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ABSTRACT OF THE DISSERTATION 

 

 

Chemical Biology Approaches to Modeling and Treating Brain Disease 

 

by 

 

Shahriyar Jahanbakhsh 

Doctor of Philosophy in Biochemistry, Molecular and Structural Biology 

University of California, Los Angeles, 2019 

Professor Carla Marie Koehler, Chair 

 

Neurodegenerative diseases such as Parkinson’s and Alzheimer’s affect millions of          

people and are uniformly untreatable. A significant unmet need exists for faster and higher              

throughput approaches to modeling neurodegenerative diseases and identifying candidate small          

molecule therapies. Herein, I present a new chemical biology approach to identifying small             

molecules candidates for modeling and treating neurodegenerative diseases, using         

pontocerebellar hypoplasia type 1B and amyotrophic lateral sclerosis as test cases. The approach             

combines in silico rational design, in vitro biophysical testing, and in vivo assays in zebrafish to                

yield a powerful discovery platform for small molecule models and therapies for            

neurodegenerative disease.  
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Chapter 1: 

 Neurodegenerative Diseases and a New Paradigm for 

Modeling and Treating Them  
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Introduction to Neurodegenerative Diseases 

Neurodegenerative diseases afflict seven million people in the United States alone and 40             

million people worldwide. At present, they are uniformly incurable and untreatable. The burden             

of neurodegenerative disease continues to increase as the world population ages, rendering the             

need for effective therapies ever more urgent. 

Neurodegenerative disease is an umbrella term that encompasses well-known pathologies          

such as Parkinson’s and Alzheimer’s, as well as less common illnesses such as amyotrophic              

lateral sclerosis (ALS), Huntington’s chorea, frontotemporal dementia, the spinocerebellar         

ataxias, and pontocerebellar hypoplasias, among many others. While displaying diverse          

pathophysiologies, neurodegenerative diseases exhibit two common themes: [1] their incidence          

and prevalence increase with age; and [2] most cases are sporadic, although familial forms,              

including monogenic forms with early age of onset, do exist. 

The ensuing chapters describe the discovery of a small molecule model for a             

pontocerebellar hypoplasia and a small molecule candidate for prophylaxis or treatment of ALS,             

diseases to which we now turn our attention.  

Overview of pontocerebellar hypoplasias 

Pontocerebellar hypoplasias (PCH) are a group of very rare, heterogeneous conditions           

characterized by prenatal development of an abnormally small cerebellum and ventral pons. The             

exact prevalence of PCH is unknown, but is estimated to be less than 1/1,000,000. The main                

clinical feature is profound psychomotor retardation. In many cases, PCH is fatal early in life,               

although patients with less severe forms can survive into adolescence or young adulthood1. 
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As of 2018, clinicians and researchers have defined 11 types of PCH on the basis of                

clinical and genetic criteria 2. These 11 types are further subcategorized according to the specific              

genetic mutation present. The various genes defective in PCH patients function in a broad range               

of processes including neuronal migration, mRNA degradation, mitochondrial fusion and fission,           

tRNA splicing, arginyl tRNA synthesis, selenocysteine synthesis, RNA processing, regulation of           

GTP synthesis, and intracellular vesicle transport, among others. The subtypes of PCH that             

disrupt mRNA degradation (PCH1B) and mitochondrial dynamics (PCH1D) are the focus of this             

dissertation.  

Pontocerebellar hypoplasia type 1B 

PCH1B is the second most common subtype of PCH after PCH2, and one of the best                

studied. As with all subtypes of PCH, PCH1B is characterized by profound cerebellar and              

pontine atrophy. PCH1B is additionally characterized by dysmorphic Purkinje cells, loss of            

granule cells, and degeneration of motor neurons in the anterior spinal horn reminiscent of spinal               

muscular atrophy. The lifespan of PCH1B patients ranges from neonatal death to survival into              

puberty3. 

Pathogenesis of PCH1B 4 

PCH1B is caused by mutations in the EXOSC3 subunit of the RNA exosome, a complex               

of cytosolic proteins that processes and degrades RNA in eukaryotes5,6. PCH1C is the only other               

subtype caused by mutations in an exosome subunit7. The RNA exosome is involved in the               

3’—5’ processing of small nucleolar RNAs, small nuclear RNAs, and ribosomal RNAs8. The             

overall structure of the RNA exosome core (EXOSC1–9) is conserved from prokaryotes to             

higher eukaryotes and contains a ring-like structure composed of six RNase Pleckstrin homology             
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domains that form a central channel able to accommodate single-stranded RNA, and three             

additional proteins that form a “cap-like” structure 9,10,11. 

The “cap proteins”—the entry point of RNAs threading through the exosome—are           

EXOSC1, -2, and -3. EXOSC2 and -3 contain two putative RNA-binding domains, the KH              

(heterogeneous nuclear ribonucleoprotein K homology) and S1 (ribosomal protein S1) domains,           

while EXOSC1 only contains an S1 domain; all three proteins have a similar N-terminal domain               

(NTD). The S1 domains are positioned to bind RNA as it threads through the cap toward the core                  

proteins and central channel of the RNA exosome12, although it is not known if the KH domains                 

also contribute to RNA binding.  

Whole genome sequencing of patients with PCH1B has identified several mutations           

clustered in EXOSC33,13,14,15,16. Survival of the patients is correlated with the type of mutation and               

its association with a nonsense allele. Thus far, eight different point mutations have been              

reported, as either homozygous or heterozygous morphism associated with PCH1B (G31A,           

V80F, Y109N, D132A, G135E, A139P, and W238R)3,13,14,15,16. The majority of these mutations            

cluster in the S1 domain, one mutation in the KH domain, and two in the NTD of EXOSC3. 

Several studies have offered insights into the contribution of mutations in EXOSC3 to the              

pathogenesis of PCH1B, although a complete understanding remains elusive. Knockdown of           

EXOSC3 in zebrafish yields a PCH1B-like phenotype associated with common alterations in the             

expression of genes implicated in development, including ataxin1b and the homeobox gene            

HOXC17. Another study demonstrated the lack of stability of a yeast analog of EXOSC3-W238R              

and its failure to associate efficiently with the exosome in the presence of the wild-type yeast                

EXOSC317,18. A third study reported sequestration of EXOSC3-D132A in the cytosol of patient             
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fibroblasts and an accumulation of mRNA in the muscles of these patients; both events were               

associated with mitochondrial dysfunction19. The work I present herein, among other things,            

further advances our understanding of the pathogenesis of PCH1B. 

Pontocerebellar hypoplasia type 1D 

PCH1D is the most severe subtype within the PCH1 family. Clinically, PCH1D manifests             

as severe atrophy of the cerebellum and brainstem in addition to hypotonia, severe global              

developmental delay, and diffuse cerebral atrophy. Affected individuals succumb to their illness            

at latest a few months after birth2.  

Pathogenesis of PCH1D 

PCH1D is caused by mutations in the solute carrier (SLC) protein SLC25A46.            

SLC25A46 is an outer mitochondrial membrane (OMM) protein with important functions in            

mitochondrial dynamics and cristae maintenance. SLC25A46 is an orphan member of the SLC25             

family, meaning its endogenous ligand is unknown. SLC25A46 is distantly related to the yeast              

OMM protein Ugo120. SLC25A46 interacts, most likely transiently, with the mitofusins (required            

for mitochondrial fusion) and the mitochondrial contact site and cristae organizing system            

complex (required for cristae maintenance) 21. In addition to causing PCH1D, mutations in            

SLC25A46 are known to cause a host of other neurodegenerative disorders, including optic             

atrophy22, the axonal peripheral neuropathy Charcot-Marie-Tooth type 222, an optic atrophy           

spectrum disorder23, Leigh syndrome24, and progressive myoclonic ataxia with optic atrophy and            

neuropathy25. 

A loss of function mutation in SLC25A46 (L341P) that promotes SLC25A46’s rapid            

degradation by the ubiquitin-proteasome system is among the mutations that cause PCH1D21.            
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The rapid degradation of SLC25A46-L341P is specific and independent of mitophagy and            

apoptosis, and results in oligomerization of mitofusin 1/2 and mitochondrial hyperfusion in vitro.             

The effect of knockout of SLC25A46 on mitochondrial morphology in vivo remains disputed,             

however, with some investigators reporting no mitochondrial hyperfusion26 and others reporting           

large round mitochondria with swollen cristae in knockout mice 27. Clearly, additional studies are             

needed to clarify the role of SLC25A46 on mitochondrial morphology and the pathogenesis of              

PCH1D. In the closing chapter of this dissertation, I present progress toward establishing the first               

stable zebrafish genetic model of PCH1D.  

Overview of amyotrophic lateral sclerosis  

Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease in the United             

States and motor neurone disease in Britain, is a progressive, degenerative condition of the motor               

neurons, the nerves that link the motor cortex to the skeletal muscles. From the time of onset of                  

symptoms, ALS typically proves fatal in 2–4 years28. ALS afflicts approximately 20,000 people             

in the United States with an annual incidence of two per 100,000 people28. Most cases of ALS                 

are sporadic, although a familial form does exist and accounts for 5–10 percent of ALS cases. As                 

with PCH, a broad array of genetic defects can produce the degenerative phenotype observed in               

familial ALS29.  

ALS is characterized by degeneration of corticospinal motor neurons, the descending           

axons of which in the lateral spinal cord seem scarred (lateral sclerosis), and the death of spinal                 

motor neurons, with secondary denervation and muscle wasting (amyotrophy). Corticospinal          

neurons make direct or indirect connections with spinal motor neurons, which innervate skeletal             

muscles and trigger muscle contraction 30. Clinically, patients suffer from progressive paralysis.           
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Over a third of patients also experience cognitive or behavioral impairment 31. Although 145             

years have passed since Jean-Martin Charcot first described ALS in 187432, the disease remains              

incurable, and the sole FDA-approved therapeutic, riluzole, prolongs survival by a mere 2–3             

months33.  

Pathogenesis of ALS 

The pathogenesis of ALS is complex and multifactorial. Nonetheless, accumulation of           

the DNA- and RNA-binding protein transactive response DNA binding protein 43 (TDP-43) is             

the most significant pathological finding in approximately 95 percent of all ALS cases34.             

Additionally, about 4.5 percent of ALS patients bear dominant mutations in TDP-43 itself 35. 

TDP-43 is encoded by the TARDBP gene and was first identified as a binder of               

pyrimidine-rich DNA motifs in the long terminal repeat of HIV-1 (human immunodeficiency            

virus type 1)36. Subsequent studies demonstrated TDP-43 as capable of binding mRNA and             

functioning in the regulation of mRNA splicing, translation, transport, and          

degradation37,38,39,40,41,42. The discovery that TDP-43 is a major component of the ubiquitinated            

inclusions bodies found in the brains of patients suffering from ALS and frontotemporal lobar              

degeneration was a game-changer for the field43,44. TDP-43-positive inclusions were          

subsequently found in patients with other neurodegenerative disease such as Parkinson’s,           

Alzheimer’s, frontotemporal dementia, primary progressive nonfluent aphasia, and semantic         

dementia,  giving rise to “TDP-43 proteinopathy” as a new pathomechanism45. 

Under physiological conditions, TDP-43 is a predominantly nuclear protein. In patients           

with ALS and other neurodegenerative diseases (i.e. under pathological conditions), TDP-43           

redistributes to the cytosol46, where it is hyperphosphorylated at its C-terminus47, ubiquitinated            
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by parkin48 at its four C-terminal lysines (as well as N-terminal lysines)49, and proteolytically              

cleaved by caspases and calpain proteases into 35 kDa and 25 kDa C-terminal fragments that               

form the major components of inclusion bodies50. Phosphorylation appears to precede           

ubiquitination47, and cleaved fragments are preferentially ubiquitinated and phosphorylated         

compared to full-length TDP-4347,51. A plethora of dominantly-inherited point mutations in           

TDP-43 have also been characterized and are the cause of 5–10 percent of familial ALS cases52.                

These mutations may promote TDP-43 hyperphosphorylation and aggregation but are not           

necessary to induce TDP-43 proteinopathy53.  

While TDP-43 redistribution and aggregation is major pathological hallmark of ALS and            

other neurogenderations, the pathogenesis of ALS, like that of other neurodegenerative diseases,            

is multifactorial. Other pathways such as oxidative stress, glutamate excitotoxicity,          

inflammation, accumulation of neurofilaments, and mitochondrial dysfunction all contribute to          

the pathogenesis of ALS54.  

Zebrafish as a Model System 

Zebrafish (Danio rerio, formerly Brachydanio rerio ) are freshwater fish native to South            

Asia. The use of zebrafish in laboratory research was pioneered in the 1970s by George               

Streisinger, whose laboratory at the University of Oregon was the first to clone a vertebrate               

animal55. The ensuing decades saw widespread adoption of the zebrafish as a model organism.  

Overview of zebrafish as a model organism 

Zebrafish are excellent model organisms for the study of neuronal and mitochondrial            

biology given their high conservation of genetic information (including mitochondrial DNA) and            

physiological processes, inexpensive maintenance, and optical transparency facilitating direct         
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observation in vivo 56. The zebrafish genome shows approximately 70 percent homology with the             

human genome, and 84 percent of genes known to be associated with human disease have               

counterparts in the zebrafish57. Moreover, embryonic development proceeds rapidly, with most           

major organs being present by two days post-fertilization (dpf). Zebrafish are also amenable to              

genetic manipulation via a variety of techniques, including tol2-mediated transgenesis58 (Figure           

1-1 ) and CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9-based         

mutagenesis (Figure 1-2 )59. Importantly for the research I present in this work, mounting             

evidence supports generally conserved genetics and physiology of major brain processes in            

mammals and zebrafish, and the duplicated central nervous system (CNS) genes in zebrafish             

mostly encode proteins with similar functions 60. 

 
9

https://paperpile.com/c/WKDicS/9Mqb
https://paperpile.com/c/WKDicS/SHYZ
https://paperpile.com/c/WKDicS/1ih6
https://paperpile.com/c/WKDicS/nc4H
https://paperpile.com/c/WKDicS/Lqj8


 

 

Figure 1-158. Tol2 transgenesis in zebrafish. Transposase mRNA and a plasmid DNA            

containing the gene of interest (here, GFP) flanked by minimal tol2 element sequences are              

co-microinjected into nascently-fertilized embryos. The transposase is synthesized in vivo from           

mRNA and catalyzes excision of the Tol2 construct from the plasmid and its random              

transposition into the genome. Mosaic GFP expression is observed in the injected founder (F0)              
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embryos. The injected embryos are raised to sexual maturity and crossed with wild-type fish.              

The integrated Tol2 construct is transmitted to the first filial (F1) generation, which now show               

stable (non-mosaic) expression of the gene of interest. Figure reproduced with permission from             

Springer Nature. 
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Figure 1-2 61. Zebrafish CRISPR/Cas9 mutagenesis workflow. (A) The target DNA sequence           

is selected, (B) the single guide RNA (sgRNA) is synthesized and (C) co-injected together with               

Cas9 nuclease into the nascently-fertilized zebrafish embryo. The efficiency of mutagenesis is            

then evaluated via PCR-RFLP (restriction fragment length polymorphism) genotyping or          

phenotypic screen, if possible. (D) F0 animals are raised to sexual maturity crossed to other F0                

animals. (E) The genotype and phenotype of the F1 offspring are assessed to evaluate germline               

transmission. (F) Mutagenized F1 animals are crossed to other mutagenized siblings to yield F2              

animals. Figure adapted with permission from Elsevier. 
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Zebrafish models of neurodegenerative disease 

As a vertebrate animal, the zebrafish is not only an excellent model organism for human               

diseases in general, but is also well-suited as a model for neurodegenerative diseases in              

particular. The zebrafish brain shares extensive structural and functional homology with the            

human brain62; genes that control the production of neurons and axonal guidance are shared              

among zebrafish and mammals 62; the zebrafish noradrenergic, serotonergic, and histaminergic          

systems are highly similar to those of mammals 63,64,65,66,67,68,69,70,71,72 and, except for the lack of              

dopaminergic neurons in the zebrafish mesencephalon, the zebrafish dopaminergic system also           

highly resembles that of mammals73.  

Zebrafish have successfully been used to model a number of neurodegenerative diseases            

in recent years, including pontocerebellar hypoplasia, CNL2 disease (neuronal ceroid          

lipofuscinosis, a lysosomal storage disorder characterized by progressive intellectual and motor           

deterioration, seizures, and early death74), Parkinson’s, dementia with Lewy bodies, and ALS75.            

Most of the models to date have been generated by injection of antisense morpholinos (synthetic               

oligomers consisting of DNA bases covalently bound to a phosphorodiamidate-linked          

methylenemorpholine backbone that knock down gene function ) or mRNAs75 into the zygote.  

In the chapters that follow, I use small molecule- and CRISPR-based approaches, driven             

by chemical biology, to generate new zebrafish models for neurodegenerative disease.  
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Daniela C. Zarnescu, and May Khanna, all at the University of Arizona, Tucson; these              

co-authors discovered the small molecule rTRD01 and performed the biophysical          

characterization of rTRD01. 
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Introduction  

As I discussed in the opening chapter, TDP-43 is a DNA- and RNA-binding protein              

whose aggregation in cytosolic inclusions is a pathological hallmark of ALS. The architecture of              

TDP-43 consists of an N-terminal domain, two tandem RNA recognition motifs (RRMs), and a              

C-terminal glycine-rich, prion-related domain1. The C-terminal region contains most of the           

disease-associated mutations observed among patients with familial forms of ALS 2 (Figure 3-1). 

In addition to its nuclear functions in regulation of transcription and alternative splicing,             

TDP-43 is recruited to cytoplasmic RNA granules that are formed after exposure to oxidative,              

osmotic, temperature, viral, and other environmental stressors. These so-called stress granules           

(SGs) are membrane-less organelles believed to promote cell survival by storing non-essential            

mRNAs, translation factors and RNA-binding proteins during times of stress. SGs disassemble            

as the cell recovers. Depletion of TDP-43 reduces nucleation of SGs and greatly reduces cell               

survival under stress conditions3. 

While SGs are a vital component of the cellular response to stress, perturbations to SG                

dynamics (assembly or disassembly) can potentially result in neurodegenerative disease. One           

popular hypothesis posits that mutations or cellular conditions that increase SG persistence,            

either due to excessive assembly or impaired clearance, increase the stochastic conversion of             

SG-localized TDP-43 into a toxic aggregate 4. A 2019 report, in contrast, found that SG              

components are predominantly excluded from TDP-43 pathology in motor neurons from ALS            

patients. Rather, SGs were shown to sequester histone deacetylase 6, a facilitator of protein              

degradation, resulting in reduced TDP-43 clearance and enhanced TDP-43 aggregation 5. In           

addition, the ability of TDP-43 to bind RNA is an inherent requirement for TDP-43 toxicity 6.               
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Thus, decreasing the association of TDP-43 with RNA, be it in stress granules or elsewhere,               

under the oxidative cellular conditions of ALS7, is a plausible therapeutic approach. 

Given the absence of effective therapies for ALS and other TDP-43 proteinopathies, our             

colleagues at May Khanna’s laboratory at the University of Arizona sought to apply the chemical               

biology approach described in Chapter 2 to identify new small molecule candidates that inhibit              

association of TDP-43 with RNA. In silico docking yielded a molecule, rTRD01, that was              

selected for additional in vitro  biophysical and in vivo  biological analysis.  

 

Figure 3-12. Domain architecture of TDP-43. TDP-43 consists of an NTD, two tandem RNA              

recognition motifs (RRM1 and RRM2), and a C-terminal glycine-rich region. Approximately 50            

missense mutations have been identified in TDP-43 in sporadic and familial ALS patients,             

mostly in the glycine-rich region. Scissors denote caspase cleavage sites that generate C-terminal             

35 kDa and 25 kDa fragments. L, nuclear localization signal. E, nuclear export signal. Adapted               

with permission from Springer Nature under a Creative Commons–Attribution 4.0 International           

license. 

Paraquat as a model for ALS and Parkinson’s disease  

Paraquat (N,N’-dimethyl-4,4’-bipyridinium dichloride) is a dicationic herbicide that        

induces oxidative stress and neuronal death in zebrafish8,9 and other model organisms10,11.            
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Paraquat is a structural analog of the acute neurotoxin 1-methyl-4-phenylpyridinium, and           

exposure to paraquat is associated with development of Parkinson’s disease and ALS in             

humans12,13,14. Paraquat also induces accumulation of TDP-43 in SGs in cell culture15.  

Upon entering the cell, paraquat undergoes an NADPH-dependent, one-electron         

reduction to form its free radical, which then reacts immediately with molecular oxygen to              

reform the cation and produce superoxide anion, which in turn dismutates into hydrogen             

peroxide. The reduction of paraquat is mediated by the mitochondrial electron transport chain16.             

Except for its perpetual reduction and oxidation 17, paraquat is otherwise not metabolized 18 .  

rTRD01: a candidate small molecule for treatment or prophylaxis of TDP-43           

proteinopathies  

Using the chemical biology approach detailed in Chapter 2, our colleagues at the             

University of Arizona discovered a small molecule, rTRD01 (RRM TDP-43 RNA Disruptor 01;             

6-[(3R )-3-[(4-fluorophenyl)methyl]-3-(hydroxymethyl)piperidin-1-yl]pyrazine-2-carboxamide), 

capable of binding TDP-43 in the RRM1 and RRM2 domains and partially disrupting TDP-43’s              

interaction with (GGGGCC) 4 RNA, the hexanucleotide repeat expansion mutation of the c9orf72            

gene that is the most common genetic cause of ALS and frontotemporal dementia 19. My team at                

UCLA assayed rTRD01’s neuroprotective potential in vivo  in the zebrafish paraquat model.  

Materials and Methods 

Zebrafish culture 

All zebrafish (Danio rerio ) were maintained in accordance with standard laboratory           

conditions20. The University of California, Los Angeles Chancellor’s Animal Research          
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Committee approved all experiments performed on zebrafish (ARC #2005-141-32). The TDL6           

(Tübingen driver line) zebrafish used in all experiments were identified in a screen for              

developmentally regulated enhancers that drive tissue-specific expression. Gal4-driven green         

fluorescent protein (GFP) expression marks neurons of the central nervous system (CNS). The             

Gal4-GFP cassette location maps to the first intron of the gnaI 2 gene on chromosome 6, and is                 

regulated by the inka 1b enhancer21. 

Treatment conditions  

Zebrafish embryos (N >15 per condition) were incubated in E3 buffer (5.0 mM NaCl, 0.17              

mM KCl, 0.33 mM CaCl2, 0.33 mM MgSO4) ± 0.075 percent v/v DMSO ± 0.04 ppm paraquat                 

dichloride (Sigma) ± 50 µM rTRD01 ± 100 nM rotenone (Sigma) ± 0.003 percent w/v               

phenylthiourea (PTU, an inhibitor of pigment synthesis) (Sigma), as indicated in the text. All              

solutions with rTRD01 or paraquat also contain 0.075 percent v/v DMSO. Media was refreshed              

every 24 hrs. Zebrafish embryos used in Figure 3-4 were enzymatically dechorionated by             

Pronase (Sigma) treatment at 1 hpf. 

Imaging  

All imaging was performed using live embryos anesthetized in 0.02 percent w/v tricaine             

(ethyl 3-aminobenzoate methanesulfonate) and mounted in 1 percent w/v low-melt agarose on 35             

mm glass bottom dishes (MatTek Corporation, Ashland, MA). Brightfield images were captured            

on a Leica EZ4D stereo microscope (Leica Microsystems, Buffalo Grove, IL) using Leica LAS              

EZ 3.4 imaging software. Fluorescence micrographs were obtained using a Zeiss Axio Observer             

Z1 spinning disk confocal microscope (Carl Zeiss Microscopy, Thornwood, NY) under a 10X             

objective lens and captured with SlideBook 6.0 software (Intelligent Imaging Innovations,           
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Denver, CO). Micrographs were then de-identified and exported to ImageJ Fiji Edition 22 Version             

2.0 (continuous release version; National Institutes of Health, Bethesda, MD) for analysis.            

Images were analyzed blindly by an investigator different from the investigator who acquired the              

images.  

Zebrafish brain size determination 

In order to determine the relative size of the zebrafish embryo brain, the fluorescence              

image stacks were opened in ImageJ Fiji Edition. The images were calibrated to ensure that the                

area (in µm2) was being calculated instead of the number of pixels. Thereafter, the background               

was subtracted using a 30 pixel rolling ball radius. The region containing the brain was then                

cropped from the rest of the image stack and then an intensity threshold was applied to select the                  

2D cross section of the brain on every image. From this, the average area, mean fluorescence,                

and integrated fluorescence density was calculated per fish and statistical analysis—as described            

below—was performed to determine any significant differences in size between treatment           

groups.  

Statistical analysis 

Statistical analysis was performed for non-binary discrete variables. Results are          

expressed as mean ± standard error of the mean. Bartlett’s variance test was used to confirm                

equal variance among groups and then a one-way analysis of variance (ANOVA) with Tukey              

HSD post-hoc tests was used to determine statistical significance. All statistical analysis was             

completed with a variety of statistical and graphical packages in R 23,24,25,26. All results were              

considered significant if p  < 0.05 on a two-tailed significance test. 

Results 
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rTRD01 protects against paraquat-induced neurodegeneration in zebrafish.  

Having demonstrated rTRD01 to have neuroprotective properties in vitro , we proceeded           

to assess the neuroprotective effects of rTRD01 in vivo using zebrafish as our model system.               

rTRD01 was well-tolerated in vivo and produced no discernable morphological defects at            

concentrations up to 75 µM (the highest tested) (Figure 3-2 ). We proceeded to test rTRD01’s               

ability to protect against paraquat-induced neurotoxicity. Consistent with previous reports8,9,          

treatment of zebrafish embryos at 18 hpf with 0.04 ppm paraquat produced gross spinal              

curvature (Figure 3-3 A ), a phenotype correlated with neurodegeneration. Co-treatment with 50            

µM rTRD01 at 12 hpf rescued the curved spine morphology (Figure 3-3 A, B), as did sequential                 

treatment with rTRD01 (i.e. rTRD01, washout, then add paraquat) (Figure 3-4 ). Whereas            

paraquat treatment at 18 hpf induced neuronal death (Figure 3-3 D ), as indicated by small but                

statistically significant reductions in brain cross-sectional area (Figure 3-3 E ), mean           

fluorescence (Figure 3-3 F ), and fluorescence density (Figure 3-3 G ) compared to            

DMSO-treated controls, no difference in these metrics was observed between DMSO controls            

and zebrafish co-treated with 50 μM rTRD01 at 12 hpf and paraquat at 18 hpf.  

rTRD01 is not a general antioxidant.  

To exclude a general antioxidant effect by rTRD01, we treated zebrafish with varying             

concentrations of rTRD01 for 7 days and then exposed the fish to rotenone, an inhibitor of                

mitochondrial respiratory chain complex I and a potent inducer of reactive oxygen species (ROS)              

formation 27. rTRD01 had no protective effect over DMSO in preventing brain death at all              

concentrations tested (Figure 3-5 ), indicating that rTRD01 does not act as a general antioxidant              
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(unlike probucol28, for example). In summary, rTRD01 protects against paraquat-induced          

neurotoxicity in vivo and is not a general antioxidant. 

 

 

Figure 3-2. Toxicity titration and survival curve for rTRD01 exposure in zebrafish.  

(A) Gross morphology (lateral and dorsal) of 5.5 dpf zebrafish incubated at 12 hpf in E3 medium                 

containing DMSO or 10–75 μM rTRD01, as indicated. (B) Surviving zebrafish as percent of              

total, from 1 dpf to 5 dpf.  
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Figure 3-3. rTRD01 rescues paraquat-induced neurodegenerative phenotypes in zebrafish.  

(A) Gross morphology of 2.5 dpf zebrafish embryos incubated in E3 medium containing (i)              

DMSO; (ii) DMSO added at 12 hpf and 0.04 ppm PQ added at 18 hpf; (iii) 50 μM rTRD01                   

added at 12 hpf and 0.04 ppm PQ added at 18 hpf. (B) Quantification of curved spine phenotype                  

prevalence in treatment conditions of (A). (C) Schematic depicting the spatial localization of the              

zebrafish brain regions. Green text represents tissues expressing GFP. (D) Fluorescence images            

of brain of 3.25 dpf zebrafish embryos incubated in E3-PTU medium containing (i) DMSO; (ii)               
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0.04 ppm PQ added at 18 hpf; (iii) 50 μM rTRD01 added at 12 hpf and 0.04 ppm PQ added at 18                      

hpf. (E–G) Quantification of (E) maximal cross-sectional area, (F) mean fluorescence, and (G)             

fluorescence density of zebrafish brains subjected to the treatment conditions in (D).  
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Figure 3-4. Neuroprotection by rTRD01 is not the result of chemical inactivation of             

paraquat by rTRD01.  

(A) Gross morphology (lateral and dorsal) of 2.5 dpf zebrafish incubated in E3-PTU medium              

containing (i) DMSO added at 12 hpf; (ii) DMSO added at 12 hpf and 0.04 ppm PQ added at 18                    

hpf; (iii) 50 μM rTRD01 added at 12 hpf and removed at 18 hpf, followed by addition of 0.04                   

ppm PQ at 18 hpf. (B) Quantification of phenotype prevalence in treatment conditions of (A).               

(C) Schematic of small molecule addition times. rTRD01 was removed by washing 3X with              

E3-PTU medium prior to addition of PQ.  
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Figure 3-5. rTRD01 does not rescue rotenone-induced neuronal death in zebrafish.  

(A) Gross morphology and neuronal transparency of 7 dpf zebrafish embryos after 4 hr              

incubation in 100 nM rotenone. Zebrafish were incubated at 12 hpf in E3-PTU medium              

containing either DMSO or 10–75 μM rTRD01, as indicated, prior to the 4 hr rotenone challenge                

at 7 dpf. (B) Quantification of gray brain phenotype prevalence in treatment conditions of (A).  
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Discussion 

Using a chemical biology approach analogous to the workflow detailed in Chapter 2, we              

successfully identified a small molecule capable of [1] binding the RRM domains of TDP-43; [2]               

disrupting the association of TDP-43 with a pathologic RNA repeat expansion sequence; and [3]              

exerting in vivo neuroprotective effects in the zebrafish paraquat model. Future studies will             

evaluate the specificity of the association of rTRD01 with the RRM domains of TDP-43 (the               

secondary structures of RRM domains in general are highly conserved29) and, likewise, whether             

rTRD01 attenuates ALS disease phenotypes via a TDP-43-specific mechanism or through           

multiple modes of action. 
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 Toward a zebrafish model of pontocerebellar hypoplasia 

type 1D 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 4 describes the joint work of Gary Shmorgon, Kayla White, and Shahriyar             

Jahanbakhsh. Gary Shmorgon and Kayla White generated the mutation described using           

CRISPR/Cas9 mutagenesis. Shahriyar Jahanbakhsh characterized the mutation and isolated the          

mutant line.  
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Introduction 

PCH1D is caused by mutations in SLC25A46, a transmembrane protein of the outer             

mitochondrial membrane. Seven disease-causing point mutations (five missense and two          

nonsense) are known, five of which localize to the fifth of SLC25A46’s seven predicted              

transmembrane helices 1. Clinically, PCH1D is distinguishable from other PCH1 subtypes by           

optic nerve involvement, respiratory failure and early death, and is at the most severe end of the                 

broad spectrum of SLC25A46-related diseases 2.  

The sole laboratory model of PCH1D, a SLC25A46 knockout mouse model3, offers no             

means for studying the in vivo perturbations in mitochondrial dynamics central to the             

pathophysiology of PCH1D. Thus, an unmet need exists for new in vivo models of PCH1D. In                

this closing chapter, I describe progress toward a zebrafish knockout model of PCH1D.  

MitoTimer: a fluorophore for assaying mitochondrial turnover 

Given that SLC25A46 is a transmembrane protein located in the outer mitochondrial            

membrane, any model of PCH1D must provide for mitochondrial visualization. The           

oxidation-sensitive, matrix-targeted fluorescent protein marker MitoTimer has emerged as a          

valuable tool for the study of mitochondrial morphology, network dynamics, import, and            

turnover4,5,6. MitoTimer is a matrix-targeted derivative of DsRed1-E5, a mutated form of DsRed             

whose fluorescence shifts from green to red as the protein matures. MitoTimer, like DsRed1-E5,              

is sensitive to oxygen but insensitive to pH, protein concentration, and ionic strength4.  

Because MitoTimer fluoresces green when newly synthesized and shifts irreversibly to           

red fluorescence as it matures and oxidizes, MitoTimer serves as a molecular clock to give               

temporal and spatial information on protein turnover. A decrease in the number of mitochondria              
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importing cytosolic preproteins, including freshly synthesized, green MitoTimer, is therefore          

reflected by a decrease in green MitoTimer signal. 

Materials and Methods 

Zebrafish culture 

AB zebrafish (Danio rerio) were maintained in accordance with standard laboratory           

conditions7. The University of California, Los Angeles Chancellor’s Animal Research          

Committee approved all experiments performed on zebrafish (ARC #2005-141-32).  

Zebrafish mutagenesis 

Nascently-fertilized zebrafish embryos were microinjected with ~500 pL of a solution           

containing 200 ng/μL sgRNA (sequence: UUGGAAUUGGUCUCGCAAG) and 100 ng/μL Cas9          

nuclease (Synthego, Redwood City, CA). F0 founders were genotyped using an RFLP assay, and              

those founders bearing a mutation in SLC25A46 were isolated and bred to yield F1 animals. F1                

animals were raised to maturity and genotyped to determine zygosity, and the sequence of the               

mutation was determined using Sanger sequencing (Genewiz, South Plainfield, NJ). The           

sequences of the PCR primers used to generate the amplicons for genotyping were forward:              

GTAAGGCAAGGAGAGCATACTTTGG and reverse: ACACTGATGGCTGTCATTGG.    

Sequences were aligned using the EMBOSS Needle pairwise sequence alignment tool 8. 

Results 

PCR-RFLP genotyping of F1 zebrafish identified four heterozygous animals that were           

confirmed by Sanger sequencing to harbor the same two base-pair (bp), frameshift-inducing            

insertion in exon 2 of SLC25A46 (Figure 4-1 ). Analysis of the amino acid sequence indicated               
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that the insertion, which occurs in an early exon of SLC25A46 (exon 2 of 89), corrupts 78                 

percent of the translated protein. The heterozygous animals were isolated as mating pairs for              

propagating the mutant line.  
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Figure 4-1. Heterozygous knockout of SLC25A46 in the zebrafish. (A)1 (Top) Predicted            

membrane architecture of SLC25A46. Circles indicate missense point mutations. Arrowheads          

indicate nonsense point mutations. The dashed red box indicates a disease-causing deletion. The             

2 bp insertion (blue target) localizes to the first transmembrane helix of SLC25A46. (Bottom)              

Alignment of protein sequences encoded by SLC25A46 orthologs in the human, zebrafish, and             

other eukaryotes. Adapted with permission from Oxford University Press. (B) RFLP-based           

screening for CRISPR/Cas9 mutagenesis. Two bands indicate no mutation (wild-type genotype).           

Three bands indicate a heterozygous mutation. (C) Sequence alignment identifying the mutation            

as a 2 bp insertion (boxed) in exon 2 (overlined in turquoise). Uppercase letters are the reference                 

sequence. Lowercase letters are the sample sequence. The sgRNA binding site is underlined in              

red. 

Discussion 

We have established a zebrafish SLC25A46 knockout model for the purpose of            

interrogating the pathomechanism of PCH1D in vivo and in real time. When used in combination               

with MitoTimer, our model is poised to advance our understanding of the mitochondrial basis of               

PCH1D.  

Knockout of SLC25A46 is hypothesized to prevent mitochondrial fission, and therefore           

also prevent proper motor-dependent transport on actin or microtubule networks10. By promoting            

mitochondrial hyperfusion, SLC25A46 knockout is also expected to attenuate the selective           

sequestration of mitochondria by autophagosomes11,12, known as mitophagy. Loss of function           

missense mutations in SLC25A46 are known to disrupt interactions between mitochondria and            

the ER membrane and alter mitochondrial membrane lipid composition [i.e. loss of many species              
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of phosphatidylethanolamine (PE), phosphatidylserine, and phosphatidic acid]13. Depletion of         

PEs in particular is known to decrease the activity of the translocase of the outer membrane                

complex and reduce translocation of beta-barrel precursors across the OMM14. Loss of PEs may              

also decrease supercomplexation of respiratory chain complexes III and IV15, resulting in less             

efficient catalysis 15,16 and a reduction in membrane potential. Therefore, loss of SLC25A46 is             

also expected to reduce mitochondrial protein import, thus increasing red fluorescence from            

MitoTimer. 
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