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Abstract. We solve two problems regarding the enumeration of lattice paths inZ2 with steps
(1, 1) and (1,−1) with respect to the major index, defined as the sum of the positions of the
valleys, and to the number of certain crossings. The first problem considers crossings of a
single path with a fixed horizontal line. The second one counts pairs of paths with respect to
the number of times they cross each other. Our proofs introduce lattice path bijections with
convenient visual descriptions, and the answers are given by remarkably simple formulas
involving q-binomial coefficients.
Keywords. Lattice path, major index, crossing, valley, bijection
Mathematics Subject Classifications. 05A19, 05A15, 05A30

1. Introduction

1.1. Background

The enumeration of lattice paths is an important topic both in combinatorics and in mathematical
statistics, as discussed in the surveys by Mohanty [Moh79] and Krattenthaler [Kra15]. In the
particular case of lattice paths in the plane with two types of steps, common questions involve
counting paths constrained by some boundary, as well as counting paths with respect to various
statistics.

One important such statistic is the number of times that a path crosses a given line. Several
instances of the enumeration of paths by this kind of statistic have appeared in the probability
and statistics literature [Eng65, Sen65, Fel68, KW78, Spi12], often resulting in nice formulas
involving binomial coefficients. Another statistic commonly studied in the combinatorics liter-
ature is the major index of a path, which can be defined as the sum of the positions of its turns
in a given direction. This statistic on paths, which arises naturally when interpreting them as a
binary words, has been studied, for example, in [KM93, Kra97, Kra95, SS12].

https://www.combinatorial-theory.org
mailto:sergi.elizalde@dartmouth.edu
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In this paper we consider the enumeration of lattice paths simultaneously by the number
of crossings and the major index. We show that, rather surprisingly, the resulting enumeration
formulas with respect to both statistics are quite simple, having closed forms in terms of q-
binomial coefficients. Intriguingly, the methods that have been commonly used to count paths by
the number of crossings do not give an obvious explanation for such simple formulas. However,
in all cases, we are able to prove them bijectively.

We consider two different but related problems. The first one concerns single lattice paths,
which will be enumerated with respect to the major index and the number of times that they
cross a fixed line. The second one involves pairs of lattice paths, which will be enumerated with
respect to the sum of their major indices and the number of times that they cross each other. The
tools used to solve both problems are similar, and they involve certain lattice path bijections that,
unlike classical methods such as the reflection principle and prefix-swapping operations, behave
well with respect to the major index.

In the case of zero crossings, our work relates to the important topic of non-crossing (or
non-intersecting, after a simple transformation) paths, which have been studied for decades.
The celebrated determinantal formula by Gessel and Viennot [GV85] enumerating tuples of
non-intersecting paths, previously discovered by Lindström [Lin73] in the context of matroid
theory, has connections to symmetric functions, tableaux, plane partitions and tilings, and even
to statistical physics [Fis84] and chemistry. A refinement of this formula that keeps track of the
sum of the major indices of the paths has been given by Krattenthaler [Kra95]. Krattenthaler’s
formula in the special case of two paths is equivalent to our formula for pairs of paths in the
special case of zero crossings. In Section 6.1, we will show how our tools also yield an alternative
proof of Krattenthaler’s formula. While the ideas behind both proofs are similar, our bijections
have simple descriptions directly in terms of paths, whereas the bijections in [Kra95] require
passing through other objects called two-rowed arrays. We point out that it is an open question
whether our formulas that enumerate pairs of paths with a given number of crossings can be
extended to k-tuples of paths for k > 2.

In the special case of pairs of paths with at least one common endpoint, there has been work
by Gessel et al. [GGS+96] enumerating such pairs with respect to the number of lattice points
where the paths intersect. There is, however, no direct relationship between this statistic and
the number of crossings that we consider here, so it is no surprise that the summation formulas
obtained in [GGS+96] are different from ours.

It is important to note that, even though this paper focuses exclusively on lattice paths, our
work has applications to the enumeration of integer partitions with constrained ranks. Specifi-
cally, our formula for paths crossing a line is one of the tools that is used in a forthcoming paper
by Corteel et al. [CES] to enumerate partitions with a given number of off-diagonal rank parity
blocks, which generalizes results of Seo and Yee [SY18].

Finally, another follow-up paper [Eli21] will further refine our results by another statistic:
the number of descents, which also arises naturally when interpreting paths as binary words,
and can be described as the number of turns of the path in a given direction. The proofs of the
refined version can no longer be visualized as lattice path bijections, but rather they are based on
certain two-rowed arrays that have been previously used by Krattenthaler and Mohanty [Kra97,
Kra95, KM93].
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1.2. Basic definitions

We consider simple lattice paths in Z2 with steps U = (1, 1) and D = (1,−1) (up and down),
although sometimes it will be convenient to consider the steps to be N = (0, 1) and E = (1, 0)
(north and east) instead. One type of paths is obtained from the other by rotating 45◦ and stretch-
ing by a factor of

√
2; equivalently, using the substitutions U ↔ N and D ↔ E. We will use

both settings interchangeably.
For nonnegative integers a, b, let Ga,b denote the set of paths with a steps U and b steps D,

usually starting at the origin, although later it will be convenient to allow other initial points
on the y-axis. The sequence of steps of such a path can be encoded as a binary word with a
zeros and b ones, by identifying Us with 0s and Ds with 1s1. Under this encoding, descents
of the word correspond to valleys of the path, defined as vertices that are preceded by a D and
followed by a U . The major index, which is a common statistic on words, can then be translated
to paths P ∈ Ga,b, by defining maj(P ) to be the sum of x-coordinates of the valleys of P . See
Figure 1.1 for an example.

y = 1
P

Figure 1.1: A path P ∈ G>3,1
8,6 with maj(P ) = 1 + 3 + 7 + 10 = 21. The four valleys are marked

with teal diamonds, and the three crossings of the line y = 1 are circled in black. The middle
crossing is a downward crossing, whereas the other two are upward crossings.

When dealing with paths with N and E steps, we denote by PA→B the set of such paths
that start at A and end at B, where A,B ∈ Z2. In this case, the valleys of P ∈ PA→B are the
vertices preceded by an E and followed by an N , and maj(P ) is the sum of the positions of the
valleys, where the position is determined by numbering the vertices of the path in increasing
order starting at A, which would be position 0, and ending at B. Note that P(x,y)→(u,v) is empty
unless x 6 u and y 6 v.

Recall the q-binomial coefficients, defined as[
n
k

]
q

=
(1− qn)(1− qn−1) · · · (1− qn−k+1)

(1− qk)(1− qk−1) · · · (1− q)

if 0 6 k 6 n, and as 0 otherwise. The following is a classical result of MacMahon.
1We follow the convention of Fürlinger and Hofbauer [FH85]. Other papers use a different encoding whereby

descents of the word become peaks of the path, and maj(P ) is defined be the sum of the x-coordinates of the peaks
of P .
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Lemma 1.1 ([Mac60]). For a, b > 0,∑
P∈Ga,b

qmaj(P ) =

[
a+ b
a

]
q

.

Equivalently, if A = (x, y) and B = (u, v), then∑
P∈PA→B

qmaj(P ) =

[
u− x+ v − y

u− x

]
q

.

The rest of the paper is structured as follows. In Section 2 we state our main theorems, after
establishing some more definitions and notation. Section 3 introduces some tools, in particular
four closely related bijections, that will play a key role in our proofs. Section 4 applies these
tools to prove our results from Section 2.1 about the enumeration of paths by the number of
crossings of a horizontal line, while Section 5 applies them to prove our results from Section 2.2
about the enumeration of pairs of paths by the number of times they cross each other. Our
proofs in the two settings have certain similarities, but Section 5 can be read independently from
Section 4. Section 6 uses our construction to give an alternative proof of Krattenthaler’s refined
enumeration of tuples of nonintersecting paths [Kra95]. We discuss possible extensions of our
work in Section 7.

2. Main results

2.1. Paths crossing a line

First we state our results about the enumeration of paths with U and D steps with respect to
the major index and to the number of times that they cross a horizontal line. For `, r ∈ Z,
where r > 0, let G>r,`a,b denote the set of paths in Ga,b that cross the line y = ` at least r times.
For this definition, a vertex of the path on the line y = ` is a crossing if it is either preceded and
followed by a D (in which case it is called a downward crossing), or preceded and followed by
a U (called an upward crossing). See Figure 1.1 for an example.

We are interested in the polynomials

G>r,`
a,b (q) =

∑
P∈G>r,`a,b

qmaj(P ).

The polynomials that count paths crossing the line y = ` exactly r times can be easily expressed
in terms of these as

G=r,`
a,b (q) = G>r,`

a,b (q)−G>r+1,`
a,b (q).
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We will provide a formula for G>r,`
a,b (q) for arbitrary a, b, r, ` ∈ Z with a, b, r > 0. The

formula is slightly different depending on whether the starting and ending points of the path are
above, below, or on the line being crossed. In each case, the resulting expressions are surprisingly
simple, consisting of a q-binomial coefficient times a power of q. Despite the simple formulas,
our proof is by no means trivial. In each case, we provide a bijection from G>r,`a,b to a set of
paths with no requirements on the number of crossings, which can then be enumerated using
Lemma 1.1. A key property of our bijection is that it has a predictable effect on the major index
of the paths.

Let us first state the result in the case ` = 0, that is, when considering crossings of the x-axis.

Theorem 2.1. For any a, b, r > 0,

G>r,0
a,b (q) =



q(
r+1
2 )
[
a+ b
a+ r

]
q

if a > b, (2.1a)

(1 + qa)q(
r+1
2 )
[
2a− 1
a+ r

]
q

if a = b, (2.1b)

q(
r
2)
[
a+ b
a− r

]
q

if a < b. (2.1c)

In this ` = 0 case, the specialization q = 1 (i.e., when we disregard the major index) has been
studied in the probability literature. The formula for q = 1 has been known for over 50 years:
it first appeared in work of Engelberg [Eng65] and Sen [Sen65], and was later rediscovered by
other authors [KM93]. It refines a classical result of Feller [Fel57, Fel68] for paths without a
fixed endpoint. Some of these papers also determine the limiting distribution of the number
of crossings. The proofs in [Eng65, Sen65] consist essentially of repeatedly applying André’s
reflection principle at each crossing. Unfortunately, this method does not provide a proof of our
refinement with the variable q, because the major index does not behave well under reflection of
a piece of the path. Thus, proving Theorem 2.1 requires more sophisticated bijections that keep
track of the statistic maj.

The case a > b of Theorem 2.1 can be shown to be equivalent to a result of Seo and
Yee [SY18, Lemma 2.1] concering the enumeration of ballot paths with marked returns, with
respect to a different statistic that combines valleys and returns. Seo and Yee’s proof is recursive,
by induction on the length of the path, and so it does not give much insight on why the resulting
formula is so simple. Similar ideas could be used to provide a recursive proof of Theorem 2.1,
but we prefer to present a bijective proof instead (see Section 4).

Next we state the result in the case ` 6= 0. The parity of r plays a role in this case, so we
write r = 2m or r = 2m ± 1 for convenience. Note that the results are trivial for r = 0,
since G>0,`

a,b = Ga,b for any `, and so G>0,`
a,b (q) is already given by Lemma 1.1.
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Theorem 2.2. Let a, b,m > 0, and let ` ∈ Z \ {0}. If 0 < ` < a− b, then

G>2m+1,`
a,b (q) = G>2m,`

a,b (q) = qm(2m+1+`)

[
a+ b
a+ 2m

]
q

. (2.2)

If 0 > ` > a− b, then

G>2m+1,`
a,b (q) = G>2m,`

a,b (q) = qm(2m−1−`)
[
a+ b
a− 2m

]
q

. (2.3)

If 0 > ` < a− b and m > 1, then

G>2m,`
a,b (q) = G>2m−1,`

a,b (q) = qm(2m−1−`)
[

a+ b
a+ 2m− 1− `

]
q

. (2.4)

If 0 < ` > a− b and m > 1, then

G>2m,`
a,b (q) = G>2m−1,`

a,b (q) = q(m−1)(2m−1+`)

[
a+ b

a− 2m+ 1− `

]
q

. (2.5)

If 0 < ` = a− b, then

G>2m,`
a,b (q) = qm(2m+1+`)

[
a+ b
a+ 2m

]
q

, G>2m+1,`
a,b (q) = qm(2m+1+`)

[
a+ b

a+ 2m+ 1

]
q

. (2.6)

If 0 > ` = a− b, then

G>2m,`
a,b (q) = qm(2m−1−`)

[
a+ b
a− 2m

]
q

, G>2m+1,`
a,b (q) = q(m+1)(2m+1−`)

[
a+ b

a− 2m− 1

]
q

. (2.7)

We remark that the set G>r,`a,b is in trivial bijection with G>r,−`b,a (by reflecting the paths along
the x-axis), with G>r,`−a+b

b,a (by reflecting the paths along a vertical line and translating appropri-
ately), and with G>r,−`+a−ba,b (by composing both reflections, which is equivalent to rotating the
paths by 180◦). However, none of these bijections changes maj in a consistent way unless the
number of valleys or the last step of the path are fixed. Thus, the different cases in Theorems 2.1
and 2.2 cannot be trivially derived from each other even when the sets of paths are related by
these reflections. Similarly, there is no obvious way to deduce Theorem 2.2 from Theorem 2.1
by detaching the portion of the path before the first crossing of the line y = `, since the removal
of this prefix affects the major index inconsitently.

We will give a bijective proof of Theorems 2.1 and 2.2 in Section 4, using some ingredients
that we introduce in Section 3.

2.2. Pairs of paths crossing each other

Next we enumerate pairs of paths according to the sum of their major indices and to the number
of times that they cross each other. For convenience, we will consider paths with N and E steps
for this problem. A crossing of two paths P andQ is defined to be a common vertex C such that
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• P and Q disagree in the step arriving at C, and they disagree again in some step after C;

• at the first step after C where P andQ disagree again, each path has the same type of step
(N or E) as it had when arriving at C.

See Figure 2.1 for some examples. Note that two paths can intersect (that is, have common
vertices) without crossing. Let χ(P,Q) denote the number of crossings of paths P and Q. See
Figure 2.2 for an example. For A1, A2, B1, B2 ∈ Z2 and r > 0, we use the following notation
for pairs of paths having at least r crossings, where {◦, •} = {1, 2}:

P>r
A1→B◦,A2→B• = {(P,Q) : P ∈ PA1→B◦ , Q ∈ PA2→B• , χ(P,Q) > r}.

Note that P>0
A1→B◦,A2→B• = PA1→B◦ × PA2→B•; we denote this set simply by PA1→B◦,A2→B• .

Figure 2.1: Two examples of crossings, circled in black, and a pair of paths that do not cross
(right).

A1

A2

B1

B2

P

Q

Figure 2.2: A pair of paths with χ(P,Q) = 3.

The next theorem enumerates such pairs of paths. Note that, when there is no requirement
on the number of crossings, the enumeration is trivial, since

|PA1→B◦,A2→B•| = |PA1→B◦|·|PA2→B•| =
(
u◦ − x1 + v◦ − y1

u◦ − x1

)(
u• − x2 + v• − y2

u• − x2

)
, (2.8)

where A1 = (x1, y1), A2 = (x2, y2), B1 = (u1, v1) and B2 = (u2, v2). We use the notation
A1 ≺ A2 to indicate that A1 is strictly northwest of A2, that is, x1 < x2 and y1 > y2.
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Theorem 2.3. Let A1 = (x1, y1), A2 = (x2, y2), B1 = (u1, v1), B2 = (u2, v2) be points in Z2,
where A1 ≺ A2 and B1 ≺ B2. Then, for all m > 0,∣∣P>2m+1

A1→B2,A2→B1

∣∣ =
∣∣P>2m

A1→B2,A2→B1

∣∣ =

(
u2 − x1 + v2 − y1

u2 − x1 + 2m

)(
u1 − x2 + v1 − y2

u1 − x2 − 2m

)
, (2.9)

and for all m > 1,∣∣P>2m
A1→B1,A2→B2

∣∣ =
∣∣P>2m−1

A1→B1,A2→B2

∣∣ =

(
u2 − x1 + v2 − y1

u2 − x1 + 2m− 1

)(
u1 − x2 + v1 − y2

u1 − x2 − 2m+ 1

)
. (2.10)

Let now A = (x, y) and B = (u, v) be points in Z2. Then, for all r > 0,∣∣P>r
A→B1,A→B2

∣∣ =

(
u2 − x+ v2 − y
u2 − x+ r

)(
u1 − x+ v1 − y
u1 − x− r

)
, (2.11)

∣∣P>r
A1→B,A2→B

∣∣ =

(
u− x1 + v − y1

u− x1 + r

)(
u− x2 + v − y2

u− x2 − r

)
, (2.12)

∣∣P>r
A→B,A→B

∣∣ =


(
u− x+ v − y

u− x

)2

if r = 0,

2
∑
j>1

(−1)j−1

(
u− x+ v − y
u− x+ r + j

)(
u− x+ v − y
u− x− r − j

)
if r > 1.

(2.13)

The only case in which the formula given by Theorem 2.3 is not a product of binomial coeffi-
cients is when both endpoints of the paths coincide, i.e., Equation (2.13). An alternative expres-
sion for this case, with a different number of summands, will be provided in Equation (5.16).

As we will see in Section 6.2, Theorem 2.3 can be proved using a bijection that repeatedly
swaps the prefixes of the paths up until, and including the step right after, the first crossing. This
is similar to the prefix-swapping method in the standard proof of the Lindström–Gessel–Viennot
determinantal formula counting non-intersecting tuples of paths [Lin73, GV85].

As in Section 2.1, we are interested in the refined enumeration by the major index. In this
case, the relevant statistic is the sum of the major indices of the two paths, which we refer to as
the total major index. For A1, A2, B1, B2 ∈ Z2 and r > 0, define the polynomials

H>r
A1→B◦,A2→B•(q) =

∑
(P,Q)∈P>r

A1→B◦,A2→B•

qmaj(P )+maj(Q).

The polynomials counting pairs of paths that cross each other exactly r times can be obtained
from these as

H=r
A1→B◦,A2→B•(q) = H>r

A1→B◦,A2→B•(q)−H
>r+1
A1→B◦,A2→B•(q).

To state the expressions for these polynomials, it is convenient to define the following func-
tion of A1 = (x1, y1), A2 = (x2, y2), B1 = (u1, v1), B2 = (u2, v2), and r:

fr,A1,A2,B2,B1(q) = qr(r+x2−x1)

[
u2 − x1 + v2 − y1

u2 − x1 + r

]
q

[
u1 − x2 + v1 − y2

u1 − x2 − r

]
q

. (2.14)
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When there is no requirement on the number of crossings, Lemma 1.1 immediately gives

H>0
A1→B◦,A2→B•(q) =

[
u◦ − x1 + v◦ − y1

u◦ − x1

]
q

[
u• − x2 + v• − y2

u• − x2

]
q

= f0,A1,A2,B◦,B•(q) (2.15)

for arbitrary endpoints, since the two paths can be chosen independently.

Theorem 2.4. Let A1 = (x1, y1), A2 = (x2, y2), B1 = (u1, v1) and B2 = (u2, v2) be points in
Z2, where A1 ≺ A2 and B1 ≺ B2. Suppose additionally that

x1 + y1 = x2 + y2. (2.16)

Then, for all m > 0,

H>2m+1
A1→B2,A2→B1

(q) = H>2m
A1→B2,A2→B1

(q) = f2m,A1,A2,B2,B1(q), (2.17)

and for all m > 1,

H>2m
A1→B1,A2→B2

(q) = H>2m−1
A1→B1,A2→B2

(q) = f2m−1,A1,A2,B2,B1(q). (2.18)

Let now A = (x, y) and B = (u, v) be points in Z2. Then, for all r > 0,

H>r
A→B1,A→B2

(q) = fr,A,A,B2,B1(q), (2.19)
H>r
A1→B,A2→B(q) = fr,A1,A2,B,B(q), (2.20)

H>r
A→B,A→B(q) =

{
f0,A,A,B,B(q) if r = 0,

2
∑

j>1(−1)j−1fr+j,A,A,B,B(q) if r > 1.
(2.21)

All the formulas in Theorem 2.4 consist of a product of two q-binomial coefficients and a
power of q, with the exception of Equation (2.21) for r > 1. An alternative expression for this
case will be given in Equation (5.15).

Note that condition (2.16) is equivalent to x2 − x1 = y1 − y2, and to the fact that A1 and A2

lie on the same line of slope−1. When it holds, the term qr(r+x2−x1) in Equation (2.14) can also
be written as qr(r+y1−y2).

Similarly to how the argument based on the iterated reflection principle for paths crossing
a line does not give a proof of Theorems 2.1 and 2.2 with the refinement by major index, the
argument based on iterated prefix-swapping that can be used to prove Theorem 2.3 does not give
a proof of Theorem 2.4. This is because the statistic maj does not behave well when swapping
fragments of the paths.

3. Proof ingredients: the bijections τ , σ, τ̄ , σ̄

The proofs of the theorems Section 2 rely on repeated applications of certain bijections that we
describe next. An important feature of these bijections is that they allow us to keep track of the
changes in the major index of the paths.
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We first describe the bijections in terms of paths with N and E steps. Let PEA→B and PNA→B
denote the subsets of PA→B consisting of paths that end in E and N , respectively. If we do
not specify the endpoints, the union of these sets over all possible endpoints A,B ∈ Z2 will be
denoted by PE and PN , respectively.

Let ρ be the involution on paths with N and E steps induced by reflecting Z2 along the
diagonal y = x, so that the coordinates of each point are switched. Clearly, ρ is a bijection
between PE(x,y)→(u,v) and PN(y,x)→(v,u).

Let A = (x, y) and B = (u, v). A key observation is that paths in PA→B are uniquely
determined by the coordinates of their valleys. Specifically, there exists a path in PA→B whose
valleys are at coordinates (c1, d1), (c2, d2), . . . , (ck, dk) if and only if

x < c1 < c2 < · · · < ck 6 u and y 6 d1 < d2 < · · · < dk < v.

Additionally, such a path ends in E if and only if ck < u.
Similarly, paths in PA→B are uniquely determined by the coordinates of their peaks. There

exists a path in PA→B whose peaks are at coordinates (c1, d1), (c2, d2), . . . , (ck, dk) if and only
if

x 6 c1 < c2 < · · · < ck < u and y < d1 < d2 < · · · < dk 6 v.

Such a path ends in N if and only if dk < v.
Define the vector v = (1,−1), so that A+ v = (x+ 1, y − 1) and A− v = (x− 1, y + 1).

With the above considerations, we define a map

τ̄ : PEA→B → PNA+v→B,

as follows. Given P ∈ PEA→B, let τ̄(P ) be the path in PNA+v→B whose peaks are precisely at the
coordinates of the valleys of P . See the examples in Figures 3.1 and 3.2. Similarly, we define a
map

σ̄ : PNA→B → PEA−v→B
by letting σ̄(P ) be the path in PEA−v→B whose valleys are precisely at the coordinates of the
peaks of P ∈ PNA→B.

Lemma 3.1. The maps
τ̄ : PEA→B → PNA+v→B

and
σ̄ : PNA→B → PEA−v→B

defined above are bijections. In addition, when viewed as maps between PE and PN , σ̄ and τ̄
are inverses of each other, that is, σ̄(τ̄(P )) = P and τ̄(σ̄(P )) = P for all P in the domain.

Proof. The fact that τ̄ is well defined and it is a bijection follows by noting that the inequalities
satisfied by the coordinates of the valleys of paths in PEA→B coincide with those satisfied by the
coordinates of the peaks of paths in PNA+v→B. Specifically, if A = (x, y), B = (u, v), and these
coordinates are (c1, d1), (c2, d2), . . . , (ck, dk), they satisfy

x < c1 < c2 < · · · < ck < u and y 6 d1 < d2 < · · · < dk < v,
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P

τ̄(P )
A

A+ v

B

Q

σ̄(Q)

A

A− v

B

Figure 3.1: Examples of the bijections τ̄ and σ̄. The brown rectangle (left) is the region of the
possible locations of the valleys of paths in PEA→B, equivalently the peaks of paths in PNA+v→B.
The green rectangle (right) shows the possible locations of the peaks of paths in PNA→B, equiva-
lently the valleys of paths in PEA−v→B.

or equivalently

x+ 1 6 c1 < c2 < · · · < ck < u and y − 1 < d1 < d2 < · · · < dk < v.

Its inverse τ̄−1 : PNA+v→B → PEA→B is the map that turns peaks into valleys, and so it
coincides with our definition of σ̄, withA+v playing the role ofA. This completes the proof.

Two more maps closely related to τ̄ and σ̄ that will be useful in our constructions are τ = ρ◦τ̄
and σ = ρ ◦ σ̄. The first one is a bijection

τ : PE(x,y)→(u,v) → PE(y−1,x+1)→(v,u),

and it maps the path with valleys at (c1, d1), . . . , (ck, dk) to the path with valleys at (d1, c1), . . . ,
(dk, ck). Clearly, viewed as a map fromPE to itself, τ is an involution, in the sense that τ−1 = τ .

The second one is a bijection

σ : PN(x,y)→(u,v) → PN(y+1,x−1)→(v,u),

and it maps the path with peaks at (c1, d1), . . . , (ck, dk) to the path with peaks at (d1, c1), . . . ,
(dk, ck). Again, σ is an involution of PN .

See Figure 3.2 for an example of these bijections, and Figure 3.3 for a diagram of their
relationships. The next lemma describes how each of the maps affects the major index.

Lemma 3.2. If P ∈ P(x,y)→(u,v), then

maj(ρ(P )) =

{
maj(P ) + v − y if P ends in E, (3.1a)
maj(P )− u+ x if P ends in N . (3.1b)

If P ∈ PE(x,y)→(u,v), then

maj(τ̄(P )) = maj(P ) + u− x− 1, (3.2)
maj(τ(P )) = maj(P ). (3.3)
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x

y

c1

d1

c2

d2

c3

d3

c4

d4

u

v

P

τ̄

σ̄

ρ
τ

σ

x+1
c1

y − 1

d1

c2

d2

c3

d3

c4

d4

u

v

ρ

y

x

d1

c1

d2

c2

d3

c3

d4

c4

v

u

σ̄

τ̄

y − 1

x+1
c1

d1 d2

c2

d3

c3

d4

c4

v

u

Figure 3.2: An example of the relationships among the maps τ̄ , σ̄, τ, σ, ρ, illustrating their effect
on the valleys of the paths. The path P in the upper left has valleys at (ci, di) for 1 6 i 6 4.

If P ∈ PN(x,y)→(u,v), then

maj(σ̄(P )) = maj(P )− u+ x, (3.4)
maj(σ(P )) = maj(P )− u+ x+ v − y − 1. (3.5)

Proof. Let P ∈ P(x,y)→(u,v), and suppose that its valleys have coordinates (c1, d1), . . . , (ck, dk).
Then

maj(P ) =
k∑
i=1

(ci + di − x− y) =
k∑
i=1

(ci + di)− k(x+ y). (3.6)

The path ρ(P ) ∈ P(y,x)→(v,u) has peaks at (d1, c1), . . . , (dk, ck).
If P ends in E, then ρ(P ) ends in N , and so ρ(P ) has valleys at (d2, c1), (d3, c2), . . . ,

(dk, ck−1), (v, ck), with an additional valley at (d1, x) if and only if ρ(P ) starts with an E, which
happens precisely when y < d1 (as in the example on the left of Figure 3.2). In both cases,
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PE(x,y)→(u,v) PN(x+1,y−1)→(u,v)

PN(y,x)→(v,u) PE(y−1,x+1)→(v,u)

τ̄

σ̄

σ̄

τ̄

τ

σ

ρ ρ

maj = M maj = M + u− x− 1

maj = M + v − y maj = M

valleys at (c1, d1), . . . , (ck, dk) peaks at (c1, d1), . . . , (ck, dk)

peaks at (d1, c1), . . . , (dk, ck) valleys at (d1, c1), . . . , (dk, ck)

Figure 3.3: Diagram of the relationships among the maps τ, σ, τ̄ , σ̄, and their effect on maj.

noting that the starting point of ρ(P ) is (y, x), we have

maj(ρ(P )) = (d1 + x− y − x) +
k−1∑
i=1

(di+1 + ci − y − x) + (v + ck − y − x)

=
k∑
i=1

(ci + di)− k(x+ y) + v − y

= maj(P ) + v − y.

Indeed, even if ρ(P ) does not have a valley at (d1, x), then d1 = y, in which case the term
d1 + x− y − x does not contribute to the major index, so the above formula is still valid. This
proves Equation (3.1a).

If P ends in N , then ρ(P ) ends in E, so we can apply Equation (3.1a) to the path ρ(P ) ∈
PE(y,x)→(v,u). We obtain

maj(P ) = maj(ρ(ρ(P ))) = maj(ρ(P )) + u− x,

from where maj(ρ(P )) = maj(P )− u+ x, proving Equation (3.1b).
Now suppose again that P ∈ PE(x,y)→(u,v). The valleys of τ(P ) have coordinates (d1, c1), . . . ,

(dk, ck), and the coordinates of the starting point of τ(P ) sum to (y − 1) + (x + 1) = x + y.
It follows that maj(τ(P )) coincides with the right-hand side of Equation (3.6). This proves
Equation (3.3).

Equation (3.2) can be proved with an argument similar to the proof of Equation (3.1). Alter-
natively, it can be deduced from this equation using the fact that τ̄(P ) = ρ−1(τ(P )) = ρ(τ(P )).
Since τ(P ) ∈ PE(y−1,x+1)→(v,u), Equations (3.1) and (3.3) give

maj(τ̄(P )) = maj(ρ(τ(P ))) = maj(τ(P )) + u− (x+ 1) = maj(P ) + u− x− 1.

To deduce Equation (3.4) from Equation (3.2), suppose now that P ∈ PN(x,y)→(u,v). Since
P = τ̄(σ̄(P )) by Lemma 3.1, applying Equation (3.2) to the path σ̄(P ) ∈ PE(x−1,y+1)→(u,v) gives

maj(P ) = maj(σ̄(P )) + u− (x− 1)− 1,
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proving Equation (3.4).
Finally, to prove Equation (3.5), we use the fact that σ(P ) = ρ(σ̄(P )). Since σ̄(P ) ∈

PE(x−1,y+1)→(u,v), Equations (3.1) and (3.4) give

maj(σ(P )) = maj(ρ(σ̄(P ))) = maj(σ̄(P )) + v− (y+ 1) = maj(P )− u+ x+ v− y− 1.

Let us illustrate Lemma 3.2 with some examples. Note that the quantities u − x and v − y
are simply the number of E and N steps of P , respectively. If P is the path in the top left of
Figure 3.2, then maj(P ) = 3 + 7 + 11 + 14 = 35, whereas the path ρ(P ) in the bottom left
has maj(ρ(P )) = 2 + 5 + 8 + 12 + 15 = 42, so applying ρ increases the major index by
v − y = 7. The path τ̄(P ) in the top right has maj(τ̄(P )) = 5 + 10 + 13 + 15 = 43, so τ̄
increases the major index by u− x− 1 = 8. The path τ(P ) in the bottom right has major index
maj(τ(P )) = 3 + 7 + 11 + 14 = 35 = maj(P ).

Via the straightforward correspondence described in Section 1.2 between paths with N and
E steps and paths with U and D steps, we can interpret all the maps in this section as maps on
sets of the form Ga,b, where a, b > 0. For example, denoting by GDa,b and GUa,b the subsets of Ga,b
consisting of paths that end in D and U , respectively, we can view τ and σ as maps

τ : GDa,b → GDb−1,a+1 and σ : GUa,b → GUb+1,a−1. (3.7)

It follows from Lemma 3.2 that, if P ∈ GDa,b, then

maj(τ(P )) = maj(P ), (3.8)

and if P ∈ GUa,b, then
maj(σ(P )) = maj(P ) + a− b− 1. (3.9)

Additionally, if P ∈ Ga,b, then

maj(ρ(P )) =

{
maj(P ) + a if P ends in D,
maj(P )− b if P ends in U.

(3.10)

These maps will play a key role in the next section.

4. Proofs for paths crossing a line

The goal of this section is to prove Theorems 2.1 and 2.2. Our bijections will be easier to
visualize if we allow the starting point of the lattice paths with U and D steps to be anywhere
on the y-axis, by identifying paths in Ga,b with their vertical translations. In particular, it will be
convenient to identify G>r,`a,b with the set of paths with a steps U and b steps D that start at the
point (0,−`) and cross the x-axis at least r times. Note that the ending point of such paths is
(a+ b,−`+ a− b), and that vertical translations do not affect the major index.

In a similar fashion, by applying vertical translations as needed, we will interpret the domain
and the range of the maps τ and σ from Equation (3.7) as consisting of paths that end on the
x-axis. With this perspective, for P ∈ GDa,b, viewed as a path starting at (0, b− a) and ending at
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(a+ b, 0), its image τ(P ) is the path starting at (0, a− b+2), ending at the same point (a+ b, 0),
and whose valleys are obtained by reflecting the valleys of P along the x-axis. Similarly, for
P ∈ GUa,b starting at (0, b − a) and ending at (a + b, 0), its image σ(P ) is the path starting at
(0, a−b−2), ending at the same point (a+b, 0), and whose peaks are obtained by reflecting the
peaks of P along the x-axis. We will use these convenient descriptions of τ and σ throughout
this section. See Figure 4.1 for examples.

P

τ(P ) P σ(P )

Figure 4.1: Examples of the bijections τ and σ on paths that have been translated vertically so
that they end on the x-axis.

Throughout this section, we will assume that a, b, r > 0 and ` ∈ Z.
Definition 4.1. Given P ∈ G>r,`a,b , viewed as a path from (0,−`) to (a+ b,−`+ a− b) crossing
the x-axis at least r times, label these crossings so thatCj denotes the jth crossing from the right,
for 1 6 j 6 r. Decompose P as P = PaP` by splitting at Cr. If Cr is a downward crossing,
define

τr(P ) = τ(Pa)P`.

If Cr is an upward crossing, define

σr(P ) = σ(Pa)P`.

Examples of the maps τr and σr are given in Figure 4.2.
Lemma 4.2. Let P ∈ G>r,`a,b . If Cr is a downward crossing, then

τr(P ) ∈ G>r,−`−2
a−`−1,b+`+1 (4.1)

and
maj(τr(P )) = maj(P ).

Additionally, τr is a bijection between the subsets of G>r,`a,b and G>r,−`−2
a−`−1,b+`+1 consisting of paths

whose rth crossing from the right is a downward crossing.
If Cr is an upward crossing, then

σr(P ) ∈ G>r,−`+2
a−`+1,b+`−1 (4.2)

and
maj(σr(P )) = maj(P ) + `− 1.

Additionally, σr is a bijection between the subsets of G>r,`a,b and G>r,−`+2
a−`+1,b+`−1 consisting of paths

whose rth crossing from the right is an upward crossing.
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P

C3 C2 C1

τ2(P )

C2

σ1(P )

C1

Figure 4.2: The bijections τ2 and σ1 applied to the path P from Figure 1.1, which has been
translated so that the line being crossed is the x-axis.

Proof. The path prefix Pa starts at (0,−`) and ends at Cr, which is on the x-axis. Suppose first
that Cr is a downward crossing. Then τ(Pa) starts at (0, ` + 2) and ends at the same point Cr.
Thus, τr(P ) is a path from (0, ` + 2) to (a + b,−` + a − b) that crosses the x-axis at least r
times, proving (4.1). Since the map τ preserves the last step (which is a D), the rth crossing
of τr(P ) from the right is still a downward crossing, and in fact τr is a bijection between the
stated subsets. Indeed, since τ is an involution, the inverse of τr is τr itself applied to paths in
G>r,−`−2
a−`−1,b+`+1 whose rth crossing from the right is a downward crossing.

By Definition 4.1 and Equation (3.8), we have

maj(τr(P )) = maj(τ(Pa)) + maj(P`) = maj(Pa) + maj(P`) = maj(P ).

Suppose now that Cr is an upward crossing. Then σ(Pa) starts at (0, `− 2) and ends at Cr,
and so σr(P ) is a path from (0, `−2) to (a+b,−`+a−b) that crosses the x-axis at least r times,
proving (4.2). An analogous argument to the one used for τr shows that σr is a bijection between
the stated subsets. By Definition 4.1 and Equation (3.9), noting that the change in y-coordinate
from the first to the last point of Pa is `, we have

maj(σr(P )) = maj(σ(Pa)) + maj(P`) = maj(Pa) + `− 1 + maj(P`) = maj(P ) + `− 1.

We now have all the tools to prove our formulas counting paths by the major index and the
number of crossings of a horizontal line.

Proof of Theorems 2.1 and 2.2. Let a, b, r > 0 and ` ∈ Z. We will use both interpretations of
the elements of G>r,`a,b : as paths from (0, 0) to (a+b, a−b) crossing the line y = ` at least r times,
and as paths from (0,−`) to (a + b,−` + a − b) crossing the x-axis at least r times. In both
cases, we call the line being crossed the reference line, and crossings refer to the points where
the path crosses the reference line. Given a path in G>r,`a,b , we let Cj denote the jth crossing from
the right, for 1 6 j 6 r.



combinatorial theory 2 (2) (2022), #14 17

The proof is divided into nine cases depending on whether the paths start below (0 < `),
on (0 = `), or above (0 > `) the reference line, and whether they end below (` > a − b), on
(` = a − b), or above (` < a − b) this line. In each case, the goal is to determine G>r,`

a,b (q) by
finding a bijection between G>r,`a,b and some set of the form Ga′,b′ , with no requirement on the
number of crossings.

In Cases I–IV below, the paths neither start nor end on the reference line, and so the parity of
the number of crossings is fixed: it is even or odd according to whether the two endpoints are on
the same or on opposite sides of the line. Thus, we get equalities of the form G>2m,`

a,b = G>2m−1,`
a,b

(if the endpoints are on the same side) or G>2m+1,`
a,b = G>2m,`

a,b (if they are on opposite sides).
Additionally, if the right endpoint of a path P is above (respectively below) the reference line,
then Cj is an upward (resp. downward) crossing for odd j, and a downward (resp. upward)
crossing for even j.
Case I: 0 < ` < a − b. Since the number of crossings of each path must be odd in this case,
we have G>2m+1,`

a,b = G>2m,`
a,b for all m > 0. The case m = 0 is solved in Lemma 1.1, so we

assume that m > 1. Since paths in G>2m,`
a,b end above the reference line, the crossing C2m in

these paths must be a downward crossing. Thus, by Lemma 4.2, τ2m is a bijection between
G>2m,`
a,b and G>2m,−`−2

a−`−1,b+`+1 which preserves the major index. Paths in the image start and end
above the reference line, and so G>2m,−`−2

a−`−1,b+`+1 = G>2m−1,−`−2
a−`−1,b+`+1 . For paths in this set, C2m is again

a downward crossing and C2m−1 is an upward crossing.
Applying Lemma 4.2 again, σ2m−1 is a bijection between the sets G>2m−1,−`−2

a−`−1,b+`+1 and G>2m−1,`+4
a+2,b−2 =

G>2m−2,`+4
a+2,b−2 that shifts maj by (−` − 2) − 1 = −(` + 3). The resulting paths, like those in the

original set, start below and end above the reference line. Repeating the same argument, we
obtain a composition of bijections

σ1 ◦ τ2 ◦ · · · ◦ σ2m−1 ◦ τ2m : G>2m,`
a,b → G>0,`+4i

a+2m,b−2m = Ga+2m,b−2m (4.3)

with the property that, if Q is the image of P , then

maj(Q) = maj(P )− (`+ 3)− (`+ 7)− · · · − (`+ 4i− 1) = maj(P )−m(2m+ 1 + `).

See Figure 4.3 for an example of this composition. It follows that

G>2m+1,`
a,b (q) = G>2m,`

a,b (q) = qm(2m+1+`)
∑

Q∈Ga+2m,b−2m

qmaj(Q) = qm(2m+1+`)

[
a+ b
a+ 2m

]
q

,

by Lemma 1.1. This proves Equation (2.2).
An equivalent description of the bijection (4.3) is obtained by repeatedly applying the maps σ and
τ to the appropriate path prefixes. Indeed, decomposing P ∈ G>2m,`

a,b as P = P0P1 . . . P2m−1P2m

by splitting at the rightmost 2m crossings of P (so that each Pj for j > 1 lies entirely above or
below the reference line), its image under this bijection is

σ(τ(· · · (σ(τ(P0)P1) · · · )P2m−2)P2m−1)P2m.
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P

τ2(P )

Q = σ1(τ2(P ))

C2

C1

Figure 4.3: The composition σ1 ◦ τ2 applied to the path P ∈ G>3,1
8,6 from Figures 1.1 and 4.2.

Here maj(Q) = 17 = maj(P )− (`+ 3).

Case II: 0 > ` > a− b. This case is similar to Case I, with the roles of σ and τ reversed. Again,
G>2m+1,`
a,b = G>2m,`

a,b for all m > 0. For paths in G>2m,`
a,b , where m > 1, the crossing C2m must

be an upward crossing. By Lemma 4.2, σ2m is a bijection between G>2m,`
a,b and G>2m,−`+2

a−`+1,b+`−1 =

G>2m−1,−`+2
a−`+1,b+`−1 that shifts maj by ` − 1. For paths in the image, which start and end below the

reference line, C2m is an upward crossing and C2m−1 is a downward crossing.
Applying Lemma 4.2 again, τ2m−1 is a bijection between the sets G>2m−1,−`+2

a−`+1,b+`−1 and G>2m−1,`−4
a−2,b+2 =

G>2m−2,`−4
a−2,b+2 that preserves the major index. The resulting paths, like those in the original set,

start above and end below the reference line. Iterating this argument, we obtain a composition
of bijections

τ1 ◦ σ2 ◦ · · · ◦ τ2m−1 ◦ σ2m : G>2m,`
a,b → G>0,`−4i

a−2m,b+2m = Ga−2m,b+2m

with the property that, if Q is the image of P , then

maj(Q) = maj(P ) + (`− 1) + (`− 5) + · · ·+ (`− 4i+ 3) = maj(P )−m(2m− 1− `).

It follows that

G>2m+1,`
a,b (q) = G>2m,`

a,b (q) = qm(2m−1−`)
∑

Q∈Ga−2m,b+2m

qmaj(Q) = qm(2m−1−`)
[
a+ b
a− 2m

]
q

,

proving Equation (2.3).

Case III: 0 > ` < a − b. This case is equivalent to Case I after the first application of τ2m.
Each path must have an even number of crossings, so G>2m,`

a,b = G>2m−1,`
a,b for all m > 1. Since

paths in G>2m−1,`
a,b end above the reference line, C2m−1 is an upward crossing. By Lemma 4.2,

σ2m−1 is a bijection between G>2m−1,`
a,b and G>2m−1,−`+2

a−`+1,b+`−1 = G>2m−2,−`+2
a−`+1,b+`−1 that shifts maj by `−1.

Continuing as in Case I, we obtain the composition of bijections

σ1 ◦ τ2 ◦ · · · ◦ σ2m−3 ◦ τ2m−2 ◦ σ2m−1 : G>2m−1,`
a,b → G>0,−`+4i−2

a−`+2m−1,b+`−2m+1 = Ga−`+2m−1,b+`−2m+1
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with the property that, if Q is the image of P , then

maj(Q) = maj(P ) + (`− 1) + (`− 5) + · · ·+ (`− 4i+ 3) = maj(P )−m(2m− 1− `).

It follows that

G>2m,`
a,b (q) = G>2m−1,`

a,b (q) = qm(2m−1−`)
∑

Q∈Ga−`+2m−1,b+`−2m+1

qmaj(Q)

= qm(2m−1−`)
[

a+ b
a+ 2m− 1− `

]
q

,

proving Equation (2.4).

Case IV: 0 < ` > a − b. As in Case III, G>2m,`
a,b = G>2m−1,`

a,b for all m > 1. For paths in
G>2m−1,`
a,b , the crossingC2m−1 is a downward crossing, and τ2m−1 is a bijection between G>2m−1,`

a,b

and G>2m−1,−`−2
a−`−1,b+`+1 = G>2m−2,−`−2

a−`−1,b+`+1 , which preserves the major index. Continuing as in Case II,
we obtain the composition of bijections

τ1 ◦σ2 ◦ · · · ◦ τ2m−3 ◦σ2m−2 ◦ τ2m−1 : G>2m−1,`
a,b → G>0,−`−4i+2

a−`−2m+1,b+`+2m−1 = Ga−`−2m+1,b+`+2m−1,

with the property that, if Q is the image of P , then

maj(Q) = maj(P )− (`+ 3)− (`+ 7)− · · · − (`+ 4i− 5) = maj(P )− (m− 1)(2m− 1 + `).

It follows that

G>2m,`
a,b (q) = G>2m−1,`

a,b (q) = q(m−1)(2m−1+`)
∑

Q∈Ga−`−2m+1,b+`+2m−1

qmaj(Q)

= q(m−1)(2m−1+`)

[
a+ b

a− 2m+ 1− `

]
q

,

proving Equation (2.5).

Case V: 0 = ` < a− b. This is the case a > b of Theorem 2.1. Since paths in G>r,0a,b end above
the reference line, Cr is a downward crossing if r is even, and an upward crossing if r is odd.
Suppose first that r is even, and write r = 2m for some m > 1. The proof in this case is similar
to Case I. By Lemma 4.2, τ2m is a maj-preserving bijection between G>2m,0

a,b and G>2m,−2
a−1,b+1 =

G>2m−1,−2
a−1,b+1 . Paths in this set start and end above the reference line. Continuing as in Case I with
` = 0, we obtain a composition of bijections

σ1 ◦ τ2 ◦ · · · ◦ σ2m−1 ◦ τ2m : G>2m,0
a,b → G>0,4i

a+2m,b−2m = Ga+2m,b−2m

that shifts maj by −m(2m+ 1). It follows that

G>2m,0
a,b (q) = qm(2m+1)

[
a+ b
a+ 2m

]
q

= q(
r+1
2 )
[
a+ b
a+ r

]
q

,
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proving Equation (2.1a) for even r.
Suppose now that r is odd, and write r = 2m− 1 for some m > 1. By Lemma 4.2, σ2m−1 gives
a bijection between G>2m−1,0

a,b and G>2m−1,2
a+1,b−1 = G>2m−2,2

a+1,b−1 that shifts maj by−1. Continuing as in
Case III with ` = 0, we obtain a composition of bijections

σ1 ◦ τ2 ◦ · · · ◦ σ2m−3 ◦ τ2m−2 ◦ σ2m−1 : G>2m−1,0
a,b → G>0,4i−2

a−2m−1,b−2m+1 = Ga+2m−1,b−2m+1

that shifts maj by −m(2m− 1). It follows that

G>2m−1,0
a,b (q) = qm(2m−1)

[
a+ b

a+ 2m− 1

]
q

= q(
r+1
2 )
[
a+ b
a+ r

]
q

,

proving Equation (2.1a) for odd r. See Figure 4.4 for an example.

P

σ3(P )

τ2(σ3(P ))

Q = σ1(τ2(σ3(P )))

C3 C2 C1

Figure 4.4: The composition σ1 ◦ τ2 ◦ σ3 applied to a path P ∈ G>3,0
10,9 . The computation

of the maps σ3 and τ2 is based on the examples in Figure 4.1. Note that maj(P ) = 37 and
maj(Q) = 31 = maj(P )−

(
r+1

2

)
.

Case VI: 0 = ` > a− b. This is the case a > b of Theorem 2.1, and it is analogous to Case V.
For paths in G>r,0a,b , now Cr is an upward crossing if r is even, and a downward crossing if r is
odd.
If r = 2m for some m > 1, the same argument as in Case II with ` = 0 gives a composition of
bijections

τ1 ◦ σ2 ◦ · · · ◦ τ2m−1 ◦ σ2m : G>2m,0
a,b → G>0,−4i

a−2m,b+2m = Ga−2m,b+2m

that shifts maj by −m(2m− 1). We deduce that

G>2m,0
a,b (q) = qm(2m−1)

[
a+ b
a− 2m

]
q

= q(
r
2)
[
a+ b
a− r

]
q

,

proving Equation (2.1c) for even r.
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If r = 2m−1 for somem > 1, the same argument as in Case IV with ` = 0 gives a composition
of bijections

τ1 ◦ σ2 ◦ · · · ◦ τ2m−3 ◦ σ2m−2 ◦ τ2m−1 : G>2m−1,0
a,b → G>0,−4i+2

a−2m+1,b+2m−1 = Ga−2m+1,b+2m−1

that shifts maj by −(m− 1)(2m− 1). It follows that

G>2m−1,0
a,b (q) = q(m−1)(2m−1)

[
a+ b

a− 2m+ 1

]
q

= q(
r
2)
[
a+ b
a− r

]
q

,

proving Equation (2.1c) for odd r.

Case VII: 0 < ` = a− b. Denote by G>r,`;Da,b and G>r,`;Ua,b the subsets of G>r,`a,b consisting of paths
that end inD and U , respectively. Paths ending inD must have an odd number of crossings, and
so G>2m+1,`;D

a,b = G>2m,`;D
a,b for all m > 0. Assuming that m > 1 (the case m = 0 is solved in

Lemma 1.1), for paths in this set, C2m is a downward crossing. As in Case I, and noting that the
maps from Lemma 4.2 preserve the last step of the path, we obtain a composition of bijections

σ1 ◦ τ2 ◦ · · · ◦ σ2m−1 ◦ τ2m : G>2m+1,`;D
a,b = G>2m,`;D

a,b → G>0,`+4i;D
a+2m,b−2m = GDa+2m,b−2m (4.4)

that shifts maj by −m(2m+ 1 + `). This map can further be composed with the bijection

τ : GDa+2m,b−2m → GDb−2m−1,a+2m+1, (4.5)

which preserves maj by Equation (3.8).
On the other hand, paths ending in U must have an even number of crossings. For such paths,
C2m−1 is a downward crossing for all m > 1. As in Case IV, we obtain a bijection

τ1 ◦σ2 ◦ · · · ◦ τ2m−1 : G>2m,`;U
a,b = G>2m−1,`;U

a,b → G>0,−`−4i+2;U
a−`−2m+1,b+`+2m−1 = GUb−2m+1,a+2m−1 (4.6)

that shifts maj by −(m − 1)(2m − 1 + `). The last equality uses the fact that ` = a − b. This
map can be further composed with the bijection

σ : GUb−2m+1,a+2m−1 → GDa+2m,b−2m, (4.7)

which shifts maj by −(`+ 4i− 1), by Equation (3.9).
To prove the first formula in Equation (2.6), we construct a bijection G>2m,`

a,b → Ga+2m,b−2m by
combining the two bijections

σ1 ◦ τ2 ◦ · · · ◦ σ2m−1 ◦ τ2m : G>2m,`;D
a,b → GDa+2m,b−2m,

σ ◦ τ1 ◦ σ2 ◦ · · · ◦ τ2m−1 : G>2m,`;U
a,b → GUa+2m,b−2m,

given by (4.4), and by composing (4.6) with (4.7), respectively. Both bijections shift the major
index by −m(2m+ 1 + `). It follows that

G>2m,`
a,b (q) = qm(2m+1+`)

∑
Q∈Ga+2m,b−2m

qmaj(Q) = qm(2m+1+`)

[
a+ b
a+ 2m

]
q

.
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To prove the second formula in Equation (2.6), we construct a map G>2m+1,`
a,b → Gb−2m−1,a+2m+1

by combining the two bijections

τ1 ◦ σ2 ◦ · · · ◦ τ2m−1 ◦ σ2m ◦ τ2m+1 : G>2m+1,`;U
a,b → GUb−2m−1,a+2m+1,

τ ◦ σ1 ◦ τ2 ◦ · · · ◦ σ2m−1 ◦ τ2m : G>2m+1,`;D
a,b → GDb−2m−1,a+2m+1,

given by (4.6) with m + 1 playing the role of m, and by composing (4.4) with (4.5). Both
bijections shift the major index by −m(2m+ 1 + `). Thus,

G>2m+1,`
a,b (q) = qm(2m+1+`)

∑
Q∈Gb−2m−1,a+2m+1

qmaj(Q) = qm(2m+1+`)

[
a+ b

a+ 2m+ 1

]
q

.

Case VIII: 0 > ` = a− b. This is analogous to Case VII. Paths ending in U now must have an
odd number of crossings, and for such paths, C2m is an upward crossing for all m > 1. As in
Case II, we have a bijection

τ1 ◦ σ2 ◦ · · · ◦ τ2m−1 ◦ σ2m : G>2m+1,`;U
a,b = G>2m,`;U

a,b → GUa−2m,b+2m

that shifts maj by −m(2m− 1− `), which can further be composed with the bijection

σ : GUa−2m,b+2m → GUb+2m+1,a−2m−1

that shifts maj by `− 4i− 1, by Equation (3.9).
Paths ending in D have an even number of crossings, and C2m−1 is an upward crossing for all
m > 1. As in Case III, we have a bijection

σ1 ◦ τ2 ◦ · · · ◦ σ2m−3 ◦ τ2m−2 ◦ σ2m−1 : G>2m,`;D
a,b = G>2m−1,`;D

a,b → GDb+2m−1,a−2m+1

that shifts maj by −m(2m − 1 − `), which can further be composed with the maj-preserving
bijection

τ : GDb+2m−1,a−2m+1 → GDa−2m,b+2m.

To prove the first formula in Equation (2.7), we construct a bijection G>2m,`
a,b → Ga+2m,b−2m by

combining the bijections

τ1 ◦ σ2 ◦ · · · ◦ τ2m−1 ◦ σ2m : G>2m,`;U
a,b → GUa−2m,b+2m,

τ ◦ σ1 ◦ τ2 ◦ · · · ◦ σ2m−1 : G>2m,`;D
a,b → GDa−2m,b+2m,

both of which shift maj by −m(2m− 1− `).
To prove the second formula in Equation (2.7), we construct a map G>2m+1,`

a,b → Gb+2m+1,a−2m−1

by combining the bijections

σ1 ◦ τ2 ◦ · · · ◦ σ2m−3 ◦ τ2m ◦ σ2m+1 : G>2m+1,`;D
a,b → GDb+2m+1,a−2m−1,

σ ◦ τ1 ◦ σ2 ◦ · · · ◦ τ2m−1 ◦ σ2m : G>2m+1,`;U
a,b → GUb+2m+1,a−2m−1,

both of which shift maj by −(m+ 1)(2m+ 1− `).
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Case IX: 0 = ` = a−b. This is the case a = b of Theorem 2.1. For paths that end inD, removing
the last step gives a maj-preserving bijection between G>r,0;D

a,a and G>r,0a,a−1. By Equation (2.1a),
proved in Case V, we get∑

P∈G>r,0;Da,a

qmaj(P ) = G>r,0
a,a−1(q) = q(

r+1
2 )
[
2a− 1
a+ r

]
q

. (4.8)

For paths ending in U , the reflection ρ gives a bijection ρ : G>r,0;U
a,a → G>r,0;D

a,a such that
maj(ρ(P )) = maj(P )− a, by Equation (3.10). Using Equation (4.8),∑

P∈G>r,0;Ua,a

qmaj(P ) = qa
∑

P∈G>r,0;Da,a

qmaj(P ) = q(
r+1
2 )+a

[
2a− 1
a+ r

]
q

. (4.9)

Adding Equations (4.8) and (4.9) proves Equation (2.1b).

5. Proofs for pairs of paths crossing each other

The goal of this section is to prove Theorems 2.3 and 2.4. While it is possible to prove The-
orem 2.3 using certain prefix-swapping bijections, as we will discuss in Section 6.2, proving
Theorem 2.4 requires more sophisticated bijections that keep track of the statistic maj. We will
use these bijections, which rely on the maps τ̄ and σ̄ defined in Section 3, to prove Theorems 2.3
and 2.4 simultaneously. In the rest of the paper, all paths consist of N and E steps, and the term
crossing always refers to a crossing of two paths. LetA1, A2, B1, B2, C ∈ Z2 be arbitrary points,
where A1 = (x1, y1) and A2 = (x2, y2), and let v = (1,−1).

We start by stating an immediate consequence of Lemma 3.2.

Lemma 5.1. If Pa ∈ PNA1→C and Qa ∈ PEA2→C , then

maj(σ̄(Pa)) + maj(τ̄(Qa)) = maj(Pa) + maj(Qa)− (x2 − x1 + 1).

Proof. Suppose that C = (u, v). Then, by Lemma 3.2, maj(σ̄(Pa)) = maj(Pa)− u + x1, and
maj(τ̄(Qa)) = maj(Qa)+u−x2−1. Adding these two equations gives the stated formula.

Our next task is to define an involution on certain pairs of intersecting paths. Let
{◦, •} = {1, 2}, and define NC

A1→B◦,A2→B• to be the subset of PA1→B◦,A2→B• consisting of
pairs (P,Q) where C is a common point of P and Q, the step of P that ends at C is an N , and
the step of Q that ends at C is an E.

Definition 5.2. For (P,Q) ∈ NC
A1→B◦,A2→B• , write P = PaP` andQ = QaQ` by splitting both

paths at C, and let
φC(P,Q) = (τ̄(Qa)P`, σ̄(Pa)Q`) .

See Figure 5.1 for an example.
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P
QA1

A2

B◦
B•

C φC

R

S
A1 − v

A2 + v

B◦
B•

C

Figure 5.1: An example of the bijection φC .

Lemma 5.3. The map from Definition 5.2 is a bijection

φC : NC
A1→B◦,A2→B• → N

C
A2+v→B◦,A1−v→B• .

Additionally, if condition (2.16) holds and φC(P,Q) = (R, S), then

maj(R) + maj(S) = maj(P ) + maj(Q)− (x2 − x1 + 1). (5.1)

Proof. For (P,Q) ∈ NC
A1→B◦,A2→B• , the decomposition in Definition 5.2 yields paths Pa ∈

PNA1→C and Qa ∈ PEA2→C . Thus, by Lemma 3.1, τ̄(Qa) ∈ PNA2+v→C and σ̄(Pa) ∈ PEA1−v→C . It
follows that

R = τ̄(Qa)P` ∈ PA2+v→B◦ and S = σ̄(Pa)Q` ∈ PA1−v→B• ,

that C is a common point of R and S, and that the step of R (resp. S) that ends C is an N
(resp. E). Thus, (R, S) ∈ NC

A2+v→B◦,A1−v→B• .
Next we show that the inverse of φC is given by the same map φC on the appropriate domain

NC
A2+v→B◦,A1−v→B• . Indeed, for (R, S) as above, we have φC(R, S) = (P,Q), using the fact

that τ̄(σ̄(Pa)) = Pa and σ̄(τ̄(Qa)) = Qa by Lemma 3.1.
Finally, let us compare maj(R) + maj(S) to maj(P ) + maj(Q), assuming that condi-

tion (2.16) holds. The contributions from valleys occurring at or after C are the same for
both sums, since both R and P end with NP`, both S and Q end with EQ`, and each of the
four starting points A1, A2, A1 − v, A2 + v has the same coordinate sum because of con-
dition (2.16). On the other hand, the contributions from valleys occurring before C change
according to Lemma 5.1:

maj(σ̄(Pa)) + maj(τ̄(Qa)) = maj(Pa) + maj(Qa)− (x2 − x1 + 1).

Equation (5.1) now follows.

Let r > 0. Given a pair (P,Q) ∈ P>r
A1→B◦,A2→B• , let Cj = Cj(P,Q) denote the jth crossing

of P and Q starting from the right, for 1 6 j 6 r. In the special case that B◦ = B• (call this
point B), we additionally define C0 = C0(P,Q) to be the last common vertex of P and Q when
reading these paths backwards from B; in other words, C0 is such that the maximal common
suffix of P and Q has endpoints C0 and B.

For r > 0, define N>r
A1→B◦,A2→B• (resp. E>rA1→B◦,A2→B•) to be the subset of P>r

A1→B◦,A2→B•
consisting of pairs (P,Q) for whichCr is defined (this condition is only meaningful when r = 0),
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and such that the step of P that ends at Cr is an N (resp. an E), and the step of Q that ends at
Cr is an E (resp. an N ). Let ς be the involution on pairs of paths defined by

ς(P,Q) = (Q,P ). (5.2)

Note that ς restricts to a bijection betweenN>r
A1→B◦,A2→B• and E>rA2→B•,A1→B◦ , and that it trivially

preserves the total major index.
Suppose that r > 0 if B◦ = B• and A1 ≺ A2, and that r > 1 otherwise. Then we have the

decomposition
P>r
A1→B◦,A2→B• = N>r

A1→B◦,A2→B• t E
>r
A1→B◦,A2→B• , (5.3)

where t denotes disjoint union. Note that, ifB◦ ≺ B•, then the first set in the right-hand side of
Equation (5.3) is empty for even r, and the second one is empty for odd r; if B• ≺ B◦, a similar
statement holds with the parities reversed. Now we are ready to define θr.

Definition 5.4. Let r > 0 if B◦ = B• and A1 ≺ A2, and let r > 1 otherwise. For (P,Q) ∈
N>r
A1→B◦,A2→B• , let C = Cr(P,Q), and define

θr(P,Q) = ς(φC(P,Q)).

See the examples in Figure 5.2.

P
Q

C2

C1

A1
A2

B1

B2

θ2

P ′

Q′

C2

C1

A1 − v

A2 + v

B1

B2

θ1

P̂ = P ′′

Q̂ = Q′′

C1

A1 − 2v

A2 + 2v

B1

B2

Figure 5.2: An example of the bijection Θ2 in Case 1, as a composition (P,Q)
θ27→ (P ′, Q′)

θ17→
(P ′′, Q′′). Note that condition (2.16) holds, and that maj(P )+maj(Q) = (5+11+13)+(5+8+
12) = 54, maj(P ′)+maj(Q′) = (2+8+12)+(6+11+13) = 52, and maj(P ′′)+maj(Q′′) =
(1 + 4 + 10 + 13) + (8 + 12) = 48. Thus, θ2 decreases the total major index by x2−x1 + 1 = 2,
and θ1 decreases it by (x2 + 1)− (x1 − 1) + 1 = 4.

Lemma 5.5. The map from Definition 5.4 is a bijection

θr : N>r
A1→B◦,A2→B• → E

>r
A1−v→B•,A2+v→B◦ .

Additionally, if condition (2.16) holds and θr(P,Q) = (P ′, Q′), then

maj(P ′) + maj(Q′) = maj(P ) + maj(Q)− (x2 − x1 + 1). (5.4)
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Proof. Given a pair (P,Q) ∈ N>r
A1→B◦,A2→B• , applying φC with C = Cr(P,Q) preserves the

suffixes of the paths after C. In particular, it preserves the rightmost r crossings C1, C2, . . . , Cr,
and also C0 in the case r = 0. Combined with Lemma 5.3, this implies that φC induces a
bijection from N>r

A1→B◦,A2→B• to N>r
A2+v→B◦,A1−v→B• . Composing with ς yields a bijection to

E>rA1−v→B•,A2+v→B◦ . Equation (5.4) follows trivially from Equation (5.1).

Proof of Theorems 2.3 and 2.4. We separate cases according to which endpoints of the paths
coincide. We will prove both theorems in parallel, requiring condition (2.16) only for the refined
formulas in Theorem 2.4 that keep track of maj. We use the notation Cj = Cj(P,Q) defined
above. The right equality in Equations (2.9) and (2.17) for m = 0, as well as Equations (2.11)–
(2.13) and (2.19)–(2.21) for r = 0 are implied by Equations (2.8) and (2.15), so we will assume
that m > 1 and r > 1 when proving these.
Case 1: endpoints A1 ≺ A2 and B1 ≺ B2. If P ∈ PA1→B2 and Q ∈ PA2→B1 , then χ(P,Q)
must be odd, because of the relative position of the endpoints of the two paths. Additionally, the
step of P that ends at Cj is an N for even j, and it is an E for odd j. It follows that, for m > 1,

E>2m+1
A1→B2,A2→B1

= P>2m+1
A1→B2,A2→B1

= P>2m
A1→B2,A2→B1

= N>2m
A1→B2,A2→B1

, (5.5)

and that the first two equalities also hold for m = 0. This implies the left equality in Equa-
tions (2.9) and (2.17) for all m > 0.
Similarly, if P ∈ PA1→B1 and Q ∈ PA2→B2 , then χ(P,Q) must be even. Now the step of P that
ends at Cj is an N for odd j, and it is an E for even j. Thus, for m > 1,

E>2m
A1→B1,A2→B2

= P>2m
A1→B1,A2→B2

= P>2m−1
A1→B1,A2→B2

= N>2m−1
A1→B1,A2→B2

, (5.6)

proving the left equality in Equations (2.10) and (2.18).
To prove the right equalities in these four equations, let us assume that m > 1. Setting r = 2m
and r = 2m − 1 in Lemma 5.5, respectively, and using Equations (5.5) and (5.6), which also
hold for the initial points A1 − v ≺ A2 + v, we get bijections

P>2m
A1→B2,A2→B1

= N>2m
A1→B2,A2→B1

θ2m→ E>2m
A1−v→B1,A2+v→B2

= P>2m−1
A1−v→B1,A2+v→B2

,

P>2m−1
A1→B1,A2→B2

= N>2m−1
A1→B1,A2→B2

θ2m−1→ E>2m−1
A1−v→B2,A2+v→B1

= P>2m−2
A1−v→B2,A2+v→B1

.

Thus, the compositions Θr = θ1 ◦ θ2 ◦ · · · ◦ θr give bijections

Θ2m : P>2m
A1→B2,A2→B1

→ PA1−2mv→B2,A2+2mv→B1 ,

Θ2m−1 : P>2m−1
A1→B1,A2→B2

→ PA1−(2m−1)v→B2,A2+(2m−1)v→B1

for all m > 1. An example of the bijection Θ2 is given in Figure 5.2. Equations (2.9) and (2.10)
immediately follow using Equation (2.8) and the fact that A1 − rv = (x1 − r, y1 + r) and
A2 + rv = (x2 + r, y2 − r).
Let us now assume that condition (2.16) holds. This implies that the sum of the two coordinates
is the same for all the points of the form A1 − jv and A2 + jv. If we let Θr(P,Q) = (P̂ , Q̂),
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then repeated applications of Lemma 5.5 give

maj(P̂ ) + maj(Q̂)

= maj(P ) + maj(Q)− (x2 − x1 + 1)− (x2 − x1 + 3)− · · · − (x2 − x1 + 2r − 1)

= maj(P ) + maj(Q)− r(r + x2 − x1). (5.7)

For r = 2m, this property of the bijection Θ2m, together with Equation (2.15), implies that

H>2m
A1→B2,A2→B1

(q) = q2m(2m+x2−x1)H>0
A1−2mv→B2,A2+2mv→B1

(q)

= q2m(2m+x2−x1)

[
u2 − x1 + v2 − y1

u2 − x1 + 2m

]
q

[
u1 − x2 + v1 − y2

u1 − x2 − 2m

]
q

= f2m,A1,A2,B2,B1(q),

proving Equation (2.17). A similar argument for r = 2m− 1 proves Equation (2.18).

Case 2: endpoints A and B1 ≺ B2. Assume that r > 1, and let (P,Q) ∈ P>r
A→B1,A→B2

. The
relative position of B1 and B2 forces the step of P that ends at Cr to be an N if r is odd, and an
E if r is even. Thus, writing r = 2m+ 1 or r = 2m accordingly, we have

P>2m+1
A→B1,A→B2

= N>2m+1
A→B1,A→B2

and P>2m
A→B1,A→B2

= E>2m
A→B1,A→B2

.

By Lemma 5.5 and Equation (5.5) with initial points A− v ≺ A + v, in the odd case we get a
bijection

P>2m+1
A→B1,A→B2

= N>2m+1
A→B1,A→B2

θ2m+1→ E>2m+1
A−v→B2,A+v→B1

= P>2m
A−v→B2,A+v→B1

.

In the even case, we first apply the swap ς from Equation (5.2), which gives a bijection

P>2m
A→B1,A→B2

= E>2m
A→B1,A→B2

ς→ N>2m
A→B2,A→B1

,

and then use Lemma 5.5 and Equation (5.6) to get a bijection

N>2m
A→B2,A→B1

θ2m→ E>2m
A−v→B1,A+v→B2

= P>2m−1
A−v→B1,A+v→B2

.

The images of the above maps θ2m+1 and θ2m consist of pairs of paths where neither the starting
nor the final points coincide, so we can apply to these sets the bijections Θ2m and Θ2m−1 as in
Case 1, respectively.
For r = 2m+ 1, the composition Θ2m ◦ θ2m+1 yields a bijection

Θ2m+1 : P>2m+1
A→B1,A→B2

→ PA−(2m+1)v→B2,A+(2m+1)v→B1 ,

and for r = 2m, the composition Θ2m−1 ◦ θ2m ◦ ς yields a bijection

Θ2m ◦ ς : P>2m
A→B1,A→B2

→ PA−2mv→B2,A+2mv→B1 .

These two bijections, together with Equation (2.8), prove Equation (2.11) for both odd and even r.
Additionally, condition (2.16) holds for the initial points in all the above sets, since all points of
the formA+jv for j ∈ Z have the same coordinate sum. Using Lemma 5.5, the same calculation
from Equation (5.7) shows that Θ2m+1 and Θ2m ◦ ς shift the total major index by −r2. Hence,
by Equation (2.15), these bijections prove Equation (2.19).
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Case 3: endpoints A1 ≺ A2 and B. Given P ∈ PA1→B and Q ∈ PA2→B, the relative position
of A1 and A2 implies that, if P arrives at Cj (where j > 0) with an N step, then there must be
another crossing to the left of Cj . It follows that

N>j
A1→B,A2→B = E>j+1

A1→B,A2→B (5.8)

for all j > 0.
To prove Equations (2.12) and (2.20) for r > 1, we start with the decomposition (5.3) for B◦ =
B• = B. For the set N>r

A1→B,A2→B, Lemma 5.5 gives a bijection

N>r
A1→B,A2→B

θr→ E>rA1−v→B,A2+v→B = N>r−1
A1−v→B,A2+v→B,

using Equation (5.8) with initial points A1−v ≺ A2 +v. Thus, the composition Θr = θ1 ◦ θ2 ◦
· · · ◦ θr gives a bijection

Θr : N>r
A1→B,A2→B → N

>0
A1−rv→B,A2+rv→B. (5.9)

On the other hand, for the set E>rA1→B,A2→B, Equation (5.8) and Lemma 5.5 give a bijection

E>rA1→B,A2→B = N>r−1
A1→B,A2→B

θr−1→ E>r−1
A1−v→B,A2+v→B.

Thus, the composition Θr−1 = θ1 ◦ θ2 ◦ · · · ◦ θr−1 gives a bijection

Θr−1 : E>rA1→B,A2→B → E
>1
A1−(r−1)v→B,A2+(r−1)v→B.

The right-hand side equals N>0
A1−(r−1)v→B,A2+(r−1)v→B by Equation (5.8), and this set is in bi-

jection with E>0
A1−rv→B,A2+rv→B by Lemma 5.5 with r = 0. The composition yields a bijection

θ0 ◦Θr−1 : E>rA1→B,A2→B → E
>0
A1−rv→B,A2+rv→B. (5.10)

Combining (5.9) and (5.10), and using the decomposition (5.3) on the range and on the domain,
we get a bijection from P>r

A1→B,A2→B to PA1−rv→B,A2+rv→B, which proves Equation (2.12).
If condition (2.16) is satisfied, then Lemma 5.5 implies that Equation (5.7) holds when (P̂ , Q̂)
is the image of (P,Q) by either of the maps (5.9) or (5.10). Thus, the total major index shifts by
−r(r + x2 − x1) in either case, proving Equation (2.20).

Case 4: endpointsA andB. Assume that r > 1. First observe that the map ς from Equation (5.2)
gives a trivial bijection between N>r

A→B,A→B and E>rA→B,A→B which preserves the total major
index. Using the decomposition (5.3), it follows that

H>r
A→B,A→B(q) = 2

∑
(P,Q)∈N>r

A→B,A→B

qmaj(P )+maj(Q). (5.11)

Lemma 5.5 gives a bijection

N>r
A→B,A→B

θr→ E>rA−v→B,A+v→B = N>r−1
A−v→B,A+v→B,
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using Equation (5.8) with intial pointsA−v ≺ A+v. Thus, the composition Θr = θ1◦θ2◦· · ·◦θr
gives a bijection

Θr : N>r
A→B,A→B → N

>0
A−rv→B,A+rv→B (5.12)

that shifts the total major index by −r2. Composing with θ0, we get a bijection

θ0 ◦Θr : N>r
A→B,A→B → E

>0
A−(r+1)v→B,A+(r+1)v→B (5.13)

that shifts the total major index by −(r + 1)2.
Combining (5.13) and (5.12), with r+ 1 playing the role of r in the latter, and using the decom-
position (5.3) with r = 0, initial points A− (r + 1)v and A + (r + 1)v, and final points B for
both paths, we obtain∑

(P,Q)∈N>r
A→B,A→B

qmaj(P )+maj(Q) +
∑

(P,Q)∈N>r+1
A→B,A→B

qmaj(P )+maj(Q)

= q(r+1)2H>0
A−(r+1)v→B,A+(r+1)v→B = q(r+1)2

[
u− x+ v − y
u− x+ r + 1

]
q

[
u− x+ v − y
u− x− r − 1

]
q

,

where the last equality uses Equation (2.15). By Equations (5.11) and (2.14), this is equivalent
to

H>r
A→B,A→B(q) +H>r+1

A→B,A→B(q) = 2fr+1,A,A,B,B(q). (5.14)

Solving for H>r
A→B,A→B(q) and iterating, we obtain

H>r
A→B,A→B(q) = 2 (fr+1,A,A,B,B(q)− fr+2,A,A,B,B(q) + fr+3,A,A,B,B(q)− · · · ) ,

which proves Equation (2.21), and hence Equation (2.13) as well by setting q = 1.

It is also possible to obtain an alternative expression for Equations (2.21) and (2.13) by
iterating the recurrence (5.14) in the other direction, by decreasing r instead. When the iteration
reaches r = 0, Equation (5.11) no longer holds, and (5.3) must be replaced by the decomposition

PA→B,A→B = {(P, P ) : P ∈ PA→B} t N>0
A→B,A→B t E

>0
A→B,A→B.

Indeed, for pairs (P,Q) in the left-hand where P 6= Q, the paths P and Q must arrive at C0

with different steps. Enumerating each set in the decomposition by total major index, using
Lemma 1.1, and noting that the last two sets are in bijection with each other via the swap ς , we
obtain the identity[

u− x+ v − y
u− x

]2

q

=

[
u− x+ v − y

u− x

]
q2

+ 2
∑

(P,Q)∈N>0
A→B,A→B

qmaj(P )+maj(Q).

Iterating Equation (5.14) by decreasing r, and using the expression

2
∑

(P,Q)∈N>0
A→B,A→B

qmaj(P )+maj(Q) =

[
u− x+ v − y

u− x

]2

q

−
[
u− x+ v − y

u− x

]
q2
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in place of H>0
A→B,A→B(q), we get the alternative formula

H>r
A→B,A→B(q)

= 2
r−1∑
j=0

(−1)jfr−j,A,A,B,B(q) + (−1)r

([
u− x+ v − y

u− x

]2

q

−
[
u− x+ v − y

u− x

]
q2

)
(5.15)

for r > 1. Setting q = 1, we obtain

∣∣P>r
A→B,A→B

∣∣ = 2
r−1∑
j=0

(−1)j
(
u− x+ v − y
u− x+ r − j

)(
u− x+ v − y
u− x− r + j

)
(5.16)

+ (−1)r

((
u− x+ v − y

u− x

)2

−
(
u− x+ v − y

u− x

))
.

6. Connections to non-intersecting paths

6.1. Enumerating tuples of non-intersecting paths by major index

In this section we apply some of the above constructions to give an alternative proof of Krat-
tenthaler’s beautiful refinement [Kra95, Thm. 2] by total major index of the Lindström–Gessel–
Viennot determinantal formula enumerating k-tuples of non-intersecting lattice paths [Lin73,
GV85]. For a tuple P = (P1, P2, . . . , Pk) of paths with N and E steps, define maj(P) =∑k

i=1 maj(Pi). We say that P is intersecting if some point in Z2 is shared by more than one path
in P, and that it is non-intersecting otherwise, namely, if all the paths are disjoint.

Theorem 6.1 ([Kra95]). Let Ii = (xi, yi) and Fi = (ui, vi) be points in Z2 for 1 6 i 6 k, with
I1 ≺ I2 ≺ · · · ≺ Ik and F1 ≺ F2 ≺ · · · ≺ Fk. Suppose additionally that xi + yi is constant for
all i. Let P◦ be the set of non-intersecting tuples P = (P1, P2, . . . , Pk) such that Pi ∈ PIi→Fi
for 1 6 i 6 k. Then

∑
P∈P◦

qmaj(P) = det
16i,j6k

(
qi(xi−xj)

[
ui − xj + vi − yj

ui − xj

]
q

)
.

Let us introduce some notation for the proof. For a path P ∈ PI→F , where I, F ∈ Z2, and
a two-dimensional vector u with integer coordinates, define P + u ∈ PI+u→F+u to be the path
obtained by translating P by u. Consider the vectors e = (1, 0) and n = (0, 1), and define the
bijection

T : PI→F,I′→F ′ → PI+e→F+e,I′+n→F ′+n

(P,Q) 7→ (P + e, Q+ n).
(6.1)

Proof of Theorem 6.1. As in [Kra95], let Sk denote the symmetric group, and consider the
larger set

P =
⋃
σ∈Sk

{(P1, P2, . . . , Pk) : Pi ∈ PIσ(i)→Fi for all i}
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of all tuples, whether intersecting or not. To each P ∈ P, assign a weight

w(P) = sgn(σ) q
∑k
i=1 i(xi−xσ(i))qmaj(P),

and note that w(P) = qmaj(P ) if P ∈ P◦, since in this case σ must be the identity. The weighted
sum of all tuples, using Lemma 1.1, is

∑
P∈P

w(P) =
∑
σ∈Sk

sgn(σ)
k∏
i=1

qi(xi−xσ(i))
∑

Pi∈PIσ(i)→Fi

qmaj(Pi)

=
∑
σ∈Sk

sgn(σ)
k∏
i=1

qi(xi−xσ(i))
[
ui − xσ(i) + vi − yσ(i)

ui − xσ(i)

]
q

= det
16i,j6k

(
qi(xi−xj)

[
ui − xj + vi − yj

ui − xj

]
q

)
,

which equals the determinant in the statement.
Thus, it suffices to show that the contributions of all intersecting tuples to the weighted sum

cancel out, leaving only
∑

P∈P◦ w(P) =
∑

P∈P◦ q
maj(P). This key step is achieved by con-

structing an involution Φ on the set Pon = P \ P◦ of intersecting tuples, having the property
that w(Φ(P)) = −w(P). Such an involution is given in [Kra95], based on a four-step bijection
described in [Kra95, Prop. 27] in terms of two-rowed arrays. Instead, here we present an invo-
lution Φ that relies on the map φC from Definition 5.2, and so it has a simple visualization in
terms of paths.

LetP = (P1, P2, . . . , Pk) ∈ Pon be an intersecting tuple, wherePi ∈ PIσ(i)→Fi for 1 6 i 6 k,
for some σ ∈ Sk. As in [Kra95], of all intersection points between neighboring paths (i.e., Pi
and Pi+1 for some i), consider the ones with largest x-coordinate and, among them, let D be
the one with largest y-coordinate. Let j be the smallest index such that Pj and Pj+1 intersect at
point D. Let

(P ′j , P
′
j+1) = T−1φCT (Pj, Pj+1), (6.2)

where C = D + e + n and T is defined in (6.1), and let

Φ(P) = (P1, . . . , Pj−1, P
′
j , P

′
j+1, Pj+2, . . . , Pk).

See Figure 6.1 for an example.
Let us show that Φ is well defined and it is an involution on Pon. Let (P,Q) = T (Pj, Pj+1) ∈

PIσ(j)+e→Fj+e,Iσ(j+1)+n→Fj+1+n. Since D is the last intersection point of Pj and Pj+1, and Fj ≺
Fj+1, the steps of Pj and Pj+1 that start atDmust be anN and anE, respectively. The endpoints
of these steps, namelyD+n in Pj andD+ e in Pj+1, become a common point C = D+ e+n
of the translated paths P and Q. Note that the step of P ending at C is an N and the step of Q
ending at C is an E, i.e., (P,Q) ∈ NC

Iσ(j)+e→Fj+e,Iσ(j+1)+n→Fj+1+n.
Applying the map

φC : NC
Iσ(j)+e→Fj+e,Iσ(j+1)+n→Fj+1+n → NC

Iσ(j+1)+e→Fj+e,Iσ(j)+n→Fj+1+n
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P1

P2

P3

DI1
I2
I3

F1
F2

F3
Φ

T

P
QI1 + e

I3 + n

F2 + e
F3 + n

C φC

R

S
I1 + n

I3 + e

F2 + e
F3 + n

C

P1

P ′2

P ′3 DI1
I2
I3

F1
F2

F3

T

Figure 6.1: An example of the involution Φ. The tuple P = (P1, P2, P3) in the top left has
σ = 213, and the point D is an intersection of P2 and P3. Applying T to this pair gives the pair
(P,Q) in the bottom left, to which we apply φC , followed by T−1, to obtain the pair (P ′2, P

′
3) in

the top right.

from Definition 5.2 and Lemma 5.3, we obtain a pair (R, S) = φC(P,Q). Here Iσ(j) + e plays
the role of A1 in the definition, and A1 − v = Iσ(j) + e− v = Iσ(j) + n. Similarly, Iσ(j+1) + n
plays the role of A2, and A2 + v = Iσ(j+1) + n + v = Iσ(j+1) + e.

Finally, (P ′j , P
′
j+1) = T−1(R, S) = (R − e, S − n) ∈ PIσ(j+1)→Fj ,Iσ(j)→Fj+1

. Since the
step of R ending at C is an N and the step of S ending at C is an E, the translated paths P ′j
and P ′j+1 intersect at the point D = C − e − n. It follows that Φ(P) ∈ Pon. Additionally,
since the map φC does not change the steps ending at C nor all the subsequent steps of either
path, all the steps lying north or east of D remain unchanged in Φ(P). Thus, to compute the
image by Φ of the tuple Φ(P), one would apply φC to the pair T (P ′j , P

′
j+1) = (R, S), recovering

(P,Q) (since φC is an involution by Lemma 5.3), and then apply T−1 to this pair, obtaining
T−1φCT (P ′j , P

′
j+1) = (Pj, Pj+1), so that Φ(Φ(P)) = P. This proves that Φ is an involution

on Pon.
It remains to show that Φ is sign-reversing. Let σ′ ∈ Sk be the permutation with σ′(j) =

σ(j + 1), σ′(j + 1) = σ(j), and σ′(i) = σ(i) for i /∈ {j, j + 1}, so that the ith component of
Φ(P) is a path in PIσ′(i)→Fi for 1 6 i 6 k. By Lemma 5.3, and noting that the x-coordinates of
the initial points of P and Q are xσ(j) + 1 and xσ(j+1), respectively, we have

maj(P ′j) + maj(P ′j+1) = maj(R) + maj(S)

= maj(P ) + maj(Q)− (xσ(j+1) − (xσ(j) + 1) + 1)

= maj(Pj) + maj(Pj+1)− (xσ(j+1) − xσ(j)).
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We conclude that

w(Φ(P)) = sgn(σ′) q
∑k
i=1 i(xi−xσ′(i))qmaj(Φ(P))

= − sgn(σ) q
∑k
i=1 i(xi−xσ(i))+xσ(j+1)−xσ(j)qmaj(P)−(xσ(j+1)−xσ(j))

= −w(P).

6.2. A different bijective proof of Theorem 2.3

The standard proof of the Lindström–Gessel–Viennot formula, which is the q = 1 special-
ization of Theorem 6.1, uses a simpler involution based on prefix-swapping. Specifically, let
Pon
A1→B◦,A2→B• be the subset of PA1→B◦,A2→B• consisting of intersecting pairs, and define an

involution
ξ : Pon

A1→B◦,A2→B• → P
on
A2→B◦,A1→B•

by cutting the paths at their last intersection point and simply swapping the resulting prefixes.
In the standard proof, the involution ξ plays the role of T−1φCT in Equation (6.2). Note that ξ
does not behave well with respect to the total major index, which is why it was not used in the
proof of Theorem 6.1.

In this subsection, we sketch how a similar prefix-swapping bijection can be used instead
of φC in order to prove Theorem 2.3, which enumerates pairs of paths by their number of cross-
ings without tracking the major index. Define a variation of ξ by cutting the paths at their first
intersection point, instead of the last, and then swapping the resulting prefixes; denote this invo-
lution by

ξ′ : Pon
A1→B◦,A2→B• → P

on
A2→B◦,A1→B• .

Now let (P,Q) ∈ PA1→B◦,A2→B• , and suppose that P andQ have a common point from where P
leaves with an E step and Q leaves with an N step. Define

ω(P,Q) = Tξ′T−1(P,Q).

Note that the condition on (P,Q) guarantees that the pair T−1(P,Q) = (P−e, Q−n) intersects,
so ω is well defined.

In the case that A1 ≺ A2 or A1 = A2, one can also define ω(P,Q) directly as follows.
Consider the first common point of P and Q from where P leaves with an E step and Q leaves
with an N step. Call the vertices of P and Q immediately after this step the cutting vertices,
and write P = P/P. and Q = Q/Q. by splitting each path at its cutting vertex. Now swap the
prefixes P/ and Q/ to obtain a pair ω(P,Q) = (R, S) where

R = Q/P. ∈ PA2+v→B◦ and S = P/Q. ∈ PA1−v→B• .

The condition A1 ≺ A2 or A1 = A2 guarantees that the cutting vertices of P and Q correspond
to the first intersection point of P − e and Q− n. See Figure 6.2 for an example.

Let ω = ςω, with ς given by Equation (5.2). Note that ω(P,Q) ∈ PA1−v→B•,A2+v→B◦ .

Lemma 6.2. Suppose that A1 ≺ A2. Let r > 1 if B◦ = B•, and let r > 2 otherwise. Then the
map ω defined above is a bijection

ω : P>r
A1→B◦,A2→B• → P

>r−1
A1−v→B•,A2+v→B◦ .
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P
QA1

A2

B◦
B•

ω

T

A1 − e

A2 − n

B◦ − e
B• − n

ξ′

A1 − e

A2 − n

B◦ − e
B• − n

R

S
A1 − v

A2 + v

B◦
B•

T

ς
A1 − v

A2 + v

B◦
B•

Figure 6.2: The bijection ω and its relationship with the prefix-swapping involution ξ′. The
crosses indicate the cutting vertices in P and Q, which correspond to the first intersection point
of the translated paths.

Proof. Let (P,Q) ∈ P>r
A1→B◦,A2→B• , and let (S,R) = ω(P,Q). Since A1 ≺ A2, the cutting

vertices of P and Q precede all the crossings except for the first one, and so S and R have the
same crossings as P and Q minus the first one. It follows that (S,R) ∈ P>r−1

A1−v→B•,A2+v→B◦ .
Next we show that ω is a bijection by describing its inverse. Given any pair

(S,R) ∈ P>r−1
A1−v→B•,A2+v→B◦ , we can determine the cutting vertices in each path by finding

the first intersection of R − e and S − n (see Figure 6.2). The fact that this intersection exists
is clear if r > 2, since S and R cross in this case, and in the case r = 1 it is implied by the
conditions B◦ = B• and A1 ≺ A2.

CuttingR and S at these vertices and swapping their prefixes, so that the resulting paths start
at A1 and A2, we recover the unique pair (P,Q) such that ω(P,Q) = (S,R).

The proof of Theorem 2.3 that we gave in Section 5 can now be modified as follows. In
Case 1, the bijections Θ2m and Θ2m−1 can be replaced with the following simpler bijections that
repeatedly apply ω:

P>2m+1
A1→B2,A2→B1

= P>2m
A1→B2,A2→B1

ω2m

→ P>1
A1−2mv→B2,A2+2mv→B1

= PA1−2mv→B2,A2+2mv→B1 ,

P>2m
A1→B1,A2→B2

= P>2m−1
A1→B1,A2→B2

ω2m−1

→ P>1
A1−(2m−1)v→B2,A2+(2m−1)v→B1

= PA1−(2m−1)v→B2,A2+(2m−1)v→B1 ,

from where Equations (2.9) and (2.10) follow, using Equation (2.8). See Figure 6.3 for an ex-
ample.

In Case 3, we can use the bijection

ωr : P>r
A1→B,A2→B → P

>0
A1−rv→B,A2+rv→B

to prove Equation (2.12). Equation (2.11), corresponding to Case 2, follows now by symmetry,
rotating the paths by 180◦. Note that rotation does not preserve the major index, so this argument
would not allow us to combine Cases 2 and 3 in the proof of the refined version.
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P
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B1

B2

ω

A1 − v

A2 + v

B1

B2

ω

A1 − 2v

A2 + 2v

B1

B2

Figure 6.3: The bijection ω2 applied to the pair of paths from the left of Figure 5.2.

It is also possible to modify the proof of Case 4 using a variation of the map ω. However,
the resulting argument is not significantly simpler than our proof using the maps θr.

7. Further research

The enumeration of lattice paths by major index is intertwined with their enumeration by the
number of valleys; equivalently, the number of peaks, the number of turns, or the number of
descents, depending on terminology. In [Kra97, Thm. 3.6.1], Krattenthaler enumerates k-tuples
of non-intersecting paths by the number of peaks, giving another refinement of the Lindström–
Gessel–Viennot determinantal formula. And in [KM93], Krattenthaler and Mohanty give for-
mulas counting lattice paths that lie between two given lines with respect to the major index and
the number of peaks.

In a follow-up paper [Eli21], we will refine Theorems 2.1, 2.2, and 2.4 by adding a variable
that keeps track of the number of valleys of the paths. Unfortunately, our bijective proofs above
do not yield refinements by the number of valleys, since the effect of the bijections τ̄ , σ̄ and σ
on this statistic is not the same for all paths. For example, if P ∈ PNA→B, the number of valleys
of σ̄(P ) and P are equal unless P starts with an E, in which case σ̄(P ) has one fewer valley
than P . Worse still, the number of valleys of P and σ(P ) can differ by 0, 1 or −1 depending
on how P starts. To circumvent this challenge, a different approach will be taken in [Eli21], by
instead constructing bijections in terms of two-rowed arrays like those used by Krattenthaler and
Mohanty [Kra97, Kra95, KM93]. While these bijections do not have a natural description in
terms of paths, they are suitable to track the number of valleys, in addition to the major index.

Finally, an open problem which is unlikely to have a simple solution would be to generalize
Theorem 2.3 (or the refined Theorem 2.4) from pairs of paths to k-tuples of paths, for arbitrary k,
enumerating them by the total number of crossings. By a simple translation of the paths, similar
to the map T from Section 6, tuples of non-crossing paths are in bijection with tuples of non-
intersecting paths, so the special case of zero crossings is solved by the Lindström–Gessel–
Viennot determinant.
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