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Abstract

The least angle regression (LAR) was proposed by Efron, Hastie, Johnstone and Tibshirani (2004) 

for continuous model selection in linear regression. It is motivated by a geometric argument and 

tracks a path along which the predictors enter successively and the active predictors always 

maintain the same absolute correlation (angle) with the residual vector. Although it gains 

popularity quickly, its extensions seem rare compared to the penalty methods. In this expository 

article, we show that the powerful geometric idea of LAR can be generalized in a fruitful way. We 

propose a ConvexLAR algorithm that works for any convex loss function and naturally extends to 

group selection and data adaptive variable selection. After simple modification it also yields new 

exact path algorithms for certain penalty methods such as a convex loss function with lasso or 

group lasso penalty. Variable selection in recurrent event and panel count data analysis, Ada-

Boost, and Gaussian graphical model is reconsidered from the ConvexLAR angle.

Key words and phrases

group lasso; lasso; least angle regression (LAR); ordinary differential equation (ODE); 
regularization; solution path

1 Introduction

Regularization is a tool to avoid overfitting and obtain parsimonious and interpretable 

models, especially when the number of parameters exceeds the number of observations. One 

powerful regularization technique is penalization. In general, a penalty method minimizes 

the sum of a loss function and a penalty term. The simplest ℓ1 penalty leads to the popular 

lasso regression (Tibshirani, 1996; Donoho and Johnstone, 1994). Various other penalty 

methods have been developed thereafter. Each one targets on a specific question that arises 

in applications. For instance, the group penalty (Yuan and Lin, 2006; Meier et al., 2008) 

aims to select groups of variables such as in factorial data analysis. The adaptive lasso (Zou, 

2006) applies a weighted penalty method in a data driven fashion that improves the 

asymptotic properties. All these penalty methods are formulated as an optimization problem 

Correspondence to: Yichao Wu, wu@stat.ncsu.edu.

Supplementary Materials
Matlab codes used in Section 4 are contained in the zip file matlabcodes.zip available online. Demonstration is provided in 
main_demo.m for all examples in Section 4.

HHS Public Access
Author manuscript
J Comput Graph Stat. Author manuscript; available in PMC 2016 July 01.

Published in final edited form as:
J Comput Graph Stat. 2015 July 1; 24(3): 603–626. doi:10.1080/10618600.2014.962700.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and the solution is obtained by either optimizing at a grid of tuning parameter values or by a 

path algorithm that tracks the solution as a function of the tuning parameter.

In contrast to penalty methods, the least angle regression (LAR) proposed by Efron et al. 

(2004) is purely motivated by a geometric argument rather than optimization. Given a 

response vector y = (y1, y2,⋯, yn)T ∈ IRn and its corresponding design matrix X = (x1, …, 
xn)T ∈ IRn×p with xi = (xi1, xi2,⋯, xip)T, let t be the active index set at time t. Following 

Efron et al. (2004), we assume that the covariates x(j) = (x1j, x2j, …, xnj)T have mean 0 and 

unit length, and that the response y has mean 0. At t = 0, β(0) = 0p and 0 contains the 

predictor that is most correlated with the response vector y. At any t > 0, regression 

coefficients of active predictors, namely βj(t) for j ∈ t, move along a direction such that 

their corresponding predictor vectors x(j) share the same absolute correlation (angle) with the 

residual vector e(t) = y−Xβ(t). Here the correlation is nothing but the scaled score vector of 

the least squares criterion with entries

LAR has gained wide popularity since its introduction. However, there seem only a few 

attempts for generalizations, strikingly unparallel to the fast development of penalty 

methods. Specific versions of group LAR for least squares problem are mentioned in Yuan 

and Lin (2006) and Park and Hastie (2006). Wu extends LAR to the generalized linear 

models (Wu, 2011) and the Cox’s proportional hazard model (Wu, 2012). In this article, we 

demonstrate that the powerful geometric idea of LAR can be generalized in a fruitful way 

and leads to potentially many more applications.

The remaining of the paper is organized as follows. In Section 2, we derive a basic 

ConvexLAR algorithm that performs continuous variable selection for any general convex 

loss functions. For least squares loss, Efron et al. (2004) show that the LAR solution path is 

piecewise linear. This leads to their efficient path following algorithm with computational 

cost of a single ordinary least squares estimation. For a general loss function, the piecewise 

linearity property is lost. However, it can be shown that the solution path is piecewise 

smooth and, within each path segment, follows a simple ordinary differential equation 

(ODE). ConvexLAR tracks the solution path by utilizing the rich numerical resource for 

solving ODE. Just like the original LAR for least squares, a simple modification of 

ConvexLAR yields the corresponding lasso solution path.

In Section 3, we show that the geometric idea of LAR can be adapted to various situations. 

We demonstrate this by incorporating data adaptive weights and group selection into the 

ConvexLAR algorithm. Comparing to their penalization analogs, these extensions avoid 

repeated optimizations and are computationally attractive. Moreover, a slight modification of 

ConvexLAR yields the exact solution path for the corresponding penalization method. 

ConvexLAR and its extensions are illustrated by various numerical examples in Section 4. 

To the best of our knowledge, no LAR algorithms have been proposed for these examples in 

the current literature. Finally we conclude with a brief discussion.
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2 ConvexLAR Algorithm and ConvexLASSO Modification

In this section, we derive the ConvexLAR algorithm which forms the basis of various 

extensions presented in the next section. The algorithm is similar to the LAR algorithms 

developed for GLM and Cox model (Wu, 2011, 2012) but with much more generality and 

simpler derivation. We consider an arbitrary strictly convex loss function f(β), where β ∈ IRp 

is the vector of parameters subject to regularization. ∇f(β) = [∇1f(β), …, ∇pf(β)]T ∈ IRp 

denotes the gradient vector of the loss function and H(β) = d2f(β) ∈ IRp×p the Hessian, 

where ∇jf(β) denotes the partial derivative of f(β) with respect to βj for j = 1, …, p. When f 
is a negative log-likelihood function, ∇f(β) equals the negative of the score vector and H(β) 

is the observed information matrix. We use t to index the LAR solution path, with the 

solution at any t denoted by β(t). The active index set at t is denoted by t. For notational 

simplicity, we will drop the subscript t whenever it is obvious from the context. For instance, 

β (t) and ∇ f(β) are the subvectors of β(t) and ∇f(β) corresponding to active predictors at 

t respectively. Similarly, H (β(t)) is the submatrix of the Hessian corresponding to t.

The key idea of LAR (Efron et al., 2004) is to move the solution in a direction such that the 

gradient (score) corresponding to each active predictor variable has the same absolute value. 

We denote this common value by s(t), where s stands for the score. This prescribes that the 

active solution vector has to satisfy |∇jf(β)| = sgn(∇jf(β)) · ∇jf(β) = s(t) or equivalently

Note that, for any active predictor j, ∇jf(β) is non-zero and therefore has a constant sign, 

denoted by sgn(∇jf(β)), within a segment. In vector form, we have

(1)

In general s(t) can be any smooth and monotonic function that decreases from s(0) = maxj |

∇jf(0)| to s(tmax) = 0 at some finite tmax > 0. Intuitively s(t) controls how the common 

absolute score of active predictors decays with respect to solution index t. Different choices 

of s(t) lead to different indexing systems yet the same solution path. The classical LAR 

(Efron et al., 2004) sets s(t) = s(0) − t which implies that tmax = s(0) = maxj |∇jf(0)|.

By construction s(t) is larger than the absolute value of the scores of inactive predictors 

which are packed at zero. Once the absolute score |∇jf(β(t))| of an inactive predictor j 
coincides with s(t), it joins the club and its score conforms to the ruling s(t) thereafter. 

Whenever such an event happens, the set of active predictors is updated by adding this new 

predictor. The index location t corresponding to this event defines a transition point in the 

sense that the set of active predictors changes (Wu, 2011). A path segment is defined as the 

solution path between two consecutive transition points. The following result follows from 

the implicit function theorem and provides the path following direction of the ConvexLAR 

algorithm within a path segment. See the Appendix for the proof and the following 

subsection for the definition of path segment operationally.
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Theorem 1—For a strictly convex and twice differentiable loss function f(β), the LAR path 

solution β(t) is continuous and differentiable at t within a path segment. In addition, the 

solution vector β(t) satisfies the ordinary differential equation

(2)

and βj(t) = 0 for any j ∉ t.

2.1 ConvexLAR Algorithm

Theorem 1 suggests that the exact solution path of LAR can be obtained by solving the 

simple ODE system (2) segment by segment. The size of the ODE system within a segment 

is equal to the corresponding number of active predictors | |. The ConvexLAR algorithm is 

summarized in Algorithm 1. We initialize our solution path with β(0) = 0 and the beginning 

active set contains the predictors that change the objective function f(0) fastest. That is

Algorithm 1

ConvexLAR.

We then follow the solution path by solving the ODE system (2) until one or more new 

variables join the active set at some t1 > 0, which is determined by the moment the active 

score s(t) matches the maximum (absolute) gradient of one or more non-active predictors. 

The active predictor set t stays the same within t ∈ [t0, t1). At t1, it is updated by adding 

the new predictors that newly join the club. This process continues segment by segment until 

all the predictors are active. Then, in the final segment, the ConvexLAR solution path moves 

along a direction such that the absolute values of the first-order partial derivatives decrease 

at the same speed to zero, which happens at tmax. Under assumptions of Theorem 1, the 

solution β(tmax) is the global minimizer of the convex loss function, just like the LAR 

solution ends at the full ordinary least squares estimate. This completes our ConvexLAR 

solution path algorithm.
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2.2 Remark

In this section, we make the following four remarks on the ConvexLAR algorithm.

Remark 1—For the specific choice of s(t) = s(0) − t,

for any j ∈ t1. This holds analogously for later transition points. At the end of the m-th 

LAR segment, the transition point

for any j ∈ tm.

Remark 2—For least squares problems, the loss is a quadratic function 

with a constant Hessian matrix H(β) = XTX. Since sgn(∇jf(β(t))) is constant for all j ∈ t in 

a neighborhood of t,  in (2) is piecewise constant. This leads to the 

piecewise linear solution path of the original LAR (Efron et al., 2004).

Remark 3 (Non-strictly convex losses)—The strict convexity assumption on the loss f 
precludes applications with non-convex losses or the n < p least squares case. However from 

the proof in Appendix, we observe that the only essential ingredient is the positive 

definiteness of H (β(t)). Therefore in non-strictly convex cases, we terminate path 

following as soon as H (β(t)) becomes singular.

Remark 4 (Partial regularization)—So far we have assumed that the full set of 

parameters β are subject to regularization. In many applications, only a subset of parameters 

are regularized. Assume that the loss takes the form f(β0, β), where β0 ∈ IRp0 is the vector of 

parameters exempt from regularization. Depending on the objective function, it may not be 

easy to remove β0 from the objective. However we can always define the marginal minimizer 

of β0 as a function of β

(3)

Assume that f is strictly convex and thrice differentiable, then this mapping is uniquely 

defined and twice differentiable by the implicit function theorem. Denote the Jacobian and 

Hessian of this mapping by Dβ0(β) ∈ IRp0×p and Hβ0(β) ∈ IRp0p×p respectively. Then the 

first two derivatives with respect to β required in Theorem 1 can be obtained by the chain 

rule
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The Ada-Boost and Gaussian graphical model examples in Section 4 illustrate this strategy.

2.3 ConvexLASSO Modification

Efron et al. (2004) showed that in the least squares case the lasso solution path can be 

obtained by a slight modification of the LAR. Same extension applies to ConvexLAR. 

Consider the lasso regularized problem

(4)

With λ = s(t) = s(0) − t, the optimality condition for lasso solution is

(5)

A proof similar to that for Theorem 1 shows that the lasso solution path moves along the 

direction

until either (i) βj(t) hits zero for an active predictor j or (ii) |∇jf(β(t))| hits boundary λ = s(t) 
for some inactive predictor j. Both events change the active set and redefine the direction. 

The second equation is based on the fact that by (5) a lasso regularized solution satisfies 

sgn(β (t)) = −sgn(∇ f(β(t))). Similarly, the ConvexLAR algorithm can be modified to 

obtain the lasso solution path β(λ) with λ = s(t). Observe that the event defining the LAR 

segment, i.e., the gradient of an inactive predictor hits λ = s(t), is exactly same as the second 

type of event for lasso path. However the first type of event, i.e., the coefficient of an active 

predictor hitting zero, is not tracked in ConvexLAR. We call the modified algorithm, which 

tracks both types of events, by ConvexLASSO and the pseudocode is listed in Algorithm 2. 

Same argument as in Efron et al. (2004) and Wu (2011) shows that, under the assumption 

that, at each transition point, only one single event can happen, namely either one inactive 

predictor variable becomes active or one currently active predictor variable becomes 

inactive, ConvexLASSO algorithm yields the lasso solution path.

3 Generalizations

In this section we first summarize a few essential features of ConvexLAR and then 

demonstrate how these aspects lead to various generalizations.
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L1 The “influence” of each predictor on the loss function is measured by the 

magnitude of its score (gradient). Indeed it is these gradient (score) functions 

that ConvexLAR operates on. For the ConvexLAR algorithm to work properly, 

we require the influence function to be a monotone IRp → IRp mapping (Ortega 

and Rheinboldt, 2000). For instance, convexity of a loss function guarantees that 

its gradient (score) function is a monotone mapping.

L2 Certain form of “democratic voting” is enforced among the active predictors. 

Both the original LAR and ConvexLAR force the influences of individual active 

predictors to be equal. This equality constraint can be generalized when we want 

to favor certain predictors over others or to impose group structure on predictors.

L3 The influences of active predictors continuously decrease along the path so that 

those of inactive predictors can catch up. The assumption in L1 that the gradient 

(score) function must be a monotone mapping guarantees that all influences 

change continuously.

L4 The inactive predictors keep parked at zero until their influence meets that of 

active ones, at which point they join the club.

L5 The influences of all active predictors gradually decrease at the same rate and hit 

zero at the same time, which declares the end of path following.

Algorithm 2

ConvexLASSO.

3.1 Weighted/Adaptive ConvexLAR

In many applications, there exists prior information about the importance of predictors, 

which can also be obtained in a data driven fashion. This motivates the development of 

adaptive lasso (Zou, 2006), which enjoys favorable asymptotic properties. To incorporate 

such information into ConvexLAR, we weight the “influence” of each predictor 

differentially and consider the weighted “influence” wj|∇jf(β)| of each predictor, where wj ≥ 

0 are predictor specific weights. A larger wj implies higher “influence” and vice versa. A 

zero weight means no regularization for the corresponding predictor. For simplicity, we 
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assume that all weights are positive. In this case the function s(t) is the common value wj|

∇jf(β)| shared by active predictors. Setting wj ≡ 1 reduces to the ConvexLAR. The 

stationarity condition for the “democratic voting” reads

and the ODE system becomes

where the vector  collects the inverse weights  for active predictors. Segment 

terminates when wj|∇jf(β(t))| hits s(t) for some inactive predictors j ∉ . The weighted 

ConvexLAR is summarized in Algorithm 3 and a similar modification can be applied to get 

the corresponding adaptive ConvexLASSO.

Algorithm 3

Weighted ConvexLAR with predictor specific weights wj > 0.

3.2 Group ConvexLAR

In this section we outline a strategy for extending ConvexLAR to incorporate group structure 

among predictors. Suppose predictors are divided into m groups with group size pi, i = 1, …, 
m. Slightly abusing notation, we use g to represent both the g-th group and the index set of 

all predictors belonging to the g-th group. In a similar manner, we use  to represent both 

the set of active groups and the index set of all predictors belonging to current active groups. 

For an arbitrary matrix H, Hℐ,  denotes the sub-matrix of H with rows in ℐ and columns in 

.

Group ConvexLAR can be devised based on the following considerations. (i) We need one 

way to gauge the aggregate “influence”, denoted by Ig(β), of a group g. For instance, we can 

use either the ℓ2 norm or ℓ1 norm of the sub-vector of the gradient corresponding to a group, 
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i.e.,  or Ig(β) = ||∇gf(β)||1 = Σj∈g |∇jf(β)|. Note that 

in principle any ℓp norm, p ≥ 1, can be used. (ii) For all groups in the active group set , we 

use the function s(t) to control the common value of e(pg)−1Ig(β), g ∈ , where pg denotes 

the number of predictors in group g and e(pg) is the effective size of g-th group. Common 

choices for e(pg) are  or pg. (iii) To make the ODE well defined, we need to assign the 

proportions of individual “influences” cg(j) to each predictor j in group g. We require ||cg||p = 

1 to satisfy the equation ||∇gf(β)||p = ||cgIg(β)||p, where cg is a column vector with cg(j), j ∈ g, 

stacked together. These conditions imply the general group LAR identity

(6)

Now the implicit function theorem yields the group LAR updating direction (7) in 

Algorithm 4. Here c  is a column vector with cg for g ∈  stacked together and p  is a 

column vector with the corresponding effective group size e(pg) for each predictor j in group 

g stacked together.

Algorithm 4

A general scheme for Group ConvexLAR.

Specific choices of the group “influence” Ig(β), effective group size e(pg), and individual 

“influence” cg(j) lead to different updating directions. We specialize to the following three 

variants. The first has a close connection to the group lasso. The second and third recover 

two versions of group LAR algorithms developed in the literature.

1. GroupConvexLAR: We measure the group influence by Ig(β) = ||∇gf(β)||2, which 

is distributed to individual predictors within the group according to their effect size 

cg(j) = −βj/||βg||2. Let  and assume  = 0 ∪ 1, where 0 = {g0, …, ga} 

denotes the set of active groups with ||βg||2 = 0 and 1 = {ga+1, …, ga+b} denotes 

the set of active groups with ||βg||2 > 0.

Theorem 2. For a strictly convex and twice differentiable loss function f(β), the 

LAR solution β(t) is continuous and differentiable at t within a segment.

a. If 0 is an empty set, the active solution vector β (t) satisfies the differential 

equation
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(8)

where D is the block diagonal matrix with blocks

b. If 0 is not empty, the solution vector βgi for gi ∈ 0 satisfies

(9)

and the constants ki, i = 1, …, a, and updating direction for the groups in 1 

are jointly determined by

(10)

where A ∈ IRa×a has entries aij = dgif(β)Hgi,gj(β)∇gj f(β), 1 ≤ i, j ≤ a,

and

Note that, when 0 is empty, (10) reduces to (8). The technical proof of 

Theorem 2 is delegated to the Appendix. Again the strict convexity 

assumption can be relaxed to the positive definiteness of H (β(t)) along the 

path, which guarantees the non-singularity of the matrix involved in (10).

2. GroupConvexLAR-L1: We choose Ig(β) = ||∇gf(β)||1, e(pg) = pg and 

, where tg is the time that the group g joins the active set . Note 

that in this case cg(j) is fixed for any j ∈ g once group g joins the active set. 

Therefore  and the group LAR direction (7) reduces to
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(11)

3. GroupConvexLAR-L2: With the choice Ig(β) = ||∇gf(β)||2,  and 

, the ODE updating direction is same as (11) with the 

obvious substitute for c  and p .

Note that, when all group sizes pg are equal to 1,

and  for all g. All three variants reduce to the ConvexLAR.

Connection with Previous Group LAR—Consider the variant GroupConvexLAR-L2 

in the special case of least squares, i.e., . In this case, both 

 and c (t) are constant within a segment. Thus, the group LAR updating 

direction (11) is constant within each segment, leading to a piecewise linear solution path 

with segment-wise slope

This recovers a version of group LAR proposed by Yuan and Lin (2006) for group selection 

in least squares. Park and Hastie (2006) argue that this version of group LAR tends to select 

a large group with only few of its component correlated with the response. To avoid this 

problem, they propose another version of group LAR by simply replacing the average 

squared correlation (Σj∈g[∇jf(β)]2/pg) with the average absolute correlation (Σj∈g |∇jf(β)|/

pg), which is simply GroupConvexLAR-L1 specialized to least squares.

We emphasize that, for a general convex loss f, the solution paths by GroupConvexLARL1 

and GroupConvexLAR-L2 are both piecewise smooth instead of piecewise linear and ODE 

solving is necessary.

3.3 Group ConvexLASSO Modification

We show next that a simple modification of the aforementioned first variant 

GroupConvexLAR yields the solution path of group lasso penalized problem min
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Its solution satisfies the following the Karush-Kuhn-Tucker (KKT) conditions

(12)

(13)

With the choice λ = s(t), the stationarity condition (12) coincides with the group LAR 

identity (6). This observation together with the above KKT conditions implies that the group 

lasso solution path moves along the same direction (8) of the GroupConvexLAR until either 

one of the following two types of event happens. The first type of event occurs when all 

predictors of an active group hit zero, denoted by event of type (i). The second type of event 

occurs when ||∇gf(β)||2 hits boundary , denoted by event of type (ii). Both types of 

event change the active set and redefine the direction. The second type of event is already 

considered in the GroupConvexLAR algorithm. Thus a simple modification of 

GroupConvexLAR by tracking the first type of event leads to the group lasso solution path. 

This modification is summarized in Algorithm 5. This exact path following algorithm for the 

group lasso penalized convex loss seems new. On a side note, there is no obvious connection 

between GroupConvexLAR-L1, L2 and group lasso.

Algorithm 5

Group ConvexLASSO.

4 Examples

We illustrate ConvexLAR and its extensions on various statistical problems. To demonstrate 

the efficiency of the proposed algorithm, we report the running times of all numeric 

examples on i7 Core 2.93GHz, 8G RAM averaged over 50 independent runs.
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4.1 Recurrent event data

Suppose that we have n independent subjects in a recurrent event study. For each subject i, 
Ni(t) denotes the number of events that occur over the interval (0, t] and xi ∈ IRp is the 

corresponding covariate vector. Assume that given xi, the counting process {Ni(t)} is a non-

homogeneous Poisson process with mean function

(14)

for some unknown continuous baseline mean function μ0(t) and unknown parameters β ∈ 

IRp. See Tong et al. (2009b) for a detailed introduction to recurrent event data.

As typical in survival study, each subject is subject to potential censoring. Let Ci denote the 

follow-up or dropout time for subject i and Ñi(t) = Ni(min(t,Ci)) be a point process for 

subject i’s observed process. The observed data are summarized as {(Ñi(t),Ci, xi), i = 1, 2,⋯, 
n, 0 ≤ t ≤ T}, where the constant T denotes the maximum potential follow-up time. The log-

partial likelihood function based on model (14) is given by

(15)

Under mild regularity conditions, the log-partial likelihood ℓ(β) is strictly concave in β. Thus 

in this example, our objective function is chosen to be f(β) = −ℓ(β). The first two derivatives 

of f(β) with respect to β are

Tong et al. (2009b) studied a Chronic Granulomatous Disease (CGD) data which were 

collected from a multicenter placebo-controlled randomized trial of gamma inferon with 

chronic granulotomous disease. There were 128 patients randomized to two groups, gamma 

interferon group (n1 = 63) and placebo group (n2 = 65). For each patient the times from the 

beginning of the study to initial and any recurrent serious infections are available. Eleven 

covariates are considered: 1. trtmt=treatment (Yes/No), 2. inherit=pattern of inheritance 

(autosomal/recessive), 3. age, 4. height, 5. weight, 6. cortico=use of corticosteroids (Yes/

No), 7. prophy=use of prophylactic antibiotics (Yes/No), 8. gender=female, 9. hosp1=hosp. 

(category: US/other), 10. hosp2=hosp. (category: Europe-Amsterdam), and 11. hosp3=hosp. 

(category: Europe-other). We standardize all continuous covariates (age, height and weight) 

to have mean 0 and unit length. Furthermore, we also include the six quadratic and 

interaction terms between three continuous covariates. They are: 12. age×age, 13. 

height×height, 14. weight×weight, 15. age×height, 16. age×weight, 17. height×weight.
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Figure 1 shows the solution paths from different algorithms. Here the numbers on the right 

hand side indicate which variable each path corresponds to. In all plots, the x-axes are in the 

units of ||β(t)||1/maxt ||β(t)||1 and vertical lines mark the event times for easy comparison 

between various solution paths. Top row of Figure 1 displays the ConvexLAR (top left 

panel) and ConvexLASSO (top right panel) solution paths for the CGD data. They are 

qualitatively different. For instance, in the ConvexLASSO path, β9 hits zero and then 

escapes active set at Step 14. In addition we also apply the weighted CovexLAR and 

ConvexLASSO algorithms with weights set at the maximum likelihood estimator of 

equation (15). They differ significantly from the unweighted ones. The running times are 

4.84, 5.60, 5.34 and 6.37 seconds for the ConvexLAR, ConvexLASSO, weighted 

ConvexLAR and weighted ConvexLASSO solution paths, respectively.

4.2 Panel Count Data

In the above recurrent event example, we assume that the exact time of each event, if not 

censored, is observed. Unfortunately this is not the case in many studies. The model for 

panel count data (Sun and Wei, 2000; Tong et al., 2009a) provides a remedy.

Let Ti1 < Ti2 < ⋯ < Timi be the potential observation times on process Ni(t) and 

 denote the observation process. Let H̃
i(t) = H(min(t, Ci)) be the 

actual observation times after censoring. Then the observed data for panel count model are

When Hi and Ci are mutually independent and also independent of Ni and xi, Sun and Wei 

(2000) propose to estimate regression parameters by solving the following estimation 

equation

where . ConvexLAR and its extensions can be applied directly to the 

influence function

which has a positive definite derivative
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We illustrate with the bladder tumor recurrence data considered in Sun and Wei (2000). A 

total of 85 bladder tumor patients were randomized into two treatment groups, i.e., placebo 

group and thiotepa treatment group. Most patients visited the hospital several times to have 

their recurrent tumors removed. The number of new tumors discovered at each visit was 

recorded and removed after each visit. The binary treatment (trtmt) is one of our explanatory 

covariates. Furthermore, we consider two additional important baseline covariates, the 

number of initial tumors (num) and the size of the largest initial tumor (size). All covariates 

are centered around zero and scaled to have unit length. Figure 2 shows the ConvexLAR and 

ConvexLASSO solution paths for this example. The two solution paths are identical in this 

particular example as no active predictors return to zero along the path. The running times 

are 0.04 and 0.05 seconds for the ConvexLAR and ConvexLASSO solution paths, 

respectively.

4.3 Ada-Boost

Ada-Boost is considered one of the best off-the-shelf classification methods (Hastie et al., 

2009). In binary classification, we are given a training data set {(xi, yi} : i = 1, ⋯, n} with xi 

∈ IRp and yi ∈{−1, +1}. The goal is to estimate a function f(x) whose sign will be used as 

the classification rule. For simplicity we consider the linear classification, in which f(x) = β0 

+ x⊤β. The Ada-Boost estimates parameters by solving

(16)

which is strictly convex and thus amenable to our ConvexLAR algorithm. Denote  = {i : yi 

= −1}. Define the marginal minimizer of β0 as a function of β

(17)

Thus the first two derivatives of f(β) with respect to β are
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where

The Wisconsin Diagnostic Breast Cancer (WDBC) data (Frank and Asuncion, 2010) are 

collected on n = 569 patients from digitized images of a fine needle aspirate (FNA) of their 

breast mass. The number of predictors is p = 10. The mean, standard error, and “worst” or 

largest (mean of the three largest values) of these predictors were computed for each patient, 

resulting in 30 features forming 10 groups each of size 3. The response is binary in that each 

patient is diagnosed either as malignant (Y = 1) or benign (Y = −1). Each predictor variable 

is standardized to have mean zero and variance one. Figure 3 displays the group 

ConvexLARs solution paths for this example. The x-axis is log(1+s(t)), where s(t) is the 

same as the λ in group ConvexLASSO. To have a clear view, only the solution paths where 

log(1 + s(t)) > 3 are plotted. GroupConvexLAR-L2 and GroupConvexLAR-L1 appear quite 

different from GroupConvexLAR with larger maxi∈  |βi(t)| across the same level of s(t). 
Bottom row of Figure 3 displays the GroupConvexLAR and Group ConvexLASSO solution 

paths, which are fundamentally different for the WDBC data. The third group (displayed 

with dotted line) is the first active one and then stay active along the whole 

GroupConvexLAR solution path. In contrast, the same group hits zero in the event 3 of the 

Group ConvexLASSO solution path and escapes the active set thereafter. The running times 

are 1.53, 1.58, 1.49 and 2.13 seconds for the GroupConvexLAR-L2, GroupConvexLAR-L1, 

GroupConvexLAR and GroupConvexLASSO solution paths, respectively.

4.4 Gaussian graphical model

Our fourth example concerns the LAR for Gaussian graphical model. Assume we have iid 

observations x1, x2, ⋯, xn ∈ IRp from N(0, Σ). Denote the sample variance covariance 

matrix by  and precision matrix by Ω = Σ−1. Then the negative likelihood 

for Ω is given by −ℓ(Ω) = −log detΩ + tr(Σ̂Ω), which is convex. Let ωij denote the (i, j)-
element of Ω. wij = 0, i ≠ j, implies the conditional independence between variables i and j. 
We partition the parameters into the sets Ω0 = (ω11, ω22, ⋯, ωpp)⊤ ∈ IRp and Ω1 = (ω12, 

ω13, ⋯, ω(p−1)p)⊤ ∈ IRp(p−1)/2. Only those in Ω1 are subject to regularization. We may 

rewrite the negative loglikelihood as −ℓ(Ω0,Ω1). For every fixed Ω1, we define Ω0(Ω1) = 

argminΩ0 − ℓ(Ω0, Ω1). With these notations, we have f(Ω1) = −ℓ(Ω0(Ω1), Ω1).

To derive the LAR solution path, we need the first two derivatives of the objective function
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where Ω0 is implicitly determined by Ω1. We first show how to determine Ω0 given Ω1. 

Setting partial derivative of f with respect to Ω0

to 0 gives the stationarity condition

In other words, given Ω1, we need to choose Ω0 such that the diagonal entries of Ω−1 match 

those of Σ̂. In practice, Newton’s iteration

can be applied to solve for Ω0 given Ω1. We denote this mapping by Ω0(Ω1). The gradient 

DΩ0(Ω1) ∈ ℝp×p(p−1)/2 will be of use later and is obtained through the implicit function 

theorem

(18)

Now the first derivative of objective function f with respect to Ω1 is

but the second term vanishes because DΩ0 f(Ω0, Ω1) = 0. Hence

In words, given current Ω1, calculate Ω−1 at optimal Ω0; then the off-diagonal entries of 2(Σ̂ 

− Ω−1) form the gradient of f in terms of Ω1. For the Hessian,

Xiao et al. Page 17

J Comput Graph Stat. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(19)

Now substitute DΩ0(Ω1) by the expression (18).

We illustrate our algorithm by two examples. The first data set contains 88 students’ scores 

on five math courses - mechanics, vector, algebra, analysis and statistics. See Table 1.2.1 of 

Mardia et al. (1979) for more details. Figure 4 displays the ConvexLAR and ConvexLASSO 

solution paths. The most important three edges are analysis-algebra, statisticsalgebra, and 

algebra-vector by lasso regularization. The ConvexLAR and ConvexLASSO solution paths 

coincide in this example. The running times are 0.28 and 0.37 seconds for the ConvexLAR 

and ConvexLASSO solution paths, respectively.

Our second example concerns a simulated data set with p = 10 and n = 200 and illustrates a 

case where ConvexLAR and ConvexLASSO yield different paths. The true precision matrix 

Ω = (ωij) has entries ωii = 1, ωi,i−1 = 0.5, ωi,i+1 = 0.5, and ωij = 0 for |i − j| > 1. There are 45 

non-diagonal free parameters. Figure 5 displays the ConvexLAR and ConvexLASSO 

solution paths. The solution paths appear different. The running times are 1.63 and 2.62 

seconds for the ConvexLAR and ConvexLASSO solution paths, respectively.

5 Discussion

Variable selection has become an essential tool for modern data analysis. So far penalization 

method such as lasso has been the dominant regularization technique and extended to handle 

increasingly more applications. In contrast, the original LAR (Efron et al., 2004) has 

received much less generalizations despite its popularity. In this expository article, we show 

that the simple geometric idea in LAR can be naturally extended to various situations such 

as convex loss, group structures in predictors, and data adaptive regularizations. The 

classical score function plays an essential role throughout the development. The original 

“least angle” idea translates to the equality of contributions by the active predictors to the 

score function. In our understanding, this is the fundamental idea in LAR and underpins the 

various extensions presented in this article.

This illustrative article is meant to whet readers’ appetites not satiate them. Much is left 

undone. For instance, in principle it is the estimation equation that LAR operates on. 

Therefore LAR naturally applies many statistical methods without a natural loss function 

such as generalized estimation equation (GEE), as hinted in the panel count data in Section 

4. In this article we focus on LAR algorithmic development and forego the theoretical 

treatment. There has been intensive study of the asymptotic properties of regularized 

estimates by penalty methods in recent years. Same study for ConvexLAR is worth 

pursuing. Especially those that might shed light on the difference between the two 

regularization methods are much desired.
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Appendix

Proof of Theorem 1

The LAR fundamental identity (1) for active predictors dictates the vector equation
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To solve for β  in terms of t, we apply the implicit function theorem (Lange, 2004). This 

requires calculating the differential of k with respect to the dependent variables β  and the 

independent variable t

Given the non-singularity of H (β, t), the implicit function theorem applies and shows the 

continuity and differentiability of β (t) at t. Furthermore, it supplies the derivative (2).

Derivation of GroupConvexLAR directions (8), (9) and (10)

We use 0 to denote the set of active groups that equal to 0. Let 1 =  − 0, where 

denotes the set of all active groups. We slightly abuse notation by letting 0, 1 and  to 

denote both the sets of groups and the set of all predictors belonging to the corresponding 

groups. Obviously, 0, 1 and  depend on the time index t.

Derivation of updating direction hinges upon the LAR identity (6), which we rewrite here 

for convenience

(20)

1. When 0 is empty, differentiating the vector equation (20) with respect to t via 

chain rule gives

(21)

where . Combining all | | vector equations and 

rearranging yields the LAR updating direction

(22)

where D is the block diagonal matrix with blocks

Xiao et al. Page 20

J Comput Graph Stat. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. When 0 not empty, we assume that 0 contains a groups, g1, …, ga, and 1 

contains b groups, ga+1, …, ga+b. By rearranging the order of groups, we have 

, where  and 

. For any group g ∈ 1, i.e., ||βg||2 ≠ 0, the vector 

equation (21) still holds which gives

(23)

Unfortunately it does not hold for any g ∈ 0 due to the singularity ||βg||2 = 0. First 

we show that the updating direction of such groups is proportional to their gradient 

sub-vectors. By the LAR identity (20) and the fact βg(t) = 0pg,

for all δt > 0. Taking limit δt ↓ 0 yields

(24)

where kg are the constants to be determined.

Equating the norms of the two summand vectors in the LAR identity (20) shows 

. Differentiating both sides of this identity with respect to t via chain 

rule gives

(25)

for any g ∈ 0. Now substituting (24) into the equations (23) and (25), we obtain

(26)
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where A ∈ IRa×a has entries aij = dgif(β)Hgi,gj(β)∇gj f(β), 1 ≤ i, j ≤ a,

Next we show that the linear system is nonsingular and thus admits a unique solution, when 

H (β(t)) = H , (β(t)) is positive definite. Rewrite

where

Combining the facts (i) H  is positive definite, (ii) D̃ is positive semidefinite, and (iii) 

 for all g ∈ 0, E(H + D̃)E⊤ is positive definite. Thus

(27)

Equation (27) coupled with (24) yields the LAR updating direction for all active predictors.
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Figure 1. 
Recurrent event example (CGD data). Top left: ConvexLAR; Top right: ConvexLASSO; 

Bottom left: weighted ConvexLAR; Bottom right: weighted ConvexLASSO.
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Figure 2. 
ConvexLAR and ConvexLASSO solution paths for the panel count data (bladder) example.
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Figure 3. 
Group LARs solution paths for the Ada-Boost data (WDBC) example. Top left: 

GroupConvexLAR-L2; Top right: GroupConvexLAR-L1; Bottom left: GroupConvexLAR; 

Bottom right: Group ConvexLASSO.
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Figure 4. 
ConvexLAR and ConvexLASSO solution paths for the graphical model (math score) 

example.
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Figure 5. 
ConvexLAR and ConvexLASSO solution paths for the graphical model example with the 

simulated data.
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