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Engineering, University of California, Berkeley, Berkeley, United States of America

Abstract

The study of intracellular metabolic fluxes and inter-species metabolite exchange for microbial communities is of crucial
importance to understand and predict their behaviour. The most authoritative method of measuring intracellular fluxes, 13C
Metabolic Flux Analysis (13C MFA), uses the labeling pattern obtained from metabolites (typically amino acids) during 13C
labeling experiments to derive intracellular fluxes. However, these metabolite labeling patterns cannot easily be obtained
for each of the members of the community. Here we propose a new type of 13C MFA that infers fluxes based on peptide
labeling, instead of amino acid labeling. The advantage of this method resides in the fact that the peptide sequence can be
used to identify the microbial species it originates from and, simultaneously, the peptide labeling can be used to infer
intracellular metabolic fluxes. Peptide identity and labeling patterns can be obtained in a high-throughput manner from
modern proteomics techniques. We show that, using this method, it is theoretically possible to recover intracellular
metabolic fluxes in the same way as through the standard amino acid based 13C MFA, and quantify the amount of
information lost as a consequence of using peptides instead of amino acids. We show that by using a relatively small
number of peptides we can counter this information loss. We computationally tested this method with a well-characterized
simple microbial community consisting of two species.
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Introduction

Microbial communities have radically altered Earth’s chemical

composition and are largely responsible for the biogeochemical

cycling of energy and carbon on its surface [1]. Their activities

underpin a variety of important biochemical processes ranging

from lignocellulose degradation in termite guts [2] to gigantic

underground cave formation [3]. Furthermore, they form the basis

of industrial applications as diverse as wastewater treatment [4] or

extraction of gold from mineral ore [5], to name a few. These

industrial applications demand reliable performances, a condition

which is not always fulfilled. Phosphorus extraction for wastewater

treatment, for example, is a widely used microbially-mediated

process which often suffers from upsets of unknown origin [6].

While the recent advent of metagenomics [7], metatranscrip-

tomics [8] and metaproteomics [9] has revolutionized our

understanding of microbial communities, these techniques provide

a knowledge that is descriptive in nature, rather than predictive.

Questions such as: ‘‘which species will become dominant if pH is

altered?’’, or ‘‘how will the community’s metabolic activity affect

the acetate levels of its environment’’ are, as of today, not

answerable from just the knowledge of the genomes, transcripts,

proteins and metabolites present in a microbial community.

Tackling these questions requires detailed knowledge of how

carbon and energy flow inside the microbial community.

The flow of mass and energy in a microbial community is

described by metabolic fluxes, which are defined as the rate at

which molecules proceed through each reaction per unit time [10].

The knowledge of metabolic fluxes for all reactions in all

organisms in a microbial community plus the exchange fluxes

between organisms provides a map of how carbon and electrons

flow through the community’s metabolism to enable its function.

Metabolic fluxes for pure cultures have been studied through a

variety of techniques including Flux Balance Analysis (FBA) [11],
13C Metabolic Flux Analysis (13C MFA) [10], elementary flux

mode analysis [12] and extreme pathway analysis [13]. The

capability of measuring and predicting metabolic fluxes has

provided not only a better understanding of the microbial

phenotype, but also the means to bioengineer microbes for the

production of desirable chemical products [14].

Out of the flux analysis techniques mentioned above, only

FBA has been extended to deal with microbial communities. An

early attempt to model the metabolism of the mixed community

involved in the Enhanced Biological Phosphorous Removal

(EBPR) process met limited success due to the lack of accurate

genomic information [15]. More recently, FBA has been used to
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study the symbiotic relationship of a mutualistic co-culture

comprising a sulfate reducer (Desulfovibrio vulgaris) and a

methanogen (Methanococcus maripaludis) [16]. The two-species

model predicted several features of the syntrophic co-culture

growth, including the ratios of abundance of the two species and

of formate and hydrogen as electron donors. Other attempts

have used the Dynamic Multi-species Metabolic Modeling

(DMMM) framework [17], based on dynamic flux balance

analysis [18], to model a Clostridium acetobutylicum and

Clostridium cellulolyticum co-culture involved in consolidated

bioprocessing (CBP) of cellulosic biomass [19], and the compe-

tition of Rhodoferax and Geobacter species in anoxic subsurface

environments [17]. This framework was used to successfully

predict chemostat growth and byproduct secretion for the CBP

system. For the Rhodoferax and Geobacter competitive system, it

predicted the dominance of either Rhodoferax vs Geobacter
species under different rates of consumed acetate flux, in

concordance with field observations. Recently, a multi-level

and multi-objective optimization framework has been used to

describe the metabolic contribution of individual microbial

members in a community and the trade-offs between individual

and community fitness criteria [20]. This framework was used to

elucidate the metabolite exchange in a cellobiose-consuming

microbial community composed of three different species, and to

assess the level of sub-optimal growth in a phototrophic

microbial mat.

Whereas FBA is probably the most popular flux analysis

method, 13C MFA offers significant advantages over FBA. FBA

determines fluxes by constraining them through the reaction

stoichiometry from a genome-scale model and measured extra-

cellular fluxes. Since these constraints are typically not enough to

fully determine fluxes, they are calculated by assuming that

metabolism has evolved to maximize growth rate (typically, but see

[21] for other alternatives). While these fluxes can be easily

calculated as the solution to a linear programming (LP) problem,

the general applicability of the optimization principle has been

questioned [21–23]. 13C MFA, on the other hand fully constrains

fluxes by using the results of 13C labeling experiments on top

of stoichiometry and flux measurement constraints. These

experiments consist of feeding the culture with a defined 13C

labeled substrate, wait for the label to distribute through

metabolism and then measure the resulting labeling pattern (or

Mass Distribution Vector [24], MDV) of selected metabolites

through mass spectrometry or nuclear magnetic resonance. Each

of these sets of labeling patterns for selected metabolites

corresponds to a flux profile and 13C MFA solves the correspond-

ing nonlinear programming (NLP) problem to determine the

fluxes compatible with the collected data [25,26]. While the

network of reactions typically considered for 13C MFA is not

comprehensive and usually only includes central carbon metab-

olism, it is considered the gold standard for flux quantification

[21]. Flux inference through 13C MFA is often used for metabolic

engineering and has found applications in understanding the

biological production of alcohols, amino acids, organic acids, and

proteins [27]. Furthermore, it has been used for the phenotypic

characterization of non-model organisms such as phototrophic

bacteria and archaea [28] and the unveiling of novel pathways

[29].

However, the standard 13C MFA procedure, based on

inferring fluxes from proteogenic amino acid or intracellular

metabolite labeling cannot distinguish contributions from differ-

ent species in a microbial community (see Figure 1) and is hence

challenging to perform for microbial communities. Previous

attempts have targeted amino acids from reporter proteins giving
13C labeling patterns for subpopulation specific intracellular

fluxes [30,31], but this approach is not generalizable to all species

in a microbial community. While it is, in principle, possible to

separate species from a microbial community, obtain labeling

patterns from each species and apply traditional 13C MFA, this is

presently very time-consuming, cannot be done in a high-

throughput manner and needs a different approach for each

community. Single cell metabolomics coupled with cell sorting

may be able to change this in the future [32]. In the meantime,

we propose to circumvent this limitation by inferring fluxes from

peptide labeling instead of amino acid labeling. This approach

has the advantage that the peptides can be reliably attributed to

different species (Figure 1) by using general high-throughput

proteomic techniques which are applicable to any community for

which sequence is available [33][9,34]. Moreover, in the same

way that fluxes can be derived from amino acid labeling, we will

show that they can be derived from the peptide labeling obtained

from proteomic analysis [35], since peptides are composed of

amino acids and their labeling determines that of the peptide

(Figure 1).

In the next section, we will explain the traditional (amino

acid-based) version of 13C MFA and compare it to the peptide-

based version that we introduce here. By using peptide instead

of amino acid labeling, fluxes are less constrained: i.e. more

distinct flux profiles are compatible with the labeling data for

peptides than amino acids. We will quantify this effect through

an information content measure that will be explained after the

new peptide-based method, and we will close the methods

section explaining how we obtained the peptide sequences used

to test the method. The results and discussion section will

present a comparison between the amino acid and the peptide-

based methods using data from the Keio collection multi-omics

study [36], explore how the peptide-based method responds to

noise in the peptide labeling, and investigate how information

content is lost and recovered depending on the number of

peptides used and their length. We will then apply the method

to the simple microbial community mentioned above. We will

Author Summary

Microbial communities underlie a variety of important
biochemical processes ranging from underground cave
formation to gold mining or the onset of obesity.
Metabolic fluxes describe how carbon and energy flow
through the microbial community and therefore provide
insights that are rarely captured by other techniques, such
as metatranscriptomics or metaproteomics. The most
authoritative method to measure fluxes for pure cultures
consists of feeding the cells a labeled carbon source and
deriving the fluxes from the ensuing metabolite labeling
pattern (typically amino acids). Since we cannot easily
separate cells of metabolite for each species in a
community, this approach is not generally applicable to
microbial communities. Here we present a method to
derive fluxes from the labeling of peptides, instead of
amino acids. This approach has the advantage that
peptides can be assigned to each species in a community
in a high-throughput fashion through modern proteomic
methods. We show that, by using this method, it is
theoretically possible to recover the same amount of
information as through the standard approach, if enough
peptides are used. We computationally tested this method
with a well-characterized simple microbial community
consisting of two species.

13C MFA in Microbial Communities

PLOS Computational Biology | www.ploscompbiol.org 2 September 2014 | Volume 10 | Issue 9 | e1003827



finish by briefly discussing further challenges in making

metafluxomics (i.e. the comprehensive study of metabolic fluxes

in a microbial community) a reality.

Methods

Amino acid-based 13C Metabolic Flux Analysis (13C MFA)
13C MFA uses the result of 13C labeling experiments to

determine intracellular metabolic fluxes for a variety of organ-

isms. 13C labeling experiments consist of feeding a culture of the

organism (Escherichia coli in this case) a labeled carbon source.

The uptake and subsequent metabolizing of this carbon source

confers internal metabolites a specific labeling pattern which

depends highly on the intracellular metabolic fluxes. The solution

to the inverse problem of finding which fluxes best fit the

measured labeling patterns is called 13C MFA. Reviews and

detailed explanations of the method can be found in previous

publications [10,25,26]. The 13C MFA algorithm requires the

following as inputs: a model of metabolism which includes carbon

transition information (the fate of each carbon for each reaction

[25]), measured values for extracellular fluxes (e.g, the uptake rate

of glucose, and the excretion rate of metabolites), and the

labeling pattern of each of the metabolites measured after the

labeling experiment, typically through gas chromatography-mass

spectrometry (GC-MS) [37], liquid chromatography-mass spec-

trometry (LC-MS) [38], or nuclear magnetic resonance (NMR)

spectroscopy [39]. The labeling pattern is expressed in terms of

the Mass Distribution Vector [24,40] MDV(m), which is defined

as the fraction of molecules with m = 0,1,2,3… labeled carbons.

In this case, we used amino acid labeling measured through GC-

MS and measured extracellular fluxes from the Keio collection

multi-omics study for the E. coli rf05 strain [36,40]. In order to

calculate the labelling pattern corresponding to a flux profile, we

used the EMU method [41]. We solved the inverse problem by

using the CONOPT nonlinear solver in the GAMS (version 9.1)

modeling environment to solve the optimization problem

defined by the following equations as reproduced from reference

[42]:

Minimize

OF~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
r[R

X
n[Mr

F
exp
rn {Frn

Drn

� �2

=DMrD

 !
=DRD

vuut ð1Þ

Figure 1. Overview of the traditional amino acid-based and the proposed peptide-based 13C MFA. For pure (top) and mixed cultures
(bottom). A labeled carbon source is provided and the fluxes are derived from the ensuing amino acid labeling profiles. In the case of traditional 13C
MFA for pure cultures, contributions from all cells, which are assumed to undergo similar metabolic activities, add up to produce the measured
labeling profile (or MDV(m) = fraction of molecules with m 13C atoms incorporated). This measured labeling distribution is then used for the fit (see
fig. 2). In the peptide-based method it is the peptide labeling distribution that is used for the fit (see fig. 2). Since peptides are composed of amino
acids, its labeling distribution can be easily computed form the amino acid labeling profile, as shown in equation 13. The advantage of this approach
is that the peptides can be separated and assigned to different species through standard proteomics techniques.
doi:10.1371/journal.pcbi.1003827.g001
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Subject to :X
Sijvj~0, Vi[I, j[J

ð2Þ

lbjƒvjƒubj Vj [ J ð3Þ

X
m[Me

fem~1 Ve[E ð4Þ

X
e0[E

X
jjEMM

j

e0?e
w0

EMM
j

e0?e
vj

0
BB@

1
CCAfe0m

0
BB@

1
CCAz

X
jjSijv0

Sijvj

0
@

1
Afem~0

Vm [ Me, e [ Ei, i [ I ð5Þ

fem~
X

w[Wem

P
Eej j

n~1
fenmn Vm [ Me, e [ Ec ð6Þ

Frl~
X

m[Me

cr
lmfem Vr [ Re,e [ Emeas,m [ Mre ð7Þ

Sets.

I = {i}:Set of metabolites

J = {j}:Set of fluxes

E = {e}:Elementary Metabolite Units (EMUs)

Ec , E:Combined EMUs

Ei , E:EMUs from metabolite i [I

Ee , E:EMUs that produce combined EMU e

Emeas , E:EMUs corresponding to measured EMUs

R = {r}: Set of measured GC-MS fragments.

Re , R:Measured GC-MS fragment related to EMU e

Wem:Set of every possible mass isotopomer multiplet of Ee that

produces the mass. isotopomer m of e

Me:m values for MDV of emu e: 0, 1,…, number of carbons in e

Mr:m values for MDV of measured fragment r

Parameters.

EMM
j
e’?e : EMU mapping matrix of flux j from EMU e0 to e

Sij : Stoichiometry matrix

ubj ,lbj : Upper and lower bounds for reaction j

Fexp
rn [ 0,1½ � : Experimentally measured MDV nð Þ for fragment r

Drl : Measurement error for Frl [ 0,1½ �
cr

lm : gamma matrix for fragment r

Free variables.

vj : Flux value of reaction j normalized to glucose input

fem[ 0,1½ � : MDV mð Þ for emu e

fe0m[ 0,1½ � : MDV mð Þ for emu e0

Frl[ 0,1½ � : MDV lð Þ for fragment r

where w refers to the tuple:

w: m1,m2, . . . ,mDEe D
� �

Dmn[MenVn~1 . . . DEeD

where en is the nth reactant in the reaction: Wem is defined as :

Wem: wf gD
XDEe D

n~1

mn~m, mn[Men

ð8Þ

Equations 4 and 5 represent the normalization and the

isotopomer balance respectively. Equation 6 represents the

combination of Elementary Metabolite Units. Equation 7 adds

the contributions of the non-carbon backbone atoms mass shift

due to naturally occurring isotopic effects [43].

Peptide based 13C Metabolic Flux Analysis
The amino acid-based 13C MFA method outlined above is

challenging and not applicable to microbial communities. A

sample obtained from a mixed community would contain a

mixture of amino acids from all cells in the system and the labeling

obtained through the usual analytical methods (GC-MS, LC-MS,

NMR) would therefore be an average of all the labeling

distributions corresponding to each cell (see Figure 1). For pure

cultures this is not problematic since it is assumed that all cells

undergo similar metabolic activity and fluxes obtained from this

average amino acid labeling are a good representation of the

metabolic fluxes from each cell. The fact that one can fit the

metabolite labeling profiles using a single model [41,44] (Toya et
al 2010, Antoniewicz et al 2007) supports this assumption. In the

case of a microbial community, we expect different species to

display different metabolic activities: in fact, that is what makes

microbial communities interesting. One might initially naively

imagine that the fluxes obtained from the average amino acid

labeling would provide the average flux profile if used in equations

1–8 above. This is not the case since the mapping of metabolic

fluxes from amino acid labeling is highly nonlinear [45] and the

average amino acid labeling does not correspond to the labeling of

the average flux distribution. To see this, take vs
j to be the flux for

reaction j for species s, f exp
em

� �s
is a vector containing the labeling

distribution for species s, and Jj the non-linear function that maps

the labeling distribution f exp
em

� �s
in through vs

j the solution of

equations 1–8 above:

vs
j ~Jj f exp

em

� �s� �
ð9Þ

Then, the fluxes obtained by using the average amino acid

labeling pattern would be:

Jj

P
s

fs f exp
em

� �s

� �
ð10Þ

if we assume the fraction of species in the community to be fs.

The average flux profile would be:

X
s

fsvs
j ~
X

s

fsJj f exp
em

� �s� �
ð11Þ

Notice that since omega is non-linear, these two are not

necessarily the same:

13C MFA in Microbial Communities
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Jj

P
s

fs f exp
em

� �s

� �
=
P

s

fsJj f exp
em

� �s� �
ð12Þ

and, hence, the fluxes obtained from the average labeling

distribution are not the same as the average flux. However, if a

significant fraction of the bacterial species share metabolic

activities, this approach may be feasible [46].

Unlike amino acids, peptides can be separated through modern

proteomics methods and assigned to a species of a known genome,

even in the case of labeled feeds [34,35]. Since peptides are

composed of amino acids, their MDVs can be obtained from the

amino acid labeling through a convolution, or Cauchy product

[47]. If we define Pfpm to be the experimentally measured MDV

for isotopomer mass m for peptide p, and Afam to be the MDV for

amino acid aM A = {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R,
S, T, V, W, Y} (amino acid set), this can be expressed as:

Pfpm~
P

w[ �WWpm

P
DAp D

n~1
Afanmn Vmn[Man , an[Ap ð13Þ

where Ap is the set of amino acids in peptide p, anis the amino acid

in position n in the peptide and Mais the set of m values for the

MDV for amino acid a. The tuple w is defined as:

w: m1,m2, . . . ,mDAp D

� �
Dmn[Man Vn~1 . . . DApD

and �WW pm is defined as,

�WW pm: wf gD
XDAp D

n~1

mn~m, mn[Man

ð14Þ

However, since the representation of equation 13 in the GAMS

modeling system is not computationally efficient, we opted for a

breakdown of the convolution into:

Pf 1pm~Afa1m Vm[Mp ð15Þ

Pf 2pm~
P

kzl~m

Pf 1pkAfa2l Vk[Mp,l[Ma2
ð16Þ

Pf 3pm~
P

kzl~m

Pf 2pkAfa3l Vk[Mp,l[Ma3
(17)

� � � � � � � � �

Pfpm~
X

kzl~m

Pf 14pkAfa15 l Vk[Mp,l[Ma15
ð18Þ

The variable Afan is obtained from the amino acid carbon

backbone MDV by adding the contributions of the non-carbon

backbone atoms mass shift due to naturally occurring isotopic

effects [43]:

Afan~
P

m[Me

ca
nmfem e[Ea ð19Þ

where cAA
nm is matrix A from equation 19 in Wahl et al [43] for

amino acid AA and Ea is the EMU that corresponds to amino

acida. For peptides smaller than 15 amino acids, empty spaces in

the input peptides sequences are filled with ‘‘dummy’’ amino acid

represented by X. For these dummy amino acids, an identity

matrix was used as Afxl . For example, peptide labeling for peptide

number one, with five amino acids (1: ‘VLAYRXXXXXXX

XXX’) can be derived as:

Pf 11m~AfVm Vm [ M1

Pf 21m~
P

kzl~m

Pf 11k AfLl Vk [ M1, l [ MV

Pf 31m~
P

kzl~m

Pf 21k AfAl Vk [ M1, l [ MA

Pf 41m~
P

kzl~m

Pf 31kAfYl Vk [ M1, l [ MY

Pf 51m~
X

kzl~m

Pf 41kAfRl Vk [ M1, l [ MR

Pf 61m~Pf 51m Vm [ M1

� � � � � � � � �

Pf 151m~Pf 141m Vm [ M1

These constraints are added to the 13C MFA constraints above

in order to generate the expected labeling pattern for specific

peptides. By comparing the results with the experimentally

measured peptide labeling pattern we can use the same approach

as for 13C MFA to infer fluxes (Figure 2). The fluxes that best

match the experimental peptide labeling are obtained by solving

the following NLP optimization problem fluxes by using the

CONOPT nonlinear solver in GAMS (version 9.1):

Minimize

OF~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
p[P

X
k[Mp

Pf
exp

pk {Pfpk

Dpk

 !2

=DMpD

0
@

1
A=DPD

vuuut (20)

Subject to :X
Sijvj~0, Vi [ I, j [ J ð21Þ

13C MFA in Microbial Communities
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lbjƒvjƒubj Vj[J ð22Þ

X
m[Me

fem~1 Ve[E ð23Þ

X
e’[E

X
jDEMM

j
e’?e

w0

EMM
j
e’?evj

0
BB@

1
CCAfe’m

0
BB@

1
CCAz

X
jDSijv0

Sijvj

0
@

1
Afem

~0 Vm[Me, e[Ei, i[I ð24Þ

fem~
X

w[Wem

P
DEe D

n~1
fen mn Vm[Me, e[Ec ð25Þ

Afan~
X

m

ca
nm fem Ve[Ea, a[A, n[Ma ð26Þ

X
m[Mp

Pfpm~1 Vp[P ð27Þ

Pf 1pm~Afa1m Vm[Ma1
ð28Þ

Pf 2pm~
X

kzl~m

Pf 1pkAfa2 l Vk[Mp, l[Ma2
(29)

Pf 3pm~
X

kzl~m

Pf 2pkAfa3l Vk[Mp, l[Ma3
ð30Þ

� � � � � � � � �

Pfpm~
X

kzl~m

Pf 14pkAfa15l Vk[Mp, l[Ma15
ð31Þ

Sets.

I = {i}:Set of metabolites

J = {j}:Set of fluxes

E = {e}:Elementary Metabolite Units (EMUs)

Ec , E:Combined EMUs

Ei , E:EMUs from metabolite i [ I

Ea , E:EMU corresponding to amino acid a

Ee , E:EMUs that produce combined EMU e

Emeas , E:EMUs corresponding to measured EMUs

Wem:Set of every possible mass isotopomer multiplet of Ee that

produces the mass. isotopomer m of e

Me:m values for MDV of emu e: 0, 1,…, number of carbons in e

Mp:m values for MDV of peptide p

Ma:m values for MDV of amino acid a

P = {p} Set of measured peptides

A = {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W,

Y}, amino acids

Parameters.

EMMe0{we : EMU mappin gmatrix of flux j from EMU e
0
to e

Sij : Stoichiometry matrix with backward and forward

fluxes differentiated

ubj ,lbj : Upper and lower bounds for reaction j

Pf
exp

pk [ 0,1½ � : Experimentally measured MDV for peptide p

Dpk : Measurement error for Pf
exp

pk [ 0,1½ �

ca
nm : gamma matrix for amino acid a

Free variables.

vj : Flux value of reaction j

fem[ 0,1½ � : MDV mð Þ for emu e

Pfpk[ 0,1½ � : MDV kð Þ for peptide p

PfXpk[ 0,1½ � : MDV kð Þ for intermediate peptide X

Afan[ 0,1½ � : MDV nð Þ for amino acid a

Figure 2. Schematic representation of the algorithmic differ-
ences between the amino acid-based and the peptide-based
methods. The amino acid-based and the peptide-based methods are
expressed in equations 1–8 and 20–31 respectively, and solved through
GAMS. For pure cultures (top), a set of initial fluxes {vi} is chosen and the
expected amino acid labeling is calculated. This computationally
generated labeling is compared with the experimentally obtained
labeling and the difference is quantified as an objective function to be
minimized: OF({vi}). A new set of fluxes is then chosen so as to decrease
the error function. The procedure is continued recursively until the
calculated labeling is within the experimental error of the experimental
data. For the peptide-based method (bottom), the only difference is
that the experimental information used for the fit is the peptide
labeling instead of the amino acid labeling. The peptide labeling is
obtained from the amino acid labeling through equation 13.
doi:10.1371/journal.pcbi.1003827.g002

13C MFA in Microbial Communities

PLOS Computational Biology | www.ploscompbiol.org 6 September 2014 | Volume 10 | Issue 9 | e1003827



By using these extra constraints, we saw a three-fold increase in

computational time compared to amino acid procedure. This

computational time increases for longer peptides and for larger

amounts of peptides, but remains within 10-fold of the initial time.

Our source code in GAMS is publicly available on figshare.

(http://dx.doi.org/10.6084/m9.figshare.1119727).

Information content
The main disadvantage of using peptide over amino acid

labeling is the loss of information: as can be observed in

Figure 3, it is possible that different flux profiles producing

different amino acid labeling profiles give rise to the same

peptide labeling profile. Hence, one might think that the

peptide-based method is less discerning than the amino acid-

based one. We will show later that this is not the case, but in

order to prove that conclusively we need to define the concept

of flux information content (FIC).

The goal in defining the FIC is to try to quantify the degree of

‘‘constraint’’ that our experimental data introduces in the obtained

flux profiles: i.e. how many flux profiles are compatible with the

gathered experimental data? In order to do so we will use the

concept of flux phase space (or solution space [48]). Imagine a

coordinate space where each axis represents the value of a flux in

your reaction network, with each point representing a flux profile

as depicted in Figure 4. We will quantify the fraction of phase

space V which is compatible with the current constraints involving

measured fluxes, stoichiometry and labeling patterns from either

amino acids or peptides.

The FIC will therefore be defined mirroring entropy [49] as:

FIC~{k log Vð Þ ð32Þ

where k is a constant of inconsequential value for our purposes.

Hence, the more space compatible with the current constraints

indicate less constraining power by the current experimental data

and less information on the state of the systems (lower FIC) while,

conversely, a higher value of FIC indicates less volume V
compatible with the experimental constraints and more informa-

tion on the state of the system.

The precise value of V as defined above is difficult to calculate

[50], so we will make an approximation that is still valid for our

purposes:

V& P
j[J

Dvj ð33Þ

where the phase volume has been approximated by the enveloping

box (see Figure 4), and

Figure 3. Graphical representation of information loss. A loss of information may be expected when using peptide-based 13C MFA relative to
amino acid-based 13C MFA. Imagine two different flux profiles v1

j and v2
j which generate different amino acid MDVs for Serine (S) and Alanine (A). One

can recover v1
j andv2

j from the different amino acid labeling of S and A. However, in this example case, the MDV for the peptide obtained by

combining both amino acids is the same, making it impossible to tell the flux profiles apart from the peptide labeling alone. In general, the
convolution in equation 13 loses track of which amino acid the labeling patterns come from. As we can see in Figure 6 this loss of information can be
countered by using more peptides.
doi:10.1371/journal.pcbi.1003827.g003
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Dvi~max(vmax
i {vmin

i ,e)

where e= 0.01 is a lower bound and vmax
i and vmin

i are the

maximum and minimum values of flux allowed while constraining

the computationally determined labeling value to be within the

error bounds of the experimentally determined data:

min =max vj Vj[J ð34Þ

Subject to :

Pf
exp

pk {Pfpk

� �2

ƒ D2
pk Vp[P, k[Mp

-

Subject to :X
Sijvj~0, Vi[I, j[J

lbjƒvjƒubj Vj[J ð37Þ

X
m[Me

fem~1 Ve[E ð38Þ

X
e’[E

X
jDEMM

j
e’?e
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e’?evj
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CCAz

X
jDSijv0

Sijvj

0
@

1
Afem

~0 Vm[Me, e[Ei, i[I

ð39Þ

fem~
X

w[Wem

P
DEe D

n~1

fen mn Vm[Me, e[Ec ð40Þ

Afan~
X

m

ca
nmfem Ve[Ea, a[A, n[Ma ð41Þ

X
m[Mp

Pfpm~1 Vp[P ð42Þ

Pf 1pm~Afa1m Vm[Ma1
ð43Þ

Figure 4. The Flux Information Content (FIC) for an experimental data set (amino acid-based or peptide-based): Represents how
constrained fluxes are by this data set, and is inversely proportional to the logarithm of the volume of the phase space compatible
with the experimental data set. The flux phase space or solution space is an imaginary space in which each coordinate axis corresponds to a
different reaction. Each point in the phase space corresponds to a flux profile: the value of the flux is the coordinate in the corresponding coordinate
axis (0.3 for ACONT and 0.4 for AKGDH in this example). The volume of the phase space compatible with experimental data is approximated by the
volume of the hypercube given by the allowable ranges for each reaction. The allowable flux range for each flux for each reaction is obtained by
finding the maximum and minimum values compatible with the experimental data set. A large allowable phase space corresponds to a higher
indetermination of the flux profile and, hence, a low FIC. Conversely, a higher value of the FIC indicates that the flux is more effectively constrained by
the experimental data.
doi:10.1371/journal.pcbi.1003827.g004

ð35Þ

ð36Þ
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Table 1. The Peptide sequences from trypsin digestion of E. coli proteins.

5AA 10AA 15AA Mixed group

GWQAK EFVESLETPR DVIYHIETYDVTTIR GWQAK

LGLQK RTADHVISAR VNPVVPEVVNQVCFK LGLQK

VAASK SILANVEQIK SIYVAYTGGTIGMQR VAASK

DIFTK TIADFTTNDR LHYLLSQELDTETIR DIFTK

VLAYR ELIVASSYSK WVASQITGEVTLELR VLAYR

LPNPR NPEAMAASLK HEMSEFMIACGFDYK LPNPR

QEVDR AIEVVGGAAK AVEAAGDVDVLLLDK QEVDR

YQLLK ADGVIFQTAV QLALFEPTLVVQALK YQLLK

FGAGK QADAAVIAAK LSAVVNLLNQALGDR FGAGK

SDASK IWLDADLLNK ALVGSGIEAQVNGER SDASK

LAQVK AVASACAANK NDDVLGVIALQDTLR LAQVK

KLLTK FTESGEGTGR VLTSLVSWVVSFIPR KLLTK

GEMER AAALAAADAR GEFVSIFDCDHVPTR GEMER

QFLDK AVGQLGLMCR VYLNDELMGVLPVTK QFLDK

NTSVK TTVTSGGLQR DSEALGALGQAYSQK NTSVK

DETGK FGHGSAQHVR LELIDPNNPDVVAAR DETGK

EQVLR DLNIDPATLR GLGGSSLINGMCYIR EQVLR

IYAQK CVEQLANWHK IAADGQVNVALSGER EFVESLETPR

VFALR FDSVLNEAVK LSGQTIEVTSEYLFR RTADHVISAR

TFMVR EGFHVVTPNK VNWLGLGPQENYPDR SILANVEQIK

IIEPR MSVIAQAGAK YYPNHEAVDFYGHYK TIADFTTNDR

LLGIR FGGSSLADVK GISTSDLQPHGVMGK ELIVASSYSK

DWAAK NIGAFVVVTR NASETGSIYSSMTLK NPEAMAASLK

NFEGR YPFLLSNGNR GFLPFAPEADFWVGK AIEVVGGAAK

YLQGR RLGQDAAPEK ALENELDGFTFEDNK ADGVIFQTAV

QPWVK SAASVAHWQK QSYFHDFFNYAGIHR QADAAVIAAK

YVFLK VIASNGEDLE KSATIAVVGPLADSK IWLDADLLNK

LEMER MMTTMLEVAK TAEWAAEICGVGAAK AVASACAANK

ACGVK QAIQYLLDLR VSWDEALDLIHQQHK FTESGEGTGR

GLTTK VVGGWNGESK GTNASHVLVLIDGVR AAALAAADAR

HVAER WFDSQALMLR NDVSDLIDYDDHTLK AVGQLGLMCR

NFPNR ADFLCGTGQK DNDEDSPVYIATVPK TTVTSGGLQR

AELAK IDEIPFDFER VGEWLVTPSINQISR FGHGSAQHVR

DAISR VPAGATSVDR ADNGTITSGDAAMCK DLNIDPATLR

LTQAR EYTLSGSYTF VSGGSDEMQILTLGR DVIYHIETYDVTTIR

DLMDK IGAIMVPINA TLMVQPPSANDQQHR VNPVVPEVVNQVCFK

DITLR STGEVMGVGR LMLPAWLGAGTALQK SIYVAYTGGTIGMQR

MELGK SVGEVMAIGR YLGIGDYESWSEADK LHYLLSQELDTETIR

DTLSR GGVATIGVTR LTIVPAQTSAEDVLK WVASQITGEVTLELR

DLMEK TLPNFPIEGR SALLVLEDGTQFHGR HEMSEFMIACGFDYK

RTGGK ALSVPCSDSK VAEVGITGLNADFLR AVEAAGDVDVLLLDK

SIPLK ATLEDLGQAK TPASFEPSIDYVVTK QLALFEPTLVVQALK

IGNEK AWSASTVYVK FSTVQGGAGSADTVR LSAVVNLLNQALGDR

LLEEK QNYSVSHNGR DPSLSLYAIPDGDVK ALVGSGIEAQVNGER

HISYK AQAVGAADSL FLELCNAGLSVEDIK NDDVLGVIALQDTLR

GATER AGGASSFLAD EMTHAGELEHLTPER VLTSLVSWVVSFIPR

QGPIR QQETAVATMK VVPEAFPEQSVPEGK GEFVSIFDCDHVPTR

AQFIR IPPESSNPLN SIAQAMQHLSPQESK VYLNDELMGVLPVTK
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Pf 2pm~
X

kzl~m

Pf 1pk Afa2l V k[Mp , l[Ma2
ð44Þ

Pf 3pm~
X

kzl~m

Pf 2pk Afa3l V k[Mp , l[Ma3
ð45Þ

� � � � � � � � �

Pfpm~
X

kzl~m

Pf 14pkAfa15l Vk[Mp, l[Ma15
ð46Þ

Sets.

I = {i}:Set of metabolites

J = {j}:Set of fluxes

E = {e}:Elementary Metabolite Units (EMUs)

Ec , E:Combined EMUs

Ei , E:EMUs from metabolite i[ I

Ea , E:EMU corresponding to amino acid a

Ee , E:EMUs that produce combined EMU e

Emeas , E:EMUs corresponding to measured EMUs

Wem:Set of every possible mass isotopomer multiplet of Ee that

produces the mass. isotopomer m of e

Me:m values for MDV of emu e: 0, 1,…, number of carbons in e

Mp:m values for MDV of peptide p

Ma:m values for MDV of amino acid a

P = {p} Set of measured peptides

A = {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W,

Y}, amino acids

Parameters.

EMMe0{we : EMU mapping matrix of flux j from EMU e
0
to e

Sij : Stoichiometry matrix with backward and forward

fluxes differentiated

ubj ,lbj : Upper and lower bounds for reaction j

Pf
exp

pk [ 0,1½ � : Experimentally measured MDV for peptide p

Dpk : Measuremen terror f or Pf
exp

pk [ 0,1½ �

ca
nm : gamma matrix for amino acid a

Free variables.

MDV aa : Amino acid MDV for aa

MDV pk : Peptide MDV for p

vj : Flux value of reaction j

fem[ 0,1½ � : MDV mð Þ for emu e

Pfpk[ 0,1½ � : MDV kð Þ for peptide p

PfXpk[ 0,1½ � : MDV kð Þ for intermediate peptide X

Afan[ 0,1½ � : MDV nð Þ for amino acid a

Hence, the FIC then becomes:

FIC~{k log P
j[J

Dvj

� �
ð47Þ

Generation of peptide labeling test data
In order to compare the amino acid and peptide-based methods

we used the data from the Keio collection multi-omics study [36].

We use the measured extracellular flux data and the labeling

information for amino acids Ala, Asp, Gly, Glu, Ile, Met, Pro, Phe,

Ser, Val and Tyr from E. coli rf05 strain to calculate fluxes for the

reactions shown in Table S1 in this paper through 13C MFA by

solving the optimization problem given in equations 1–8. Since we

included biosynthesis reactions for all twenty amino acids, we

obtained labeling information for all of them. Although the

labeling information for the amino acids not mentioned above is

not available in the Keio data set, the remaining amino acids share

the same precursors as those mentioned above, so their MDVs

could be easily derived. From the amino acid labeling we obtained

the target peptide labeling by using equation 13. This data set was

Table 1. Cont.

5AA 10AA 15AA Mixed group

QANLR EYQVVIDPQR IWQQATAQAPALLDR DSEALGALGQAYSQK

LEAIR EGDVLCVIGR VSLGNYFTGPGSIAR LELIDPNNPDVVAAR

The peptide labeling profile of these sequences have been used to measure flux profiles for E. coli strain (rf05) using the peptide-based method.
doi:10.1371/journal.pcbi.1003827.t001
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used as target peptide labeling distribution Pf
exp

pk

� �
in equation

20.

The peptide sequence (see Table 1) was obtained from the E.
coli genome [51] by simulating trypsin digestion using Protein

Prospector [52]. Sets of peptides formed by 5, 10 and 15 amino

acids were chosen such that they were not only unique, but had

different amino acid composition. This is important because

peptide labeling depends only on composition, not on amino acid

order. A fourth group was chosen as a mix of the peptides of 5, 10

and 15 amino acids. Fluxes were obtained by solving the

optimization problem defined in equations 20–31.

The sequences in Table 1 are only an example of possible valid

sequences. However, care must be taken that the sequences used

are unique in each microbial community under study. Hence, the

appropriate peptides sequences must be chosen for each species

within a microbial community.

Random noise representing experimental error in
peptide measurement

The noisy target data used below was generated by adding a

random value of amplitude D to the previously generated target

data:

Pf expNew
pm ~Pf exp

pm 1zDjð Þ Vp[p Vm[Mp ð48Þ

where j[ {1,1½ � is random number drawn according to a constant

probability distribution. Three set of noisy target data were

generated with D= 0.05, 0.08 and 0.10.

Results/Discussion

Comparison of intracellular fluxes obtained using the
peptide and the amino acids based method for a pure
culture

Our first goal is to compare results obtained through both

methods discussed in this paper: the traditional amino acid-based
13C MFA and the peptide-based 13C MFA introduced here. We

did this by using computationally-generated data based on the raw

labeling data available for eleven amino acids from the Keio

collection multi-omics study as an input. Since we included

anabolic reactions for all twenty amino acids, we obtained labeling

information for all of them. The remaining amino acids share the

same precursors as those mentioned above and hence their MDVs

Figure 5. Comparison between flux profiles obtained through the amino acid-based and the peptide-based 13C FMA: 20 for 10 aa,
25 for 15 aa and 20 for the mixed group peptides. Peptide based 13C FMA flux profile obtained for the best fit for peptide lengths of (a) 5
amino acids (b) 10 amino acids (c) 15 amino acids and (d) mixture of 5, 10 and 15 amino acids. The information loss in longer peptides can be
overcome adding more number of peptides to peptide-based 13C FMA.
doi:10.1371/journal.pcbi.1003827.g005
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could be easily derived. As explained in detail above, we compared

fluxes obtained from amino acid-based 13C MFA with fluxes

obtained from peptide-based 13C MFA where the target peptide

labeling patterns had been derived from the amino acid-based 13C

MFA. This approach allows us to compare the relative merits of

each method starting from the same data.

Peptide-based 13C MFA produces the same results as amino

acid-based 13C MFA, as can be seen in Figures 5 and S1, where 15

peptides each of them 5 amino acids long were used. Even the

confidence intervals (Figure 5a and Table S2), which indicate how

constrained fluxes are by the E. coli rf05 strain data, are similar.

Two reactions (malic enzyme: ME1 and pyruvate kinase: PYK)

show particularly large confidence intervals (,0.5, normalized to

glucose input).

The critical parameters to adjust in order to obtain similar

results for peptide-based 13C MFA and amino acid-based 13C

MFA are the number of peptides used, and their length. Hence,

we also tested peptide-based 13C MFA with longer peptides: 10

and 15 amino acids long. Furthermore, since we expect that, in

most practical cases, it would be hard to find peptides of the

same exact length, we also considered a mixed group containing

peptides consisting of 5, 10 and 15 amino acids. For a set

peptide length, the more peptides used in the fit, the more

accurate the flux determination is (Figure S2). Furthermore, for

a set number of peptides, the longer the peptides are, the worse

the results become in terms of recovering the intracellular fluxes

(Figure S3). A detailed explanation of the reasons for these

trends is discussed in the ‘‘Information loss’’ section. These

trends are important because they interlace with the metapro-

teomics requirements. On one hand, longer peptides add

difficulty to the task of recovering the flux profiles; on the other

hand they ease the task of uniquely assigning the peptide to a

sequenced genome: the longer a peptide is the higher the

chances it is unique to a species.

Determining the appropriate number of peptides for each

length is, then, a non-trivial task. In our case we determined

the number of peptides for each peptide length in Figure 5 by

the number required to recover the information value for the

amino acid case: 20 for 10 aa, 25 for 15 aa and 20 for the

mixed group (see the next section for details). While for the 5 aa

group all fluxes are similar (they fall on the diagonal in

Figure 5), for the 10 aa group fluxes for five reactions were

found to differ (off the diagonal): 2-Oxoglutarate dehydroge-

nase (AKGDH), isocitrate dehydrogenase (ICDHy), glyceral-

dehyde-3-phosphate dehydrogenase (GAPD), phosphoglycerate

kinase (PGK) and pyruvate dehydrogenase (PDH). However, in

all these cases the range of the confidence interval either

intercepts the diagonal or is very close, indicating that the

values of the flux through either method are within the

confidence interval of each other. Fluxes related to reactions

MDH & PPCK, however, are off the diagonal and have a very

small confidence interval that does not intersect the diagonal

line. This indicates that the same solution was not recovered for

both methods, a consequence of information loss, as detailed in

the next section. For the 15 aa group, a flux not included

in the previous group now clearly falls off the diagonal: MALS.

The confidence intervals for this flux is also fairly small and do

not intersect the diagonal. As can be observed the longer the

peptides are, the more peptides are needed and the less

accurate the method is, a consequence of the loss of

information due to longer peptides. Interestingly, the mixed

group (with 5, 10 and 15 aa long peptides) presents very

similar results to the shortest peptides (5 aa), indicating that the

inclusion of a few short peptides in a group of longer

peptides can considerably improve the accuracy of the

method.

The size of the confidence intervals indicate which fluxes the

peptide-based method has greater trouble determining. Confi-

dence intervals are largest for the following set of reactions from

the TCA cycle: malic enzyme (ME1), succinate dehydrogenase

(SUCDi), AKGDH, ICDHy & aconitase (ACONT) and glycolysis:

pyruvate kinase (PYK), PDH, PGK & GAPD. The maximum

confidence interval is observed for reactions ME1 and PYK and

the value is around 0.5. Confidence intervals range from 0.12-0.16

for succinate dehydrogenase (SUCDi), AKGDH, ICDHy,

ACONT, PDH, PGK and GAPD reactions. Since confidence

intervals were the same for both the amino acid and the peptide-

based methods, this indicates that information loss is not

responsible for this phenomenon, but rather the position of the

reactions in the network.

Method assessment in the presence of noise
The data used in the previous section was a ‘‘perfect data’’ set in

the sense that peptide labeling exactly matched the result of the

convolution of amino acid labeling in equation 13 using amino

acid labeling data obtained from the initial flux profiles (see

Methods). However, in any realistic peptide labeling data we

would expect noise due to either the instrument or experimental

conditions. In this section we would like to explore the maximum

amount of noise level we could allow in order to recover the same

fluxes as through the amino acid method. In order to do so, we

added a random noise to each peptide MDV with a relative

amplitude of D~60.05, 60.08, and 60.10 respectively (see

Methods). Since the method for MDV measurement is the same

for both amino acid and peptide analysis (i.e., mass spectrometry)

we expect the measured noise in the amino acid and peptide

labeling to be the same: ,0.05.

As the amount of noise increase the fits to the peptide data

deteriorate noticeably and the method cannot recover the results

of the amino acid-based 13C MFA (Figures S4 and S5). However,

the effect of noise is different depending on the amount of peptides

used. For the case of 5 peptides and 10 amino acids per peptide the

noise has a much more deleterious effect than for the case of 20

peptides and 10 amino acids per peptide (Figures S4 and S5).

Confidence intervals for fluxes, however, become particularly

large ford§ 0:08, indicating that fluxes cannot be precisely

estimated with particularly noisy data.

Information loss
A possible drawback of the peptide-based method is the loss of

information incurred by using peptides instead of amino acids

when doing the data fit. After all, the convolution procedure loses

track of where the different MDVs are coming from, and two

peptides with the same composition and different MDVs for the

amino acids may display the same peptide MDV (see Figure 3).

We can quantify this effect through the definition of Flux

Information Content (FIC, see method section) as an analog of

entropy [49]. FIC quantifies how much the current experimental

data constrains the flux profiles. A low FIC value indicates that the

phase volume that is compatible with the experimental data is

large, so the fluxes are rather unconstrained and the information

value is low. Conversely, a high value of FIC indicates a small

volume of allowable space and abundant information on the

fluxes.

We calculated the FIC for flux profiles constrained by sets of

different numbers of peptides and different peptide length

(Figure 6). As expected, the FIC for 1 peptide is much lower than
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the FIC value obtained by constraining fluxes through the amino

acid value. This is not surprising: the labeling pattern of one

peptide contains much less information on fluxes than the labeling

pattern of eight separate amino acids. As more peptides are added

to the fit the FIC increases until the loss of information caused by

using the peptide methods is completely countered and it reaches

the FIC for the amino acid method. The number of peptides for

which the peptide method FIC intercepts the amino acid FIC is

different for different peptide lengths. As expected and discussed

above, shorter peptides are more informative than longer peptides.

For the peptide groups 5, 10 and 15 amino acids, as well as the

mixed group, the number of peptides needed to match the amino

acid FIC was 15, 20, 25 and 20 respectively. These represent a

progression according with the peptide length, with the mixed

group showing the same result as the group with the same average

length (10 aa group). The FIC profile for the mixed group in

Figure 6 corresponds to an interpolation of the 5 aa and the 10 aa

groups profiles, a typical tryptic peptide length for most organisms.

For example, the yeast proteome has an average tryptic peptide

length of 8-9 amino acid residues and ,97% of all tryptic peptides

fall between 7–35 residues [53]. Since currently available shotgun

or targeted proteomics methods can provide thousands of peptide

identifications in a given sample by using multiple proteases [53],

there is no obstacle to obtain the same FIC with the peptide

method as the amino acid method. Hence, the information loss

incurred by using peptides can be eliminated by using a large

collection of peptides.

As an additional target flux profile we used the pgi knockout E.
coli strain from the Keio collection multi-omics data. This flux

profile is very different from the initial rf05 strain. We have used

amino acid labeling data and measured extracellular fluxes for pgi
knockout E. coli strain and then examined the ability of the

peptide-based method to recover the flux distribution. We found

that the method is still robust and the peptide requirement is 15

instead of 20 (Figure S6). The flux profile generated from peptide

fitting has shown good correlation with amino acid based flux

pattern for the pgi knockout E. coli strain (Figure S7).

We expect a trade-off between information loss for longer

peptides and the ability to uniquely identify microbial species. As

discussed above, the shorter the length of the peptide, the less flux

information is lost. However, we expect that it will be more

difficult to find unique short peptides the more diverse the

community is. Hence, for the more complex microbial commu-

nities, we need to choose between a longer search for appropriate

peptides for each species or using longer peptides with less capacity

to resolve fluxes accurately.

Figure 6. Flux Information Content (FIC) for the amino acid and peptide-based 13C MFA. The upper red line indicates the FIC for the
amino acid-based method, the target. The different lines represent how the FIC grows as we add the labeling information of more peptides, therefore
constraining fluxes more effectively. Each line corresponds to peptides of different length: 5, 10 and 15 amino acids long and, finally, a set of peptides
of mixed lengths. As can be observed, the smaller the peptide the more FIC in the data set, with the mixed group being an interpolation between the
5 and 10 aa curves. This is not surprising in light of the intuitive argument for FIC loss given in Figure S2: the longer the peptides the more
uncertainty there is about where the MDV is coming from. However, for all peptide lengths studied here there is a number of peptides that counter
this information loss and makes peptide-based 13C MFA as informative as the amino acid-based method. This number of peptides is under 30 for all
cases.
doi:10.1371/journal.pcbi.1003827.g006
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Peptide-based 13C Metabolic Flux Analysis of simple
mutualistic microbial community

Next, we examined the capability of our peptide-based 13C MFA

method to obtain the flux profile for a relatively simple and well-

characterized syntrophic association between D. vulgaris and M.
maripaludis [16], for which experimental data is available in the

literature. The syntrophy-based mutualism between these two

organisms is essential for the degradation of organic substrate.

Lactate is used as a sole carbon source for D. vulgaris and produces

CO2, formate and acetate, which serve as a growth substrate for M.
maripaludis. Metabolic models and experimental growth data are

available for the co-culture [16,20], and have been used through

FBA to produce feasible flux profiles for the individual species [16].

This FBA flux profile indicates that D. vulgaris growing optimally

converts majority of the carbon present in the substrate lactate into

acetate, formate and CO2. Acetate becomes a sole carbon source for

M. maripaludis over the CO dehydrogenase pathway, consistent

with published data and experimental results [16,54]. Pyruvate-

formate lyase (PFL) in D. vulgaris produces formate for utilization

of M. maripaludis, but this formate does not contribute to its

biomass growth and is just converted into methane.

We used the FBA flux profile and measured extracellular flux

data for the microbial community to calculate the associated

labeling information for amino acids. We obtained labeling

information for all 20 amino acids for both organisms by including

anabolic reactions for all of them (Table S3, S4), as we did for the E.
coli model. From the amino acid labeling we obtained the target

peptide labeling for both organisms in the same way as for the E.
coli model. Peptide sequences (see Table S5) were obtained from the

D. vulgaris and M. maripaludis genome by simulating trypsin

digestion using Protein Prospector [52]. Sets of peptides formed by

10 amino acids were chosen such that they were unique in the

community.

We recovered the original FBA flux profile (Fig. 7) from the

peptide-based 13C MFA by fitting the peptide labeling patterns

obtained as described above. The particular structure of this flux

profile for this specific community made the task easier: since there

is no expected acetate, formate or CO2 flux coming back from M.
maripaludis to D. vulgaris, both species may be compartimenta-

lized and fluxes can be solved iteratively. In this fashion, the

known lactate labeling, derived peptide labeling and known

exchange fluxes for D. vulgaris were used to fit fluxes for this

organism, according to equations 20–31. The acetate labeling

obtained from solving this problem was used as input labeling,

along with the derived peptide labeling to fit fluxes for M.
maripaludis, according to equations 20–31 again. In this way, a

‘‘two-body’’ problem was solved as the combination of two ‘‘one-

body’’ problems. The resulting fluxes were the same as the starting

FBA solution. Furthermore, this solution produces a prediction of

the acetate and peptide labeling that one should expect, were the

FBA solution to apply to the real case. These predicted acetate and

peptide labelings can be found in Figure S8.

Further challenges for 13C-based metafluxomics
In this manuscript we have shown that we can use the labeling

of peptides to derive intracellular metabolic fluxes as effectively as

the amino acid labeling. In combination with the capability of

assigning peptides to different species afforded by metaproteomics,

this technique opens the door to determine fluxes for microbial

communities. However, even in the simplest case of a homogenous

environment, the method presented here is just the first step in

making metafluxomics a reality, and a variety of hurdles need to

overcome first.
13C MFA based on proteogenic amino acids (or peptides, for

that matter) assumes a steady state both for fluxes and labeling

patterns. If not met, the amino acid labeling pattern (and hence

the peptide labeling) represents the labeling accumulation of all

previous flux states, which cannot be deconvoluted using the

method presented here. A possible solution to this would be to

solve for all flux trajectories over time compatible with the current

peptide labeling. The optimization-based method presented here,

however, may not be applicable to this extended problem.

Furthermore, even in the case of steady state for all community

members the nonlinear optimization problem shown in equations

20–31 may be hindered by bad scaling properties for nonlinear

problems. An alternative method to optimization, such as a Monte

Carlo sampling [55] may provide a more scalable alternative.

Extracellular fluxes for each individual species in the commu-

nity are difficult to obtain. However, they are not indispensable:

measurement of total metabolites in the community will provide a

constraint on all combined extracellular fluxes, although of a

weaker nature than having measured fluxes for each species.

Exchange of metabolites among the species in the community will

have to be inferred through the labeling patterns by constraining

flux exchanges compatible with the measured peptide labeling.

This will require allowing multiple labeling sources in the model, a

variation that is already available through the EMU method. A full

determination of possible exchanges would require genome-scale

models for all species in the community. The recently developed

two-scale 13C MFA (2S-13C MFA, submitted) combines 13C

labeling experiment data with genome-scale models and might be

of use in this case.

Peptide labeling distributions for different members of a

microbial community have already been obtained using labeled

feeds [33]. Hence, we do not expect these measurements to be

challenging to obtain. However, most algorithms used for peptide

identification assume a natural abundance of the 13C isotope and

are, therefore, not applicable to our cultures grown on 13C labeled

feed. Nonetheless, recent developments in proteomics have

surmounted the hurdle of peptide mass displacement and allow

us to identify 13C labeled peptides accurately [9,33,34,56]. The

next step involves the development of an automated method to

obtain the MDV as well as the peptide sequence.

Conclusions and summary
The scope of potential applications of microbial communities

in biotechnology is enormous. Microbial communities play key

roles in the biological process on earth ranging from global

carbon cycle to remineralisation of organic material and the

breakdown of harmful substances. There is, therefore, a need to

characterize the metabolic activities of such microbial ecosystems,

and metabolic fluxes are measurable quantities of extreme

importance towards that end. Here, we have introduced a

Figure 7. 13C MFA Flux Map for D. vulgaris and M. maripaludis co-culture grown on lactate using peptide-based method for 10 amino
acids and 20 peptides. The peptide-based method was able to recover the initial FBA flux profile used to derive peptide labeling, showing the
feasibility of this method for a simple community. Lactate uptake flux was set as 1 mM/h; acetate, formate and CO2 were produced at a rate of
0.87 mM/h, 0.28 mM/h and 0.63 mM/h respectively. Best fit for flux is given on top red number for each reaction. Reversible reactions are indicated by
double arrows.
doi:10.1371/journal.pcbi.1003827.g007
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computational method to obtain internal metabolic fluxes from

the peptide labeling distribution following a 13C labeling

experiment, instead of amino acid distributions. The advantage

of this approach is that it is possible to assign peptides to each

species in the microbial community using the peptide sequence

and, simultaneously, infer metabolic fluxes using the peptide

labeling.

We have, theoretically, shown that this method is equivalent to

the standard amino acid-based 13C MFA method. But, in order for

this to be the case, it is necessary to balance the length of the

peptides used: too small and the metaproteomics method may fail

to assign a species, too long and the fluxes may not be recovered.

By using computational data, we have also set an upper bound to

the level of noise allowed in the peptide distribution for the method

to be effective. In order to compare the capacity of amino acid and

peptide labeling information to constrain fluxes, we have defined

the concept of FIC and demonstrated that one can eliminate the

loss of information incurred by using peptide instead of amino acid

labeling through the use of a set of peptides. The size of this set has

been shown to be quite modest (15–25 peptides) compared to the

available peptides in a metaproteomic study (thousands).

We have used peptide-based 13C MFA for a simple microbial

community composed of two species. Amino acid labelling was

inferred from the flux profile of the species present in a microbial

system. We started with known flux distribution in a community of

D. vulgaris and M. maripaludis and then calculated the peptide

labeling in silico. From this peptide labeling it was possible to

successfully recover inter-species metabolite transfer and the flux

distribution for different species in a community.

However, there are still a variety of hurdles to be overcome

before metafluxomics can become a reality that include the lack of

a labeling steady state, the difficulty of measuring individual

extracellular fluxes for each species and possible incomplete model

reconstructions owing to the lack of full genomic coverage in

metagenomic data.

Supporting Information

Figure S1 13C MFA Flux Map for the amino acid (top panel)

and peptide-based (bottom panel) methods for 5 amino acids and

15 peptides. Best fit for flux is given on top red number for each

reaction and confidence interval at the bottom. Cofactors and

common metabolites are indicated by small arrows. Reversible

reactions are indicated by double arrows. As can be observed, the

results for both methods are virtually the same, validating the

peptide-based approach.

(PDF)

Figure S2 Comparison between flux profiles obtained through

amino acid and peptide-based 13C MFA for different peptide

numbers. 10 amino acid long peptides were chosen for the fit and

confidence interval has been estimated for (a) 1 peptide (b) 3

peptides (c) 5 peptides and (d) 15 peptides.

(PDF)

Figure S3 Comparison between flux profiles obtained through

amino acid and peptide-based 13C MFA for different peptide

lengths. 15 peptides were used for the fit and fluxes and confidence

intervals were determined for the cases: (a) 5 amino acids (b) 10

amino acids (c) 15 amino acids and (d) mixture of 5, 10 and 15

amino acids.

(PDF)

Figure S4 Peptide labeling data fit for E. coli rf05 strain for 20

peptides and 10 amino acids. Fits were obtained for experimen-

tally measured peptide MDV’s with following error rates (a) 0.05,

(b) 0.08 and (c) 0.10. Red denotes the MDV for experimentally

measured data, blue columns are the fit. Comparison between flux

profiles measured through 13C MFA using amino acids and

peptides, and fits were obtained for experimentally measured

peptide MDV’s with following error rates (d) 0.05, (e) 0.08 and (f)

0.10. The performance of the peptide-based method deteriorates

strongly for d§ 0:08.

(PDF)

Figure S5 Peptide labeling data fit for the E. coli rf05 strain for 5

peptides and 10 amino acids. We have performed the same

analysis as for figure S4 with following error rates (a) 0.05, (b) 0.08

and (c) 0.10, but using 5 peptides instead of 20. As can be observed

the introduction noise has a much larger effect for this case than

for the 20 peptides case.

(PDF)

Figure S6 Flux Information Content (FIC) for the amino acid

and peptide-based 13C MFA for pgi knockout E. coli strain. The

same trends as for the wild type can be observed, but in this case

the number of required peptides is 15 instead of 20.

(PDF)

Figure S7 Comparison between flux profiles obtained

through the amino acid-based and the peptide-based 13C

FMA for pgi knockout E. coli stain. Peptide based 13C FMA

flux profile obtained for the best fit for peptide lengths of 5

amino acids.

(PDF)

Figure S8 Peptide labeling labelling profile for peptide based

13C MFA obtained for D. vulgaris and M. maripaludis species

in microbial community. Four 10 amino acids peptides

sequences and MDV’s were plotted for (a) DDFEPVNEVK,

(b) NPEITDEENK, (c) GTALSGDDVR and (d) EGGTH-

LAGFK.

(PDF)

Table S1 The following list comprises the reactions included in

peptide and amino acid based 13C MFA methods, along with their

corresponding carbon transitions. Carbon transitions indicate the

fate of each carbon in the reaction.

(PDF)

Table S2 Flux values for amino acids and peptide method for 5

amino acids and 15 peptides.

(PDF)

Table S3 List of Desulfovibrio vulgaris reactions included in

peptide and amino acid based 13C MFA methods, along with their

corresponding carbon transitions.

(PDF)

Table S4 List of Methanococcus maripaludis reactions included

in peptide and amino acid based 13C MFA methods, along with

their corresponding carbon transitions.

(PDF)

Table S5 The Peptide sequences from trypsin digestion of D.
vulgaris and M. maripaludis proteins. The peptide labeling profile

of these sequences have been used to measure flux profiles for D.
vulgaris and M. maripaludis strains in a community using the

peptide-based method.

(PDF)
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