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ABSTRACT OF THE THESIS

The Impact of Synthetic and Real Training Data

on Model Vulnerability

by

Jacob Michael Swoveland

Master of Science in Statistics

University of California, Los Angeles, 2023

Professor Guang Cheng, Chair

Membership inference attacks can threaten the privacy of records in machine learning models

by enabling adversaries to determine whether or not a record was used to train said model.

In this paper we will be exploring the use of synthetic training data to defend against this

form of attack. Synthetic data here keeps the attributes of the original training data set while

maintaining machine learning utility. We use CTGAN and DP-CTGAN in order to generate

high quality tabular synthetic training data. We evaluate the effectiveness of this approach

empirically by comparing the vulnerability and utility of models trained with synthetic and

real data. We also analyze the privacy-utility trade-off that comes with using synthetic data.

Synthetic data seems to be a promising defense mechanism against membership inference

attacks by providing increased privacy at reasonable utility losses.
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CHAPTER 1

Introduction

Organizations can harness the power of machine learning to analyze data effectively. For

instance, a company may collect information about their individual customers in order to

provide better services or advertisements. Given this collected training data, a model is

trained to set some numerical parameters in order to generalize to unseen cases. In many

cases, the training data can essentially be discarded as the tuned parameters have distilled

that information for the organization’s use case. There can be other reasons to not share

training data as it may contain sensitive information, unlike the model which has replaced

this sensitive information with tuned parameters.

However, the very use of training data within the model can leave the individuals within

the data set vulnerable to a membership inference attack (MIA) as proposed by Shokri et al.

[15] This kind of attack seeks to classify whether a specific record was used within a training

data set for a machine learning model. It is also possible for the attacker to only have access

to the output of the model in order to make such a determination. Such an assumption

would lead us to the black box membership inference attack which will be explained in more

detail later. So, an analyst may gain insight into the training data set and figure out specific

individual customers at the organization based off of the outputs of the trained machine

learning model. In the sections that follow, we will explore this kind of attack along with

ways to mitigate its effectiveness.

The suggested effectiveness of this type of attack may come from model overfitting to the

training data and the structure of the data in a way that can be identifiable by a classifier.
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Training data may naturally be more accurately classified by a machine model as this is the

very information that was learned from. Extreme lack of generalization can lead to extreme

vulnerability. Certain data characteristics could lead a data set to be more vulnerable to

this form of an attack. In a classification problem, the larger the number of possible classes,

the more information that can be released by a model. Certain extreme values within the

data could leave outliers vulnerable as well.

This paper builds on this previous research, suggesting that the use of differential privacy

techniques and synthetic training data can aid in mitigating the effectiveness of a membership

inference attack. Differential privacy in this paper will refer to ϵ-differential privacy as

proposed by Dwork. [6] The general idea is that ϵ-DP offers a mathematical definition to

data privacy by injecting noise into a data set, with a more rigorous definition to be provided

later. Synthetic data generation offers a way to learn the characteristics of a data set in order

to generate a new data set that shares enough of the same qualities of the training data to

be useful to a machine learning task.

In this paper specifically, we will be taking a look at an empirical attack against a machine

learning model using different synthetic data generation methods to create training data sets.

In order to generate this synthetic data, we will take a look at conditional tabular generative

adversarial networks (CTGAN) based generation along with differentially privatize CTGAN

(DP-CTGAN) in order to better protect the training data set. The idea being that we

should add layers of noise and obfuscation between the real training data from the machine

learning model in order to better protect that original information. This additional noise

would inherently cost a loss of utility for the machine learning model at the gain of privacy.
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CHAPTER 2

Membership Inference Attack Overview

In this section, we will go over the membership inference attack framework as proposed by

Shokri et al. [15] A membership inference attack seeks to recover the records of the training

data set from a target machine learning model. This target machine learning model will

be referred to as the victim model with a training data set referred to as a victim training

data set. There are many different assumptions that can be made for membership inference

in order to satisfy the different needs of rational firms weighing utility-privacy trade-offs in

different scenarios.

For instance, if we assume that the attacker would have access to the internal workings of

a model such as the weights then this would be considered a white-box membership inference

attack. [13] Such a case may be considered when dealing with a firm’s internal employees or

if an adversary has gained access to a firm’s internal files. For instance, a machine learning

engineer may have access to the internal workings of a model but should not be able to

retrieve sensitive information about specific individuals. This is usually handled through

procedure protocols and security access but can also be possible to circumvent this with

a membership inference attack. We will be dealing with a black-box assumption for this

paper in which the attacker does not have any access or knowledge of the internal workings

of the victim model and only has access to the output of the model. [10] Such a case may

be considered when dealing with a firm’s internal employees who have restricted access to

information or for a third party’s access to a machine learning tool. For instance, a low level

data analyst, whether external or internal to an organization, should not have access to the
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specific weights in a model but does need access to outputs in order to analyze data.

In this case we can further make assumptions on what the output of the model actually

is. For a classification problem it is natural to generate output that would be of use to an

end user. It is possible to simply state the most probable class but in some contexts this may

be inadequate for the decision making process of the end user. In such a scheme, uncertainty

measures have been lost so the end user may be led to an incorrectly confident decision. For

instance, if there are only two categories split between a probability vector of .51 and .49,

then it would be useful for the end user to know that we should not be confident in our

knowledge for the classification of this record. In such a case, it may make more sense to

report the classification along with a probabilities for each class or for a limited set of classes.

This choice for the limitation of an output further leads to a utility-privacy trade-off.

We can also consider the possibility to allow for repeated querying of the victim model or

not. There is a utility-privacy trade-off to consider when making this decision. If allowed to

query the model multiple times, an end user will be able to evaluate records as they need but

will also be able to gain valuable insights into the behavior of the machine learning model.

If not allowed to query the model an unlimited amount of times, then the user will not gain

nearly as much insight into the machine learning model at the cost of possibly not evaluating

records that they are wanting to.

We will explore the following sets of assumptions here. We will make a black-box as-

sumption in which the attacker only has access to the output of the model. This output

will be the classification of the record along with the full vector of probabilities for each

class. We will also allow the model to be queried repeatedly as well. In this way, we will

explore the idea of allowing near unlimited access to a model to a third party end user or

to an internal employee who will have some limitations to not have access to model weights

imposed upon them by the firm. Such a set of choices may be made by a firm choosing to

maximize utility for end users while still having some considerations for data privacy and

protection. A different firm with different goals, legal obligations, or sensitivity levels of data
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may make different rational decisions that will not be explored in this paper.

2.1 Membership Inference Attack

There are several possible explanations as to why membership inference attacks may be

effective. This attack may exploit a possible train-test gap that is seen in machine learning

in which a model will possibly react differently to training data than to do that has not

been seen by the model before. Let us consider a classification problem. A model may

consistently be more confident in its predicted class of a training record given its true class

when compared to an unseen record. [9] The larger such a gap, the more vulnerable a model

would be as the train and test distributions grow more disjoint. It is for this reason that

over fitting of the model, whether on a local or global level, may lead to more effective

membership inference attacks. Some model frameworks or data set structures appear to also

be more vulnerable to this form of attack as well. Classification tasks with high number of

possible classes appear to be more vulnerable to this form of attack. This may be due to how

much information is present within an classification task output. A binary output between

two classes is essentially a single signal as the probability of a class is the complement of the

other. If there are large number of classes within a prediction probability vector, then there

can be more useful information to exploit.

Let us look at membership inference attacks more formally. Consider the target victim

model ftarget() with its associated training set of Dtrain
target. This data set contains labeled

records x
(i)
target input data and y

(i)
target true label values from among the possible ctarget possible

categories of the target model. In this case, the output of the model is a probability vector

with elements for each possible category y. Now consider the attack model fattack which has

the goal to classify whether a record is in (1) or out (0) of the target’s training data set. In

formal terms, this can be seen as Pr{(x, y),y ∈ Dtrain
target. The input to this fattack is both the

attributes of a record x, the target output vector y, and the true label value y in order to
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Figure 2.1: Sample Membership Inference Attack Workflow

create a classification confidence values for each record. See figure 2.1 for an example of this.

The reason to include the true label value y for a record is due to the fact that the

output classification probability vector y heavily depends on the true value of the record.

For instance, whether a record is classified as a dog heavily depends on whether or not that

record is truly a dog. In the following sections, we will break down these steps further. In

order to build an attack model, we will first have to create training data for that model

which we will explore with shadow modeling.

2.2 Shadow Modeling

Shadow modeling aims to imitate the intricacies of how a victim machine learning model will

behave when trained with differing data sets. A shadow model is a machine learning model

that is created which is the same structure as the victim machine learning model but with a

differing training data set. For instance, if the victim model is a convolutional neural net, the

shadow model should also be a convolutional neural net. In essence, an attacker will seek to

create k shadow models which have differing training data sets to see how different training

records would create differing responses by machine learning models. With these k shadow

models, we will create a new data set in which to train a classifier, known as an attack model,

to predict whether a record is within the victim model’s training data set or not. Because
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we have the labels for the training and test data within each shadow model, this data set

that is created will eventually be used to train a binary classification supervised machine

learning model. It is through this that we are exploring the possible sample space of machine

learning behavior. If the shadow model structure is correctly specified to match the victim

model structure, then the shadow modeling technique will be more effective. However, a

misspecification can lead an attacker to perform a less effective attack. For this reason, we

explore only a worst case scenario in which the model is exactly matching.

Let us look at this shadow modeling framework more formally. An attacker will create

k shadow models. Each shadow model i will train on a data set Dtrain
shadowi. Each of these

shadow models will be trained in a manner as close to the target victim model as possible.

We will also keep the training data for the shadow model disjoint from the victim training

data (∀iDtrain
shadowi ∩Dtrain

target = ∅). This is done as a worst case scenario for the attacker. As we

are interested in the black-box setting it would be more relevant to explore if the attacker did

not have internal model and training data information. If they did have that information,

then this attack may be easier to conduct. Consider figure 2.2 as a sample shadow model

workflow.

In order to do this, an attacker will first need to sample from a data set that is in the

same format and a similar distribution as that which was used to the victim model’s training

data. The way in which an attacker may sample this data is an interesting research question

in its own right which will not be explored here. In general, some suggestions have been to

generate sample data from the victim model, from prior information about the population

distribution, or from a reference data set. For this paper, a reference data set will be used in

shadow modeling which will come from the same distribution as the training data but will

be disjoint.

Shadow modeling eventually outputs an attack data set of sufficient size to train a ma-

chine learning model that is able to distinguish whether a specified record was indeed used

to train the victim model. This training data set will then be used to train an attack model
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Figure 2.2: Sample Shadow Modeling Workflow

to discern whether or not a record is within the training data or not.

2.3 Attack Model

Let us now consider the attack model which will be trained with data from shadow modeling.

This attack model will be trained in the binary classification task of whether a record is within

a training data set or not. Let us look into this training. For simplicity, let us consider that

half of the records used in a shadow model will be inside the training data and half outside.

We shall label those records within the training set as 1 and those outside as 0. We will

query each shadow model with the associated training and testing set in order to obtain

the outputs associated with each record. Now that we have our model outputs prepared

and labeled, this training of the attack model can be seen as a supervised machine learning

problem. In order to boost the accuracy of the attack model, it is suggested to train an

individual model for each category found within a data set. [15] For instance, if there are

only ”high income” and ”low income” found within the output categories, then there should
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Figure 2.3: Sample Attack Classifier Training Workflow

be two attack models trained. One will aim to learn the intricacies of attacking those of high

income while the other will be better suited to those with ”low income”. After training the

model, records can be fed to the appropriate attack model in order to launch a membership

inference attack.

Let us view this more formally. Figure 2.3 is a sample workflow as will be described. For

all (x, y) ∈ Dtrain
shadow i, compute the associated y = f i

shadow(x). Add the associated records

(y,y, 1) to the attack training data set Dtrain
attack where 1 is indicating that these records are

within the training data set. Along the same idea, for all (x, y) ∈ Dtest
shadow i, which are

disjoint from Dtrain
shadow i, compute the associated y = f i

shadow(x). These records (y,y, 0) will

also be added to the attack training data Dtrain
attack where 0 is indicating that these records

are not within the training data set. Let us now split Dtrain
attack into each of its associate ctarget

partitions for each category label. For each label, train a separate attack model that will

predict whether or not a record is in (1) or out (0) of the data set. In this way we can see

each individual category label as a binary classification problem.
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Through this method, we try to learn the intricacies of how a machine learning model

may provide differing confidence scores depending on different records. Most importantly,

we see how high confidence scores may be assigned to training data and to testing data in

order to differentiate these cases. In the next section, we will be going over the concepts of

differential privacy and synthetic data. We will be applying these concepts in order to guard

against this kind of attack method later.

2.4 Differential Privacy

Differential privacy is a concept within the field of data privacy that aims to protect the

private information of an individual while still preserving the utility of the data for analysis

which was first introduced by Dwork. [4] The idea is to add in noise to the data set such

that it becomes more difficult to identify any individual within a data set. The more noise

that is added to a data set, the more protection there will be but the less utility there will

be for data scientists. Differential privacy achieves theoretical upper bounds on this privacy

gain via an algorithm and the Laplacian noise mechanism. This idea can be achieved for any

data set size, but the noise required for small data sets can be extreme. At very large data

set size, the noise can be comparatively small and there may be very little actual change

within the data set.

Let us look at this concept more formally. A main idea in differential privacy is that of

two neighboring data sets D1 and D2 which are entirely the same except by a single record.

A dataset is differentially private if an adversary can learn the same information from both

data sets and nothing more. [5] This is important is the way privacy is defined within this

framework in that the outcome of a statistical analysis should vary very little whether or not

an individual is within a data set. So if two data bases D1 and D2 differed by a single person,

then the outcome for that person should be the same in both data bases even though this

person’s record is not in one of the data bases. We will eventually look into (ϵ, δ)-differential
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privacy so let up break down these terms. ϵ refers to to the maximum distance between

a query on data set D1 and a different data set D2. It is a numeric measure in which we

can control the privacy-utility trade off as lower values favor privacy while higher values

favor utility. As such, it is often referred to as the privacy budget. δ is the probability that

information is accidentally leaked.

Let us look at two scenarios, one where δ = 0 and another where δ > 0. When δ = 0,

this is often referred simply as ϵ−differential privacy. Let us now look at the mathematical

definition of ϵ−differential privacy. [1] Define a randomized functionM to be ϵ−differentially

private if for all neighboring data sets D1 and D2 which differ by at most one element and

∀S ⊆ Range(M). Then we have:

Pr[M(D1) ∈ S]

Pr[M(D2) ∈ S]
≤ eϵ (2.1)

Which is equivalent to the following:

Pr[M(D1) ∈ S] ≥ eϵ ∗ Pr[M(D2) ∈ S] (2.2)

(ϵ, δ)−differential privacy is very similar. Define a randomized functionM to be (ϵ, δ)−differentially

private if for all neighboring data sets D1 and D2 which differ by at most one element and

∀S ⊆ Range(M). Then we have a modification to (2) such that:

Pr[M(D1) ∈ S] ≥ eϵ ∗ Pr[M(D2) ∈ S] + δ (2.3)

While there are many different techniques to implement these theoretical bounds, the

most common technique is the Laplace mechanism. The Laplace mechanism adds noise

based on the Laplace distribution with mean 0 and sensitivity of ( s
ϵ
) to each query result.

This mechanism assumes a δ of 0 which makes it a popular choice since ϵ is the only parameter

and the Laplace distribution is well understood. In this paper, we will be using differential

privacy mechanisms in order to experiment with the creation of deferentially private synthetic

data. In the following sections we will be going over the idea of using synthetic data
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instead of real data in order to train a machine learning model. In this case, the idea is

to use synthetic data in order to protect the real data from a membership inference attack.

To explain synthetic data, let us contrast it with real data. Real data comes from direct

observation and measurement from real phenomena. Synthetic data does not come from

any observations but instead is generated by learning from and mimicking real data. This

synthetic data should follow the same distributions, patterns, and conditional relationships

that are found within the real data in which it is based on. This is referred to as the fidelity

of the data. It should also perform similarly in machine learning tasks as the real data. This

is referred to as the utility of the synthetic data. It is also important to consider the privacy

of synthetic data as well as it is important not to leak sensitive information. In practice,

these three pillars, fidelity, utility, and privacy, of synthetic data are important to consider

and evaluate in order to create high quality synthetic data. This can be difficult to do in

practice. In the next section, we will go over the different methods used in this paper in

order to generate synthetic tabular data.
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CHAPTER 3

Synthetic Data Generation

In this section we will go over the methods used to generate synthetic data for this paper.

Tabular data is data that is organized in a table like structure where each column represents

attributes of a specific record and each row represents a specific record within the table.

Data within these attribute columns can be numeric or categorical variables, however most

of the interesting tables of data contain some attributes that are numeric and categorical.

Such interesting tables will now be referred to as mixed data type tables. Mixed data tables

offer challenges to synthetic data generation which will be explored in this section.

3.1 GAN Framework

Let us now consider an overview of the Generative Adversarial Network (GAN) framework as

proposed by Goodfellow et al which is popular for use in generating synthetic data due to its

flexible nature. [8] GANs are a type of unsupervised deep learning model in which two neural

networks, a generator G and discriminator D, play a two player game in order to generate

new samples that are similar to a training data set. The generator in this game samples

noise and passes that into a network which then will create samples. The discriminator will

take samples of real and generated data and try to distinguish between the two. These two

players improve from playing this game to eventually produce better quality synthetic data.

Let us look at this more formally. The generator G learns a mapping G(z; θg) over the

data x given a prior of input noise pz(z). Typically this noise vector z is sampled from a

13



Figure 3.1: GAN Overview

standard normal as this presents a very easy way to sample. The discriminator D attempts

to distinguish between records sampled from the distribution of the training data pdata and

the distribution of generated samples pg. In essence, D in this case can be thought of as

a binary classifier aiming to classify samples originating from real data as 1 and samples

originating from the generator as 0. D seeks to assign the correct classification to real and

generated samples and G seeks to generate a sample that is indistinguishable from real data.

See figure 3.1 for an overview of this structure. [8]

In this way, G and D play the following mini-max game with the value function V(G,D):

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z))] (3.1)

At the beginning of this game, G produces samples that are not like the true data samples

and D will have an easier time to distinguish between real and synthetic samples. As the

game progresses, it is desired that G will produce samples that are of sufficient quality that

D will not be able to distinguish between real and synthetic samples. In essence D will

14



provide a random guess to every record, i.e. the distribution of the generated samples will

be equivalent to the training data, pg = pdata, and the probability of D providing a correct

classification P(D) will be 1
2
. Using the Jensen-Shannon divergence between two distributions

and certain assumptions upon G and D, this convergence does happen as a unique solution.

In practice, this GAN framework can present problems for generating synthetic data

beyond the typical instability issues that GANs face. [2] For instance, mixed data types

must be converted into sensible numeric representations in order to properly fit into this

framework. Mode collapse is where multi-modal distributions are not accurately modeled

and instead the most common mode is the only portion of the distribution learned from

by the generator. [12] Highly sparse training data can also create issues for generators and

discriminators as these portions of the distribution may not be well explored by the generator

or discriminator. This leads to a bias against minorities within a dataset. It can become

increasingly difficult to detect that this is indeed occurring within a GAN as the size of

the minority category relative to the entire distribution decreases. A group of 100 records

among 100,000 that are not well represented will not cause any noticeable decrease in any

downstream machine learning tasks but may indeed be discriminatory towards that group.

For a single record, the idea to favor the most probable category when generating data may

make sense, but for an overall data set this can lead to imbalances that are unrepresentative

or discriminative synthetic data sets. Some of these issues, such as mixed data types, are

more unique to tabular data but others are more general to other types of data as well.

3.2 CTGAN

Conditional tabular generative adversarial networks (CTGAN) as proposed by Xu et al

offer a way to deal with such problems as discussed above in order to generate representative

synthetic data. [16] In order to deal with mixed data tables, categorical variables are encoded

via a one-hot encoding in order to do a sensible pre-processing transformation to feed data
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to the GAN framework before generating synthetic data.

In order to tackle the issue of mode collapse for continuous columns, CTGAN uses a

method of mode-specific normalization in which the number of modes for each column is

estimated via a variational gaussian mixture model (VGM) and then encoded via a one-hot

labeling for each of the modes. In order to fully explore each mode, once a mode is sampled

from this one-hot vector, a value is generated and then scaled up to reasonable values found

within the mode. In this way, we can sample from multiple modes and generate diverse

values to fill the sample space appropriately. More formally, Xu et al expressed this as the

following 3 step process. [16]

1. For each continuous column Ci, use a VGM to estimate the number of modes mi. Each

mode ηk has a weight µk and standard deviation ϕk which can be represented within

the learned Gaussian mixture of PCi
(Ci,j =

∑k
i µkN (Ci,j; ηk, ϕk

2. For each value ci,j in each continuous column Ci compute the probability of that value

coming from the mode. The probability densities are calculated as ρk = µkN (ci,j; ηk, ϕk.

3. Sample one mode from the probability density, and use the sampled mode to normalize

the value. This value within the mode is represented as αi,j =
ci,j−ηk

ϕk]

For a sample workflow, see figure 3.2 which is an example with 3 modes.

CTGAN also tackles the issue of sparsity and training imbalance that is often an issue

within the GAN framework. GANs can face this issue when sampling training records ran-

domly or uniformly as this can lead to serious under sampling of sparse categories. CTGAN

seeks to sample training data more evenly via adding in a conditioning layer. Here the idea

is that the generator can be seen as sampling from a conditional distribution of the given dis-

crete categorical value in order to generate synthetic row values for a given sampled record.

Here the generator will first pick a categorical column to generate a value for, then sample a

record which has a given value. We can then condition the synthetic record’s column value
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Figure 3.2: Mode-Specific Normalization Workflow Example

with a condition upon this information. The sampling of these within column values are

sampled by log-frequency which can explore the sample space more evenly than uniform

sampling.

More formally, let k∗ be the value from the i∗th categorical columnDi∗ which is associated

with generated row r̂ from generator G. Where the generator conditional distribution learns

from the real conditional distribution: r̂ ∼ PG(row|Di∗ = k∗) = P(row|Di∗ = k. Such that

original distribution can be reconstructed as P(row) =
∑

k∈Di∗
PG(row|Di∗ = k∗)P(Di∗ = k).

The critic could then compare the distance between the real conditional distribution and

generated conditional distribution to determine whether or not the row is synthetic or real.

For a sample workflow see figure 3.3 which is an example of a generator learning a conditional

distribution which is then compared to the real conditional distribution by a critic.

It is for these reasons that CTGAN was used in this paper to generate synthetic tabular

data. In this paper, we use the implementation of CTGAN as written in Python’s CTGAN

library, also published by Xu et al. [16]
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Figure 3.3: Sample CTGAN Workflow

3.3 DPCTGAN

In a previous section we have gone over the definition of differential privacy. There are

many ways to implement differential privacy and where to add noise to best protect data.

In this section, we will be going over one possibile implementation of differentially private

conditional tabular generative adversarial networks (DP-CTGAN) as used in the smart-noise

synth package in python. [7] This work is based on the previous paper by Xu et al, with

choices of where to inject noise in order to reach a state of being differentially private. There

are the options of when to inject noise to make differentially private data. We can inject

noise into the training data, into the output data, or both. In this case, we will be injecting

noise into both the training and output data. There will be a separate ϵ budget for the pre-

processing privacy budget for the training data and the post-processing privacy budget for

the data output by the CTGAN. This usage of differential privacy can increase the privacy

of the records within a data set but can decrease the utility of the data rapidly as ϵ values

decrease.
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CHAPTER 4

Analysis

Here we will explore when it may be useful to use synthetic training data for a machine

learning model or not. We will be measuring the privacy/utility trade-off as a trade off

between the effectiveness of a membership inference attack against the machine learning

utility. In this case, we will explore this idea for varying training data set sizes. For instance,

the privacy gains could be much more impressive at certain sizes compared with others. In

practice it is important to take into account the sensitivity of the data along with the amount

of available data when deciding how and when to generate synthetic training data.

4.1 Data Description

In this paper we will analyze the the UCI Adult data set which is also known as Census

Income. [3] Here, information such as race, gender, marital status, hours worked per week,

and native country was taken from the 1994 US Census in order to predict the binary

classification task of whether or not an individual has an income greater or less than $50K.

The data is a mix of continuous, discrete, and categorical variables. This binary classification

problem here can also present a natural defence against membership inference attacks as there

is essentially only a single signal that is being sent from the machine learning model output

of classification probabilities.
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4.2 Experiment Setup

Here will will go over the experiment setup and assumptions made to explore the vulnerability

of the Adult data set to membership inference attacks. To do this experiment, we will train a

binary classification machine learning model, in this case it is a logistic regression model, with

differing training data types and sizes. We will be using real, synthetic, and differentially

private synthetic data in order to train this classification model. To generate the synthetic

data, we will use CTGAN as previously mentioned and along the same lines we will use

DP-CTGAN to generate differentially private data. For DP-CTGAN, we will use ϵ levels of

.5 and 2.5 where the privacy budget is split evenly between pre and post processing stages.

The differing levels of ϵ are used to explore reasonable values of ϵ that could be used to

increase privacy while exploring possible utility loss. For each method, we will train a model

with access to 100, 500, 1000, and 5000 records. Each time we will do a 50/50 train test

split and will repeat this process 100 times each. We will also note any possible overfitting

of the data as well as this can be seen as one possible reason why a membership inference

attack may be more effective. This will be measured as the difference in accuracy between

the training and testing sets. We shall also measure the accuracy of the machine learning

model itself to get a sense of how much utility is lost by using synthetic data.

We make the assumption that the attacker has no access to any of the actual training

records. In this case, we have created two disjoint data sets, one of which is available to the

victim machine learning model and the other which is available to the attack model. We

have also limited the amount of shadow models to 10. It is possible to increase the number

of shadow models and the size of said models in order to improve the effectiveness of the

attack model as well. We have also assumed that the attacker has a reference data set of the

same size as that of the victim set. For instance if the victim set has 1000 records contained,

then the attacker will have access to 1000 disjoint records in order to create shadow models.

There can also be better performance if the attacker is allowed access to additional records.
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In this way, the attacker will be allowed equal number of records that will be used to train

10 shadow models in order to launch a membership inference attack as previously described.

We will be interested in the accuracy of the attack as our target metric for vulnerability to

a membership inference attack.

4.3 Results

This section will go over the results of the experiment as described. Refer to table 4.1 for

information about the effectiveness of the membership inference attack, model utility, and

train-test accuracy gap for varying training methods and sizes.

Training with real data had seen modest vulnerability to membership inference attacks

for small training set sizes and increasingly less vulnerability for larger training set sizes.

Intuitively this low overall vulnerability can make sense as the Adult data set is a binary

classification problem which can provide a natural defense against MIA. We will be using

this real training data as a baseline to compare synthetic training data against.

Differentially private data had indeed provided additional protection against membership

inference attacks even at very low training data set sizes. This privacy has come at great cost

to the utility of the data though as the victim model quickly became unable to generalize to

data and would randomly guess what the classification of a record should be. This makes

sense as the amount of noise required to make a data set of size 50 differentially private

can be quite extreme. The train-test gaps remain relatively similar to that of synthetic and

real data. At higher training sizes, the utility had recovered somewhat while retaining the

privacy gains. With utility this low after using DP, it may be practical to simply not release

any information rather than release such a degraded machine learning model if choosing

between DP synthetic data and real data to train a model.

Synthetic data seemed to have provided reasonable protection gains at reasonable utility

losses in comparison to DP synthetic data. As the training size for the machine learning

21



MIA Results

Method Training

Size

Mean At-

tack Acc

Mean

ML

Test

Acc

Train-

Test

Gap

Real 50 .5326 .7833 .0356

CTGAN 50 .5160 .6408 .0095

DP-.5 50 .4953 .5598 .0348

DP-2.5 50 .5102 .5214 .0614

Real 250 .5114 .7834 .0127

CTGAN 250 .5108 .7090 .0147

DP-.5 250 .4997 .5197 .0229

DP-2.5 250 .5025 .5061 .0369

Real 500 .5037 .7973 .0025

CTGAN 500 .4990 .7183 .0256

DP-.5 500 .4971 .5092 .0168

DP-2.5 500 .4988 .5068 .0472

Real 2500 .4990 .7947 .0027

CTGAN 2500 .5004 .7947 .0027

DP-.5 2500 .4988 .4918 .0442

DP-2.5 2500 .5051 .5948 .0207

Table 4.1: Membership Inference Attack Results
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model increased, the utility approached that of the real data while maintaining a higher level

of privacy preservation against membership inference attacks.
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CHAPTER 5

Conclusion

In this paper, we have explored the use of synthetic data for training machine learning models

in order to protect records from membership inference attacks. The use of synthetic data

can lead to a utility loss in the machine learning model so the trade-offs of what type of

data to use should be considered. Assumptions such as how much reference information and

computational power the attacker has along with how large the data set training the machine

learning model should be considered. Here we had explored this concept with the Adult data

set. If using small training set sizes, then it would be useful to use synthetic training data

for this data set. Else, it seems reasonable for this kind of data to use real training records.

This may be due to membership inference not being effective against binary classification.

This specific form of membership inference attack relies upon repeated queries so another

option to protect against this form of attack is to prevent repeated query by users.

For a future direction, it could be possible to explore why membership inference attacks

may be less effective against models trained with synthetic data. It is unclear if this is

due to noise added to training data, model utility loss, or due to other factors as well. In

this experiment, it seems as though the train test gap has been roughly the same across all

methods so it may be the loss of utility that comes from the use of synthetic data that caused

increased gains or another property of the data. It could also be interesting to explore if a

differently formulated attack could exploit the use of synthetic training data. Another area

of exploration would be to explore additional methods to generate high quality synthetic

data such as variational auto encoders (VAE) [11] or model based methods such as synthpop
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