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RADIATIVE TRANSITIONS IN ATOM-ATOM SCATTERING

IN INTENSE LASER FIELDS®

Albert M. F. Lau
Department of Physics and Lawrence Berkeley Laboratory
University of California, Berkeley, California 94720

July 21, 1975

ABSTRACT -
The.quantum‘nonperturbative analysis of Kroll and
Watson for a 2-level system of near-adiabatic atom-atom
vscattering in an intense laser field mode is extended to
treat a general multilevel system interacting with intense
single or mény field modes. A procedure for:solving
. rigorously the adiabatic eigenvalue problem for the wholé
charge-field system is given. A new transition probability
formula is derived. Cross sections are ealculated for .the
processes Li + H(Xlz:+) + VA + LI + H(Ali:+ or Bl7T)
where v 3> 1. Analysis of transition in an atom due to
intensity variation of_a laser pulse shows that desired
tranéition pfobability (e,gf, 1/2) per puise may be achieved
by var&ing the ﬁulse perameters. For thls, numerical results
of Na(3s) + 2hw + Na(5s) “and of Li(2s) + 8fw - Li(3s)

are ‘given.
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I. INTRODUCTION

In.this paper, we analyze two physical situations: (1) near-
adlabatic atom-atom: collision in an intense laser beam; and (ii) an
atom1 being irradiated by a strong laser pulse. We are concerned
with the calculation of probability'of single/multiphoton bound-bound
transition in the atomic system. There have been many experiments on
multiphoton transitions in atoms and molecules in intense laser
field.z-,5 Resonant'bound-ﬁounﬁ traﬁsitions are often decisive in
multiphoton ionization results.2’4 Most, fheoretical analyses on this
subject deal with isclated;atoms or molecules.é-9 There are compara-
tiveiy fewer theoretical studies ofratom-atom collision in an intense

10,11

laser field. In experiment with an atomic gas, radiatlve transi-

tion during atom-atom collision is signifiecant compared to that of the

isolated atoms.5

Kroll and Watsohlo.&Emsafterreferred io as KW) have analyzed
the interaction of a two-level "quasi-molecule" (the atom-atom in
near-adisbatlic collision) with an intense radiation mode. With similar
approach, the present paper analyzes more general cases of a quasi-
molecule of finite number (n > 2) of aiscrete levels interacting with
a finite number of lntense field modes, thus pro§iding treatment for"
greater variety of physical phenomena. Approximating the real quasi-
molecule with more-than-two levels is useful since the role of near-
resonant 1ntermediate states In determining the multiphoton transition
probability and of nonresonant levels in determining the energy shift
are important. The analysis does not make any perturbation.expansidn

nor the roteting wave approximation.9 It is not limited to the electric

dipole approximation.



-3-

In Section II, we write down the time-dependent equation for
near-adiabatic atom-atom collision in intense laser modes. Level
shifts &nd coupling between states are found from solutions of the
adiabatic molecular eigenvalue problem in Sec. III, In Sec. IV, a new )
formla of transition probability between two shiftéd levels is
derived. Section V contains two numerical studies. Finally in Sec. VI,
we study transition in an isolated atom due to intensity variatioh of

“the irradiating laser pulse.

II. TIME-DEPENDENT EQUATION

We consider near-adisbatic scattering of atoms in m Vfield
modes in a large cavity. The eigenvalues and eigenfunctions'of the
adiabatic molecular hamiltonian h are written as .wg anh ‘¢a
respectively, with parametric dependency on the fixed internuclear
configuration lg.lz Let the free-field hamiltonian and the charge-
field interaction hamiltonian be hY and h'. respective}y.13 We
shall approximate the relative motion of the nuclei by classical
ofbits Egt). Then in the c¢.m. frame of the quasi-molecule, the
hamiltoni;n desceribing the whole charge-field éystem is
Hc(t) = h +:th+ h', where h énd_'h?_ are functions bf the orbitﬁ
0.2 .

Since in scatiering experiments,‘the initial state of the
guasi-molecule is prepared before the charge-field interaction takes
Pplace andbthe final stete is observed after the interacfion has

occurred, we therefore expand the total wavefunction

- n
oy = 2: cs(t) ¢g -
B=1

4=

Substitution into the time-dependent Schrddinger equation for Hc(t)

gives

iﬁéa = waca + hYca + 2: (¢a’h’¢B)CB , (2.1)
B

where the term (¢a,h'¢a) for radiative transition between nuclear

‘molecular states of the same electronic state and the term

in %:cé(¢&,$s) for_éoilisionai transition have been neglected.;o
We now_expand the Cy in terms of tﬁe‘photon number states

Q(NA - vA) where NA is the initial mean number of photons in the

l}h mode and vy >0 (<0) is the number of photons absorbed (emltted)

by the quasi-molecule. That is

Ty A D
A = P “TATTATA ’ .
i b{v)\}(a)ve _ T{XQ(NA-\;A) s
{VA} :
. (2.2)
where wp is a particular 'a chosen for convenience of caleculation,

and {“A} denotes a set of m integers, corresponding to m modes.

Thus b{vA}(q) -is the probability amplitude that the charge-field

'_'system is'in the electronic state « 'wifh ‘{VA} photons "absorbed".

With the excellent approximation for intense field modes

we obtain from Egs. (2.1) and (2.2)

d : -
LF P (@) T Yy pe) By, yla)

m . .
. zl %: Gj(a,e)é{\,y_l}(s) : b{vYﬂ}(s» . (2.3)
¥- |
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where y.= vt/ad is a dimensionless time variable defined in terms of
any convenient constant speed v and Bohr rédius ao; and

- a'0 )
w{vx}(a) = e (g - ) - Z VyFy
, P )

is the "unperturbed eigenlevels" of the noninteracting hamiltonian

h + FY; and
aoux/v

is the "photon enefgj" In the subscript aet {v £ 1} of the last

term in Egs. (2 3), all the component indices are the same as those in

the set {vh} of the first and second terms except the. Yth, for which’

one has, 'v~:+ 1. instead. The upper’ and lower sign in Egs.. (2 3)

correspond to the use of the electric dipole 14 interaction -

hamiltonians, ,5_,
S Zq‘l ~E(0)
1
and
s - T o)
. ]

reépectiVely, Ve havé used both forms in our numerical calculations,

though it is believed that the h] 1is a better approximation in

treatment where highér levels are neglected.16 For plane wave modes,

1

. o g f2rT J S |
GX(u:BfG)EE ¢;zq ) ‘ E)

b
+ -
G)\(d,q) =0,

where I, = cNyfiw,/V is the intensity of the Ath mode (cavity
volume V). If the linear polarizetions and a set of real ¢a are

chosen, then G;(G;) are real and symmetric (antisymmetric).

I1I. ADIABATIC EIGENVALUE PROBLEM P
For calculation of transition probability, we use the level 'tﬁ
shifts and the coupling between states, obtained below by solution of {

the adiabatic eigenvalue problem. We write

v
) -if E(y ' )dy! _
b{-vx}(a) = e a{\)x}((’l) ’ (301-).'“‘“*"2‘

where (?(y)ﬁ§> is the "adisbatic eigensolution" to be found. In the ...

adiabatic 1imit ) o

d : o
: (a) = 0 .
a&'f‘{vx‘}“

Use of these expressions in Eqs. (2.3) gives .
Y= +
By j(a) = Wy g(e) g (@) ¢ ) Glens)
’ : ’ Y:B

x (e. ) fa ’(e)> : (3.2)
.{vY 1} {vY+1}
{vx}a
With <:{ } Y :) labeled such that as the interaction
6 (e, B)*O

?{vl}a w{vx}(a) ’
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in directly from Egs. (3.4) the recurrence relation for T.
it can be shown from Eqs. (3.2) that if a particular Ve obtain directly as. (3.4) the rec n wf!“’

{p, }a p,+ }u‘)
(\E{px}a’ﬁ\ ) is found, then (E{p)‘+u)‘}a,a ; for the same )_1 .

. -+
: T. = (D, +G T G . .6a
o but any {u)‘} can be obtained by eV (m\) RV R (3.6e)

- -1 :
Bt B -y Stnee D (a,8)7" + (VF)™" 64 * 0 as. v>«, T ° has the limit
TR e _

4 , ) » g e
and v%\) + (VF) G -+ o0 . (3.6b)
{pfux}u _ b{p)\}a ' : : Similarly for v < p, we define T'. by R , .
a, 1 B) = a{ }(B) . ) . [\Y) _ B
L\’A \)A—UA .
. ' d = T'4d
We proceed to solve Egs. (3.2). . wy AV M+l
A. _ Single Eield Mode . and obtain from Egs. (3.5)
Converting Eqs. (3.2) into matrix notations and dropping the 1 v
: + -1 .t : -
: i . TF. = D -G T . .7a) -
mode index, we let gi be the n x n matrix [Gt(a,s)], D be the LY ('W wh "‘\"1) a (3.72)
n x n diagonal matrix [(E - Wv(a ))Ga.B] and 2y be the n-component As before
column vector. Then Eqs. (3.2) become ' ' :
T' + 0 as v + -= (3.7)
Y
+ N
Da. = G(a ta ..) (32.3) -
A VRY ™ my-1 T vl ? . Alternatively, if (Si) 1 exists, then defining éz, ,I.I y
for all v. ’ ' ' and H'! by '
At y where an adiabatic level of interest (p,0) is not in + -1 4t
: L - ) = ,
near resonance with any other levels, we let ) ’ S . '\) ) Y
i " .
. L : : T = UH , v>p
- . ) o) )
a (a) d (a) a»p(o) | (3.4) and -
for all (v,a). Thus d (¢) = 1. Upon substitution of Egs. (3.4), o= ¢ty v<op
o : MV mvswy
"and factorizing out ap(o), Egs. (3.3) become _ : :
' we obtain elther directly from Egs. (3.5) or from Eqs. (3.6) and
. .
w.\)(.iw = .9» (39.1 * 'S\,+1) . _ (3.5) (3.7), the r_elations

Defining T for v > p by - [ - . t]—l
e :«{V rI! * H\ﬂl E\ﬁl }«-J\) ’

,9\, r«!‘v ;g\)—l ’



‘with
H oL o vee s o (3.8)
and
1 - _ + ' +__1 . .
R PRS- R S I (3.9

with H' + tI as v » -=,
my wh X
Thus with a cut-off value M, we let Japsy =0 end
"{_'_M_l = 0. Or if we take the approach using H-matrices, we let

17 . .
= i = r
§M+l _{, g-M-l i‘;‘. For a given physical ’system, the smallest

value of M is determined according to the accuracy désired by running

a few numerical tests. Starting from these limits we can generate all
other T (-M < v#p) < _M) by the recurrence relatioﬁs. Thus d .o
ca.n'be expressed in terms of \gp. with dp(o) = 1 known, all other
(n - 1) dp(a # o) are obtained‘by solving the n - 1 inhomogeneous
linear equafions obfained from the (v = p)th set of Egs. (3.5)
with a ¥ o.

Finally use of the (v = p, a = 0) equation of Egs. (3.5)

. gives

B = W(0)+ BZ 6*(o,)(Ty 1 (BY) * Ty (B1N(Y)
)Y

where dp(o) = 1 has been used. This equation is used to find the
adiabatic eigenvalue Epo by successive iteration, starting with
trial value Wp( o). The second term on the right is the shift of the
unperturbed level Wp( o). For low intensity, it agrees with the value

given by perturbation theory.
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Near y where two levels (p,0) and (u,t) are nearly

degenerate (for example, Fig. 1) we let

av(a) = d\)(a) ap(o) + sv(a) au(T) y (3.-.10) '

for all v,a. It follows that

dp(o) = 1 = su(r) s 'du(T) = 0 = .sp(o) -
(3.11) |

To find vs\l\)(ot)'s, wh;lch are independent of au('r), we substitute
d\)(a) ap(o) in place of a\)(a) in Egs. (3.3) and obtain equations
the same as Egs. (3.5). Thus all the g, cen be found by the -seme .
prodedure as before except for .Su (assuming T >0 and u o> p).
For Vv = U, since we cannot use the "singular" evq'uéti‘on A(\) =y,
oz.= T) "to find the 4's, ;I“u is obtained (i) by filling its
{(a = T)th row by zeroes to satisfy "q.u('r) = 0; and (ii) by directly
inverting the rest of the (n - 1') equations with v = U .to obtain
the other (n - 1) rows. The sv(a)'s are found similarly by .
substituting su(a) au(r) in place of av(ou) 'in Eqs. (3.3).
Defining XY, b &, = Yufu-1 for v>u end by |
Sy =y()§v+i, we note that Y =T for u<Vv<M and V! =3\')
for -Mgv<op,.

Finally, the characteristic equatién resulting from the =

(u,7) end (p,0) equations of Egs. (3.3) with substitution of. Egs.-

(3.10) for apﬂ(a) and aui‘l(a) has roots
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’ .
. 14
B, - %{w;](ﬂ ACRE (ORNTCH) Rt i
o o . At
Boc 3o e - o -we) e L e
where
W) = W (0) ¢ ) a¥o,8)(a, y(B) £ a (8))
. B .
: w&(-r) = wu(-r) + ngi(-'t,s)@u_l(sl) + 8u+1(3)> ,
8 . ‘ -
are the "shifted levels", and -
¢ = - Ze"w,e)@p‘_l(g):spﬂ(e))
8 .
= - ) ne)(a, (80 £ a,(8)
B .

is the coupling constant. The last equelity is based on hermiticity.

We may use any one of the expressions of Eu and Ez for iteration to -

. u L
find (Eu,s } and/or (Ez,s‘ ). The minimum of the level separation
Eu - El is the "point of closest approach" around which we calculate
the transition probability. »

B. Many Field Modes

For the sake of clarlity, we will indicate the generallzation
of the above method to many field modes with the case of two modes. We
shall use this in the numerical example in Sec. VB. Equations (3.2)

for two field modes may be written in the form

moy-1 a) (3.13)
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where
D (v,a,viat) = (E + v ,F. )8 8 —[w ()8 . 8
.m\)z 17’1 22 vlvi oel! vl vvl\’l‘ oot
¢ (ot )(8 8, yey)
* a,a ] £ [ } s
1 vlvl+1 vlvl 1
+ ' . £,
G (\’10"Vi°") = §v N Gz(a,a' ).
171 :
and
a. (via') = g (a') .
\)2 1 vivz

For transition where photon'nuﬁber of only one mode changes, that mode
should be assigned the role of mode 2 here. Equations (3.13) has the
same form as Equations (3.3) for one mode. Thus the solution is
similar as before, even though ;& are not diagonal. For near

2
resonance between levels (plozc)' and (u1u2r), for example, we write

Ht

a, {(v.a)
v2 1

(v.a)a_ (p.0) +s (va)a (wmT), (3.14)
e 7 %0, P vy 1%t |
for all d,‘ -Mi < vl < Mi, and -M2 £ 92 < Mé,'and use component
equations (91020) and (uluzT) to obtain the corresponding
characteristic roots as in Equatione (3.12). The level shifts and the™ =

coupling constent contain additive contribution from each mode.

IV, A TRANSITION PROBABILITY FORMULA
Suppose we have (near) resonance occurring between two levels
"1" and "2" near y = 0. Then only the probability amplitude b1

and b, will vary significantly while all other. bv(a)'s in Egs.

2

 (2.3) may be approximated by their adiabatic counterparts given by
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. U 2 . s
Egs. (3.1). We may use either g or al the resulting difference
of such choice being small near the point of closest approach.l8

Substitution of Egqs. (3.1), Egs. (3.10), or (3.14) intc the component

equations "1" and "2" of Egs. (2.3) gives

db,

— - W =

15 - Wby Go,

db, .
i?y--wy:2 = G, , ‘ (4.1

where Wi and G are respectively the shifted levels énd coupling
constant)defined Béfore. The 5oundary conditions are that in the
remote past b, = 0 and Ibll = 1. Now we derive a new formula
useful when the shifted levels have two well-defined relative slopes

b and b,

a -'by y<0
a +b'y y>0

where a 1s the minimum level separation. See Fig. 1. The only
drawback in the aboﬁe approximation is the introduction of discpntin—
) uiﬁy ofjslope Qf Wé - Wi» at y = 0. ‘Hqﬁever; the advantage is fhat
withopt fﬁrther approximation a transition probability formula éan be
derived rigorously and is applicable even when a = O,

. y
We introduce, with k. = W!i(y' )y ,
Al Sl A

s _s8_ € K y<0
1k1 1§y

bz(Y) = Uy)e e

-
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into Eq. (4.1) and obtain, neglecting the small dependency of G on
y’l9
2 2 .
a“u 2 1ib b ay21{ .,
- 2 -2 U = 0 y£0
N A ,
- dy 4

2 - '2 2
R R T 1 I TS
@y N o

Wé need to find only the solution U(y; |al,|bl,|b']); for the solution
*

U(y; -lal,-Ib],-1p']) = U (y,la],|b],|o"|) as can be shown easily

from the above equations.

Now with definitions:

-i¥ -7
z_ = <§ - %) bl e ¥ = y_ bt e 4
- : -iT 1T
z, = <§ + g;) e 4 = v, p'te 4,

the above equations are reduced to the Weber's equation520

u(z ) L 7 ) ,
— +n +. 35 - = |U(2 =.0 T ys0
—'sz_ 27T : |
Puz,) [ | 2
+
where n = ip, n' = ip!' -1,
2 2
_ G
P = 95": p' = -B‘T
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For y < 0, the solution satisfying the boundary condition
b, =0 and |b.] =1 in the "remote past" (i.e., [béy & >
2 1 . %)
is :

.1
Wz ) =E§egnmdpnj

A general solution for y >0 is

Wz,) L D1 g(-12,) + M D \(-2,)

where L and M are coefficients to be determined by demanding

continuity of b, ‘and of its slope at y = O. We obtain

. PEL 1T '
L-= N{n'e K3 D1D6 - (b/p? )s(n +1)e 4 DZDS}/D s

' 13 1}: 3
M = N[(a/b Je D1D3‘- {(n' + 1)e DlD4 + (b/b')*(n + 1)

. 4T
X e 1321)3]/13 ,

where

.
-Ip
No= e e4
17 121 ‘ 17
D £ (a/b'é) e * D3D5 +n'e 4 D3D6 = {(n' +1)e 4 D4D5 ,

e 12
Dl = D—n—l bj-'e s

NU
'
|U
q
o
U‘”'lm
m e
R ]
\-/

1=
n

-~ For |z+| =>b'é
b,(¥)

b(y) =

3 |
-3 ' 3

/

R
e4
r(1 - ip')

y
X exp -1[ Wédy'-iPz'-Rnb'(y:,b_ar
0

_frbm which the transition probability is ‘

Le

p' B -7
PO ¢, M

r(1 - ip')

1
For the speclal case of a/bé >>1 and a/b 3 >>
2
2 2 1G -2mp!'
|b2| = []l:%L‘L (1-e7™ )] ’

which has desiratle behavior with respect to e,

independent of b.

y+ —?‘-5 >> 1, we obtain the asymptotic formula for
b

2 ia2
- 7pT ’

(4.2) - -

1, we obtain -

G and b', but is
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V. NUMERICAL EXAMPLES
The orbit of the relative motion of the colliding atoms enter
into our calculation through (1) G(a,B) which depends on the orienta-
tion of the internuclear axis relative to the polarization vector €;

and (ii) the veloeity dR/dt ‘in the relative slopes ‘

Gy = 2§
that occur in the transition probabilitj formulae, To teke (1) into
consideration, we integrate the differential orbit equation, using the
unperturbed potential curves as a good approximation (though strictly
speaking, the self-consistent shifted potential curves should be used).
The evaluation of dR/dt, final transition probebility and cross
section have been discussed in KW.

A, Li and H Scattering

As examples, we consider scattering of Ii with H in an
intense field mode with A = 0.826 4 in the geometry of Fig. 2 for
relative speed v_= 5 x 10° cm/sec. Values of wa(R) and

. Xl + 1l =t
(o, Zr «$.) for the lowest lying singlet states z , A Z ,
o ini B C : .
and .317T are taken from Docken and Hinze.2' These three levels rep-
resent a fairly good approximation because according to the less
accurate calculation of Bender and Davidson,22 the higher levels all
lie at least about one-photon (fiw = 1.5 eV) energy above the §17T
level. We assume that the atoms are initially in the electronic
singlet ground state X}§:+. There are 1~, 2-photon resonant
R 1 .
transitlon to A §:+ near internuclear separations 9.4 ao and

5.9 &, and 3.7 a respectively; while 2-, 3-photon resonant

transitions to BMYT ocecur at 5.1 a  eand 3.1 a_ respectively. Using

-18-

a Landau-Zener-like formula,lo we calculated the transition probabili-
ties to these two excited states and the cross sections are presented
in Fig. 3. We observe that only for low enough intensity are the
cross sections proportional to I and 12 for transitions to '1§:+
and Bl7r respectively, as expected from perturbation theory.

B. Stimulated Emission by Field-dependent Lowering
~ 23

of Potentiﬁl Barrier

§

‘We consider herebcolliding atoms with model adisbatic potential
curves and dipole matrix elements illustrated in Fig. 4. Initially
the quasi-molecule is in state'z,which has a potential barrier (e.g.,
due to avoided crossing) at Rb‘ For R > Rb, the dipole transition to
the state 1 1s forbidden, while for iR < Rb it is allowed. For
diatomics, the initial state 2 is achieved by some pumping. ‘But for
polyatomics,‘no pumping is necessary because the potential surface 2
may represent ground state of one configuration of the quasi-molecular
complex while potential surface 1 corresponds to a rearranged configura-

tion. At thermal relative velocities, the potential barrier is too

‘high for the classical pehétration {or too little quantum mechanical

tunnelling) into region R < Rb' One way to overcome the barrier is
to 1owér it by a sufficiently intense laser’field with a photon energy
smaller than the energy gap between level 2 and 3 in the neighborhood
of - Rb. Once the quasi-molecule penetrates into the R < Rb region;
it will most 1likely radiate near the classical turning point R¢ at a
second frequency. For case depicted in Fig. 4, part of the electronic
energy upon photoemission is converted into relative kinetic

energy of the colliding particles.
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For numerical study, we consider the following unperturbed
potential energy curves Wi(R) (in eV) and dipole matrix elements
(in AU) Mjk = (JI Y £i|k> for a model diatomic colliding system

i .

(of reduced mass = 20 x proton mass and relative speed = 105 em/sec ),

wl(R) = 1.5 e-s(R;B)

4.0(R-4.8)2’

WZ(R) = 2.9+ O;l<§ - e-1’6<R_3'75?>2 +0.153 ¢

3

wy(R) = 4.285 + 1.2 e~3(B-3)

: - 2
MlZ(R) = 3.033 e'1-515(R 3.2)°% ’

(%) - | ¢-0-738(R-4.85)
3 S

M, 5(R)

2.0 ,

for R 2.3.2 a,. We assume electronic state 2 and 3 to have the same
A-quantum number while that of state 1 differs from theirs by 1.
Scattering geometry is shown in Fig. 2, where 2 is the linear‘
polarization El of the intense mode. The original bar?ier is

0.02 eV too high for classical penetration. With high-intensity laser

field wavelength chosen to be 1.0648 y, ‘the bump is lowered:by about

12

0.04 eV at I W/cm . The colliding atoms for certain range

1

of impact parameter (b =0 to bmax = 1.97 ao) can now penetrate

into the R < Rb- region. The system has cértain_probability Plz(b)

to radiate near Rc by stimulated emission into the second mode

Ay = 0.486 u (€., is chosen parallel to El). The cross sections

for stimulated emission into. the second mode

-20-

b
max

Y = 27 d b P. (b)
I2 12

o

are given in Table I, P, (b) being approximated by formula (4.2).
We assume that transition between the shifted levels 2 and 3 near Rb

is negligible, because of the large off—resonance 0.06 eV. Raising

the third level by O 4 ev higher changes ‘the amount of potential

barrier down-shift by less than 10%. Thus the selection of the thirds
level (or high intensity laser wavelength) is hot severely restrictive.
An interesting effect occurs which is due to the fact that the
coupling between the second and third levels depends on the angle
between the internuclear axis of the colliding atoms and the space-
fized linear polarization gl’ Thus colliéional'systems with impact
parameter b = 1.46 to 1.97 a, c;n get into the region R < Rb but
become bound due to the change of this angle on the outgoing trip.

Values for cross section for such "trapping"

1.97
b, = 21:[ db b(l - PIZ(b)-),
S J1us -/

are given ih‘Table I. fhe trapped colliding system will become &
"vibrating" molecule that keeps on rotating relative to El'
Following approximatély the motion of the bound molecule in the
intense beam shows that after five vibrations, the atoms are separated
again. But while bound, they radiate predominantly near Rc’ thus
enhancing 0y by an amount Ao indicated in the last column of

2
Table I.



-21-

VI. TRANSITION DUE TO INTENSITY VARIATION
Intense laser field in experiments i1s often pulsed. The above
theory cen be adapted to treat-transition in an isolated atom being

irrediated by an intense laser pulse.24 Now the amount of level shift

of the atom is a function of intensity of -the pulse; which is in turn

®  a function of time. For a particular atomic system with proper choice

'~ shown in Fig. 5.

of the laser A, one may get two pseudocrossings (PC) per pulse as

The final transition prqbability per pulse (assumed

" symmetric) is given by

£ = 21 -1T)
where T =1 - exp(—ZﬂGz/laI) is the transition probabilitylo at one
PC. The relative slope between the two shifted levels W, and Wi
| . 1 .
i _f_o_d(w2 wl)d;;
e v ar .3

is evaluated at the "eritical intensity" I' ‘at which the point of
closest approach of the aqiabatic eigenlevels occurs.

The anelysis below shows that desirable transition probability

per puise can be achieved by chéice of pulse shape and pulse parameters

b&his may have important application in efficient obticai pumping and
in isotope separation. For example, to attain the maximum value

f = 1 , the temporal slope of the pulse at I' 1s given by

2
arl
‘E? 2n8/en2
_where
a_ da(w! - w!)
§ = of |22 (6.1)

~22-

. _£2/T2
For a gaussian pulse, I{(t) = I0 e

3

"

ﬁ‘x' - 2I'(9,nIo/I')%/'r i

. This implies that for given & and I', there is a pair of optimum

values (Ié,r') such that f equals % . They are related by

T = 7.516 x 1072%(8n 2) T'(Sall/1 )2/m6

where ¢ in watt)’cm2 in second.

is in atomic units, I' and T'
The validity condition for applying the transition probability formula

for T above requires that for a gaussian pulse,

2.4 % 10° & I'r(Rn(Io/I')>3/2 >> 1

is to be satisfied.

As examples, we have calculated the quantitiés s, I'
characterizing the 2-photon transition from ground state 3s to 5s
of sodium atom and the 8-photon transition from ground 2s state to
3s state of lithium atom. (Table II.) From these values, transition
probability for any pulse may bé calculated. States of 3-8s, 3-5p,
3-5d, and 4-6f are included in the calculation for sodium atom; while

states of 2-78, 2-4p, 3-5d, and 4~6f of lithium atom are used. The

23 The magnitude of dipole matrix

energy levels are taken from Moore.
elements are calculated from work of Anderson and Zilit1226 and their

signs from Bates and Da‘mgaard.27 The range of wavelengths in the

sodium case is chosen such that the 3s and 5s levels are shifted

into 2-photon resonance because the 3p levels répel the 3s level

stronger than they pull the 5s level. In the lithium case, the 3p
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states strongly shift the 3s level down into 8-photon iesonance

with the 2s ground state.

It is found that for soidum atom irradiated by a gaussian

pulse of A = 0.60239% 1, I =6 x 10° W/er® and T = 1 nsec, final

transition probability f =

NI O

the sensitivity of £ to =t .over a range of Wavelenéth; As can be

shown from analytic expressions above, the result is not so sénsitiﬁe

to peak intensities.
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Table II. 1 f critical Intensit I -1 d
Table I. Cross. sections of stimulated emission 01 of eble I Values of critica ensity (I') and pulse-independent

2

. factor (8) in Eq. (6.1) for wavelengths (A sidered in
trapping ct’ and of enhancement Ac as a function of ( )‘ P ( ) gt (A) o

~phot it i i ; 8-
the intensity of stimulated emission 1I.. (2) 2-photon transition in sodium (3s + 56); and (b) 8-photon

2 transition in lithium (2s + 3s).
Iz(w/cmz) OIz(aoz-') ot(aoz) Ao(aoz) R (a) Na (b) i

Lx10? | 14 x 1073 o5 | 21 x10? A(n) I'(w/en?) | 8au.) A | ey | e,
4 % 107 4.54 % 1072 5.5 1.6 x 10‘2 6.02396E-01 | 1.00E+Q7 | 1.851E-17 2.94060E+00 | 1.90E+07 | 3.414E-49
1 x 10° 1.14 x 10% |- 5.5 4.1 x 1072 6.02395E-01 | 1.74E+07 | 5.605E-17 i} 2.94075E+00 | 5.30E+07 |1.264E-45
4 x 108 4.54 x 1072 5.5 1.6 x 1071 6.02304E-01 | 2.55E+07 | 1.204E-16 || 2.94100E+00 ! 1.10E+08 | 4.421E-43
1 x 10° 1.13 x 107% 5.5 4.1 x 107% 6.02392E-01 | 4.00E+07 | 2.962E~16 {] 2.94150E+C0 | 2.3CE+08 {1.658E-40
4 x 10° 4.51 x 1071 5.5 1.6 " {6.02390E-01 | 5.50E+07 | 5.601E-16 || 2.94200E+00 | 3.50E+08 | 4.920E-39
7 x 107 7.86 x 107* 5.5 2.9 6.02385E-01 | 9.50E+07 | 1.671E-15 || 2.94250E+00 | 4.70E+08 | 5.487E-38
1 x 1010 1.12 5.5 4.1 6.02380E-01 { 1.35E+08 | 3,375E~15 || 2.94300E+00 ! 6.00E+08 ;| 3.656E-37
= 6.02370E-01 | 2.10E+08 | 8.171E-15 || 2.94350E+00 | 7.30E+08 | 1.951E-36
6.02360E-01 | 2.90E+08 | 1.558E-14 || 2.94400E+00 | 8.65E+08 | 7.714E-36
6.02350E-01 | 3.75E+08 | 2.606E-14 || 2.94450E+00 ! 1.00E+09 | 2.560E-35
. 16.02330B-01 | 5.25E+08 | 5.111E-14 || 2.94500E+00 | 1.14E+09 | 7.443E-35
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FIGURE CAPTIONS
Shifted level structure for which'a transition probability
formule is derived.
Particular geometfy for near-adiabatic séattering of two
atoms in intense field. Intérnuclear axls is along k and
the linear>polafiz§tion £ isin the f - & plane.
Inelastic cross sections for the process ‘
i+ H(3(12+) + vhy »-Li +'.'H(‘AlZ‘+ or B]?‘h’ ).over.a I'-énge
of field intensity (x‘= 0.826 yu). |
Potential curves and dipole matrix elements of model quasi-
molecule for study of field-dependent lowering of poten£ial
barrier. v '
Unperturbed atomic energy tevels W) *én_d"i are’ shifted

2
iinto multiphoton resonances at criticel intensity I' of

>the;intense laser pulse.

Transition probability per pulse, £, in Na(3s) + 2fw
Na(3s) + 2w » Na(5s) at several wavelengths for a few

gaussian pulses of the same pedk intensity 6 x 108'W/cm2.
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