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Abstract

Processing musical information is a task many of us per-
form effortlessly, and often, unconsciously. In order to
gain a better understanding of this basic human cognitive
ability, we propose a mathematical model for tonality, the
underlying principles for tonal music. The model simul-
taneously incorporates pitch, interval, chord and key rela-
tions. It generates spatial counterparts for these musical
entities by aggregating musical information. The model
also serves as a framework on which to design algorithms
that can mimic the human ability to organize musical in-
put. One such skill is the ability to determine the key of a
musical passage. This is equivalent to being able to pick
out the most stable pitch in the passage, also known as
“doh” in solfege. We propose a computational algorithm
that mimics this human ability, and compare its perfor-
mance to previous models. The algorithm is shown to
predict the correct key with high accuracy. The proposed
computational model serves as a research and pedagog-
ical tool for putting forth and testing hypotheses about
human perception and cognition in music. By designing
efficient algorithms that mimic human cognitive abilities,
we gain a better understanding of what it is that the human
mind can do.

Introduction
Music cognition is a complex task requiring the integra-
tion of information at many different levels. Neverthe-
less, processing musical information is an act with which
we are all familiar. The mind is so adept at organiz-
ing and extracting meaningful patterns when listening to
music that we are often not even aware of what it is that
we do when comprehending music. Some of this uncon-
scious activity includes determining the tonal center1, the
rhythm, and the phrase structure of the piece.

I illustrate our unconscious ability to process music by
a short anecdote from my own experiences. In my first
semester as a pianolab2 instructor at MIT, I encountered
a few students who had no prior musical background. I
asked one such student, after he carefully traced out the
melodic line for Yankee Doodle, “What is the key3 of

1The tonal center, also called the tonic of the key, is the
pitch that attains greatest stability in a musical passage.

2A keyboard skills class for students enrolled in Music Fun-
damentals and Composition courses.

3Excerpted from the Oxford Dictionary of Music: A key
implies adherence, in any passage, to the note-material of one
of the major or minor scales. When the pitches in a scale are

this piece?” He responded with a reasonable question:
“What do you mean by key?” I began singing the piece
and stopped mid-stream. I then asked the student if he
could sing me the note on which the piece should end.
Without hesitation, he sang the correct pitch4, thereby
successfully picking out the first degree, and most sta-
ble pitch, in the key. The success of this method raised
more questions than it answered. What is it we know that
causes us to hear one pitch as being more stable than oth-
ers? How does the mind assess the function of this stable
pitch over time as the music evolves?

Before we can study music cognition, we first need a
representation for musical structure. In this paper, we
propose a mathematical model for tonality, the underly-
ing principles of tonal music. According to Bamberger
(2000), “tonality and its internal logic frame the coher-
ence among pitch relations in the music with which [we]
are most familiar.” The model uses spatial proximity to
represent perceived distances between musical entities.
The model simultaneously incorporates representations
for pitch, interval, chord and key relations.

Using this model, we design a computational algo-
rithm to mimic human decisions in determining keys.
The process of key-finding precedes the evaluation of
melodic and harmonic structure, and is a fundamental
problem in music cognition. We relate this new represen-
tation to previous models by Longuet-Higgins & Steed-
man (1971) and Krumhansl & Schmuckler (1986). The
computational algorithm is shown to identify keys at a
high level of accuracy, and its performance is compared
to that of the two previous models.

The Representation

Western tonal music is governed by a system of rules
called tonality. The first part of the paper proposes a ge-
ometric representation, the Spiral Array model, that cap-
tures this system of relations among tonal elements. The
Spiral Array model offers a parsimonious description of
the inter-relations among tonal elements, and suggests

ordered, the first degree of the scale gives the scale its name.
This is also the most stable pitch, known as the tonic.

4A pitch is a sound of some frequency. High frequency
sounds produce a high pitch, and low frequency sounds pro-
duce a low pitch. This is distinct from a note, which is a symbol
that represents two properties, pitch and duration.



new ways to re-conceptualize and reorganize musical in-
formation. A hierarchical model, the Spiral Array gen-
erates representations for pitches, intervals, chords and
keys within a single spatial framework, thus allowing
comparisons among elements from different hierarchical
levels. The basic idea behind the Spiral Array is the rep-
resentation of higher level tonal elements as aggregates
of their lower level components.

Spatial analogues of physical and psychological phe-
nomena are known to be powerful tools for solving ab-
stract intellectual problems (Shepard, 1982). Some have
argued that problems in music perception can be reduced
to that of finding an optimal data representation (Tan-
guine, 1993). Shepard (1982) determined that “the cog-
nitive representation of musical pitch must have proper-
ties of great regularity, symmetry, and transformational
invariance.” The model placed all twelve chromatic
pitches equally over one full turn of a spiral, and high-
lighted pitch height relations. Further extensions to a
double helix emphasized perfect fifth interval5 relations,
but did not account for major and minor third relations.

Applying multi-dimensional scaling techniques to ex-
perimental data, Krumhansl (1978,1990) mapped lis-
tener ratings of perceived relationships between probe
tones and their contexts into space. The resulting cone
(1978) places pitches in the tonic triad closest to each
other, confirming the psychological importance of fifth
and third interval relations, which form triads. Parncutt
(1988) has also presented a psychoacoustical basis for
the perception of triadic units.

Another representation that incorporates spatial coun-
terparts for both perfect fifth and major/minor third re-
lations is the tonnetz, otherwise known as the Harmonic
Network. This model has been used by music theorists
since Riemann (see, for example, Lewin, 1987; Cohn,
1998), who posited that tonality derives from the estab-
lishing of significant tonal relationships through chord
functions. Cohn (1998) has traced the earliest version
of this network to the 18th century mathematician Euler,
and used the tonnetz representation to characterize differ-
ent compositional styles, focussing on preferred chord
transitions in the development sections. More recently,
Krumhansl (1998) presented experimental support for
the psychological reality of these neo-Riemannian trans-
formations.

Our proposed Spiral Array model derives from a three-
dimensional realization of the Harmonic Network, and
takes into account the inherent spiral structure of the
pitch relations. It is distinct from the Harmonic Net-

5Excerpted from the Oxford Dictionary of Music, an inter-
val is the distance between any two pitches expressed by a num-
ber. For example, C to G is a 5th, because if we proceed up the
major scale of C, the fifth pitch is G. The 4th, 5th and octave
are all called Perfect. The other intervals, measured from the
first pitch, in the ascending major scale are all called Major.
Any Major interval can be chromatically reduced by a semi-
tone (distance of a half step) to become Minor. If any Perfect
or Minor interval is so reduced, it becomes Diminished; if any
Perfect or Major interval is increased by a semitone it becomes
Augmented.

work in that it assigns spatial representations for higher
level musical entities in the same structure. The repre-
sentations for intervals, chords and keys are constructed
as mathematical aggregates of spatial representations of
their component parts.

Like the models derived from multi-dimensional scal-
ing, the Spiral Array model uses proximity to incorpo-
rate information about perceived relationships between
tonal elements. Distances between tonal entities as repre-
sented spatially in the model correspond to perceived dis-
tances among sounding entities. Perceptually close in-
tervals are defined following the principles of music the-
ory. In accordance with the Harmonic Network, the Spi-
ral Array assigns greatest prominence to perfect fifth and
major/minor third interval relations, placing elements re-
lated by these intervals in proximity to each other.

In the calibration of the model, the parameter values
that affect proximity relations are prescribed based on a
few perceived relations among pitches, intervals, chords
and keys. These proximity relations will be described in
a later section.

The Spiral Array Model
As the name suggests, in the Spiral Array Model, pitches
are represented by points on a spiral. Adjacent pitches
are related by intervals of perfect fifths. Pitches are in-
dexed by their number of perfect fifths from C, which
has been chosen arbitrarily as the reference pitch. For
example, D has index two because C to G is a perfect
fifth, and G to D is another. P(k) denotes the point on
the spiral representing a pitch of index k. Each pitch can
be defined in terms of transformations from its previous
neighbor - a rotation, and a vertical translation.

P(k 1) def= R P(k) h,

where R =
0 1 0
−1 0 0
0 0 1

and h =
0
0
h

.

The pitch C is arbitrarity set at the point [0,1,0].
Since the spiral makes one full turn every four pitches

to line up vertically above the starting pitch position. Po-
sitions representing pitches four indices, or a major third,
apart are related by a simple vertical translation:

P(k 4) = P(k) 4 h.

For example, C and E are a major third apart, and E is
positioned vertically above C.

At this point, we diverge from the original tonnetz
to define chord and key representations in the three-
dimensional model. The added complexity of the three-
dimensional realization allows one to define representa-
tions off the grid, and within the spiral. A chord is the
composite result, or effect, of its component pitches. A
key is the effect of its defining chords. We propose that
this effect can be represented spatially by a convex com-
bination of its components.
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Figure 1: The Spiral Array Model.

Mathematically, the chord’s representation is gener-
ated by a convex combination of its three component
pitch positions. Geometrically, the chord representation
resides strictly within the boundaries of the triangle out-
lined by the triad (see Figure 1). A chord is represented
by a weighted average of its component pitch positions:
the root P(k), the fifth P(k+1), and the third P(k+4) for
major triads, and P(k−3) for minor triads:

The representation for a major triad is

CM(k) def= w1 P(k) w2 P(k 1) w3 P(k 4),

where w1 w2 w3 > 0 and
3

∑
i=1

wi = 1.

The minor triad is generated by a similar combination,

Cm(k) def= u1 P(k) u2 P(k 1) u3 P(k−3),

where u1 u2 u3 > 0 and
3

∑
i=1

ui = 1.

The weights, wi and ui, on the pitch positions repre-
sent the importance of the pitch to the generated chord.
For longstanding psychological, physical and theoretical
reasons, the root is deemed the most important, followed
by the fifth, then the third. Correspondingly, the weights
are constrained to be monotonically decreasing from the
root, to the fifth, to the third. In order that spatial distance
mirrors these relations, there are additional constraints
on the aspect ratio h/r. These constraints are described in
Chew (2000).

An important property of the Spiral Array is that rep-
resentations of pitches in a given key occupy a compact
neighborhood. Each major chord, together with its right
and left neighbor major chords, combine to produce the
effect of a major key. In music terminology, these chords

are given names, with respect to the key, that reflect their
function. The center chord is called the tonic chord (I)6,
the one to its right the dominant (V), and the one to its
left the subdominant (IV). Hence, we represent the major
key as a combination of its I, V and IV chords. For exam-
ple, the representation of the C major key is generated by
the C major, G major and F major chord representations.
See Figure 1 for an example of a major key representa-
tion.

Mathematically, the representation for a major key,
TM(k) is the weighted average of its tonic triad
(CM(k)), dominant triad (CM(k+1)) and subdominant
triad (CM(k−1)) representations. As before, the de-
sign objective is to have the weights correspond to each
chord’s significance in the key. Hence, the I chord is
given the largest weight, followed by that of the V chord,
then the IV chord:

TM(k)
def= ω1 CM(k) ω2 CM(k 1) ω3 CM(k−1),

where ω1 ω2 ω3 > 0 and
3

∑
i=1

ωi = 1.
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Figure 2: Geometric representation of a minor key, a
composite of its tonic (i), dominants (V/v) and subdomi-
nant (iv/IV) chords.

The definition for the minor key is more complicated,
6We shall use roman numerals to denote chord function

within a key. The number indicates the scale degree of the
chord’s root. For example, “I” represents the tonic chord. We
adopt the convention of denoting major chords by upper case
roman numerals, and minor chords by lower case ones. For ex-
ample, a major chord with the tonic as root is “I” but a minor
chord with the same root is “i”.



but we will not go into the details at this time. It suffices
to say that the center of effect for the minor key Tm(k) is
modeled as a combination of the tonic Cm(k), the major
and minor dominant triads CM(k+1) and Cm(k+1), and
the major and minor subdominant triad Cm(k−1) and
CM(k−1):

Tm(k) def= υ1 Cm(k)
υ2 α CM(k 1) (1−α) Cm(k 1)
υ3 β Cm(k−1) (1−β) CM(k−1) ,

where υ1 υ2 υ3 > 0 and υ1 υ2 υ3 = 1,

and 0 α 1,0 β 1.

See Figure 2 for the spatial representation of a minor key.

Properties of the Spiral Array Model
In the Spiral Array model, musical information is con-
densed, or aggregated, and represented by a single point.
Proximity in the Spiral Array indicates some combina-
tion of the following: shared pitches, shared intervals, or
tonal elements within a perfect fifth, major third or mi-
nor third interval of each other. This section summarizes
the criteria for selecting the weights defined in the pre-
vious section so that relations between represented tonal
entities have direct counterparts in the geometric struc-
ture. Details are given in Chew (2000). The criteria are
summarized as follows:

1. Perceptually close intervals should be represented by
shorter inter-pitch distances. For example, the clos-
est distance between any two pitch positions denotes
a perfect fifth relation; and, pitches a third apart are
closer than those a second apart, etc.

2. Each chord representation is closest to its root, fol-
lowed by the fifth, then the third; and, no other pitches
are as close to the major chord center as its three con-
stituent pitches.

3. The average position of two pitches an interval of a
half step apart should be closest to the key related
to the upper pitch; and, the average position of two
pitches an interval of a perfect fourth apart should be
closest to the key related to the upper pitch.

These preliminary criteria are subjective, and are by no
means comprehensive. We found, through experiments,
that by satisfying these few conditions, the model per-
formed well when applied to the problem of key-finding
(as described in the next sections). Thus, this could be
reason to believe that with a few simple conditions, we
might be able to capture the salient features in musical
information in a way that concurs with listener percep-
tions.

Finding the Key of a Melody
The Spiral Array provided a framework on which to de-
sign viable and efficient computational algorithms for

problems in the analysis and manipulation of musical
information. Because the model condenses musical in-
formation to a spatial point, it allows for efficient and
dynamic tracking of a streams of musical signals. Us-
ing the model, an algorithm is designed to determine the
key of musical passages. We illustrate how the algorithm
works by an example, “Simple Gifts”. This algorithm
is shown to perform better than existing ones when ap-
plied to the 24 fugue subjects in Book I of Bach’s “Well-
Tempered Clavier” (henceforth, referred to as the WTC).
This algorithm exemplifies the concept of mapping mu-
sical information onto the Spiral Array.

Analyzing the key of a melody poses many chal-
lenges. Given a melody, one must make informed de-
cisions about its key based on little information. Fur-
thermore, there could be more than one equally valid an-
swer, in which case a list for the most likely candidates
for key would be more appropriate than one definite key.
This section introduces the key-finding algorithm (CEG)
based on the Spiral Array that returns a ranked list of
possible keys. CEG is an acronym for Center of Effect
Generator. The CEG algorithm is fundamental to the
Spiral Array model and uses the model to reframe the
problem of key recognition as a computationally simple
one of finding a distance-minimizing representation.

In the Spiral Array, the collection of pitches in a given
key defines a compact space. As pitches in a melody
are sounded in sequence, the geometric shape defined by
the pitch positions becomes increasingly more complex.
Instead of using this complex shape to identify the key,
the algorithm collapses the pitch information down to a
single point, the center of effect (c.e.). In this manner,
the pitches combine to create an object in space − a point
which is the composite sum of the pitch positions.

Since keys are also defined as points in space, it is then
simple to compute the distance between the c.e. and the
key, and nearby keys, to determine which key is closest
to the c.e. Thus the mathematical sum of pitches affords
parsimonious descriptions of, and comparisons between,
different pitch collections.

However, the CEG algorithm more than simply com-
pares pitch collections. By definition, the key represen-
tations favor triadic pitch configurations, and also tonic-
dominant and tonic-subdominant relationships. These
representations incorporate different levels of hierarchi-
cal structure and relationships. Not all pitches are
weighted equally; and, the key representation is a struc-
tured but nonlinear combination of its pitch collection.
By comparing the c.e.’s to these key representations, we
expect certain pitch relations to prevail.

An Example
The algorithm is best explained by an example. Consider
the Shaker tune, used in Copland’s symphonic suite “Ap-
palachian Spring” (1945), shown in Figure 3.

At any point in time, the CEG method generates a c.e.
from the given musical information that summarizes the
tonal space generated by the pitches sounded. Define a
step to be a pitch event. At each step, the pitches from the
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Figure 3: “Simple Gifts”.

beginning to the present is weighted (multiplied) by its
duration, and the c.e. is generated by aggregating these
weighted pitch positions.

If the i-th note is represented in the Spiral Array by
pitch position pi and has duration di, then the aggregate
center at the i-th pitch event is defined as:

ci
def=

i

∑
j=1

di pi.

The CEG method updates its decision with each note
or pitch event. The distance from the key representations
to ci is calculated and ranked. The key that is closest is
ranked first, next closest second, and so on.

Figure 4 plots the exact distances from the four closest
keys (F major, C major, F minor and C minor), at each
successive pitch event. Observe, in the graph, that F ma-
jor quickly establishes itself as the closest key. However,
between pitch events i = 22 to 24, C major (the dominant
of F) vies with F major for preeminence. The melody
dwells on the dominant key area at i = 19 to 24, outlin-
ing the C major triad from i = 21 to 24. This behavior in
the model concurs with listener perception.
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Figure 4: Distance to various keys as “Simple Gifts” un-
folds.

Comparison to other Key-Finding Models
To validate the model, it was compared to Longuet-
Higgins & Steedman ’s Shape-Matching Algorithm
(SMA) (1971) and to Krumhansl & Schmuckler’s Probe

Tone Profile Method (PTPM) (1986). Detailed discus-
sions of each test run is documented in Chew (2000).

The tonic-dominant rule was devised for cases when
the SMA algorithm failed to reach the desired conclu-
sion by the end of the fugue theme. In such cases, the
tonic-dominant rule derives the key from the first pitch
which is assumed to be either the tonic or the dominant
of the intended key. The † denotes cases when the tonic-
dominant rule was applied. Numbers in brackets denote
the average when considering only the fugue subjects in
which the tonic-dominant rule was not applied by any of
the three methods.

Table 1: Applying key-finding algorithm to Bach’s
fugue subjects in the WTC. (Numbers generated using
h= 2 15 (r= 1), and weights across all hierarchies set
to [ 0.516, 0.315, 0.168 ].)

Book I Steps to key
Fugue subj CEG PTPM SMA

C major 2 2 16†7

C minor 5 5 5
C major 6 7 16
C minor 3 3 4
D major 2 2 15†
D minor 3 3 8
E major 2 6 11†
D minor 2 6 12†
E major 14 12† 11
E minor 3 2 7†
F major 4 10 6
F minor 3 15 4†
F major 3 2 8
F minor 7 18 5†
G major 2 2 15
G minor 3 3 4
A major 3 2 7†
G minor 5 5 5
A major 2 4 7
A minor 5 5 5
B major 4 4 14
B minor 2 3 6†
B major 2 11 11
B minor 3 3 7

Average 3.75 (3.57) 5.25 (4.79) 8.71 (8.21)

For the fugue subjects in Book I of the WTC, the CEG
required on average 3.75 pitch events, the PTPM 5.25,
and the SMA 8.71 to determine the correct key. Given
a melody, a hypothesis of its key based on its first pitch
is not a meaningful one. The reliability of a hypothesis
based on two pitch events is still questionable. Hence,
on average, the absolute minimum number of pitches re-



quired to form an opinion of the key is 3. The CEG al-
gorithm required, on average, 3.75 steps to determine the
key of the 24 fugue subjects. Based on the reasons stated,
we claimed that the key-finding algorithm using the Spi-
ral Array has an average performance that is close to op-
timal.

Comments
The approach detailed in this paper is computational, and
mimics the manifestation of human music cognitive abil-
ities. It proposes mathematical ways to aggregate and or-
ganize musical information. However, this does not im-
ply that the computational algorithm describes how the
human mind processes musical information. The fact
that it performs well suggests that it should be consid-
ered as a method of modeling human cognition in music.

A computational model serves as a research and ped-
agogical tool for putting forth and testing hypotheses
about human perception and cognition in music. For ex-
ample, one can generate hypotheses about how humans
perceive musical groupings, and implement this theory
using the model.

In the melodies used for model validation, and in
the “Simple Gifts” example, the aggregate points (c.e.’s)
were generated cumulatively as the melodies unfolded.
For lengthier examples, some decay of the information
over time should be incorporated into the c.e.’s. This
would be a way to model short-term memory in listen-
ing to music.

At present, the model ignores the dimension of pitch
height. Clearly, pitches from different registers will gen-
erate different perceptions of relatedness. Future mod-
ifications could take into consideration the modeling of
pitch height by weighting pitches from different registers
differently.

The CEG algorithm currently proceeds sequentially
forward through time, and cumulatively aggregates the
information to produce a representation for the c.e. Cog-
nitively, a human listener makes judgements about the
key not only sequentially forward in time as the melody
unfolds, but also retroactively after having gained some
future information. A harmonic analysis algorithm pro-
posed by Winograd (1968) proceeds backwards from
the end of the piece; and, Temperley’s (1999) exten-
sion of the Krumhansl-Schmuckler model employs dy-
namic programming, which also works backwards algo-
rithmically. Future extensions of the Spiral Array Model
might incorporate elements of both forward and retroac-
tive decision-making.

By designing efficient algorithms that mimic human
cognitive abilities, we gain a better understanding of
what it is that the human mind can do. By studying the
shortcomings of the algorithms, we can modify them,
and in so doing, learn about the extent of human cog-
nitive abilities. In the examples we discussed, the infor-
mation was processed sequentially forward through time.
In actual fact, the human listener can often retroactively
change his or her decision about structural properties of
the piece after having listened to more of the music. At-

tempts to model this would yield further insight as to the
temporal nature of music cognition.
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