms of u;; exactly correspond to v1, v1,p 11 ••• , v1,p1 , ••• ,p.,, repectively. The rest of the

coefficients will be supplied from the right-hand side of the formula. Since the first few terms are

supplied from a dependence distance vector, and they are leading coefficients of this row, vector u;;

can be regarded as a legal dependence distance vector. A dependence distance vector is legal if its

first non-zero element is positive.

Therefore, we can apply the algorithm in [KiNi91] to solve the set of inequalities in Inequalities 2.

We have copied the algorithm in Figure 6. Basically, the algorithm works in divide-and-conquer

manner. The inequalities are divided into two groups: those with positive leading coefficient and

those with zero leading coefficient. The latter group is solved first. Note that the latter problem has

one less variables than the original one. The leading delay corresponding to the leading coefficient

is missing here. Once this group is solved, the solutions are substituted to the the former group of

inequalities to compute the missing leading delay. The solving process of the latter group is a recursive

application of the same divide-and-conquer strategy.

For example, take a look at the example loop in Figure 1. Suppose loop Ii21 needs data from loop

I 122 (statement E) with dependence distance vector (1,1). Also suppose loop l131(statement G) needs

13

data from itself with dependence distance vector (0,1). For the first dependence, we have

1 x di+ 1 x di2 > S121 + Si22 - 1,

and from the second,

0 x di + 1 x d13 > S13i - 1.

S121 = (N121 - l)d12i + S1211 + S1212 = (N121 - l)d121 + 2, and S122 = S131 = 1, assuming all

statements take one time step. Therefore, after simplification, we have the following inequalities.

d13 > 0

With renaming, we have

di + Od2 + d3 + Od4 + (1 - N121)ds + Ods + Od1 > 2

Applying the above algorithm to compute the delay set, we have di = 3, d4 = 1, and all other

delays are zeros. Note d4 corresponds to d13 in old notation.

4 Example - SOR algorithm

We have applied our algorithm to parallelize SOR (Successive Over-Relaxation) algorithm [PFTV86),

which is widely used to solve large linear systems. The parallelized SOR was actually run on a Sequent

machine with very favorable results.

Figure 7 shows the SOR algorithm. We will use this algorithm to solve the following Poisson's

equation for u on the unit square 0 $ x $ 1, 0 $ y $ 1

cl2u 82u
8x2 + ay2 = 4.

On the boundary, u(x, y) satisfies the condition

u(x, y) = x2 + y2 + y.

The difference equation corresponding to the above Poisson's equation is

4
U (J + 1, L) + U (J - 1, L) + U(J, L + 1) + U(J, L - 1) - 4U(J, L) = JM AX2 ,

when we chose the grid size to be JMAX x JMAX, and let J =xx JMAX, L = y x JMAX. Then,

in Figure 7, F = JM ~x~ . p in the figure is also an input as the spectral radius of the Jacobi iteration,

or an estimate of it, whose value is computed by 1 - lxJ;;AX§. ABS() is a function that returns the

absolute value of its argument.

14

anormf=zero
For 1=2, JMAX - 1

For 1=2, JMAX - 1
anormf = anormf + ABS(F(J,1))

Endfor
Endfor
omega= 1
For N=l, MAXITS

anorm = 0
For J=2, JMAX - 1

For 1=2, JMAX - 1
If MOD(J+1,2) = MOD(N,2) then

resid= U (J +1,1)+U(J-1,1)+ U(J ,1+1)+ U(J,L-1)-4U(J,L)-F(J,L)
anorm=anorm + ABS(resid)
U(J,L) = U(J,L) +omega x resid/4

Endif
Endfor

Endfor
If N = 1 then

omega = 1/(1 - (1/2) x p2)

Else
omega= 1/(1 - (1/4) x p2 x omega)

Endif
If (N > 1 and anorm < eps x anormf) then RETURN

Endfor

Figure 7: The SOR algorithm.

We have modified the ordering of statements in the above algorithm and performed scalar ex

pansion [Padu79] on variables anorm and omega, to facilitate the exploitation of parallelism. Refer

[AlKe87][KiNi91] for more information on the reordering of statements. Also, we removed the tem

porary variable resid by substituting all of its appearances by its definition. This is to remove

dependences involving the variable resid. This change is only for the purpose of a clear explanation.

A temporary variable like resid does not cause dependence in real situation because it can be declared

as a local variable on each processor. Finally, we have normalized all loops such that all indices start

from zero's with stride l. Note that these are standard optimizations that are not specific to our

transformation system. The transformed loop is in Figure 8.

In the figure, the main loop starts at statement 0 ending at statement 16, whose time complexity

is O(Q x JM AX2), where Q is the number of iterations for the outermost loop (indexed by N) when

the condition at statement 15 is met. We will parallelize this loop. We regard statement 1 through

6 as a single statement, and the innermost loop at line number 8 to 13 as another single statement.

This is to increases the granulity of the scheduling unit because the Sequent machine is not suited

well for fine-grain parallelism - it uses fork-join mechanism to handle parallelism, and each forking

takes considerable amount of CPU time. With a finer grain machine, we may parallelize down to

simple statement level, exploiting more parallelism. However, this example shows that our technique

can adjust to medium or coarse grain machines.

The loop tree for this loop is

15

anormf=zero
For J=2, JMAX - 1

For 1=2, JMAX - 1
anormf = anormf + ABS(F(J,L))

Endfor
Endfor
omega[l] = 1
O:For N=O, MAXITS-1
1: anorm[N+l] = 0
2: If N+l = 1 then
3: omega[N + 2] = 1/(1 - (1/2)p2)
4: Else
5: omega[N + 2] = 1/(1 - (1/4)p2 omega[N + 1])
6: Endif
7: For J=O, JMAX - 3
8: For L=O, JMAX - 3
9: If MOD(J+L+4,2) = MOD(N+l,2) then
10: anorm(N+l]= anorm(N+l] + ABS(U(l+3,L+2)+U(J+l,L+2)

11:
+U(J+2,L+3)+U(J+2,L+l)-4U(J+2,L+2)-F(J+2,L+2))

U(J+2,L+2) = U(J+2,L+2) + omega(N+l]x(U(J+3,L+2)
+U(J+I,L+2)+U(J+2,L+3)+U(J+2,L+l)-4U(J+2,L+2)-F{J+2,L+2))/4

12: Endif
13: Endfor
14: Endfor
15: If (N + 1 > 1 and anorm[N + 1] < eps x anormf) then RETURN
16:Endfor

Figure 8: SOR algorithm with statement reordering and scalar expansion.

Node 111 in the loop tree corresponds to statement 1 through 6 in Figure 8, and node li21 in the

loop tree to statement 8 through 13 in the same figure. Now, node 111 has dependence on itself with

distance vector (1) because of statement 5. Node / 121 also has dependence on itself with distance

vector (0,1), (1,0), and (1,-1). The distance vector (0,1) is due to statement 10. The distance vector

(1,0) and (1,-1) arises from the self-dependence on statement 11. Statement 11 at iteration vector

(N,J) needs data from the result of statement 11 at iteration vector (N-1,J) and (N-1,J+l). Finally,

there are in-loop dependences between node 111 and 112 , ana between node 112 and /13. Since node

Ji3 is an exit-test, strictly speaking, we have dependences from node /13 to lu and 112 with distance

vector (1); however, since the algorithm converges, there is no need for node lu and /12 to wait for

the result of the node / 13 in the previous iteration. So, these dependences due to the exit-test are

16

Fort= o to MAX-GLOBAL-TIME-STEP
Forall Jl = L1 to U1

Case t1 - I1d1 is
0: anorm(N+l] = 0

If N+l = 1 then
omega[N + 2] = 1/(1 - (1/2)p2)

Else
omega[N + 2] = 1/(1- (1/4)p2 omega[N + 1])

Endif
1 to 812:

Forall 112 = L12 to U12
For L=O to JMAX-3

If MOD(J+L+4,2) = MOD(N+l,2) then .
anorm(N+l]= anorm(N+l] + ABS(U(J+3,L+2)+U(J+l,L+2)

+U(J+2,L+3)+U(J+2,L+l)-4U(J+2,L+2)-F(J+2,L+2))
U(J+2,L+2) = U(J+2,L+2) + omega(N+l]x(U(J+3,L+2)

+U(J+l,L+2)+U(J+2,L+3)+U(J+2,L+l)-4U(J+2,L+2)-F(J+2,L+2))/4
Endif

End for
Endforall

812 +1: If (N + 1>1 and anorm[N + 1] < eps x anormf) then RETURN
Endcase

Endforall
Endfor

Figure 9: The template of a parallel SOR algorithm.

ignored.

The inequalities to be satisfied, therefore, are

1 x d1 > Su - 1 = 0,

1 x d12 > S121 - 1 = 0,

1 x d1 > S121 - 1 = 0,

and

1 x d1 + (-1) x d12 > S121 - 1 = O.

Note that Su = S121 = 1 since we regard node Iu and node 1121 as a single statement each. The

in-loop dependences already satisfy the inequalities required (see Section 3.2). Solving the above

inequalities using the algorithm in Figure 6, we have

Now, from Section 3.1, the transformed loop will have the form in Figure 9. To compute the

unknown values in this figure, we need the size of each loop first. From the formulas in Figure 3 and

the values of the delays above,

Su = S13 = S121 = 1,

S12 = (JMAX -3)d12+1 = JMAX - 2,

17

For t = O to 2 x MAX ITS + JM AX - 3
Forall ll = MAX(O, rct + 1- JMAX)/21) to MIN(MAXITS-1, Lt/2JJ)

Case t - 211 is
0: anorm(I1 +1] = 0

If I1+l = 1 then
omega(I1 +2] = 1/(1 - (1/2)p2)

Else
omega(I1 +2] = 1/(1 - (1/4)p2omega(I1 +1])

Endif
ltoJMAX-2:

112 = t - 211 - 1
For L=O to JMAX-3

If MOD(l12+L+4,2) = MOD(I1 +1,2) then
anorm(I1 +1]= anorm(I1 +1] + ABS(U(I12+3,L+2)+U(I12

+1,1+2)+ U (112+2,1+3)+ U(I12+2,L+l)-4U(I12+2,L+2)-F(I12+2,L+2))
U(l12 +2,L+2) = U(I12+2,L+2) + omega(I1+1](U(I12+3,L+2)

+U(l12 +1,L+2)+U(I12 +2,L+3)+U(I12+2,L+l)-4U(l12+2,L+2)-F(li2+2,L+2))/4
Endif

Endfor
JM AX - 1: If (11 + 1 > 1 and anorm(I1 +1] < eps x anormf) then RETURN
Endca.se

Endforall
Endfor

and

Then,

Figure 10: Parallel SOR algorithm.

S1 = (MAX1TS- l)d1 +1 + JMAX - 2+ 1=2 x MAXlTS + JMAX - 2.

MAX-GLOBAL-TIME-STEP= S1 -1=2 x MAXlTS + JMAX - 3,

Li= MAX(O, r(t + l-S1,.)/d1l) = MAX(O, r(t + 1- JMAX)/21),

U1 = MlN(MAXlTS -1, Lt/2JJ),

t12 = t -TB(I12, (Ii))= t - (11d1+1) = t - 211 - 1,

L12 = MAX(O,t - 211 -1), U12 = MlN(JMAX - 3, t- 2Ii - 1).

Therefore, the final transformed loop is as shown in Figure 10. Note that, in the figure, 0 ~

t - 211 - 1 ~ JM AX - 3, when 1 ~ t - 211 ~ JM AX - 2, so we wrote

instead of

Forall 112 = M AX(O, t - 211 - 1) to M lN(J MAX - 3, t - 211 - 1).

18

We ran the sequential and parallel version of SOR algorithm on Sequent machine using 1, 2, 4,and

7 physical processors for various values of JM AX until the result converges under eps = 0.00001.

The experimental data are summarized in Table 11. When only one processor is used, the parallel

SOR runs slower than the sequential version because of the overhead to fork parallel tasks. Otherwise,

the speed-ups are very promising. Especially, the speed-up of parallel SOR over sequential version

improves as the problem size (represented by variable JMAX) increases.

Note that the SOR algorithm is not vectorizable for any loop. In Figure 8, the loop indexed by N

is not vectorizable because of the self-dependence on statement 5, and the loops indexed by J and L

are not vectorizable either because of the self-dependence on statement 10. Applying the wavefront

method to the SOR algorithm (actually to the loop indexed by N which was parallelized by our

method) is not easy because it is loosely nested. We may transform the loop N into a tightly nested

form by bringing statement 1 to 6 and statement 15 inside the innermost loop L, using if statements,

and apply the wavefront method. This strategy seems to work for this particular example, but, in

general, transforming a loosely nested loop into a tightly nested form is not always possible. For

example, suppose the statement 15 in Figure 8 were a loop, say loop K, instead of a simple statement.

Then, to transform loop N into a tightly nested form, we need first to fuse loop K with loop J.

However, loop fusion is not always possible [Wolf89]. Therefore, applying the wavefront method to

loosely nested loops by changing them to tightly nested forms is not always possible.

Finally, applying DOACROSS to the SOR algorithm is not promising, either. Let's look at Figure 8

to see how DOACROSS can be applied. Since the loops indexed by J and L (from statement 7 to 14)

are sequential because of statement 10, we may apply DOACROSS to the outermost loop (indexed

by N). Then, since the code section from statement 7 to 14 has to be ordered between iterations1

the asymptotic execution time is O(Q x JM AX2), compared to O(Q x JM AX) in our case (see

Figure 10), where Q is the expected number of iterations to satisfy the convergence test in statement

15. To improve the DOACROSS schedule, we may remove the strict ordering of the code section from

statement 7 and 14. That is, we no longer regard the inner loops J and Las a single statement. Then,

to preserve the semantics of the original loop, every instance of statement 10 and 11 of loops J and

L (there are rougly JM AX2 of them) at each iteration of loop N needs to wait for a synchronization

signal from the previous iteration of loop N. This means about JM AX2 of synchronizations are needed

between any two iterations of loop N, which is not a trivial problem from implementation point of

view, especially because the value of JM AX could vary. At least, in the Sequent machine, it seems

impossible to implement such a large and varying number of synchronization signals.

5 Conclusion

In this paper, we showed a technique that can parallelize non-vectorizable loosely nested loops. Since

loosely nested loops represent the general form of nested loops, our method has a very wide appli-

19

jmax

20

40

60

80

100

jmax

20

40

60

80

100

no. of pe's in parallel SOR

1 2 4

2.6 1.6 1.1

20.4 11.5 6.0

69.1 37.9 20.5

167.8 90.2 46.4

331.6 176.4 92.7

(a) Comparison of execution times (seconds)

between parallel SOR and sequentail SOR

no. of pe's in parallel SOR

1 2 4

0.9 1.5 2.1

0.9 1.6 3.2

0.9 1.7 3.2

0.9 1.7 3.4

0.9 1.8 3.4

7

0.8

4.0

13.1

28.9

54.9

(b) Speed-up of parallel SOR over sequential SOR

Figure 11: The results of experiments on SOR algorithm.

20

•

seq SOR

2.4

19.3

64.9

158.1

310.9

7

3.0

4.7

5.0

5.5

5.7

cability. Previously, loop parallelization was limited to single loops or tightly nested loops when the

loops are not vectorizable.

Two steps are needed in our method: computing the exact time step of each statement instance

and capturing and expressing the parallel statement instances whose time steps are equal.

Computing the time steps of the statement instances is the problem of computing the delays of

all nesting loops, because the time step of a statement instance depends on the delay values of its

surrounding loops. The delay values should be chosen such that they not only satisfy the dependences

between statements but also minimize the total execution time. We provide an efficient method to

find such delay values.

The second step is capturing and expressing parallel statement instances. At each time step, we

compute which statement instances can be done in parallel. We introduced the notion of loop tree

to explain this process. For each node (which corresponds to each nesting loop) in the loop tree, the

iterations that span the given time step are calculated using a simple relationship between the given

time step and the iteration number. Once these parallel iterations are calculated for all nodes in the

loop tree, we can transform the loop into a parallel form.

We showed the practicality of our algorithm by successfully parallelizing the SOR algorithm using

our technique. We ran the parallel version of it on Sequent machine with 1 to 7 physical processors

and obtained significant speed-ups.

21

References

./ [AiNi88] Aiken,A. and Nicolau,A., Perfect Pipelining: a new loop parallelization technique, Proc. of

the 1988 European Symposium on Programming, pp 221-235, Springer Verlag Lecture Notes in

Computer Science no. 300, March 1988.

[A1Ke87] Allen,J.R. and K.Kennedy, Automatic Translation of Fortran Programs to Vector Form,

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, pp.491-542, Oct. 1987.

[Bane90] Banerjee,U., Unimodular Transformations of Double Loops, 3rd Workshop on Programming

Languages and Compilers for Parallel Computing, Irvine, California, August, 1990.

[Cytr86) Cytron,R.G., Doacross: Beyond Vectorization for Multiprocessors, Proc. of the 1986 Inter

national Conference on Parallel Processing, Hwang, Jacobs, Swartzlander(eds), IEEE Computer

Society Press, Los Angeles, CA, pp 836-844, Aug. 1986.

[KiNi91) Kim,K.C. and Nicolau,A., Fine Grain Software Pipelining of Non-Vectorizable Nested Loops,

to be published in the Proc. of the International Symposium on Shared Memory Multiprocessing,

1991.

[KMC72) Kuck,D., Muraoka,Y., and Chen,S., On the number of operations simultaneously executable

in FORTRAN-like programs and their resulting speed-up, IEEE Transactions on Computers, C-21,

No. 12, Dec., 1972, pp. 1293-1310 .

.../ [Lam88] Lam, M.S., Software Pipelining: An Effective Scheduling Technique for VLIW Machines, In

Proceedings of the SIG PLAN '88 Conference on Programming Language Design and Implementa

tion, pp. 318-328, Atlanta, Georgia, June 1988.

[Lamp74) Lamport, L., The parallel execution of DO loops, Comm. of the ACM, 17(2):83-93, Feb.

1974.

[LaWo90] Lam,M. and Wolf,M., Maximizing Parallelism Via· Linear Loop Transformations, 3rd Work

shop on Programming Languages and Compilers for Parallel Computing, Irvine, California, August,

1990.

[Mura71) Muraoka, Y., Parallelism Exposure and Exploitation in Programs, Ph.D. Thesis, Univ. of

Illinois at Urbana-Champaign, 1971.

[Nico87] Nicolau,A., Loop Quantization or Unwinding Done Right, Proc. Supercomputing 1st Inter

national Conference, June 1987.

[Padu79) Padua,D.A.H., Multiprocessors: Discussions of some Theoretical and Practical Problems,

Ph.D. thesis, Univ. Of Ill. at Urbana-Champaign, Urbana, Ill. 1979.

22

[PFTV86] Press,W.H.,Flannery,B.P.,Teukolsky,S.A., and Vetterling,W.T., Numerical Recipes,

pp.647-659, Cambridge university press, 1986.

[SDWX87] Su, B., Ding, S., Wang, J., and Xia, J., GURPR -A Method for Global Software Pipelining,

Proc. of the 20th Microprogramming Wordshop (MICR0-20), pp.97-105, Colorado Springs, CO,

Dec. 1987. •'

[Wolf82] Wolfe,M.J., Optimizing Supercompilers for Supercomputers, Ph.D. Thesis, Univ. of Ill. at

Urbana-Champaign, Dept. of Comp. Sci. Rpt. No. 82-1105, Oct. 1982.

[Wolf87] Wolfe,M., Loop Skewing: The Wavefornt Method Revisited, Tech. Rpt., Univ. of Illinois at

Urbana-Champaign, April 1987.

[Wolf89] Wolfe,M.J ., Optimizing Supercompilers for Supercomputers, pp.92-94, The MIT Press, Cam

bridge, 1989.

23

11

3 1970 00882 4523

