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ABSTRACT OF THE DISSERTATION

Novel Computation for Fetal Electrocardiogram Extraction

By

Sadaf Sarafan

Doctor of Philosophy in Electrical Engineering

University of California, Irvine, 2022

Professor Hung Cao, Chair

Fetal electrocardiogram (fECG) assessment is essential throughout pregnancy to monitor

the well-being and development of the fetus, and to possibly diagnose potential congenital

heart defects. Due to the high noise incorporated in the abdominal ECG (aECG) signals,

the extraction of fECG has been challenging. And it is even a lot more difficult for fECG

extraction if only one channel of aECG is provided, i.e., in a compact patch device. Our team

has been developing a novel wearable fECG monitoring system consisting of an abdominal

patch that communicates with a smart device. The system has two main components: the

fetal patch and the monitoring app. The fetal patch has electronics and recording electrodes

fabricated on a hybrid flexible-rigid platform while the mobile app is developed for a wide

range of applications. The patch collects the aECG signals and send them to the app via

secure Bluetooth Low Energy (BLE) communication. The app software connects to a cloud

server where processing and extraction algorithms are executed for real-time fECG extraction

and fetal heart rate (fHR) calculation from the collected raw data.

This thesis work focuses on algorithms for fECG extraction from the aECG signals of a

pregnant mother including a novel scheme based on the Ensemble Kalman filter (EnKF)

for extraction from a single-channel aECG signal. The EnKF algorithm is developed by

considering a Bayesian filtering framework and formulating the fECG extraction problem as

a dynamic system whose state and measurement equations are represented in a state-space

xiii



form. Our work has the potential to transform the currently used fetal monitoring system

to an effective distanced and tele-perinatal care.
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Chapter 1

Motivation

According to the Centers for Disease Control (CDC), cardiovascular diseases have become

the first leading cause of death of all deaths occurring in the United States in 2017 [7]. Ac-

cording to the European Health Network European Cardiovascular Disease Statistics 2017

edition, each year cardiovascular disease causes 3.9 million deaths in Europe and over 1.8

million deaths in the European Union (EU) [8]. Assessment of an electrocardiogram (ECG)

will provide vital information about a heart condition, and the existence of abnormalities or

distress. However, ECG recordings, especially by portable devices are commonly contam-

inated by outside interferences referred to as ‘noise artifacts’. These noise artifacts are a

conglomerate of common noises such as motion noise, baseline wander, and powerline inter-

ference, just to name a few. Despite the recent advances in signal processing, there is still

no efficient method for denoising biopotentials acquired by wearables, such as ECG. The

ECG recordings are commonly distorted and contaminated by noise artifacts. Therefore,

the extraction of high-resolution ECG signals from noisy measurements is required.

A national study reported by the CDC showed that the U.S. fetal mortality rate remained

unchanged from 2006 through 2013 from the rate of 6.05 to 5.96 per 1,000 births [9]. The

1



infant mortality rate in the United States shows no improvement in the care system with 6.20

per 1,000 live births in 2004 and 6.23 in 2003 [10]. Thus, fetal heart rate monitoring (fHR) is

an essential component of perinatal care by recognizing elements that might imperil the life of

the fetus and mother. Fetal electrocardiogram (fECG) provides vital information about fetal

well-being, fetal development, and maturity, or non-reassuring fetal status during pregnancy

and labor [11][2]. The fECG extraction from maternal abdominal recordings is not an easy

task. The low signal-to-noise-ratio (SNR) of fECG and the appearance of other signals,

namely maternal ECG (mECG), baseline wander, and noise, bring challenges. A number

of reports have been presented on the development of new signal processing techniques to

tackle such issues.

The current global COVID-19 pandemic has led to critical demand for per-son-centered

healthcare instead of hospital-centered healthcare system. Expectant moms usually come to

the obstetric clinics many times during pregnancy for checkups. According to the CDC, a

study on 461,825 women with COVID-19 showed that pregnant women with COVID-19 are

more likely admitted to an intensive care unit, receiving invasive ventilation, extracorporeal

membrane oxygenation, or die compared with non-pregnant women [12]. This would stop

pregnant women from having physio-logical measurements, ultrasound examinations, or non-

stress tests, which are critical for both the mom and the unborn baby. This calls for an urgent

need for novel home-based tools and systems for reliable prenatal monitoring.

All methods that performed greatly for fECG extraction required multiple-channel abdom-

inal ECG (aECG) signal, which makes them unsuitable for continuous non-invasive fECG

monitoring [13]. Also, the high noise level in daily life renders long-entrenched challenges to

extract fECG from the combined fetal/maternal ECG signal recorded in the abdominal area

of the mother [13]. Therefore, a robust scheme to provide home-based fHR monitoring from

a compact device acquiring a single-channel aECG signal with the presence of high noise is

required.
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1.1 Contributions and impact

This doctoral work focuses on a novel signal processing algorithm to tackle the problem of low

SNR in NI-fECG recordings and extract the fECG from the aECG. This algorithm is more

robust and close to optimal performance as precise fECG is preferred for fetal monitoring.

The contributions of this thesis are summarised below:

• Simulated data by adding motion noise to the data mimicking to the situation with

wearable devices in daily life, to obtain a thorough view of the effectiveness and ro-

bustness in practical scenarios. See Chapter 4 and the journal paper [13]

• Development of a Home-based fECG Monitoring System. See Chapter 5 and the

conference paper [14].

• Novel algorithm based on the Ensemble Kalman filter (EnKF) to extract fECG from

a single-channel aECG signal. See Chapter 6 and the corresponding journal paper [15]

• Development of a novel algorithm based on the Ensemble Kalman Filter to remove

noise in ECG signals. See Chapter 7 and the conference paper [16].

• Review of existing NI-fECG extraction approaches. A thorough and comprehensive

review of NI-fECG extraction approaches was conducted. See Chapter 8 and the

corresponding journal paper [13].

1.2 Dissertation outline

The objective of this work is to tackle the problem of the current fetal ECG extraction

algorithms. The thesis was divided into three logical parts, which are addressed in this

dissertation, as follows. Chapter 2 introduces the methods that are currently used in clinical
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practice and research for fetal monitoring, development of fECG monitor, and factors that

may influence the fetal cardiac activity are described.

In Chapter 3, the various extraction algorithms are provided, including concepts of the

Extended Kalman filter (EKF), relevant for the novel proposed algorithm. This chapter

reviews the ‘state of the art’ in the field of signal processing for NI-fECG extraction.

Chapter 4 presents databases, tools, and materials that are used throughout this work for

validating the proposed. The aECG recordings acquired in real-life settings would possess

a variety of interferences, including motion artifacts. The online databank, however, was

obtained in the clinical setting, where motion noise was mostly non-existent since the subjects

were in a resting position. The realistic motion noise generation process is described in this

chapter, to mimic real-life scenarios.

A home-based fetal ECG monitoring system has been developed, in Chapter 5. The system

was validated and compared with both simulated data and online data. We applied for

Institutional Review Board (IRB) protocols to conduct validations with pregnant women in

our participating clinics at the University of California Irvine, CA (IRB2020-6342).

In Chapter 6 a nonlinear Bayesian filtering framework is proposed for fetal ECG extraction.

The EnKF was created from the combination of Kalman filter theory and Monte Carlo

estimation methods [17]. This chapter provides the theoretical background and overview of

the EnKF method. Finally, the EnKF is evaluated on our own clinical data, obtained from

a pilot study with 10 subjects each of 20 min recording, and data from the PhysioNet 2013

Challenge bank with labeled QRS complex annotations.

Chapter 7 presents a nonlinear Bayesian filtering framework for the filtering of single-

channel noisy electrocardiogram (ECG) recordings. Quantitative evaluation of the proposed

algorithm on the MIT-BIH signals and the modified MIT-BIH database with added motion

artifacts demonstrate the reliability and effectiveness of the EnKF. The EnKF is able to re-
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move different types of noises with minimum signal distortion. Concerning the high accuracy

of this method, it can be widely used in home ECG monitoring devices.

In Chapter 8, various extraction algorithms are intensively explored, including template

subtraction (TS), independent component analysis (ICA), and extended Kalman filter (EKF)

using the data from the PhysioNet 2013 Challenge. Furthermore, the modified data with

Gaussian and motion noise added, mimicking a practical scenario, were utilized to examine

the performance of algorithms. Finally, different algorithms are combined together, yield-

ing promising results. It should be noted that these combined approaches required higher

computational complexity, including execution time and allocated memory compared with

other methods. Owing to comprehensive examination through various evaluation metrics

in different extraction algorithms, this chapter provides insights into the implementation

and operation of state-of-the-art fetal and maternal monitoring systems in the era of mobile

health.

Chapter 9 summarises the finding of this research, and the strengths as well as weaknesses

in comparison with other algorithms. Future works are also presented.
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Chapter 2

Fetal ECG background

2.1 Introduction

This chapter provides the physiological concepts, technical background of fetal electrocardio-

gram (fECG), and fetal monitoring methods that are currently used. special focus is given

to the development of the fECG modality and to the information that can be extracted from

this physiological signal. We will review a selection of the available literature with special

focus on the most significant ones, which have been specifically developed for the problem

of interest.

2.2 Fetal Electrocardiogram & Characteristics of the

fECG

The Dutch physiologist Willem Einthoven developed the first electrocardiogram in 1903 [18].

In the late 1960s, computerized electrocardiography was used in many larger hospitals [19].
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An electrocardiogram or ECG is a simple display of the electrical activity of the heart muscle

and its changes over time, which are often printed on a piece of paper for easier analysis.

Like other muscles, the heart muscle contracts in response to the electrical depolarization

of muscle cells. In fact, ECG is the sum of these electrical activities that are amplified and

recorded in a few seconds. An ECG signal is recorded by placing electrodes in different parts

of the surface of the body. Figure 2.1 illustrates the electrical pathway through the fetal heart

and how this propagation translates into the characteristic waves that are observed on the

ECG signal. It should be noted that some functional differences between the fetus and adult

hearts are exist [20]. Despite the functional differences between the fetus and adult hearts,

the electrical activity is partly similar [20]. There are 5 main components to an ECG: P, Q,

Figure 2.1: The activation cycle of the fetal heart; adopted with permission from [1].

R, S, T corresponding to different phases of the heart activities. The P wave represents the

normal atrium (upper heart chambers) depolarization; the QRS complex corresponds to the

depolarization of the right and left ventricles (lower heart chambers); the T wave represents

the re-polarization of the ventricles. To interpret ECG, the heart rate, shape, and size of

each wave and the timing should be considered. The ECG waveform with characteristic

waves is depicted in Figure 2.2. The fECG is similar to the adult ECG, and contains the
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five characteristic waves (P, Q, R, S, and T). Although the structure and morphology of

the fECG contain more invaluable information for prognosis and therapeutic potentials than

the heart rate, many fetal ECG extraction methods have only extracted the R-R intervals

using the detection of R-peaks or the overall result of the ECG waveform. This is due to

the relatively low signal-to-noise ratio (SNR) of the fECG compared to the mECG, which

in itself makes the structure and morphology of fECG a challenging issue.

Figure 2.2: ECG waveform with characteristic waves.
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2.3 Fetal monitoring

The number of reported pregnancy-related deaths in the U.S. steadily increased from 18.8

maternal deaths per 100,000 live births in 2000 to 23.8 deaths per 100,000 live births in 2014

[21]. One of the most frequent birth abnormalities and the major cause of mortality from

birth disorders is congenital heart disease (CHD) [22, 23]. Genetics, inherited disorders,

or environmental factors such as infection or drug abuse may be associated with CHD and

cardiac malformations [24]. Early detection is of critical importance and can increase sur-

vival rates. Thus, fetal monitoring is essential throughout pregnancy for the recognition of

elements that might imperil the life of the fetus and mother. Monitoring the fetal heart con-

dition can help to diagnose problems such as preterm delivery, hypoxia, intrauterine growth

retardation, etc., which may not only pose a risk to the fetus but also to maternal health

[11].

2.3.1 Fetal data acquisition

Cardiotocography (CTG) is widely used to monitor fetal health. A key fetal monitoring

parameter, which is fetal heart rate (fHR) via CTG, despite being used in 85% of all labors

in the U.S., and with comparable frequency during the antepartum period for monitoring,

has not unequivocally shown that it can reduce perinatal mortality. The traditional CTG-

based non-stress test (NST) and contract stress test (CST) for fetal health assessment are all

done in the clinic or hospital under the supervision of a healthcare professional. The current

CTG uses the Doppler ultrasound method to measure fHR. It is performed by transmitting

an ultrasound beam through the maternal abdomen and measuring the frequency of the

reflected signal [25]. Echocardiography, also known as sonography, is based on standard

ultrasound techniques. Such measurement could be challenging at times due to the need

for precise alignment with the fetal heart to detect the fHR, which could be difficult when
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there are excessive maternal or fetal movements, or in the case of maternal obesity [26]. The

drawbacks of traditional CTG systems are: 1) high cost; 2) useless outside of the hospital

setting and 3) bulky and complicated equipment.

To overcome the fHR measurement difficulties for CTG using the Doppler method, especially

needed during a situation of possible fetal distress when fHR assessment is absolutely critical,

obstetricians have resorted to measuring fHR by the more reliable method of using fECG,

which currently can only be obtained through a scalp electrode directly attached to the fetal

scalp [27]. However, this is an invasive procedure and can only be done after the rupture of

the amniotic membrane, potentially causing some risks such as infection.

The other CTG measurement is a fully non-invasive acoustic recording called phonocardiog-

raphy (PCG) [28]. PCG is a graphic registration of the heart sounds and murmurs produced

by the contracting heart [29]. Although this measurement is inexpensive and non-invasive,

but the acoustic signal recorded on the maternal abdominal surface is contaminated by

undesired signals such as acoustic damping through the fruit water and tissues, the noise

produced by the fetal movements, sounds of maternal heart activity, and surrounding en-

vironment noise [28, 30]. The obesity of the mother may prevent PCG recording. Figure

2.3 illustrates the typical fetal acoustic heart sound signal (fPCG). It can be seen that each

heartbeat can be separated into two parts: an S1 (systolic) beat, followed by a softer S2

(diastolic) beat.

Figure 2.3: Typical fetal acoustic heart sound signal [2].
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Alternative fetal monitoring methods over the last few decades are the bioelectric activity

of the fetal heart [4, 31]. Most heart defects and CHD are captured on the cardiac electrical

signals, which are recorded by electrocardiography and are believed to contain more infor-

mation than conventional sonographic methods [32]. The fECG provides useful information

on both fetal heart rate and fetal heart condition. The fECG can be recorded in two ways;

through an electrode attached to the fetal scalp while the cervix is dilated, also known as di-

rect fetal electrocardiography (invasive fECG), or non-invasively through electrodes attached

to the mother’s abdomen. Figure 2.4 shows an example of an abdominal electrocardiogram

(aECG) recorded simultaneously. Due to obtaining the NI-fECG from the surface of the ab-

domen, the aECG is always accompanied by other bioelectric potentials like maternal heart

activity, fetal heart activity, maternal muscle activity, fetal movement activity, and noise

[33]. The quality of this signal depends on the position of the fetus, the location of the elec-

trode, the developmental stage of the fetal heart, and the environment noise [34, 35, 36, 37].

The mECG and fECG signals overlap in both the time and frequency domain. Therefore,

continuous and noninvasive fECG monitoring has remained a challenging problem in the

research community. While strides have been made lately in sensing technology and signal

processing to enhance the signal-to-noise ratio (SNR) of aECG signals, the monitoring, and

analysis of fECG are still immature [38]. In chapter 3, an overview of the NI-fECG signal

processing is provided.

2.4 Review of fetal ECG monitoring devices

In recent years, home-based devices for fetal monitoring have been introduced. Those include

hand-held ultrasound fHR monitor devices. The HeraBEAT device (HeraMED, Netanya,

Israel) employs ultra-wide beam Doppler technology. However, these devices have technical

limitations, such as signal loss with high body-mass-index (BMI) mothers, and high risk to
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Figure 2.4: Example of a abdominal ECG signal. The fQRS annotation is shown in orange
asterisk (*).

the safety of pregnant ladies and fetuses [39, 40]. Further, they can assess the heart rate and

provide no indication of other important functional conditions of the heart.

Besides the in-hospital/clinic CTG clinical application, such fHR/fECG assessment using

non-invasive sensors on the abdomen of the pregnant mother can be used for the home-

based fetal heart monitoring applications, opening up a new dimension for antepartum and

intrapartum wellbeing assessment and monitoring. For fECG-based systems, there are four

major providers. MindChild Medical has developed the MERIDIAN M110 system. It over-

comes the limitations of traditional CTG; however, the system is wire-connected, bulky, ex-

pensive, and non-mobile. The GE Monica Novii wireless patch system (GE, USA, formerly

the Monica Healthcare Novii) uses less bulky fECG sensors and it is wireless. However, the

mobile range is limited to the labor and delivery areas in the hospital. They are all very

costly, and not affordable for consuming customers. The Philips Avalon Beltless (Philips,

the Netherlands) has cableless connections. However, this device must be used in a hospital
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Figure 2.5: Examples of FDA-certified commercially available based on Doppler technology
(HeraBEAT) [3].

and can not be used at home [6]. The Nemo Fetal Monitoring System (Nemo Healthcare,

the Netherlands) is a wireless fetal monitoring device. It provides the uterine electromyogra-

phy (EMG) signal [41]. Its performance is strongly dependent on location, timing, maternal

activity levels, and maternal posture.

2.5 Summary

In this chapter, the physiology and electrophysiology of the fetal were reviewed. We also

presented a number of NI-fECG extraction techniques that are used. The advantages and

disadvantages of each group are described.

Different home HR monitoring devices are described. fHR can be done via 1) fECG extrac-

tion from aECG or 2) Doppler ultrasound like CTG systems. There are already existing

ultrasound-based consumer products for fHR assessment in the home setting. Those require

active scanning over the abdomen coupling with ultrasound gel to locate the fetal heart to

obtain the fHR, which is highly technique dependent, easily make difficult by maternal or

fetal movement and larger body size. Thus, it is especially challenging for non-medical per-

sons to administer it. Home-based fECG systems were developed and introduced; however,

they are bulky, costly, and intrusive, thus not widely used. Further, the lack of effective and
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(a)

(b)

(c)

(d)

Figure 2.6: Commercially available NI-fECG-based devices. (a) Monica Novii Wireless Patch
System [4, 5]; (b) MERIDIAN M110 Fetal Monitoring System [4, 5]; (c) Philips Avalon
Beltless [6]; (d) Nemo Fetal Monitoring System [4, 5].

robust signal processing has limited those to only fetal heart rate monitoring.
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Chapter 3

Review of Non-Invasive Fetal ECG

Analysis

3.1 Introduction

There are several methods proposed for extracting fetal electrocardiogram (fECG) from

abdominal electrocardiogram (aECG). These methods can be generally classified into three

groups: blind source separation (BSS), template subtraction (TS), and filtering techniques.

The BSS methods include methods such as parallel linear predictor (PLP) filter, principle

component analysis (PCA), independent component analysis (ICA), and periodic component

analysis (πCA) [37, 42, 43, 44]. The BSS methods consider that the abdominal signal is a

combination of fECG, mECG, and noises [26]. Although these methods perform greatly for

fECG extraction, they need multiple-channel aECG signals, which makes them unsuitable

for continuous non-invasive fECG monitoring. In addition, after extraction, the order of the

separated independent component could not be determined, thus it is challenging to identify

the fECG component for further processing [45]. Therefore, the BSS methods usually require
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the determination of other parameters (e.g., t-test, correlation coefficient, heart rate) to

automatically identify the extracted components [46, 47, 48]. TS is another widely used

approach. The method involves subtracting a synthetic mECG generated by estimating the

QRS complex waveform (mQRS) of mECG from the abdomen signal [49, 50, 51, 52, 53, 54].

The main challenge of this method involves mQRS detection [55], which becomes more

challenging if the fetal R waves overlap with the maternal R waves. This drawback degrades

the effectiveness of the template subtraction method for fECG extraction. The popular

filtering techniques include adaptive filtering [56, 57, 58, 59], Kalman filtering [60, 61, 62],

and wavelet transform [63, 64]. These filtering techniques are mostly and effectively applied

for denoising of single-channel ECG signals. Adaptive filtering-based algorithms have been

proposed for fECG extraction [65]. Such methods, however, require additional reference

signals for separating the different components of the aECG. Some popular algorithms used

for fetal ECG extraction are described in detail in the following.

3.2 Kalman Filter

Bayesian filtering is a probabilistic technique that uses incoming measurements y and a

mathematical process model to recurrently estimate the posterior distribution of a hidden

state random variable x at each time k [16]. The conventional Kalman Filter (KF) assumes

a linear model for the system dynamics and observation equations. In practice, however,

most systems are nonlinear in nature. A dynamic model of the system is written:


yn = Hxn + wn

xn = Axn−1 + un

(3.1)

We assume that un and wn correspond to the process and observation noise which have

no bias: E[wn] = 0 , E[un] = 0, and have a covariance matrices Qn = E{unun
T} and
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Rn = E{wnwn
T} respectively.

x̂n|n−1 = Ax̂n−1 +Bun−1

Pn|n−1 = APn−1A
T +Q

(3.2)

where x̂n|n−1 is the predicted value of the state vector, Pn|n−1 is the covariance of the error of

the predicted state vector given by Pn|n−1 = E[(x̂n − x̂n|n−1)(x̂n − x̂n|n−1)
T ], and E[.] is the

expectation operator. Once the measurement vector is received, the measurement update

step is used to compute the estimate of the state vector, x̂n and the covariance of the error

of the state vector, Pn, by applying corrections to the corresponding predicted values based

on the measurement obtained as follows:

Kn = Pn|n−1H
T (HPn|n−1H

T +R)−1

x̂n = x̂n|n−1 +Kn(yn −Hx̂n|n−1)

Pn = (I −KnH)Pn|n−1

(3.3)

where Kn is the Kalman gain, and I is a diagonal matrix. Figure 3.1 shows a complete basic

operation of the KF.

Figure 3.1: Kalman Filter Algorithm.
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Extended Kalman Filter

The KF assumes that the system is linear, however real-world systems may be non-linear.

The Extended Kalman Filter (EKF) addresses the filtering problem in case the system

dynamics and observation equations are nonlinear. In other words, the EKF is an extension

of the standard KF to nonlinear systems.


yn = h(xn, wn)

xn = f(xn−1, un)

(3.4)

where f(.) is the state transition model applied to the previous state xn−1, un and fwn

correspond to the process and observation noise which are assumed to be white, zero-mean,

uncorrelated (E[wnun
T ] = 0) with associated covariance matrices Qn = E{unun

T} and

Rn = E{wnwn
T} respectively [3]. It is further assumed that the components of the noise

processes are uncorrelated i.e., Qn and Rn are diagonal. h(.) is the observation model that

maps state space into the observed space. The KF estimates the state xn based on the

knowledge of the system dynamics and the noisy measurements yn.

The non-linearities of the system’s dynamics are approximated by a linearized version of the

non-linear system model around a desired reference point. The linear approximation near

the desired reference point (x̂n, ŵn, ûn) will lead to the following linear estimates:


yn = h(x̂n, ŵn) + Cn(xn − x̂n) +Gk(wn − ŵn)

xn = f(x̂n−1, ûn) + An(xn−1 − x̂n−1) + Fk(un−1 − ûn−1)

(3.5)

where

An =
∂f(xn, ûn)

∂x
|x=x̂n Fn =

∂f(x̂n, û)

∂u
|u=ûn

Cn =
∂h(xn, ŵn)

∂x
|x=x̂n Gn =

∂h(x̂n, ŵ)

∂w
|w=ŵn

(3.6)
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The EKF linearization is shown in Figure 3.2.

Figure 3.2: EKF linearizing a non-linear function around the mean of a Gaussian distribution.

The time update step of the Kalman filter algorithm obtains the predicted value of the state

vector and the covariance of its error. The predicted state vector and the covariance of its

error at time n are computed from propagating their corresponding values at time n − 1

through the state dynamics as follows:

x̂n|n−1 = f(x̂n−1, un−1)

Pn|n−1 = An−1Pn−1A
T
n−1 +Qn

(3.7)

where x̂n|n−1 is the predicted value of the state vector, Pn|n−1 is the covariance of the error of

the predicted state vector given by Pn|n−1 = E[(x̂n − x̂n|n−1)(x̂n − x̂n|n−1)
T ], and E[.] is the

expectation operator. Once the measurement vector is received, the measurement update

step is used to compute the estimate of the state vector, x̂n and the covariance of the error

of the state vector, Pn, by applying corrections to the corresponding predicted values based
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on the measurement obtained as follows:

Kn = Pn|n−1C
T
n (CnPn|n−1C

T
n +GnRnG

T
n )

−1

x̂n = x̂n|n−1 +Kn(yn − h(x̂n|n−1, wn))

Pn = (I −KnCn)Pn|n−1

(3.8)

where Kn is the Kalman gain, and I is a diagonal matrix. Figure 3.3 offers a complete

picture of the operation of the EKF.

Figure 3.3: Extended Kalman Filter Algorithm.

3.3 Blind Source Separation (BSS)

The BSS methods assume that the abdominal signal is a mixture of independent signals,

consisting of fECG, mECG, and noises [26].

3.3.1 Independent Component Analysis (ICA)

ICA is a mathematical technique for recovering unobserved source signals (components)

from observed signal mixtures. Let us denote a matrix Let us denote the random observed

vector X = [x1,x2, ...,xn] considered as observed signals which are assumed to be linear.
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Instantaneous mixtures of the source signals are denoted by a matrix S = [s1, s2, ..., sn]. We

can present the relationship between X and S by the following equation:

X = AS (3.9)

where matrix A represents a n× n mixing matrix and contains the mixture coefficient. The

goal of ICA is to find the unmixing matrix W (i.e., the inverse of A) that will give the

matrix Y-the best possible approximation of S by:

Y = WX ∼= S (3.10)

For this purpose, a number of criteria can be considered on the basis of the maximization

of non-gaussianity, maximum likelihood, and minimization of mutual information, to name

a few [45]. Typically, ICA algorithms can be broken into several steps, including centering,

whitening, and iterative algorithms. While the centering step is utilized to make the signal a

zero-mean variable, whitening step is applied for transforming the observed signals so that the

new processed observed signals are white (i.e., their components are uncorrelated and their

variances equal to unity) [45]. The whitening step is necessary as it can significantly simplify

the ICA problem. For iterative algorithm steps, there is a number of formulations for this

procedure. For instance, the Joint Approximation Diagonalization of Eigenmatrices (JADE)

algorithm was first developed as an application of blind identification in beamforming [66, 67]

which is iterative with a defined number of iterations. The FastICA algorithm is considered

to be the most popular method among ICAs due to its simplicity, convergence speed, and

satisfactory results in numerous applications [45]. This algorithm is often used in ‘real

time’ applications because of the possible parallel implementation. It converges quickly as

it seeks the components one by one. FastICA uses simplified kurtosis for the independent

component estimation, and the detail of this algorithm has been summarized in Figure 3.4.

Another optimization algorithm is RobustICA. Compared with FastICA, RobustICA uses
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a general kurtosis contrast function to maximize the non-gaussianity, as shown in Figure

3.5. The process of this method is described in [68]. Overall, using RobustICA has some

advantages over FastICA, such as (1) pre-processing is not required which allows one to

deal with all signal types; and (2) RobustICA uses an adaptive step size, ensuring that

the weights converge to the actual convergence point, thus avoiding getting trapped as the

former algorithm does.

Figure 3.4: FastICA algorithm.

3.4 Template Subtraction

The main idea of TS is to regenerate mECG and then subtract it from aECG. Based on

maternal QRS detection, we identify each mECG cycle m belonging to 0.25 seconds before

and 0.45 seconds after maternal R peak positions with respect to the duration of the whole
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Figure 3.5: RobustICA algorithm.

cardiac cycle. The template maternal ECG (tECG) t then was formed by taking the average

of all maternal ECG cycles, and the new mECG was obtained by replicating the t as shown

in Figure 3.6. Another improved method based on the TS was utilized in this work, namely

TSc. In this method, the template maternal ECG cycle t was scaled with a constant α. The

scaling of t reduces the mismatch between the average and the actual mECG cycle m, which

is caused by the time-vary morphology of the mECG [69, 70]. The scaling constant a was

based on the search for the last-mean square (LMS) e2 error between m and t, as shown in

the following formula:

a = min ∥ t.a−m ∥ (3.11)
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Figure 3.6: Template subtraction (TS)’s illustration for aECG.

3.5 TS and ICA combination

The combination of different methods could yield higher performance [71]. There are many

ways of classifying the methods for extracting the fECG from the aECG mixture. The

different combinations are denoted as follows (1) TS-ICA; (2) ICA-TS; and (3) ICA-TS-

ICA.

Figure 3.7 illustrates the fQRS detection process with TS, ICA, and their combinations.

First, the aECG signals were preprocessed to remove the baseline wander, power line noise,

and high-frequency noise. Specifically, a notch filter with the cutoff frequency of 50 Hz was

utilized to remove the power line noise while a high pass filter and a low pass filter were

deployed to eliminate the baseline wander and high-frequency noise with the cutoff frequency

of 10 and 99 Hz, respectively. Second, it should be noted that the mECG’s amplitude is

usually larger than other components in aECG. Thus, the Pan-Tompkin algorithm was

implemented on four aECG signals, resulting in R peaks of mECG (mQRS detection) [72].

Third, the algorithms in the source separation block, which could be the TS method, ICA

method, or combined methods, have been used. In the case of TS, as described in Section
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2.2, after mQRS detection, a template mECG was produced. Subsequently, we subtract

the aECG with the template mECG, resulting in four residuals. Finally, the Pan-Tompkin

algorithm was used to detect fQRS. With the available fQRS reference annotations, the

channel having the highest F1 score would be chosen. In the case of ICA, three different

ICA methods (i.e., JADE, FastICA, and RobustICA) were utilized in source separation.

After applying ICA, the output would be fECG, mECG, and two other noise signals. The

reference mQRS would be used to select the mECG channel in the output. The Pan-Tompkin

algorithm was then utilized for other channels (i.e., fECG and two other noise signals).

Finally, the fECG channel was chosen based on a smoothing indicator (SMI). Specifically,

the SMI was defined as the number of occurrences, over each-minute segments, where the

absolute value of the change in instantaneous heart rate is more than 29 beats per minute

[73]. This threshold was empirically determined on the data and which channels had the

lowest SMI, was referred to fECG channel.
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Figure 3.7: fQRS detection process: (1) Preprocessing step with notch filter, high pass filter
and low pass filter utilized; (2) The Pan-Tompkins algorithms applied for mQRS detection
used to create a template mECG and for channel selection in independent component analysis
(ICA) method; (3) Source separation includes different approaches (TS, ICA and its hybrid).
For ICA and the hybrid method, the extracted signals contain 4 signals (i.e., fECG, mECG
and two noise signals; (4) Using mQRS detection from (2) as a criterion for fECG selection;
(5) The Pan-Tompkins algorithm applied for fQRS detection.
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Chapter 4

Database and Evaluation Criteria

4.1 Introduction

This chapter introduces the online and own databases used in the thesis. The statistical

measures used for evaluating the non-invasive fetal electrocardiogram (NI-fECG) extraction

methods are also presented. Furthermore, the modified data with Gaussian and motion noise

added, mimicking practical scenarios were used to generate the artificial databases developed

in the context of this thesis is also described.

4.2 Data

4.2.1 Online Data: PhysioNet 2013 Challenge databank

The data were taken from the PhysioNet 2013 Challenge databank which consists of a

collection of one-minute abdominal ECG recordings (aECG) [74]. Each recording includes

four noninvasive abdominal signals. The data were obtained from multiple sources using a
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variety of instrumentation with differing frequency response, resolution, and configuration;

although in all cases they are presented as 1000 samples per signal per second. Set A

includes noninvasive fetal ECG signals, as well as the reference annotations for them which

make validating the methods possible. This set contains 75 records, excluding a number of

recordings (a33, a38, a47, a52, a54, a71, and a74) that had inaccurate reference annotations

[71]. In each case, reference annotations marking the locations of each fetal QRS complex

were produced, usually with reference to a direct fECG signal, acquired from a fetal scalp

electrode. The reference annotations are produced by a team of experts manually.

4.2.2 Own Clinical Data

We developed the gen-2 ‘fetal monitoring patch’ containing non-contact electrodes (NCEs),

electronics, and secure communication with a smart device via Blue-tooth Low Energy (BLE)

[46] (Figure 4.1). The compact patch is 4 inches long and unobtrusive, thus, it can be

integrated on or inside maternity garments. The gen-2 patch has one single NCE channel

to collect the aECG of the pregnant subject. The collected data are sent to an Android

app connected to a cloud server for analytics. The system was validated on 10 pregnant

women between 28 and 34 weeks of gestation in the University of California, Irvine (UCI)

Medical Center. Each subject was resting on a chair during recording, and a maternity belt

with the fECG patch attached is worn so that the NCEs are located in the abdominal area

below the navel. The data were then collected in 5 minutes for each posture. More details

are described in our previous paper [14]. All clinical recordings were collected anonymously

under Institutional Review Board (IRB) approval 2020-6342 at the UCI.
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Figure 4.1: The fetal monitoring patch is a self-administered device consisting of non-contact
electrodes, electronics, and BLE worn by the pregnant woman. The wireless fetal heart
monitoring prototype in use at UCI Medical Center.

4.2.3 Online Data: MIT-BIH Noise Stress Test Database

Generally, all algorithms under development would be evaluated using reliable and open

online databanks of clean ECG signals. Our experiments use the MIT-BIH Noise Stress Test

Database includes twelve-half hours of ECG recordings and three-half hours of ECG with

typical noise such as baseline wander, muscle artifact, and electrode motion artifact [75].

Clean ECG signals were used from the MIT-BIH Arrhythmia Database (102, 108, 121, 122,

215, 220, 232, 118, and 119), and each dataset was calibrated at six noise levels based on

different signal-to-noise ratios (SNR) from -6 to 24 dB at 360 samples per second.

4.2.4 Modified Online Data

Modified abdominal signals with Gaussian noise added

With different practical scenarios in fetal/maternal ECG measurement, various kinds of

noise appear. According to the Central Limit Theorem, those noises tend toward a normal

distribution. Therefore, Gaussian noise with different dB has been added to the data to

mimic the real scenarios. Specifically, the normally-distributed random noises are generated

by randn function in MATLAB with the lowest amplitude ranging from -4 µV to 4 µV, which
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is denoted as noise level 0. Then, different noise levels would be increased by multiplying

with constant numbers divisible by 3 (i.e., 3, 6, 9, 12, 15, 18, and 21).

Modified abdominal signals with motional artifacts added

The dataset was obtained in the clinical setting where motion noise was mostly avoided

because the subjects were in a resting position, so the movement artifacts should be added

to the data for practical applications. We attempted to generate a realistic motion noise.

First, the ECG data were recorded from a healthy subject in different types of activities

such as walking. For ECG recording, the OpenBCI Cyton board (OpenBCI, Brooklyn, NY)

was used with 2 of its default electrodes. The board communicates wirelessly to a computer.

Since the amplitude of the noise is an important factor, normalization had been used for

all signals to reinsure aECG and the motion noise has realistic amplitudes. For extracting

motion noise, Extended Kalman Filter was employed as shown in Figure 4.2. First, the

acquired data should be normalized between -1 and 1, and then by using EKF, motion noise

and filtered ECG data are achieved. In the second step, for adding the motion noise to

aECG, the aECG data should be normalized with the same threshold. In the last step the

motion noise is added to the normalized aECG (Figure 4.3).

Figure 4.2: Implementation of motion noise generation procedure.
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Figure 4.3: Illustration of applying noise to record a01 motion, (a) Normalized a01 record,
(b) Generated motion noise, (c) a01 with added motion noise artifact.

Modified ECG signals with motional artifacts added

When an ECG signal is recorded in daily life, it would be contaminated with many kinds

of noise, such as motion artifacts. Unfortunately, the online dataset collected in the clinical

setting is the ideal resting position with minimal motion artifacts. Therefore, here, we

added the motion noise to the online clean dataset to have a better realistic scenario in our

experiments. The ECG data were recorded using the OpenBCI Cyton board (OpenBCI,

Brooklyn, NY, USA) from healthy subjects during daily activities. Next, we normalized the

recorded data to reinsure ECG and motion noise have realistic amplitudes. The EKF was

employed to extract motion artifact noise. Then, ECG data should be normalized with the

same threshold; before adding the motion noise to the new ECG. The generation process is

also described in 4.2.4.
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4.3 QRS detection

The Pan-Tompkin algorithm is one of the most popular methods in real-time approaches.

Jiapu Pan, and Willis Tompkin developed this algorithm in 1985[? ]. The algorithm utilized

the signal features such as amplitude, slope, and width of each integrated window to detect

the QRS complex. To be brief, this algorithm consists of two main steps; (1) pre-processing,

(2) decision. The detail of this algorithm has been summarized in the following.

4.3.1 Pre-Processing

In general, the pre-processing can be divided into four stages; (1) Filtering, (2) Derivative,

(2) Squaring, and (2) Moving Window Integration (MWI).

Filtering

The band-pass filter is used to reduce high-frequency noise such as interference in T- waves,

Power Line Interference, and low-frequency noise such as muscle noise and baseline wander.

The band-pass filter is obtained by cascading the low-pass filter and high-pass filter with

cut-off frequencies 4 Hz and 15 Hz.

Derivative

To gain information about the slope of the QRS complex, the derivative is applied to the

filtered signal. In this stage, high slope features are preserved. The T-waves and P-waves

are suppressed in the derivative stage due to their low slope.
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Squaring

The signal after the derivative process is squared because all components of the signal appear

positive. The higher value in the squared signal represents the QRS complex. The squaring

function by amplifying nonlinearly makes QRS complex diagnosis easier.

Moving Window Integration (MWI)

To gain information about the R-peak slope and waveform features, the MWI is used. The

width of the integrated window must be matched with a QRS complex width.

4.4 Comparison Criteria

4.4.1 QRS detection accuracy

The performance of the extraction methods is assessed by comparing the beat-to-beat length

of the extracted fECG QRS complex and the corresponding annotated data. According

to the American National Standards Institute/ Association for the Advancement of Medi-

cal Instrumentation (ANSI/AAMI) guideline, Sensitivity (Se), Positive Predictive V alue

(PPV), and the accuracy measure (F1 score) which is the harmonic mean of PPV and Se,

were used for assessment. The Se tells how accurate an algorithm is at finding the true fetal

QRS. The PPV presents the performance of the algorithm at identifying true FQRS out of
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all the detections. These statistical indices are computed as follows:

Se =
TP

TP + FN
(4.1)

PPV =
TP

TP + FP
(4.2)

F1 = 2.
PPV.Se

PPV + Se
=

2TP

2TP + FN + FP
(4.3)

where TP, FP, and FN are true positive (correctly identified QRS), false positive (wrongly

detected QRS), and false negative (missed QRS) detections respectively.

4.4.2 Noise reduction performance

To evaluate the performance of denoising algorithms in Chapter 6, the improvement in

SNR before and after denoising, the root mean square error (RMSE), the Percentage Root

Difference (PRD), and the correlation coefficient between the denoised and the clean signal

are calculated.

SNR = 10 log(

∑n
i=1 x

2(n)∑n
i=1(x(n)− y(n))2

) (4.4)

RMSE =

√√√√ 1

n

n∑
i=1

(x(n)− y(n))2 (4.5)

PRD =

√∑n
i=1(x(n)− y(n))2∑n

i=1 x
2(n)

× 100 (4.6)

where x(n), and y(n) are the original and the denoised signal respectively.
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4.5 Summary

This chapter presented the databases used in this thesis. A total of four databases for the

experiments presented in Chapters 5, 6, 7, and 8 . The statistical parameters which assess

the detection of the QRS complex waveform of the fECG and the performance of denoising

algorithms were used which were also presented in this chapter. Finally, the Pan-Tompkin

algorithm, used for fetal QRS detection, was introduced.
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Chapter 5

A Fetal ECG Monitoring System

Based on the Android Smartphone

5.1 Introduction

Some home-based fECG systems were developed and introduced; nevertheless, they are

bulky, costly, and intrusive, and thus have not been widely used. Continuous fECG moni-

toring has remained a challenging problem in the research community [33]. Our group has

developed the gen-2 ‘fetal monitoring patch’ containing non-contact electrodes (NCEs), elec-

tronics, and secure communication with a smart device via Bluetooth Low Energy (BLE)

[46, 65]. The compact patch is 4 inches long and unobtrusive, thus, it can be integrated on

or inside maternity garments. The gen-2 patch has one single NCE channel to collect the

aECG of the pregnant subject. This abdominal patch is made of flexible and stretchable

polymer that can be worn with any user, or embedded inside clothes, thus bringing comfort

and versatility. The entire system is shown in Figure 5.1. Prior to the extraction of the fECG

and mECG, the abdomen signal should be processed to remove the baseline wander (drift).
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Figure 5.1: Fetal ECG monitoring system overview.

The wavelet denoising method was used as reported in our previous work [76]. Figure 5.2

shows an example of this technique applied to an NCE ECG signal recorded using one of

our prototypes.

Figure 5.2: The NCE ECG obtained by our system and an ECG denoising example.

In this chapter, a home-based fetal and maternal monitoring system, including a fetal patch,

a mobile application, and a cloud server is designed and implemented (Figure 5.3).
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Figure 5.3: Fetal ECG monitoring patch and system.

5.2 Methods and Implementation

We developed hardware and software components to create a remote prenatal care system.

The abdominal ECG signals are collected by a wearable patch, and then the collected data

are sent to the Android app via BLE communication. The pre-processing and extraction

algorithms are performed through the connected cloud server from the app to separate the

fECG and mECG. Then, fHR calculation is performed to assess the performance of the

device. Finally, the fECG and fHR are displayed in real-time on the app. Users will be

warned to visit the hospital when a critical event, or better yet, a pre-critical event, occurs.

5.2.1 The fetal patch

The patch is made of a flexible-rigid printed circuit board with dimensions of 4.5 cm × 9.5

cm. Two wings having electrodes measured 10 cm apart are designed with a flexible material

(highlighted in orange – Figure 5.3), which increases the contact surface between the elec-

trode and abdominal area. It contains two types of electrodes (i.e., Ag/AgCl wet electrode
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and non-contact electrode) for validation and comparison. While the wet electrodes can

provide high signal to noise ratio (SNR) by having the electrolyte gel, it was known to cause

skin irritation for long-term measurement [77]. Thus, we deployed the NCE as an alternative

on the patch. The dual-channel design is to characterize and compare the performance of

the contact and non-contact approaches. The patch’s circuitry comprises an ADS1299 chip

(Texas Instrument) with 24-bit analog-to-digital converter specifically designed for biomedi-

cal signal measurement and a system-on-chip nRF82832 (Nordic Semiconductor, Trondheim,

Norway) powered with Arm Cortex-M4 CPU running at 64 MHz. The nRF5282 is used to

transmit data from ADS1299 to the Android application through BLE.

5.2.2 Fetal ECG Extraction Algorithm

fECG extraction algorithms can be classified into three groups: blind source separation

(BSS), template subtraction, and filtering techniques. The BSS methods assume that the

abdominal signal is a mixture of independent signals, consisting of fECG, mECG, and noises

[26]. In our first-generation system, we utilized the least-mean square adaptive filtering [65].

Further, we implemented the BSS method via the independent component analysis (ICA),

FastICA and RobustICA, and validated and compared them with the online data [46]. In our

recent report, we implemented and tested various techniques, including Extended Kalman

Filter (EKF), template subtraction (TS), ICA and their combination using the PhysioNet

2013 Challenge data bank as well as the data with added Gaussian and motion noise, to

mimic daily life situations with wearable devices [13].

Among these, EKF is a powerful approach for single-channel fECG extraction [34]. The

celebrated Kalman Filter (KF) is an optimal algorithm for estimating parameters of linear

and Gaussian dynamic models [78]. EKF is used for nonlinear problems, which is based on

local linearization of the nonlinear model by using the Jacobian operator [79]. The EKF
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algorithm flow is shown in Figure 5.4. The data obtained in the home-based monitoring is

contaminated with various kinds of noise, which motion noise is high level, so the preprocess-

ing algorithm is indispensable for accurate fECG extraction in practical applications. First,

the baseline wander and noise will be removed by using the lowpass filter, a notch filter, and

a Wavelet filter. Next, the EKF will be employed to extract mECG. Then mECG will be

removed by subtracting it from the processed signal. The output of this step is fECG along

with noise, and then another EKF will be used to extract fECG.

Figure 5.4: Fetal ECG monitoring patch and system.

5.2.3 Android Smartphone App Software

We developed an Android smartphone application in Java that connects to the patch via

BLE communication for data collection, displaying, and logging. Through BLE protocols,

the app connects to the fetal patch and reads in multiple data channels at a rate of 500 Hz.

After accumulating at least 1,000 data points, the input data are sent to a cloud server to

extract the fetal and maternal ECG through the algorithm described in Section 5.2.2. This

would provide sufficient data to detect peaks and extract the fECG with higher accuracy.

The results will start appearing on the application interface after 10 seconds of initially

starting in the form of dynamic graphs as well as numerical values for the fHR. The user can

disconnect the patch at any time and save the raw data with associated time points they are

received in the application to a text file with a customizable name in the phone’s external
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Figure 5.5: Android application operation flow chart.

storage. The results of the algorithm will also be saved in the cloud. The user also can load

past text files to view the raw data and process fECG and fHR. This process is depicted in

the flow chart in Figure 5.5.

5.3 Results

5.3.1 Algorithm Validation

The EKF algorithm described in Section 5.2.2 is implemented on mobile app for real-time

fECG extraction (Figure 5.6). To evaluate the accuracy of the mobile app, we tested it with

the PhysioNet 2013 Challenge databank which is described in 4.2.1. To implement the mobile

app, the MATLAB code must be converted to Java. In this conversion, because all functions

must be rewritten, the application may not have the same accuracy as MATLAB code. The

mobile app was compared in terms of the F1 score and evaluated against MATLAB. F1 score

is an accuracy measure (more details on the F1 score can be found in Section 4.4.1). Table

5.1 presents the average F1 score results in the 68 aECG records using the mobile app and

MATLAB code. It can be seen that the mobile app is reliable as the results are comparable
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Figure 5.6: Results of fetal ECG Extraction by using the Mobile app and MATLAB. (a) A
signal from PhysioNet 2013 Challenge databank; and (b) the fECG signal on Mobile app
and MATLAB.

Table 5.1: Average F1 score (%) with mobile app and MATLAB code for all records

Mobile App MATLAB

F1 Score 84.8 86.7

to that of MATLAB.

5.3.2 Device Validation

The fetal patch was first validated on a healthy subject in different postures (e.g., sitting,

walking, and standing). Figure 5.7 describes the patch setup and mobile application user

interface. Specifically, two flexible belts were used to attach the patch to the abdominal area.

The volunteer was asked to perform different activities such as sitting on a chair, walking

slowly, and standing. The mobile application was then turned on connecting with the patch.

The index graph showed the data transmit package, checking if there is any data lost during

42



Figure 5.7: The fetal patch setup and experiment.

the transmission. The data were then collected in 5 minutes for each posture. Figure 5.8

illustrates the ECG data (plotted in the first 20 seconds) from the first experiment. It can be

seen that the ECG signal in the sitting position is clean and more stable than those recorded

in standing and walking positions. Especially, motion artifacts were found in the signal with

walking position.

5.3.3 Entire System Validation

The entire system was further validated on 10 pregnant women between 28 and 34 weeks

of gestation in the UCI Medical Center (see Section 4.2.2 for more details). The patch

was embedded inside a maternity belt. The pregnant subjects were asked to perform a

transabdominal ECG recording within 5 minutes. Each subject was laid on the chair and

the belt with the fetal patch was attached to the abdominal area. The recorded data are sent

to the smart device app via secure BLE communication. The real-time monitoring android

smartphone app software is depicted in Figure 5.9. Figure 5.9 illustrates the collected ECG

and processed fECG of a pregnant woman. The obtained ECG was filtered to remove DC

noise and interference and applied to the fECG extraction algorithm as described in 5.2.2.

As can be seen, our system can successfully collect the abdominal ECG and extract the
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Figure 5.8: ECG signals recorded from the patch: (a) sitting position, (b) standing position,
(c) walking position.

peaks of fECG (highlighted in red in Figure 5.10c). For this pregnant woman, the fHR is

measured at 100 beats per minute which is normal for this stage of pregnancy.

Figure 5.9: Real-time monitoring/altering android smartphone app software.
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Figure 5.10: Results of fetal ECG extraction by using the Android application. (a) recorded
data from maternal abdominal; (b) filtered data; and (c) Fetal ECG extracted and fetal QRS
detected.

5.4 Discussion

We have developed a fetal ECG monitoring device and extraction algorithms implemented

on an Android smartphone which is capable of providing real-time and continuous fetal

monitoring. We extensively investigated the use of the developed device for signal acquisi-

tion, which holds promise to be widely used as it can be unobtrusive bring integrated inside

garment. We rigorously conducted several experiments to validate the operation of all com-

ponents. The Android smartphone application was compared in terms of the F1 score and

evaluated against offline processing using MATLAB. The results indicate that the mobile

app is reliable on its own. The entire system was tested with 10 pregnant subjects, demon-

strating its feasibility. Specifically, the aforementioned device has been successfully applied

to collect and extract fECG from aECG, and the efficacy of the proposed system has been

carried out with real-time data recordings on pregnant subjects. Our Android application

provides graphical and numerical information of fECG to assess fetal wellbeing. The fHR

was calculated, and the fECG and fHR were displayed in real-time. Examination of patterns
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and fHR obtained would indicate the need to take the appropriate medications during labor.
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Chapter 6

Novel Approaches for Non-Invasive

Fetal ECG Extraction

6.1 Introduction

The fECG would provide valuable information that could help to deliver better fetal mon-

itoring as well as assist clinicians in making more appropriate and timely decisions during

labor. We have been developing abdominal patch devices and systems for the acquisition

and extraction of fECG in Chapter 5 [13, 46, 65]. As we aimed to make the device compact

and unobtrusive, a single recording channel is desired for saving space; consequently, fECG

extraction is almost impossible, especially with the presence of motion noise [33].

In chapters 3 and 8 , we reviewed and implemented the fECG extraction methods and its

challenging issues. It was noted that in the current chapter we are interested in improving

the signal processing aspects of these problems, in order to facilitate the extraction of fECG

signals.
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fECG extraction methods based on variants of the Kalman filtering technique are used widely.

The original Kalman Filter (KF) was designed by R. E. Kalman for linear models and the

noises involved are additive [78]. For nonlinear problems, Extended Kalman Filter (EKF) is

used, which is based on local linearization of the nonlinear model using the Jacobian [79].

G. Evensen introduced the EnKF [80]. In this chapter, a newly developed approach for

Non-invasive fECG extraction is presented. The proposed approach is based on using the

Ensemble Kalman filter (EnKF) to extract f/m ECG which exhibits robust and efficient

performance for many signal processing problems. Currently, there is no approach available

to extract fetal characteristic waves.

6.2 Theory and Method

6.2.1 Review of Extended Kalman Filter

The EKF is a powerful approach for single-channel fECG extraction [34]. The celebrated KF

is an optimal algorithm for estimating parameters of linear and Gaussian dynamic models

[78]. EKF is used for nonlinear problems, which is based on local linearization of the nonlinear

model by using the Jacobian operator [79]. Almost all real-life systems are non-linear and

must be linearized before being estimated using a KF [81].


yn = h(xn, wn)

xn = f(xn−1, un)

(6.1)

where h(.) is the observation function that maps state space into the observed space. f(.) is

the state transition function that describes the evaluation of the state variable xn, un and

wn denote the process and observation noises and yn is observation vector [52].

By calculating the Jacobian of f(.) and h(.) around the estimated state, this problem of
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non-linearity is solved by EKF. The calculation of Jacobian yields a trajectory of the model

function centered around the state.The linear approximation near a desired reference point

(x̂n, ŵn, ûn) will lead to the following linear estimates:


yn = h(x̂n, ŵn) + Cn(xn − x̂n) +Gk(wn − ŵn)

xn = f(x̂n−1, ûn) + An(xn−1 − x̂n−1) + Fk(un−1 − ûn−1)

(6.2)

The EKF is described in detail in Section 3.2.

6.2.2 Ensemble Kalman Filter (EnKF)

EnKF is a variant of the celebrated Kalman filter used to estimate time-varying parameters

in problems that arise in various disciplines [82]. It is applicable for problems that can be

represented as dynamic systems and formulated in a state-space model with unknown time-

varying state parameters. When the state-space model of the system is linear and Gaussian,

the optimal estimate of the state parameters can be obtained using the Kalman filter [83].

However, when the problem is nonlinear or non-Gaussian, other variants of the Kalman

filter, such as the EnKF, are used to obtain close-to-optimal solutions [84]. Our EnKF

algorithm is developed by considering a Bayesian filtering framework and formulating the

fECG extraction problem as a dynamic system whose state and measurement equations are

represented in a state-space form. The dynamic model is adopted from the models proposed

by McSharry et al. [85] and later discretized by Sameni [34].

Suppose the unknown time-varying state vector of a dynamic state-space model is denoted by

xn ∈ RDx where n = 1, 2, . . . ., N represents time instants and Dx represents the dimension

of xn. We assume that xn has a Markovian property, and its evolution is given by:

xn = fn(xn−1) + un (6.3)
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where f(.) represents a state function which, in general, is nonlinear, and un denotes the state

noise vector with a known probability density function (pdf). Furthermore, the observation

equation of the state-space model is given by:

yn = hn(xn) +wn (6.4)

where yn ∈ RDy denotes the measurement vector obtained at time n, Dy represents the

dimension of the vector Dy, and wn denotes the measurement noise vector whose pdf is

assumed known.

Given the state-space model (1) and (2), our objective is to make a sequential estimate of

the evolution of the state vector x1:n = x1, . . . ,xn in real-time as the measurement vector

denoted by y1:n = y1, . . . ,yn becomes available.

The Ensemble Kalman filter is a variant of the Kalman filter where the state error statistics

are approximated using the Monte Carlo method. Recall that if the state equation (1) and

the measurement equation (2) are linear, and the state noise un and measurement noise wn

are Gaussian, the optimal estimate of the state vector can be analytically obtained using

Kalman filter. To understand the EnKF, let us review the Kalman filter algorithm’s two

steps: the time update and the measurement update. For convenience, we rewrite the state

and measurement equations for a linear and Gaussian system as follows:


yn = Hxn +wn

xn = Fxn−1 + un

(6.5)

where F is a Dx×Dx matrix, H is a Dy×Dx matrix, and un and wn are zero-mean Gaussian

probability densities with covariances Qu and Qw, respectively.

The time update step of the Kalman filter algorithm obtains the predicted value of the state
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vector and the covariance of its error. The predicted state vector and the covariance of its

error at time n are computed from propagating their corresponding values at time n − 1

through the state dynamics as follows:

x̂n|n−1 = Fx̂n−1

Pn|n−1 = FPn−1F
T +Qu

(6.6)

where x̂n|n−1 is the predicted value of the state vector, Pn|n−1 is the covariance of the error of

the predicted state vector given by Pn|n−1 = E[(x̂n − x̂n|n−1)(x̂n − x̂n|n−1)
T ], and E[.] is the

expectation operator. Once the measurement vector is received, the measurement update

step is used to compute the estimate of the state vector, x̂n and the covariance of the error

of the state vector, Pn, by applying corrections to the corresponding predicted values based

on the measurement obtained as follows:

Kn = Pn|n−1H
T(HPn|n−1H

T +Qw)

x̂n = x̂n|n−1 +Kn(yn −Hx̂n|n−1)

Pn = (I−KnH)Pn|n−1

(6.7)

where Kn is the Kalman gain, and I is a diagonal matrix. We note that the Kalman gain

can be expressed as

Kn = Pxy,nP
−1
yy,n (6.8)

where Pxy,n is the cross-covariance of the error of x̂n|n−1 and yn, and Pyy,n is the covariance

of the error of yn. These covariances are given by:

Pxy,n = E[(x̂n − x̂n|n−1)(yn − yn|n−1)
T ]

Pyy,n = E[(yn − yn|n−1)(yn − yn|n−1)
T ]

(6.9)
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When the state equation and measurement equation are not linear, the above equations of the

covariances of the errors, Pn|n−1 and Pn, as well as the equation of the Kalman gain, Kn, are

not valid, and, therefore, generally, the Kalman gain cannot be analytically determined. A

common approach to circumventing such problems in nonlinear state-space models is to apply

EKF, which is a variant of the Kalman filter, that approximates the state and measurement

equations by linearizing them using the Taylor series. Consequently, the EKF approximates

the posterior probability density of the state vector by a Gaussian distribution. When the

true posterior distribution of the state vector is not ‘close’ to Gaussian, such approximations

may not be valid and the EKF may diverge. In such cases, sequential Monte Carlo methods

show superior performance over EKF [86].

EnKF is the Monte Carlo-based Kalman filter that can be used for nonlinear and non-

Gaussian models. The underlying idea of the method is to approximate the Kalman gain

and state vector propagations using the Monte Carlo technique. EnKF computes the Kalman

gain by approximating Pxy,n and Pyy,n using their corresponding sample covariances, P̂xy,n

and P̂yy,n. To do so, N number of ensembles, {x(i)
n|n−1}Ni=1, are first drawn from the prior

probability density of the state vector, p(xn|n−1), which has the same probability distribution

function as the state noise with a mean of f(x
(i)
n−1). Once the ensembles are generated, the

sample covariances of the errors are computed as follows:

P̂xy,n =
1

N

N∑
i=1

(x
(i)
n|n−1 − xn)(y

(i)
n|n−1 − yn)

T

P̂yy,n =
1

N

N∑
i=1

(y
(i)
n|n−1 − yn)(y

(i)
n|n−1 − yn)

T

(6.10)

where y
(i)
n|n−1 = h(x

(i)
n|n−1), xn = 1

N

∑N
i=1 x

(i)
n|n−1

yn =
1

N

N∑
i=1

y
(i)
n|n−1 (6.11)
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Then, the Kalman gain is approximated by:

K̂n = P̂xy,n(P̂yy,n)
−1

(6.12)

and the ensembles of the state vector, {x(i)
n|n−1}, are computed as

x(i)
n = x

(i)
n|n−1 + K̂n(yn + v(i)

n − y
(i)
n|n−1) (6.13)

where v
(i)
n are samples obtained from Gaussian distribution with mean yn and covariance

Qw. Once the ensembles of the state vector are computed, the estimate of the state vector

is obtained by taking the averages of ensembles as follows:

x̂n =
1

N

N∑
i=1

(x(i)
n ) (6.14)

Figure 6.1 presents a complete basic operation of the EnKF.

6.3 EnKF based fECG Extraction Algorithm

6.3.1 State-Space Model of a Synthetic ECG

In the work reported in, McSharry et al. proposed a dynamic model which consists of a set

of nonlinear state equations to generate synthetic ECG signals in the Cartesian coordinate

system [85]. The model represents an ECG signal by a sum of five Gaussian functions, each

corresponding to the five waves of an ECG signal, namely P, Q, R, S, and T waves. The

state vector of the dynamic model is defined by [xk, yk, zk]
T , and the state equation is given
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Figure 6.1: An overview of EnKF. EnKF maintains an ensemble of sample points for the
state vector xn. It propagates and updates the ensemble to track the distribution of xn. The
state estimation is conducted by calculating the sample mean (red five-pointed-star) and
covariance (red ellipse) of the ensemble.
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by:


xk = φxk−1 − ωyk−1

yk = φyk−1 + ωxk−1

zk = −
∑

i∈[P,Q,R,S,T ]
ai∆θiw

β2
i

exp(−∆θ2i
2b2i

)− zk−1

(6.15)

where x, y, and z are the state variables, φ = 1 −
√
x2 + y2, ∆θi = (θ − θi)mod2π,

θ = atan2(y, x) is the four quadrant arctangent of the elements of x and y, with −π ≤

atan2(y, x) ≤ π, and ω is the angular velocity of the trajectory as it moves around the limit

cycle in the x − y plane. The αi, bi, and θi represent the amplitude, width, and center

of the Gaussian functions of the five PQRST waves, respectively. Further, Sameni et al.

transformed the model to a polar coordinate system and provided a convenient discrete-time

mathematical model [34]. The state vector of the dynamic model is defined by [rk, θk, zk]
T ,

and the state equation is given by:


rk = rk−1(1− rk−1)

θk = ω

zk = −
∑

i∈[P,Q,R,S,T ]
ai∆θiw

β2
i

exp(−∆θ2i
2b2i

)− zk−1

(6.16)

where r and θ are the radial and angular state variables in polar coordinates, respectively.

The second and third equations of 6.16 are independent from radial. Therefore, this first

equation may be excluded as it does not affect the synthetic ECG (the state variable). The

simplified state vector of the dynamic model is defined by xk = [θk, zk]
T , and the state

equation is given by:


θk = (θk−1 + ω.∆)mod2π

zk = −
∑

i∈[P,Q,R,S,T ]
αi∆θiω.∆

b2i
exp(−∆θ2i

2b2i
) + zk−1 + ηk

(6.17)
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where ∆θi = (θk−θi)mod2π is the phase increment, ∆ is the sampling period, ηk is the state

noise, ω is the angular velocity of the trajectory as it moves around the limit cycle, and αi,

bi, and θi represent the amplitude, width, and center of the Gaussian functions of the five

PQRST waves, respectively.

The measurement vector is defined by yk = [ϕk, sk]
T , where ϕk is the observed phase repre-

senting the linear time wrapping of the R-R time interval into [0, 2π], and sk is the observed

amplitude. The measurement equation is given by


ϕk = θk + uk

sk = Zk + vk

(6.18)

where uk and vk denote the measurement noises.

6.3.2 Fetal QRS Detection with EnKF

Given the state-space model 6.17 and 6.18, the EnKF algorithm is applied to filter out the

mECG from aECG, assuming the remaining signal composed of fECG and noise is Gaussian

distributed. The extracted mECG signal is then subtracted from aECG to obtain a noisy

fECG signal. Finally, the EnKF algorithm is applied to the residual signal to denoise the

fECG signal, as shown in Figure 6.2.

Figure 6.2: Fetal QRS (fQRS) detection process: (1) Preprocessing step ; (2) Ensembel
Kalman filter (EnKF) applied for maternal ECG (mECG) extraction; (3) mECG subtracted
from filtered aECG signal and EKF used for fetal ECG (fECG) extraction; (4) EnKF applied
for fECG extraction.
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6.3.3 Preprocessing

A wide range of noise sources affect a recorded aECG signal. External electrical interferences

generate high-frequency noise and other sources, such as muscular activity or breathing,

produce low-frequency noise, which causes baseline drift [87, 88, 89, 90]. The low-frequency

noise is more pronounced when the subject is exercising. The frequency range of the baseline

wander is usually less than 1Hz [91, 88]. We remove the aECG baseline wander by filtering

the aECG signal using a second-order low-pass filter with a cut-off frequency of 1Hz. The

output of the low-pass filter is the estimate of the baseline wander, which is subtracted from

the ECG signal to obtain the pre-processed aECG signal [92, 88],

pre− processed aECG = aECG− baseline (6.19)

A notch filter is also used to suppress the powerline interference noise. We also applied

the wavelet filtering (a 10 level 1-D stationary wavelet decomposition with Coiflet mother

wavelet) and thresholding technique. This will be discussed in detail in section 6.5. Finally,

the fetal QRS complex (fQRS) is detected using the Pan-Tompkin algorithm [13, 88].

6.4 Results

The execution time of each algorithm is calculated from the start of the pre-processing to

the end of the fECG R-peak detection. The EnKF with an ensemble size of 70 has the same

execution time as the EKF. Hence, the proposed EnKF-based algorithm was run with an

ensemble size of N = 70 for single-channel signals from the aforementioned datasets. For

comparison purposes, the EKF-based algorithm using the same synthetic ECG parameters

and datasets was also carried out. The three-dimensional trajectory generated from equation

6.17 consists of a unit-radius circular limit cycle that goes up and down when it approaches
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(a) (b) (c)

Figure 6.3: A phase-wrapped ECG signal of records “a01”. (a) Abdominal ECG (raw data);
(b) mECG extracted using EKF; and (c) mECG extracted using our EnKF.

one of the P, Q, R, S, or T points (Figure 6.3). The projection of these trajectory points on

the z-axis gives a synthetic ECG signal. Figure 6.3 shows plots of the ECG signals versus the

assigned phases in polar coordinates on the unit-radius circle. The figure depicts a typical

phase-wrapped aECG signal (a), EKF extracted mECG signal (b), and EnKF extracted

mECG signal (c) plotted using a sample signal taken from the PhysioNet database.

Examples of two abdominal ECG signals of records “a01”, and “a03”, and fetal signals

extracted using the EKF and EnKF, are shown in Figure 6.4. Panels 6.4a, 6.4d and 6.4g

are the original signals. Panels 6.4b, 6.4e and 6.4h are fQRS extracted using the EKF, while

6.4c, 6.4f and 6.4i are fQRS extracted using the EnKF approaches, respectively. The fQRS

annotation is shown in an orange asterisk (*). The red arrows show the places where fetal

QRS was wrongly detected. The blue arrows show the missing fetal QRS. It can be seen

that the detected fQRS (fetal R-peaks) follow the an-notated ones with high accuracy. It is

worth noting that in “a01” (6.4d), the fetal QRS complexes are reversed due to electrode

placement, but it did not affect the extraction algorithms. It should be emphasized that in

the case of overlapping of the fetal QRS and maternal QRS, the EnKF algorithm still gives

favorable results. Comparison between Figure 6.4b,and 6.4c show that the EKF failed when

maternal and fetal QRS complexes overlap in time (e.g., at t = 21.8 s and t = 23.7 s)

for ‘a03’, while our EnKF method still performed successfully. It can be also seen that the

EnKF functions reasonably well in the presence of noise (e.g., at t = 19.7 s for ‘a01’, Figure
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6.4d - 6.4f).

Figure 6.5 depicts the fECG extraction results from the modified PhysioNet data with added

motion artifacts. As seen, the fECG extracted by the EKF was incorrect and its F1 score

was reduced significantly (average F1=78, see Table 6.1). fQRS complexes extracted by the

EnKF, however, are still visible in most time points, yielding a favorable F1 score of 89.

Figure 6.6 shows the performance of the proposed algorithm, the EnKF, and the EKF on

one sample from our clinical data. Panels 6.6a - 6.6c show original and extracted signals,

while panels 6.6d - 6.6f are signals with extensive preprocessing. Specifically, in Figure 6.6d,

a lowpass filter (with a cut-off frequency of 1 Hz), a notch filter, and a Wavelet filter (a

10 level 1-D stationary wavelet decomposition with Coiflet mother wavelet) were used to

suppress the background noise and artifacts. The signal extracted from the preprocessed

data with the EKF and EnKF algorithms are shown in Figure 6.6e and 6.6f. In Figure

6.6f, we also further notice that fetal characteristic waves, such as P and T waves, may be

conserved. This judgment is also strengthened by the EnKF extraction carried out on the

original PhysioNet database in Figure 6.4f, where the conserved features are probably fECG

waves. Table 6.1 presents the average F1, average PPV, and average SE results in our own

clinical aECG records. The average F1, PPV, and SE indices of our proposed EnKF are

94.3%, 100%, and 89.2%; while those using the EKF method are 82.3%, 71.4%, and 100%,

respectively.

Table 6.1 shows the average F1 scores, the average PPE, and the average SE of the per-

formance of the EnKF and EKF algorithms. These statistical indices are computed by

determining the accuracy, TP, FP, and FN, of the locations of the R-peaks obtained by the

EKF and EnKF algorithms against the reference annotations. The F1 score, PPV, and SE

are computed using 68 one-minute aECG records from PhysioNet 2013 Challenge databank

and our own clinical data. The results shown in Table 6.1 indicate that the EnKF method

is reliable on its own. In all cases, the EnKF outperforms the EKF. Another parameter that
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.4: fECG extraction using the EKF and EnKF with the PhysioNet data. The
fQRS annotation is shown in orange asterisk (*). The red arrows show the places that fetal
QRS was wrongly detected. The blue arrows show the missing fetal QRS. (a) Abdominal
ECG (raw data) of record “a03”; (b) fECG extracted using EKF of record “a03”; (c) fECG
extracted using EnKF of record “a03”; (d) Abdominal ECG (raw data) of record “a01” with
reversed fetal QRS complexes; (e) fECG extracted using EKF of record “a01”; (f) fECG
extracted using EnKF of record “a01”. (g) Abdominal ECG (raw data) of record “a01” with
reversed fetal QRS complexes; (h) fECG extracted using EKF of record “a01”; (i) fECG
extracted using EnKF of record “a01”.
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(a) (b) (c)

Figure 6.5: fECG extraction using the EKF and EnKF with the motion artifacts added
PhysioNet data. The fQRS annotation is shown in orange asterisk (*). The red arrows
show the places that fetal QRS was wrongly detected. The blue arrows show the missing
fetal QRS. (a) Abdominal ECG (raw data); (b) fECG extracted using EKF; and (c) fECG
extracted using EnKF.

should be taken into account is computational complexity. The computational complexity

of the EnKF algorithm is proportional to the number of ensembles used. In our simulations,

we have observed that increasing the size of the ensemble by more than 70 does not improve

the performance of the algorithm significantly. The F1 score obtained when the algorithm

was run for ensemble sizes between 5 to 350 always remained in the range between 94.5%

and 98.6% for all the 68 aECG records obtained from the PhysioNet database.

Table 6.1: Performance of the EKF and EnKF algorithms.

Data Method F1 (%) SE (%) PPE (%)

Online Data without Motion Noise
EKF 88.90 ± 5 86.73 ± 5.5 91.16 ± 4.6

EnKF 97.25 ± 2.4 96.91 ± 0.5 97.59 ± 3.8

Online Data with Motion Noise
EKF 78 ± 6.58 75.38 ± 7.4 80.80 ± 5.1

EnKF 89.04 ± 3 88.2 ± 1.7 89.9 ± 4.5

Our Clinical Data
EKF 82.3 ± 5.5 100 ± 0.1 71.4 ± 6.4

EnKF 94.3 ± 1.2 89.2 ± 1.5 100 ± 0.2
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(a) (b) (c)

(d) (e) (f)

Figure 6.6: fECG extraction using the EKF and EnKF with our own clinical data. The
fQRS annotation is shown in orange asterisk (*). The red arrows show the places that fetal
QRS was wrongly detected. The blue arrows show the missing fetal QRS. (a) Abdominal
ECG (raw data), (b) fECG extracted from EKF and (c) fECG extracted from EnKF”. (d)
Abdominal ECG after Wavelet preprocessing; (e) fECG extracted using EKF of preprocessed
data; and (f) fECG extracted using EnKF of preprocessed data. The inset shows additional
peaks, likely P and T waves; they were conserved after EnKF extraction.

6.5 Discussion

The current fECG extraction methods from a single-channel signal are not robust when

particularly i) the fECG and mECG waveforms temporally overlap, and ii) the amplitude

of fECG is low compared to the noise level. Recently, an EKF-based algorithm was pro-

posed for the extraction fECG from a single-channel aECG signal [43]. Generally, those

EKF-based algorithms are less effective as at every instant of time, they approximate the

posterior probability density of the parameter of interest by a Gaussian distribution. When

the true posterior density is not Gaussian, Sequential Monte Carlo (SMC) filtering methods

show superior performance over EKF methods. Therefore, here, our proposed EnKF is an

SMC-based method, for noninvasive extraction of fECG from the single-channel aECG. As

described above, our EnKF-based algorithm exhibited robust performance when tested using
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public online data as well as our own clinical data. Ten records, including 20-min aECG from

our own clinical database, 68 records, including 1-min aECGs in PhysioNet Challenge 2013,

and the online data bank added realistic motion artifacts were used to assess the performance

of the proposed method.

As can be seen in Figure 6.3, the EnKF-based algorithm follows the dynamics of ECG and

thus suppresses the noise better than EKF. In the EKF method, since some of the fECG

peaks were still incorporated in the estimated mECG (6.3b), the subtraction between the

aECG and mECG will not produce the correct fECG. In contrast, the mECG estimated

by EnKF is significantly clearer (6.3c), which explains the better performance in fECG

extraction (Figure 6.4, Figure 6.5, Figure 6.6 and Table 6.1). Our experiments proved that

the EnKF-based algorithm is a robust method and has superior performance over the EKF

for extracting fECG in various scenarios (Figure 6.4, Figure 6.5, and Figure 6.6). Results

support the expectations that the EnKF not only extracts the fetal signal when the fECG and

mECG waveforms temporally over-lap, but it also potentially extracts accurate fECG signal

with characteristic waves such as P and T waves. Currently, there is no approach available

to extract full-feature fECG, especially with aECG in daily life. Hence, our solution may

hold the potential to revolutionize fetal monitoring as it can be used to diagnose potential

congenital effects. Currently, this is carried out with genetic test and echocardiogram [93,

94, 95]. However, those need to be done in the clinics and they cannot provide continuous

information of the fetal heart over a long period of time. For example, with our fetal ECG

patch and this EnKF method, full-feature fECG can be obtained 24/7 in the home setting

in the second and third trimesters of pregnancy, which provides information about not only

fetal wellbeing and development but also any fetal cardiac anomalies.

Due to the nature of aECG acquisition, the signal is always accompanied by other bioelectric

potentials, such as maternal muscle activity, fetal movement activity, and noise [33]. The

results are shown in Figure 6.4, Figure 6.5, and Figure 6.6 suggested that, prior to fECG
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extraction, preprocessing is a critical step that needs to be optimized. Specifically, prepro-

cessing may help extraction significantly as it removes noise components, but it may also

eliminate low-amplitude precious components such as P and T waves. In Figure 6.6d, we can

see that, when the aECG signal is somewhat over-processed, both EKF and EnKF perform

reasonably well; the signal, however, may have lost its intrinsic peaks. The filtering scheme

used here is a low-pass filter, a digital Notch filter, and the wavelet filtering and thresholding

technique described in [76]. As P and T waves have similar frequency and amplitude to noise

components, it is almost impossible to set up optimal thresholds to eliminate the noise and

keep the desired waves in all cases. Therefore, we usually carry out this manually until the

best performance is obtained.
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Chapter 7

ECG Denoising Using the EnKF

7.1 Introduction

In this chapter, we propose and develop a novel algorithm based on the Ensemble Kalman

Filter (EnKF) to remove noise in ECG signals.

7.2 Review of ECG denoising methods

Several methods have been proposed to filter ECG from the signal contaminated with unde-

sired interferences; however, each has its advantages and limitations. These methods include

using smoothing filters such as Savitzky-Golay filtering (SG) [96], Extended Kalman Fil-

ter (EKF) [97], Wavelet Denoising (WD) [96], Empirical Mode Decomposition (EMD) [98],

Ensemble Empirical Mode Decomposition (EEMD) [99], adaptive filtering like Recursive

Least Squares Filter (RLS) and Normalized Least-Mean-Square Filter (NLMS) [96], Total

Variation Denoising (TVD) [100], Sparsity [101], among others. One study on ECG signals

with noise levels from 5 dB signal to noise ratio (SNR) to 45 dB SNR showed that the
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WD performs better denoising than the others. However, SG and the Adaptive filter like

RLS and NLMS perform better in some mid-range SNR [96]. The EKF is also a promis-

ing tool for ECG denoising; however, the filter model is highly reliant on the underlying

dynamics assumed for the ECG signal and not practical for nonlinear models in a realistic

environment [97]. Zebin et al. reported that after decomposing the ECG signal using EMD

and applying soft wavelet thresholding to the high-frequency components, the reconstructed

signal was denoised more effectively than if only one method were applied [98]. Kumar et

al. applied TVD successfully for detecting R-peak signals with long-pause, drifts, complexes

QRS, smaller R peaks, and even noisy signal portions. However, TVD is still comparatively

less accurate than other methods for detecting false-positive and false-negative [100].

7.3 Methods

The Kalman Filter (KF) was initiated by R. E. Kalman for linear models and the noises

involved are additive [78]. For nonlinear cases, EKF has been widely used, which is based on

local linearization of the nonlinear model using the Jacobian [79]. The EKF-based algorithms

have a drawback in that, at every instant of time, they approximate the posterior probability

density of the parameter of interest by a Gaussian distribution. When the true posterior

density is not Gaussian, Sequential Monte Carlo (SMC) filtering methods show superior

performance over EKF methods. G. Evensen introduced the EnKF which is an approximate

filtering method that represents the distribution of the state with an ensemble of draws from

that distribution [80]. The EnKF is described in detail in Chapter 6. The EnKF is illustrated

in Figure 7.1.
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Figure 7.1: The EnKF algorithm flow chart.

7.4 Results

The three-dimensional trajectory which is generated from (8), consists of a unit circular

(r=1) limit cycle which is going up and down when it approaches one of the P, Q, R, S, or T

points. The projection of these trajectory points on the z-axis gives a synthetic ECG signal.

We intensively explored various filtering algorithms, including EKF, SG, WD, EEMD, LMS,

RLS, and TVD. Figure 7.2 illustrates the typical phase-wrapped results of the EnKF, EKF,

SG, WD, EEMD, LMS, RLS, and the TVD for an input SNR of 12 dB.

The performance in ECG denoising for all the methods are evaluated and qualitatively

compared in Figure 7.3. This figure presents the enhanced ECG signals in the time domain

obtained by using the methods mentioned above.
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(c) (d)

(e) (f)

(g) (h)

Figure 7.2: phase-wrapped ECG filtering results for an input signal of 12 dB. (a) EnKF.
(b)EKF. (c) SG. (d) Wavelete. (e) EEMD Filter. (f) LMS Adaptive Filter. (g) RLS Adaptive
Filter. (h) Total Variation Denoising.
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(g) (h)

Figure 7.3: Enhanced ECG signals in time domain obtained by using different denoising
methods. (a) EnKF. (b)EKF. (c) SG. (d) Wavelete. (e) EEMD Filter. (f) LMS Adaptive
Filter. (g) RLS Adaptive Filter. (h) Total Variation Denoising.

The signal under test is the record 118 from the MIT-BIH Arrhythmia Database with differ-

ent SNR from 6 to 24 dB. The efficacy of the denoising techniques with the different input

SNR levels is described in Figure 7.4. The records from the MIT-BIH database are used. For

each record, the SNR is changed from 6 to 18 dB. This figure presents the SNR improvement,

PRD, Correlation, and RMSE for all the denoising techniques, at different levels of noise.

Table 7.1 presents the performance of all filtering algorithms at the modified MIT-BIH

database with added motion artifacts.

7.5 Discussion

The denoising problem is approached by a new technique, the EnKF. This approach has

overcome denoising ECG signals in low input SNRs and in non-Gaussian and non-stationary

situations. In Figure 7.2, results for filtering ECG performed by EnKF, EKF, SG, WD,

EEMD, LMS, RLS, and TVD are depicted. As seen, the EnKF has followed the dynamics

of the ECG signal and it has suppressed the noise more than the other methods. The pro-

posed method, EnKF, is compared with the widely used filtering methods and demonstrates

better results in terms of visual quality. TVD and LMS annihilate the morphology of ECG
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Figure 7.4: (a) Comparison of the mean RMSE obtained by using different denoising methods
at different input SNR levels. (b) Comparison of the mean Correlation versus different input
SNR levels. (c) Comparison of the PRD for different denoising methods at different input
SNR levels. (d) Comparison of the mean SNR improvements for different denoising methods
versus different input SNR levels.
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Table 7.1: Performance of denoising of algorithms for the motion noise cancellation.

SNR Correlation PRD RMSE

EnKF 10.965 0.959 150.45 0.105

EKF 10.226 0.913 288.18 0.128

SG 9.280 0.888 387.12 0.148

WD 7.813 0.883 277.82 0.150

EEMD 5.187 0.825 469.50 0.183

LMS 9.254 0.897 297.12 0.131

RLS 9.206 0.892 298.15 0.129

TVD 9.397 0.890 361.32 0.142

which contains useful information. The SG, EEMD, and RLS could not eliminate the noise

completely. The results of WD, and EKF are fairly consistent.

Figure 7.3 reveals that the denoised signals are more distorted in the case of the other

methods. It is to be mentioned that the pattern of the enhanced ECG signal resulting

from the proposed method resembles the original ECG signal more and seems smoother in

comparison to the signal obtained from the other methods.

Figure 7.4 illustrates the performance of different denoising methods at different input SNR

levels. This figure compares RMSE, Correlation, PRD, and SNR of different denoising meth-

ods. Figure 7.4a presents the comparison of the RMSE results obtained by using different

denoising methods at the various level of SNR. As seen, for particular SNR levels, the pro-

posed method yields the smallest RMSE thus demonstrating its capability to yield enhanced

ECG signal with better quality. Figure 7.4b depicts the correlation results for different in-

put SNR levels. The proposed method has the maximum correlation with the clean signal.
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The proposed method provided a significantly higher Correlation when compared with the

other existing techniques. Figure 7.4c indicates that the proposed denoising method provides

lower PRD than the other methods considered. The mean of the SNR improvements versus

different input SNRs is plotted in Figure 7.4d. It is worth noting that EnKF has better

performance in input SNRs greater than 10 dB. Visually comparing these results, it can be

found the proposed methods have admirably tracked the original signal. This figure shows

that the proposed method provided reasonably higher SNR in the higher SNR input level.

To show that EnKF improvement is effective in daily life situations, the method has been

validated using the modified data with motion noise added.

Table 7.1 shows the denoising performance comparison in terms of RMSE. Correlation, PRD,

and SNR at the modified MIT-BIH database with added motion artifacts. It can be seen

from the table that the EnKF has the highest SNR improvement. The same conclusion can

be drawn from the PRD, Correlation.

The effectiveness of the EnKF in ECG denoising is shown through different databases. The

proposed technique can be applied in the home ECG monitoring devices.
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Chapter 8

Comparison of Methods to Extract

Fetal Electrocardiogram

8.1 Introduction

The focus of this chapter is, first, to perform and compare different extraction algorithms

and, second, to simulate practical noises to examine the algorithms in real situations. Data

from the PhysioNet 2013 Challenge with labeled QRS complex annotations were used in the

original form and with Gaussian and motion noise added, mimicking a practical scenario

(See 4.2.1, 4.2.4). Our results in terms of accuracy, execution time, and robustness could

provide useful insights into the implementation and operation of state-of-the-art fetal and

maternal monitoring systems in the era of m-Health.
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8.2 Methods

The methods for fetal electrocardiogram (fECG) extraction can be classified into three

groups: blind source separation (BSS), template subtraction, and filtering techniques. The

BSS methods assume that the abdominal signal is a mixture of independent signals, consist-

ing of fECG, maternal electrocardiogram (mECG), and noises [26]. The template subtraction

method may result in erroneous outcomes when the fECG and mECG waveforms tempo-

rally overlap. Our group has developed a novel f/mECG monitoring system, with which

data would be collected from the abdomen [65]. The first system utilized the least-mean

square adaptive filtering. Since the filtering requires the convergence of the adaptive filter,

the stability depends on the choice of the step size. Our group also has used the BSS method

under the independent component analysis (ICA) framework to extract fECG [46].

In this work, we explored JADE, FastICA and RobustICA, EKF, and TS algorithms for

fECG extraction to evaluate their efficacy in terms of accuracy, computational complexity,

and noise robustness (See 3). Furthermore, we attempted to use the combinations as (1)

TS-ICA in which the abdominal electrocardiograms (aECGs) were first applied TS method

to remove the mECG component, ICA method was then used to extract fECG. This method

is useful as mECG’s amplitude is dominant in the aECG, the use of TS may help to retain

the fECG component; (2) ICA-TS in which the aECGs were first applied by ICA method,

and four new separated signals produced were then put through the TS method. Utilizing

ICA at the beginning is for extracting fECG, mECG, and other components; however, it

does not completely remove mECG in the extracted fECG. Thus, applying the TS method

could eliminate the remaining mECG component; and (3) ICA–TS–ICA in which the aECGs

went through three steps; specifically, after removing mECG from the residual of (ICA-TS),

ICA could be used again. It may have better results because four sources in residual signals

have not shown mECG, so with using ICA in the last step, there will be three noise channels

and one fECG channel.

75



8.3 Results

Figure 8.1 presents the performance of fQRS detection by TS (See 3.5). The aECG signals

were preprocessed to remove the baseline wander, power line noise, and high-frequency noise.

Then, the Pan-Tompkin algorithm was implemented on four aECG signals, resulting in R

peaks of mECG (mQRS detection), as shown in Figure 8.1a. After mQRS detection, a

template mECG was produced (Figure 8.1b). The following step is removing the template

mECG signal by subtracting it out from the aECG signal. Finally, fetal QRS complex (fQRS)

was detected using the Pan-Tompkin algorithm, as shown in Figure 8.1c. Table 8.1 represents

Figure 8.1: fQRS detection illustrated by TS method: (a) the aECG signal is filtered baseline
wander and power line and applied Pan-Tompkins for mQRS detection; (b) a template of
mECG is constructed from filtered aECG and the R peaks of mECG; (c): the residual signal
is derived by the subtraction between filtered aECG and template mECG and Pan-Tompkins
is applied for fQRS detection. The fQRS annotation is also included (plus sign in green).

the results of the average F1 score in the 68 aECG records using different approaches. The

combination of TS-FastICA yielded the highest F1 score with 92.61%, followed by JADE-
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TS-JADE and TS-JADE methods with 91.56% and 91. 16%, respectively. The lowest F1

scores were found in EKF, JADE, FastICA, and RobustICA with 54.34%, 61.27%, 60.08%,

and 59.60%, respectively. It should be noted that using these algorithms alone was not

as effective as that combined with other algorithms. Once motion noise was added, the

F1 score was reduced significantly. More specifically, the highest F1 score was below 90%,

including TS-RobustICA, JADE-TS, and JADE-TS-JADE. The lowest F1 was from EKF

with 51.45%.

In Table 8.2, the number of records that had an F1 score lower than 50% is illustrated,

providing a comprehensive assessment of the reliability of each approach. Specifically, the

use of a combination of different approaches resulted in the lowest records with an F1 score

below 50% while using an individual approach increased the number of records with an F1

score below 50%, especially in EKF with 38 out of 68 records. Similarly, the data with added

motion noise showed a higher number of recordings with an F1 score below 50% which is

reasonable as motion noise may dominate fECG which has lower amplitudes.

The performance of studied approaches with noise-added data is described in Figure 8.2. It

is obvious that with higher noise levels, lower F1 was achieved. All approaches showed a

linear curve for the F1 score when increasing the noise level, except for EKF. The F1 score

in EKF slightly increased in noise level 3, compared with that in noise level 0. It could be

explained that the noise added may superimpose the fECG signal, easing inadvertently this

method to find peaks of fECG signal.

Memory requirement is not very important when algorithms are implemented on nowadays’

computers; however, it will be important when mobile platforms with limited computation

power are used, especially in real-time. For this calculation, the memory function in Matlab

is used. Results are dependent on the computer hardware and the load on the computer.

Table 8.3 shows the amount of memory used for each algorithm. The EKF method occupied

the highest memory capacity with 2940 MB while other algorithms showed memory occu-
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Table 8.1: Average F1 score(%) with different methods.

Method Without motion noise With motion noise

EKF 54.34 51.45

JADE 61.27 59.81

FastICA 60.08 59.38

RobustICA 59.60 58.74

TS 82.65 71.02

TSc 83.12 70.64

TS-JADE 91.16 82.35

TS-FastICA 92.61 85.02

TS-RobustICA 90.71 80.63

JADE-TS 90.57 85.10

FastICA-TS 82.98 77.94

RobustICA-TS 87.43 83.21

JADE-TS-JADE 91.56 85.43

FastICA-TS-FastICA 87.07 82.47

RobustICA-TS-RobustICA 89.29 82.67
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Table 8.2: Number of records out of 68 datasets with F1 scores less than 50%.

Method Without motion noise With motion noise

EKF 38 40

JADE 18 19

FastICA 22 27

RobustICA 28 28

TS 10 17

TSc 10 17

TS-JADE 1 7

TS-FastICA 1 4

TS-RobustICA 2 8

JADE-TS 0 3

FastICA-TS 6 9

RobustICA-TS 5 5

JADE-TS-JADE 1 1

FastICA-TS-FastICA 5 5

RobustICA-TS-RobustICA 2 5
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Figure 8.2: F1 comparison with different Gaussian noise levels.

pied below 1300 MB. Although the combination of different methods could provide higher

performance i.e., higher a F1 score, it took a higher amount of memory than running them

individually. For both high performance and low memory occupied cases, JADE-TS-JADE

would satisfy those criteria.

This assessment aims to compare the complexity among methods, hereby providing sugges-

tions to implement the algorithms on other platforms with different computational capaci-

ties. Here, a computer with the following configuration was used: Intel Core i5-8400 CPU @

2.80GHz 6 Cores; Window 10 Education x64bit; RAM 16GB DDR4, and the software Mat-

lab R2016. The execution time of each algorithm is calculated from the end of pre-processing

to the end of R peak detection. Figure 8.3 depicts the time execution ran multiple times

for each algorithm. In general, the time execution did not change significantly during each

run. The approaches with the FastICA method including e.g., FastICA-TS-FastICA, TS-

FastICA, FastICA-TS, FastICA, etc. showed the highest time execution with nearly 1 s.

Other approaches fluctuated within 0.75 s in the first few running and stayed at 0.3 s after

that. TS and TSc methods took the lowest time for finishing the program.

In EKF, we used a beat fitter module that calculates αi and bi (αi and bi represent the
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Table 8.3: Required memory for different methods.

Method Required Memory (MB)

EKF 2940

JADE 1175

FastICA 1183

RobustICA 1199

TS 1220

TSc 1205

TS-JADE 1204

TS-FastICA 1211

TS-RobustICA 1210

JADE-TS 1222

FastICA-TS 1206

RobustICA-TS 1199

JADE-TS-JADE 1192

FastICA-TS-FastICA 1199

RobustICA-TS-RobustICA 1202
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Figure 8.3: The time execution comparison.

amplitude and width of the Gaussian functions of the five PQRST waves). In this module,

a number of kernels should be placed in the critical points of the ECG. Both automatic and

manual beat fitter modules are tested, but the manual module is more robust. However, for

the manual calculating the computational time is impossible since it ends when the user is

done with choosing the kernels. On the other hand, in the automatic module based on the

desired minimum error of the dynamic model the computational time varies. The average

computational time in automatic EKF is 21.7 s.

8.4 Discussion

We compare different fECG extraction algorithms by assessing five well-defined criteria: the

raw data, the motion noise, the white noise, the execution time, and the required memory.

In pure data, we found that the F1 score widely ranges from 92.61% (TS-FastICA) to 54.34%

(EKF). The results of TS algorithms are fairly consistent, and the same thing happened to

ICA’s. Algorithms with the same topology have relatively close F1 scores. TS algorithms
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give better results than pure ICA algorithms, and when we combine them, we get a higher

F1 score. With motion noise added, algorithms such as EKF and ICA have accuracy reduced

by only 1% to 3%. However, for TS algorithms, F1-score was reduced by more than 11%.

Overall, JADE-TS-JADE has the best performance and has the highest accuracy. However,

RobustICA-TS shows the lowest accuracy reduction after adding motion noise. In other

words, RobustICA-TS is more robust. According to results presented in Table 8.2, JADE-

TS-JADE has the least F1 scores lower than 50% and EKF has the most F1 scores lower

than 50% indicating the reliability and consistency of the methods. Although, the result of

JADE-TS-JADE is the most reliable; the EKF algorithm only requires one channel for data

acquisition and fECG extraction, while other methods need four channels of aECG. This

indicates that with EKF, the physical device would be smaller and more unobtrusive.

Figure 8.2 illustrates the performance of algorithms in the presence of white noise with

different amplitudes. In high SNR (low white noise), TS-FastICA has the best performance

while in low SNR (high white noise), TS-JADE works better. Note that in very low SNR,

data were completely corrupted, and the performance of different methods was found similar.

The next criterion is allocated memory for fECG extraction. Table 8.3 presents the required

memory for these methods. The required memory for all methods was less than 1300 MB,

except EKF. EKF needs much more memory for fECG extraction. Since for home-based

monitoring, algorithms run on microprocessors, the required memory could be important.

Figure 8.3 shows the computational time for these methods (excluding EKF). Execution time

is vastly different. TS algorithms need the least time: 0.128 s, while that of FastICA -TS-

FastICA is 1.5 s, which is the slowest running algorithm. We could see that 4 algorithms

containing FastICA are very slow. The reason is that in some cases, the FastICA algorithm

did not converge, depending on several initial values, while other algorithms are quite stable.

If we remove those cases, the execution time of these algorithms will be approximately that

of the same topology algorithms.

83



We noticed that the execution time of TS and TSc is the shortest. The execution time of

algorithms containing FastICA and RobustICA (such as FastICA-TS and RobustICA-TS;

TS-FastICA and TS-RobustICA, etc.) is nearly equal. Meanwhile, if we replace FastICA or

RobustICA in those algorithms with JADE, it would take less time. In addition, we observed

that JADE-TS runs slower than JADE-TS-JADE. The reason is that JADE-TS takes more

time in the block fQRS detection and selection. The same thing happens with FastICA-TS

and FastICA-TS-FastICA pairs. However, the advent of high-speed processors has made this

factor less important.
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Chapter 9

Conclusion and Prospective

9.1 Summary of contributions

This thesis provides a number of contributions to the field of non-invasive fetal electrocardio-

gram (NI-fECG) extraction and ECG analysis; (1) performed and presented a comprehensive

comparison among different methods for NI-fECG extraction; (2) introduction of the Ensem-

ble Kalman Filter as a Kamlan filtering technique for its application to NI-fECG extraction;

(3) benchmark and evaluate the performance of the novel algorithm with existing technique

(EKF); (4) developed a novel wearable fECG monitoring system consisting of an abdominal

patch that communicates with a smart device; (5) development of our own clinical data.

This thesis focuses on the processing of the abdominal electrocardiogram (aECG) recorded

to extract fECG signal. The proposed algorithm for fECG extraction offers many advantages

over other fetal monitoring techniques, such as accuracy and robustness, enabling morpho-

logical analysis of the fECG and continuous monitoring of fetal heart rate (fHR).
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9.2 Conclusion

9.2.1 fECG extraction Algorithms

An accurate fHR monitoring would provide valuable information that could help deliver bet-

ter home-based fetal monitoring. In this thesis, we presented a comprehensive comparison

among different methods for fECG extraction. Accuracy, feasibility, robustness and sim-

plicity were utilized as criteria to compare, for those who are considering of selecting the

most appropriate algorithm for their particular systems. For home-based fetal monitoring,

the signal is most likely messed with motion artifacts; therefore, the performance of an al-

gorithm in data with motion is preferred. In this case, JADE-TS-JADE showed the best

performance in terms of aforementioned criteria. The EKF has the weakest performance,

especially with noise added; however, it requires only one channel for fECG extraction, thus

bringing compactness in manufacturing, and thus possibly being widely accepted by users.

For future work, our team will focus on cloud-based analytics of fHR/fECG and maternal

electrocardiogram (mECG) for promoting maternity care as well as novel algorithms to re-

liably extract fECG with full features of P waves, QRS complexes and T waves for early

detection of congenital heart disease and critical events during pregnancy.

9.2.2 Home-based Fetal Electrocardiogram (ECG)Monitoring Sys-

tem

Currently, there is no such kind of highly-integrative system for home-based fetal and mater-

nal monitoring. It was reported that pregnant women and their fetuses are more vulnerable

to adverse outcomes and disease complications [102]. According to another research, the

COVID-19 can accelerate pregnancy-related diseases [103]. Thus, in special scenarios such

as the current COVID-19 pandemic, effective distanced care and monitoring are in need
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more than ever. Our proposed system takes the burgeoning field of telemedicine and mobile

health (m-Health) to the next level. Successful completion of this project provided a foun-

dation to improve the infrastructure for providing remote monitoring to patients and care

teams. To evaluate the efficiency and accuracy of the proposed method, we employed data

to be obtained in the University of California, Irvine Medical Center under our the Proof

of Product (POP) grant activity (see 4.2.2, and 5.3.2). The development of a home-based

fECG monitoring system can be widely used due to 1) low cost, 2) compact and unobtrusive

device, 3) high reliability, and 4) continuously monitor the fetal and maternal’s heart rate.

Figures 9.1a, 9.1b show the fetal ECG monitoring system in operation. The electrode patch

attached to the maternal abdomen, which the app connects to the fetal patch through BLE

protocols. The main interface of the app is shown in Figure 9.1c.

(a) (b) (c)

Figure 9.1: The fetal ECG monitoring system in operation. (a) Wearable fECG monitoring
system attached to the maternal abdomen; (b) Wearable fECG monitoring system attached
to the maternal abdomen; and (c) Android phone client main interface.

9.2.3 A Novel Algorithm for fECG Extraction

Current systems do not provide fECG with full features of PQRST waves which show the

functional conditions of the heart. Thus, Continuous fECG monitoring would provide not
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only additional information for Congenital heart disease (CHD) detection but also the pro-

gression toward abnormal development. Further, continuous fECG monitoring in the home

setting would be invaluable for prognosis as well as studies for therapeutic potentials. We

have implemented different extraction combined algorithms and validated them using the

modified online data with Gaussian and motion noise added, mimicking practical scenarios

(See Chapter 8). There is no approach available to extract fetal characteristic waves [13]. In

the clinics, we performed one-channel ECG acquisition and we applied a proposed algorithm,

the EnKF. the EnKF is a Sequential Monte Carlo (SMC) method, and it shows a better per-

formance, especially in systems with strong nonlinearity than the popular Extended Kalman

filter (EKF) that applies analytic linearization. We used the EnKF algorithm to extract

fECG which exhibits robust and efficient performance. We have found the EnKF would

yield superior performance. Finally, after deploying sequential EnKF to extract fECG with

characteristic features, as results in 6.4 the segments and intervals would be measured.

We first tested and compared the performance of EKF and EnKF with noise-added aECG

signals. We further validated the algorithms on 10-20 pregnant women during the 2nd or

3rd trimester in different types of activity such as walking or jogging at different speeds.

We carried this out in the UCI Medical Center (see 4.2.2). As was shown in this thesis, the

EnKF method relies on accurate and precise fQRS and mQRS detection.

9.2.4 Novel Algorithm for ECG denoising

The ECG has always been a popular measurement scheme to assess and diagnose cardio-

vascular diseases (CVDs) [104]. ECG will provide vital information about fHR, and the

existence of abnormalities or distress in the heart. The precise ECG depicts PQRST fea-

tures in the signal that helps evaluate the functional status of the heart. The high noise

level in daily life renders long-entrenched challenges to monitoring ECG signals. In this
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thesis, we proposed a novel algorithm. the EnKF, to denoise ECG signal. This algorithm

is to develop a robust scheme to provide home-based HR monitoring from a compact device

with the presence of high noise. To evaluate the novel algorithm, we first test it with online

databanks (see 4.2.3). We further validated it with modified signals with motional artifacts

added (see 4.2.4). The results of this thesis approve the applicability of the EnKF, for the

filtering of noisy ECG signals.

9.3 Future works

A number of general items identified for future works are summarised below.

• Conduct more experiments on the pregnant subjects, including subjects with twins

and multi-fetal prenatal, to validate the system and the fECG extraction algorithms,

could be conducted.

• Improve the entire fetal monitoring system with more miniaturized patches, optimized

Android and iOS apps, real-time and pseudo-real time analytics with cloud computing.

• Evaluate the proposed denoising algorithm, EnKF, in the home setting device.

• Assess the fECG patch and the EnKF algorithm in out-of-clinic settings.

• Correlate with other physiological signals to link the mother’s activity with fetal de-

velopment [14, 105].

• Find the optimal electrode placement for recording high-quality fetal ECG signal for

further processing.
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