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A caveolin-dependent and PI3K/AKT-independent
role of PTEN in b-catenin transcriptional activity
Alejandro Conde-Perez1,2,3,4,*, Gwendoline Gros1,2,3,4,*, Christine Longvert1,2,3,4,*, Malin Pedersen5,

Valérie Petit1,2,3,4, Zackie Aktary1,2,3,4, Amaya Viros6, Franck Gesbert1,2,3,4, Véronique Delmas1,2,3,4,

Florian Rambow1,2,3,4, Boris C. Bastian7, Andrew D. Campbell8, Sophie Colombo1,2,3,4, Isabel Puig1,2,3,4,

Alfonso Bellacosa9, Owen Sansom8, Richard Marais6, Leon C.L.T. Van Kempen10,11,12 & Lionel Larue1,2,3,4

Loss of the tumour suppressor PTEN is frequent in human melanoma, results in MAPK

activation, suppresses senescence and mediates metastatic behaviour. How PTEN loss

mediates these effects is unknown. Here we show that loss of PTEN in epithelial and

melanocytic cell lines induces the nuclear localization and transcriptional activation of

b-catenin independent of the PI3K–AKT–GSK3b axis. The absence of PTEN leads to caveolin-1

(CAV1)-dependent b-catenin transcriptional modulation in vitro, cooperates with NRASQ61K

to initiate melanomagenesis in vivo and induces efficient metastasis formation associated

with E-cadherin internalization. The CAV1-b–catenin axis is mediated by a feedback loop in

which b-catenin represses transcription of miR-199a-5p and miR-203, which suppress the

levels of CAV1 mRNA in melanoma cells. These data reveal a mechanism by which loss of

PTEN increases CAV1-mediated dissociation of b-catenin from membranous E-cadherin,

which may promote senescence bypass and metastasis.
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M
elanomagenesis is a multistep process including initia-
tion and progression. Mutant BRAF- and NRAS-driven
mitogen-activated protein kinase (MAPK) signalling

promotes proliferation of melanocytes, but this is effectively
blunted by the induction of cellular growth arrest known as
oncogene-induced senescence (OIS)1–3. The cell cycle inhibitor
p16INK4A is critical for this process and its expression is induced
by the histone demethylase JMJD3 (ref. 4). OIS is bypassed in
melanoma via loss of the p16INK4A gene or suppression
of its transcription by nuclear b-catenin2,3,5,6. Hemizygous
phosphatase and tensin homologue (PTEN) loss is frequent in
various cancers. Mutational inactivation and/or deletion of PTEN
is found in about 20% of uncultured primary and metastatic
melanomas7–10 and in 30%–40% of melanoma cell lines9. In
melanoma tissue, loss of PTEN protein expression has been
observed in B15% of the cases7,11, but hemizygous gene loss has
been observed to be occurring more frequently, that is, 34%
(ref. 7). PTEN loss in nevi is rare, that is, 2 out of 39 (ref. 12),
suggesting that PTEN aberrations in melanocytes are unlikely to
contribute to their uncontrolled proliferation. In Dct::Cre mice,
the inactivation of both PTEN alleles does not lead to a difference
in the number of nevi13. Altogether, it is unlikely that altered
PTEN expression directly stimulates abnormal proliferation of
melanocytes, but the exact contribution of PTEN to melanoma
development and progression remains poorly understood.

Epigenetic inactivation or loss of PTEN may occur at different
stages of melanomagenesis, but remains controversial for its
role in senescence. On one hand, the acute loss of PTEN and
APC/FZR1 induces senescence in mouse primary fibroblasts14.
However, the inactivation of PTEN failed to induce a robust
growth arrest in human IMR90 fibroblasts15. Moreover,
in human BRAFV600E-mutated melanocytes, reducing PTEN
expression was sufficient to bypass senescence16. In mice, the
induction of a BRAF mutation after birth induces nevi formation
and melanomas arise harbouring deletion of p16INK4A or
PTEN1,17. These results suggest that the lack of PTEN or
p16INK4A contributes to the bypass of senescence in vivo. PTEN
has different functions depending on its subcellular localization18.
At the membrane it can dephosphorylate phosphatidylinositol
(3,4,5)-triphosphate, thereby regulating AKT phosphorylation
and activity. Among other functions, cytoplasmic PTEN has been
shown to interact with caveolin-1 (CAV1), a major endocytic
protein in mammals19. Such PTEN–CAV1 interaction could
implicate this phosphastase in cell signalling other than the
canonical PI3K–AKT–GSK3b axis.

In this study, we uncovered a signalling mechanism by which
PTEN affects nuclear localization and transcriptional activity of
b-catenin through a reciprocal interplay with CAV1. We
discovered that the lack of PTEN, through CAV1, induces
b-catenin transactivation, leading to the repression of p16INK4A.
The co-occurrence of NRASG183T mutation and PTEN loss was
detected in a fraction of human melanoma biopsies, suggesting a
non-epistatic mechanism. Indeed, in a mouse melanoma model,
hemizygous PTEN loss synergized with NRAS mutation and
led to bypass of senescence. Thus, we have identified a novel
CAV1-dependent pathway by which PTEN affects b-catenin
activity and mediates melanomagenesis.

Results
PTEN affects b-catenin nuclear localization. To explore the
possibility that PTEN induces re-localization of b-catenin from
the plasma membrane to the nucleus, we transiently re-expressed
PTEN in human PTENnull human cells (Hs944T) (Fig. 1a–d).
In non-transfected cells, b-catenin was localized in the nucleus.
On PTEN expression, the level of b-catenin in the nucleus was
significantly diminished, B60% of green fluorescent protein

(GFP)-transfected cells compared with 20% for PTEN
(Supplementary Fig. 1a). In addition, we performed subcellular
fractionation experiments on GFP- and PTEN-transfected
Hs944T cells. Consistent with immunofluorescence assays, the
levels of nuclear b-catenin were lower in PTEN-Hs944T cells
compared with GFP-Hs944T cells (Supplementary Fig. 1b).
Conversely, small interfering RNA (siRNA)-mediated PTEN
knockdown in PTENwt human Lyse melanoma cells, as shown
by western blot analysis (Supplementary Fig. 1c), resulted in
increased translocation of b-catenin into the nucleus from 40%
compared with 2% in control cells (Fig. 1e–h and Supplementary
Fig. 1d). These results mimic the observation from murine
melanocytes lacking PTEN, which exhibit strong nuclear
b-catenin localization (Fig. 1i,j and Supplementary Fig. 1e). One
possible explanation for the relationship between PTEN loss and
nuclear b-catenin localization is that the latter is a consequence of
activation of the PI3K–AKT axis and inhibition of GSK3b. Thus,
we evaluated the PI3K–AKT–GSK3b axis in relationship to the
level of pThr41-Ser45 b-catenin to explain its nuclear localization
(Fig. 1k). Re-expression of PTEN affected the activity of down-
stream effectors of phosphoinositide 3-kinase (PI3K), as indicated
by the reduction of pAKT (Ser473) and pGSK3b (Ser9), but
did not affect the level of total AKT and GSK3b. Even though the
level of pThr41/Ser45 b-catenin was similar, on PTEN re-
expression the total amount of b-catenin was slightly reduced and
the quantity of transcriptionally active form of pb-catenin
(Ser675) was decreased, explaining the lower b-catenin nuclear
staining. This indicated that the observed strong changes in
b-catenin localization could not be explained by minor molecular
changes, if any, in the destruction complex that targets b-catenin
for degradation. These results were confirmed on pharmaco-
logical inhibition of PI3K or GSK3b, using LY294002 and LiCl
treatment, respectively, in cells that were transfected or not with
PTEN. The decrease of pSer675 b-catenin by PTEN transfection
was observed even in the presence of these compounds.
LY294002 treatment efficacy was demonstrated by a decrease in
pAKT (Ser473) and pGSK3b (Ser9) levels. Positive controls for
LiCl treatment included lack of modification of the level of pAKT
Ser473 in the presence of LiCl (certainly owing to the resultant of
two effects, the dephosphorylation of AKT by PTEN and the
induction of phosphorylation of AKT by LiCl20) and induction of
pGSK3b (Ser9) irrespective of the presence of PTEN. Moreover,
we observed a consistent reduction of pb-catenin Ser675 levels
after concomitant re-expression of PTEN and wild-type (WT)
p110 or constitutive active p110 mutant (E545K) (Fig. 1l
and Supplementary Fig. 1f). Furthermore, similar results were
obtained using a different constitutive active form of p110 (p110
CAAX) and a kinase-dead form of p110 (p110 KD) (Fig. 1m).
Lastly, we quantified the amount of cells with positive b-catenin
nuclear staining after transfection with GFP, WT PTEN,
catalytically inert C124S, lipid (G129E) and protein phosphatase
(Y138L) mutants, respectively (Supplementary Fig. 1g).
Altogether, these results suggest that in the absence of PTEN,
pathways other than PI3K–AKT and GSK3b are involved in the
nuclear localization of b-catenin and the accumulation of active
pSer675 b-catenin.

PTEN inhibits the CAV1/b-catenin immunocomplex.
According to ingenuity pathway analysis, PTEN and b-catenin
share 63 interactors (Fig. 2a), including CAV1, AKT, platelet
derived growth factor receptor (PDGFR), early growth response 1
(EGR1), v-erb-b2 erythroblastic leukemia viral oncogene homo-
log 2 (ERBB2), histone deacetylase 3 (HDAC3), enhancer of zeste
homolog 2 (EZH2) and different FOXO proteins (Supplementary
Data 1–3). Among them, CAV1 is found in the sub-membrane
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area and in the cytoplasm and it was already suggested that CAV1
might be a positive regulator of b-catenin in human gastric cancer
cells21. CAV1-scaffolding domain interacts with either PTEN or
b-catenin19,22–24. Thus, we hypothesized that PTEN and b-
catenin could compete for CAV1, subsequently affecting different
signalling outcomes. We first verified that CAV1 and b-catenin
are able to immuno-complex in a reciprocal manner in Rosi

human melanoma and HCT116 human carcinoma cell lines
(Fig. 2b and Supplementary Fig. 2a). Similarly, we confirmed that
endogenous CAV1/PTEN can immune-complex in a reciprocal
fashion in Rosi and HCT116 cells (Fig. 2c and Supplementary
Fig. 2a). In addition, we validated this CAV1/PTEN interaction in
WM852 and WM793 human melanoma cell lines after immune-
precipitation with CAV1 (Supplementary Fig. 2b).
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Figure 1 | PTEN affects b-catenin nuclear localization. (a) Confocal microscopy revealed cells (labelled with arrows) with a heavily laden b-catenin (bcat)

nuclear staining (b), in contrast to nearby PTEN-GFP-positive cells, where b-catenin staining could seldom be observed within the nucleus, arrowheads.

Cells were counterstained with 4,6-diamidino-2-phenylindole (DAPI) (c). Merged is shown (d). Scale bar, 10mm. Immunofluorescence experiments for the

Hs944T cells were performed three times with similar results. (e–h) Human melanoma Lyse cells mutated for NRAS (Q61K), which produce PTEN, were

transfected with siScr (e,f) and siPTEN (g,h). Cells were labelled for b-catenin (e,g) and counter stained with DAPI (f,h). Scale bar, 10 mm.

Immunofluorescence experiments for the Lyse cells were performed two times with similar results. (i,j) Confocal microscopy showing the localization of

b-catenin in Tyr::Cre/�;PTENf/þ ¼ PTENf/þ (i) and Tyr::Cre/�;PTENf/f¼ PTENf/f (j) melanocytes. Note the increase of nuclear b-catenin staining in

PTENf/f cells. Scale bar, 10mm. Immunofluorescence experiments for the murine PTENf/þ and PTENf/f cells were performed four times with similar results.

(k) Immunoblot analysis of PTEN, AKT (total and phosphorylated form Ser473), GSK3b (total and phosphorylated form Ser9), b-catenin (total,

phosphorylated form Thr41/Ser45 and Ser675) and b-actin proteins in Hs944T transfected with either expression vector encoding GFP (CMV::GFP) or

PTEN (CMV::PTEN-GFP). Cells expressing either exogenous GFP or PTEN treated with LY294002 or LiCl for 1 h. It is noteworthy that a higher concentration

of GSK3b antibody reveals a second upper band. Western blot analyses were performed two times for all antibodies with similar outputs. (l) Immunoblot

blot analysis for GFP, PTEN, AKT (total and pSer473), b-catenin pSer675 and b-actin of Hs944T lysates co-transfected with either empty vector GFP or

PTEN and WT or constitutively active p110 E545K mutant. Cells were starved for 2 h with 0.1% serum before lysis. Western blot analyses were performed

two times for all antibodies with similar outputs. (m) Immunoblot blot analysis for PTEN, AKT (total and pSer473), b-catenin pSer675 and b-actin of

Hs944T lysates co-transfected with a constitutive active form of p110 (p110 CAAX) or a kinase-dead form (p110 KD) in the presence of GFP or PTEN.

Western blot analyses were performed three to six times, depending on the antibody with similar outputs.
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Furthermore, using glutathione S-transferase-b (GST-b)–
catenin fusion protein, we precipitated CAV1 on Hs944T cells
transfected with GFP and, to a lesser extent, in cells expressing
exogenous PTEN (Fig. 2d). Expanding on the GST pull-down
assays, co-immunoprecipitation experiments in Hs944T cells
expressing exogenous PTEN reveal that re-expression of PTEN
significantly abrogates b-catenin/CAV1 interactions (Fig. 2e).
In addition, after transfection of Hs944T cells using several
PTEN-GFP constructs (WT, C124S, Y138L and G129E) we
observed that the PTEN/CAV1 interaction is unaffected by the
C124S mutant compared with WT, but highly disturbed by the
Y138L and G129E mutants as revealed after immunoprecipitation

experiments using CAV1 antibody (Supplementary Fig. 2c,d).
As previously stated (Supplementary Fig. 1a), b-catenin is
observed B60% of the time within the nucleus of Hs944T cells.
On overexpression of GFP or CAV1 in Hs944T cells, immuno-
fluorescence analysis revealed nuclear b-catenin staining, similar
to controls (Fig. 2f–k and Supplementary Fig. 1a). Treatment of
the Hs944T cells with LY294002 did not affect the level of
b-catenin in the cytoplasm or in the nucleus when overexpressing
CAV1, confirming that PI3K pathway has limited function in
the nuclear translocation of b-catenin under these conditions
(Supplementary Fig. 2e–j). In murine epithelial CSG cells,
expressing PTEN, CAV1 and b-catenin, the latter is found at
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Figure 2 | PTEN inhibits the CAV1/b-catenin immunocomplex. (a) Interactome of PTEN and b-catenin (BCAT) as determined by the in silico Ingenuity

Pathway Analysis (IPA). The Venn diagram reveals 63 common members. Interaction of CAV1 with b-catenin (BCAT; b) and PTEN (c) in Rosi human

melanoma cells. Extracts from B1.5� 107 cells (corresponding to about 1.5 mg) were immunoprecipitated with control IgG, anti-BCAT, anti-CAV1 or

anti-PTEN antibodies. Immune complexes were resolved by SDS–PAGE and blotted with antibodies to BCAT, CAV1 and PTEN. Total protein input

corresponds to 2% of the total protein used for immunoprecipitation. One-tenth of the IP sample was loaded to detect BCAT following IP with BCAT

antibodies (and similarly for CAV1 and PTEN). This allowed getting a reasonable intensity for the corresponding signals. For the other lanes, the entire IP

samples were loaded. (d) GST pulldown using b-catenin–GST fusion Sepharose beads and whole-cell protein lysates (500 mg) from Hs944T cell

transfection with GFP or PTEN. Pellet and supernatant fractions were immunoblotted for various antibodies. (e) CAV1-BCAT immunocomplex in GFP

transiently transfected Hs944T cells. When transfected with PTEN, the proportion of b-catenin in the immunocomplex is dramatically reduced. Total

protein input is shown. For b–e, experiments were performed three times. (f–k) Immunofluorescence of transiently transfected Hs944T human melanoma

cell line with CMV::GFP and CMV::CAV1-RFP (CAV1) expression vector. b-Catenin staining (f,i), GFP (g), CAV1 (j) and merged (h,k). Scale bar, 25mm.

Immunofluorescence experiments for Hs944T cells were performed three times with similar results. (l–t) Immunofluorescence of mouse carcinoma

submandibular gland (CSG) cells transfected with siRNA directed against either negative control (siScr), PTEN (siPTEN) and CAV1 (siCAV1) stained for

BCAT (l,o,r), respectively. Cells were counterstained with 4,6-diamidino-2-phenylindole (DAPI) (m,p,s). Merge (n,q,t). Scale bar, 25mm for all panels.

Immunofluorescence experiments for the CSG cells were performed two times with similar results.
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cell–cell contacts, in the cytoplasm and in the nucleus, once the
cells form small islets. In these conditions, the reduction of PTEN
leads to a nuclear b-catenin (7.5% to 46%) and the reduction of
CAV1 leads to a recruitment of b-catenin at the cell–cell contacts,
and a reduction of nuclear b-catenin, from 7.5% to 2% (Fig. 2l–t
and Supplementary Fig. 2k). Similar experiments were performed
with murine pancreatic epithelial cells expressing PTEN (KPC1)
or not (KCPTEN2). The reduction of PTEN and CAV1 in KPC1
cells was demonstrated by western blot analysis (Supplementary
Fig. 2a). Concurrently, decreased amount of PTEN led to
increased nuclear b-catenin of cells, from 20% to 50%, whereas
the diminution of CAV1 resulted in an accumulation at the cell–
cell contacts of b-catenin and nuclear exclusion, from 20% to 6%
of cells (Supplementary Fig. 3a,b). As expected, b-catenin is
mainly nuclear in KCPTEN2 cells (Supplementary Fig. 3c,d).
Re-expression of PTEN in KCPTEN2 cells led to an accumulation
of b-catenin at cell–cell contacts and nuclear exclusion from 18%
of PTEN-expressing cells compared with 91% in controls
(Supplementary Fig. 3d). The overexpression of CAV1 in
KCPTEN2 cells did not affect the localization of b-catenin. The
absence of response of b-catenin is certainly due to the already
high level of CAV1 in KCPTEN2 cells. Furthermore, CAV1
overexpression in PTEN-re-expressing cells failed to rescue
b-catenin nuclear exclusion, consistently with immuno-
precipitation experiments where PTEN significantly abrogates
CAV1/b-catenin complex (Fig. 2e and Supplementary Fig. 1a).
Thus, it appears that PTEN affects b-catenin-CAV1 complex and
decreases the level of nuclear b-catenin.

CAV1 regulates the transcriptional activity of b-catenin.
We first assessed whether PTEN and CAV1 expression affects the
transcriptional activity of b-catenin, using the TOP flash reporter
assay in Hs944T cells. TOP flash activity is significantly reduced
in the presence of PTEN and conversely induced with CAV1
(or b-catenin as positive control) (Fig. 3a). Co-expression of
either PTEN and CAV1 or PTEN and BCAT resulted in a
significant decrease in TOP flash activity, restoring basal-like
levels on PTEN and CAV1 expression and, to a lesser extent,
on PTEN and beta-catenin (BCAT) expression. Consistently,
TOP flash activity decreased on CAV1 or b-catenin down-
regulation using appropriate siRNAs (Fig. 3b). In addition, we
observed a similar effect on TOP flash reporter after modulating
the levels of CAV1 and BCAT in a BRAF (BRAFV600E) PTEN-
null cell line (Supplementary Fig. 4a,b). The transcriptional
activity of MITF-M, the master gene of the melanocyte lineage
and a known b-catenin transcriptional target, was induced after
overexpression of CAV1 and BCAT (Supplementary Fig. 4c).
Owing to the fact that b-catenin can also act as a co-transcrip-
tional repressor, we performed similar experiments for p16INK4A.
PTEN overexpression significantly induced p16INK4A luciferase
reporter activity (Fig. 3c). Overexpression of CAV1 or BCAT
significantly reduced p16INK4A luciferase reporter activity,
whereas inverse knockdown significantly increased reporter
activity (Fig. 3c,d). PTEN overexpression completely rescued the
inhibitory effect of BCAT on p16INK4A luciferase reporter
(Fig. 3c). However, under these conditions, PTEN overexpression
failed to rescue the inhibitory effect of CAV1 on p16INK4A luci-
ferase reporter. As expected, PTEN overexpression increased p16
messenger RNA transcript, whereas CAV1 and BCAT reduced
the levels (Fig. 3e). We also observed an increase in p16 mRNA
on co-transfection of PTEN and CAV1 or PTEN and BCAT to
similar levels as PTEN alone. In congruency with prior results,
knockdown of CAV1 or BCAT resulted in an increase of p16
mRNA levels (Fig. 3f). We then wondered whether the levels of
CAV1 could also modulate MYC, another b-catenin target gene.

Indeed, MYC levels were directly affected by altering CAV1
(Supplementary Fig. 4d,e). Finally, in agreement with our in vitro
data, histomolecular analysis of human melanoma biopsies
revealed the existence of PTEN-negative, CAV1-positive and
P16-negative tumour (Fig. 3g). In conclusion, CAV1 acts on the
transcriptional activity of exogenous (TOP) and endogenous
(MITF, MYC and p16INK4A) b-catenin targets.

NRASQ61K and PTEN loss cooperate during melanoma initiation.
The oncogenic form of NRAS (NRASQ61K/R) and the lack of
PTEN are found in B20% and 30% of human melanoma,
respectively, and it has generally been assumed that they are
mutually exclusive10. We found that NRAS mutation and the loss
of PTEN may coexist in human melanoma. A series of 105
human melanoma samples was analysed by comparative genomic
hybridization for PTEN loss and for the presence or the absence
of point mutations affecting NRAS. NRASG183T mutation,
resulting in an amino-acid change Q61K, was found in 16
samples (15%), of which 2 also showed homozygous PTEN loss
(Supplementary Fig. 5a). A second independent series of 101
human melanoma samples was analysed for NRASG183T mutation
and PTEN protein expression. Allele-specific PCR and DNA
sequencing revealed that 14 samples harboured NRASG183T

mutation. Immunohistochemistry analysis showed that 39
samples were negative for PTEN; 3 of these also contained the
NRASG183T mutation (Fig. 4a). In addition, we tested the status of
NRAS and PTEN in human melanoma cell lines. Lyse and Rosi
cells express PTEN, whereas Hs944T and SK29 cells do not; Lyse
and Hs944T cells carry NRASG183T mutation, whereas Rosi and
SK29 cells are WT for NRAS (Supplementary Fig. 5b). Moreover,
we determined the status of PTEN and p16 at the genomic,
transcript and protein level for several human melanoma cell
lines (Supplementary Fig. 5c–e). In conclusion, the presence of
NRAS mutation and PTEN loss is not mutually exclusive in
melanoma.

A mouse melanoma model for these two mutations was
generated. Tyr::NRASQ61K mice were crossed with Tyr::Cre mice
and PTENf/þ mice. We produced the following mice: Tyr::Cre/�;
PTENf/þ (henceforth DPTEN), Tyr::NRASQ61K/�;Tyr::Cre/� (NRAS)
and Tyr::NRASQ61K/�;Tyr::Cre/�;PTENf/þ (NRAS-DPTEN). None
of the DPTEN mice developed melanoma during 2 years of
follow-up observation (Fig. 4b). Half of NRAS mice sponta-
neously developed melanomas with a latency period of 71±16
weeks. NRAS-DPTEN mice spontaneously developed melanomas,
with a higher penetrance (86%) and a shorter latency (27±13
weeks) than the NRAS mice. Most melanomas appeared in the
hairy part of the skin for both genotypes (Fig. 5a,b and
Supplementary Table 1). The tumours consisted of irregularly
pigmented cells with diverse sizes, large nucleoli and positive
S100 immunostaining (Fig. 5c–h). Similar results were obtained
with another mouse melanoma model in which the NRAS
mutation is NRASG12D and the activation of the mutation
occurred at 10 weeks of age in melanocytes, using the CreERt2–
LoxP–tamoxifen system (Supplementary Fig. 6).

To understand the molecular mechanisms underlying the
differences between NRAS and NRAS-DPTEN mouse melanomas
and the role of PTEN in b-catenin nuclear localization, we first
studied the MAPK and PI3K signalling pathways. After
transformation, NRAS-DPTEN melanomas grew faster and larger
than NRAS melanomas (Figs 4c and 5i,j). Western blot analysis
revealed minimal differences in MAPK activity in NRAS versus
NRAS-DPTEN tumours, whereas the status of the PI3K/PTEN/
AKT signalling pathway was significantly different for the two
genotypes (Fig. 6). PTEN was almost absent from NRAS-DPTEN
tumour samples, suggesting that the expression of PTEN from the
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remaining WT allele is inhibited for unknown reasons. The
amount of pAKT (Ser473) and pGSK3b (Ser9) was dramatically
increased in NRAS-DPTEN compared with NRAS; however, most
interestingly, the levels of pS6 remained unaffected. These results
suggest that signalling via mammalian target of rapamycin-

associated proteins was the same in NRAS and NRAS-DPTEN
melanomas.

We proceeded to evaluate the amount of b-catenin and
p16INK4A. In agreement with our results with melanoma cell
lines, the level of pSer33/37-Thr41 b-catenin, targeted for
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GFP, PTEN and/or CAV1 BCAT, and (d) with siSCR, siCAV1 and siBCAT. (a–d) All p16INK4A::luciferase and TOP-FLASH reporter assays were evaluated in

the presence of an internal control (Renilla luciferase). (e,f) p16 mRNA level as measured by quantitative reverse transcriptase–PCR (fold change), following

overexpression of GFP, PTEN and/or CAV1 BCAT, or knockdown of CAV1 and BCAT, with appropriate controls. (g) Eighteen human melanoma tumours

were stained for CAV1, PTEN and p16. PTEN and p16 were absent and CAV1 was present for patient 1. Opposite observation was performed for patient 2.

Stromal and endothelial cells were used as positive control for PTEN and CAV1, respectively. Scale bar, 100 mm for all panels. Error bars represent s.d.

*P-value o0.05, **P-value o0.01 and ***P-value o0.001. Statistical significance was determined by Mann–Whitney test. Each experiment was

performed in eight and three biological triplicates for a–d, e and f respectively.
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proteasomal degradation, is largely unaltered in NRAS-DPTEN
compared with NRAS. Conversely, the amount of total and
pSer675 b-catenin, corresponding to the transcriptionally active
form of b-catenin, is significantly higher in NRAS-DPTEN
compared with NRAS. Consequently, we reproducibly observed
a reduction of p16INK4A protein in NRAS-DPTEN as compared
with NRAS.

Melanoma appearance is associated with proliferation and
bypass of senescence. Before transformation, melanoblasts lacking
PTEN do not grow faster than WT (Supplementary Fig. 7). OIS is
bypassed efficiently in the absence of PTEN. We established

cultures of melanocytes from Tyr::Cre/�; PTEN f/f (Hom),
Tyr::Cre/�; PTENf/þ (Het) and Tyr::Cre/�; PTENþ /þ (WT) mice.
No obvious difference was observed between Het and WT
melanocytes. The initial rates of growth of the Het and Hom
melanocytes in vitro were indistinguishable, confirming that the
absence of PTEN does not induce proliferation before transfor-
mation (Fig. 4d). Cultures of Hom melanocytes divided
continuously and rapidly became immortalized. In contrast, Het
melanocytes in culture stopped expanding within 4 weeks of
explantation and developed a large nucleus and a flattened
morphology, and accumulated melanin, hallmark features of
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represents the DNA sequence of NRAS at codon 61, while the background picture is the corresponding PTEN immunostaining. Arrowheads indicate
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(b) Kaplan–Meier (KM) melanoma-free mice analysis of DPTEN (n¼ 19), NRAS (n¼ 35) and NRAS-DPTEN mice (n¼ 35). The KM curves between

NRAS and NRAS-DPTEN are significantly different (Po10� 5) using the Mantel–Cox test. NRAS¼Tyr::NRASQ61K/�, DPTEN¼Tyr::Cre/�; PTENf/þ and

NRAS-DPTEN¼Tyr::NRASQ61K/�; Tyr::Cre/�; PTENf/þ . The mean number of melanomas per mouse was 1.6 and 2.1 for NRAS and NRAS-DPTEN mice,

respectively, with a P-value of 0.37 (Student’s t-test). (c) Tumour growths were measured and tabulated. The rate of growth of four representative tumours

from NRAS and NRAS-DPTEN were plotted in relation to size during an 88-week interval. NRAS-DPTEN tumours averaged a steeper and earlier growth rate

in comparison with NRAS controls. (d) Melanocytes were established from the skins of Tyr::Cre/�; PTENf/þ and Tyr::Cre/�; PTENf/f pups. Cells were

directly counted every week and the growth curve was plotted as relative number of cells in log2 form (see Delmas et al.32). Each curve corresponds to the

culture established from the back skin of a single pup. Cells with biallelic disruption of the PTEN gene, PTENf/f, bypassed efficiently senescence when

comparing the heterozygous, PTENf/þ . (e) p16 mRNA as measured by quantitative reverse transcriptase–PCR (fold change) transfection in normal human

epithelial melanocyte (NHEM) (top panel) and Lyse human melanoma cell line (bottom panel) with GFP and PTEN expression vectors and with scramble

(siScr) and PTEN (siPTEN) siRNA. Error bars represents.d. *P-value o0.05, **P-value o0.01 and ***P-value o0.001. Statistical significance was

determined by Mann–Whitney test. Experiments were performed in biological triplicates.
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senescence. Melanocyte cell lines could be established from 90%
(9 of 10) of Hom newborn pup skins, but only from 28% (2 of 7)
of their Het littermates, implying that the absence of PTEN from
melanocytes increased the efficiency of immortalization. We
confirmed that by modulating PTEN levels we affected p16INK4A

expression in primary normal human epithelial melanocytes
as well as in transformed Lyse human melanoma cells
(Figs 1i,j and 4e).

The absence of PTEN promotes efficient metastasis formation.
Autopsy of 7 NRAS and 17 NRAS-DPTEN mice carrying mela-
noma revealed the presence of lung metastasis in 1/7 and 8/17
mice, respectively (Supplementary Fig. 8). Molecular analysis of
NRAS and NRAS-DPTEN tumours was performed to evaluate the
level of b-catenin, PTEN, CAV1 and the cell–cell adhesion
molecule and b-catenin interactor, E-cadherin (ECAD). ECAD
can be internalized using caveolae25, and its levels and
localization are affected by interaction with b-catenin26.
Surprisingly, the amount of ECAD mRNA and protein was
higher in the absence of PTEN (Fig. 7a,b). However, in the
absence of PTEN, the amount of ECAD located at the cell–cell
contact was much lower than the amount of cytoplasmic ECAD,
which was dramatically increased (Fig. 7c). Similarly, mRNA and

protein levels of CAV1 and b-catenin (total and pSer675 protein)
were also increased in NRAS-DPTEN tumours compared with
NRAS (Fig. 7a,b). In addition, CAV1 and b-catenin were mostly
delocalized from the membrane in NRAS-DPTEN tumours
(Fig. 7c). Furthermore, we confirmed that PTEN expression
decreases CAV1/BCAT immuno-complex in murine tumour
samples and affects the transcription of known b-catenin targets,
MYC and CCDN1 (Fig. 7d,e).

Lastly, we examined the expression of CAV1 and PTEN in
human melanomas. Fifty human melanoma samples were stained
for PTEN and CAV1 on consecutive slides (Fig. 7d). PTEN and
CAV1 were expressed in 40 and 10 melanomas, respectively.
When present, CAV1 was mainly located at the membrane, but
could also be found in the cytoplasm and seldom in the nucleus.
Interestingly, in 34/50 cases, there is a strong tendency for
low expression of CAV1 and high levels of PTEN. Altogether,
these results show that melanoma samples lacking PTEN and
expressing high level of CAV1 do exist in mouse and human
melanomas.

b-Catenin induces CAV1 through repression of miRs. CAV1 is
regulated by miR-203 in human breast cancer cells and miR-

NRAS

NRAS
ΔPTEN

NRAS 
NRAS

ΔPTEN

*** 

0

2

4

6

K
i-6

7 
+

 c
el

ls
 (

a.
u)

a

b

i

c e g

hfd

j

Figure 5 | NRAS DPTEN melanoma characteristics. (a,b) Dorsal

melanoma appearing in NRAS (a) and NRAS-DPTEN (b) mice (arrow).

Melanoma arose from different part of the body including hairy part, pinnae

and tails/paws (see Supplementary Table 1). (c–f) Haematoxylin and eosin

staining of an NRAS (c,e) and NRAS-DPTEN (d,f) cutaneous melanoma.

(e,f) Higher magnification reveals irregularly shaped pigmented cells with

diverse sizes and large nuclei. (g,h) Positive immunostaining for melanoma

marker S100 in NRAS and NRAS-DPTEN tumours. (i) Positive Ki-67

staining of NRAS and NRAS-DPTEN tumour sections. (j) Graphical

representation of the relative number of Ki-67-positive cells in NRAS and

NRAS-DPTEN tumour sections. The relative number of Ki-67-positive cells

correspond to the ratio of the number of Ki-67þ cells from identical

surface in NRAS or NRAS-DPTEN tumour sections versus the number of

Ki-67þ cells from identical surface in NRAS tumour sections. Statistical

significance was determined by Mann–Whitney test. ***P-value o0.001.

Five hundred cells were assessed from four fields and four independent

experiments for each genotype. Scale bars, 100mm (c,d), 10 mm (e,f),

50mm (g,h) and 10 mm (i).

S6

pS6
(Ser 235/236)

pGSK3-β
(Ser 9)

β-catenin

p16

GSK3-β

β-Actin

PTEN

AKT

pAKT
(Ser 473)

β-Actin

pβ-Catenin
(Ser 33/37 Th41)

pβ-Catenin
(Ser 675)

NRAS-ΔPTENNRAS

40

40

40

40

40

55

55

55

40

40

35

35

40

100

100

100

15

40

ERK

pERK
(Thr202/Tyr204)

CREB

pCREB
(Ser 133)

β-Actin

Figure 6 | Immunoblot analysis of murine melanoma. Immunoblot

analysis of the MAPK and PI3K/AKT pathways reveals differential

regulation of key proteins. Immunoblot analysis of protein lysates from

eight murine uncultured melanoma samples: four from NRAS and four from

NRAS-DPTEN. Western blot analyses were performed between three and

six times, depending on the antibody with similar results.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9093

8 NATURE COMMUNICATIONS | 6:8093 | DOI: 10.1038/ncomms9093 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


199a-5p in lung fibroblasts27–29. A miRnome was performed on
NRAS and NRAS-DPTEN tumours, revealed a decrease in miR-
203 and miR-199a-5p in the absence of PTEN (Fig. 8a and
Supplementary Data 4). We first validated that these two miRs

were able to affect the amount of CAV1 mRNA in the absence
of PTEN. Hs944t human melanoma cells were transfected with
miR-203 and miR-199a-5p mimics, which led to the reduction of
CAV1 mRNA and protein (Fig. 8b,c). Next, we wondered
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whether the reduction of miR expression in the absence of PTEN
was related to the increased activation of b-catenin signalling.
In this respect, we quantified the levels of miR-203 and
miR-199a-5p after modulating b-catenin. Indeed, b-catenin
represses miR-203 and miR-199a-5p transcription. (Fig. 8d).
Such regulation could be direct, as chromatin immunoprecipi-
tation (IP)experiments revealed that b-catenin binds the
promoter region of miR-203. Finally, we showed that b-catenin
controls the level of CAV1 mRNA and protein (Fig. 8e).

Discussion
In this study, we demonstrate the existence of a complex
signalling network involving reciprocal interactions among
PTEN, CAV1 and b-catenin; regulating molecular and cellular
mechanisms that play a critical role in tumour initiation and
progression. PTEN is classically known to inhibit the PI3K/AKT
signalling axis, but here we show that it also remarkably controls
the nuclear levels and transcriptional activity of b-catenin in an
alternative PI3K/AKT way. b-Catenin transcriptional activity
represses p16INK4A transcription, leading to bypass of senescence,

and the putative tumour suppressors mir-203 and mir-199a-5p,
resulting in regulation of CAV1. CAV1 interacts with either
PTEN or b-catenin, modulating the localization and co-
transcriptional activity of b-catenin. Importantly, PTEN loss,
via CAV1 interaction, also leads to the internalization of ECAD,
promoting metastasis. These events occur in epithelial (salivary
and pancreatic) and non-epithelial (melanocyte) cells, and appear
to be independent of the RAS-BRAF context.

Our work identifies a novel mechanism by which a subset of
melanomas can escape OIS and result in aggressive tumours. This
mechanism by which loss of PTEN induces bypass of senescence,
allowing an earlier melanoma initiation with a higher penetrance
after oncogenic NRASQ61K-induced senescence, was modelled in
a mouse model, relevant for human melanomagenesis. In fact,
based on a small melanoma series, it was generally assumed that
NRAS mutations and PTEN loss are mutually exclusive events in
human melanomagenesis; however, we showed that these two
events co-exist in a fraction of human melanomas (5 out of 206
melanoma from 2 independent cohorts), as it was recently
showed in one case30. Moreover, after analysing The Cancer
Genome Atlas (TCGA), we found five melanoma samples with
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PTEN homozygous deletion and carrying NRASQ61K mutations.
Our study was limited to the PTEN loss-mediated bypass of OIS
on the NRASQ61K background, but the PTEN/CAV1/b-catenin/
p16INK4A pathway may hold true in BRAFV600E melanomas as
well (Supplementary Fig. 4a–c). Moreover, in primary human
fibroblasts and melanocytes, PTEN loss inhibits BRAFV600E (or
HRASV12G)-induced senescence15,16. Consequently, the loss of
PTEN results in OIS bypass associated with RAS or RAF.

Bypassing senescence is classically associated with p53/MDM
and Rb/p16INK4A proteins. In our models, oncogenic NRAS with
or without PTEN loss did not affect neither P53, MDM2 nor
MDM4 expression levels (data not shown). This supports a
p53-independent model of senescence in melanoma cells in
the NRASQ61K background, in which b-catenin-regulated
expression of senescence-inducing p16INK4A is directly affected
by the absence of PTEN6,31,32. At this point, it has to be noted
that the role of b-catenin during melanomagenesis remains
controversial33–38.

The role of CAV1 in tumorigenesis is subject of debate39,40;
expression is tissue specific and varies substantially depending on
the stage of the disease41. In melanomagenesis, its function was
only investigated at the level of progression, with controversial
results depending likely on the molecular context39,40. We
demonstrated that CAV1 immuno-complexes with b-catenin
and PTEN in the melanocyte lineage. Moreover, CAV1 has been
associated with accumulation of b-catenin in gastric cancer and
HEK293T cells21,42. We showed that in human melanoma
NRASQ61K PTEN-null cells, p16INK4A is repressed through
CAV1/b-catenin; this interaction is ablated on PTEN re-
expression. Thus, CAV1 would serve as a promoter of tumour
initiation and progression by enhancing b-catenin-related
transcription.

In NRAS-DPTEN murine melanoma tumours, western blot
analysis revealed that the levels of CAV1, b-catenin and ECAD
were higher than in NRAS tumours. Moreover, it appears that
ECAD is more abundant in the cytoplasm of NRAS-DPTEN
melanoma cells than in NRAS cells, and less at the cell–cell
contact (Fig. 7c). ECAD is mainly found at the cell–cell contact
and can be internalized using caveolae25. The reduction of ECAD
at the cell–cell contact is likely a feature of melanoma progression
and may induce a pseudo-epithelial to mesenchymal transition.

Whereas melanoma cell lines clearly demonstrated the causal
relationship between PTEN, CAV1, b-catenin and p16INK4A

expression to robustly bypass senescence, immunohistochemical
studies of melanoma tissue revealed that this mechanism plays a
role in only a fraction of cases (Fig. 7f). In fact, we observed the
expected correlation trend (evaluated as P¼ 0.065, using the
Fisher’s exact test) of CAV1high PTENlow or the inverse CAV1low

PTENhigh in 12 of 50 samples. Other combinations were found in
the remaining samples, indicating a high level of molecular
and clinico-pathological complexity that indicates that other
mechanisms of OIS escape exist in human melanomagenesis.

Thus, although the validity of our model of PTEN/CAV1/
b-catenin-regulated p16INK4A repression is supported by our
findings in cell culture, mouse models and human samples, the
role of PTEN in senescence bypass is intricate and most likely
context dependent. Be as it may, our studies indicate that CAV1
and CAV1-related pathways may be a potential therapeutic
target for melanoma treatment. On the other hand, our findings
predict that PI3K/AKT inhibitors will not block effectively the
mechanism of senescence bypass caused by PTEN loss.

Methods
Cell culture and cell lines. Mouse primary melanocyte cell lines were established
from mice 1–5 days after birth. Mice were rinsed with 70% ethanol and then in
ice-cold PBS. The skin was removed and stored in PBS. Next, the skin was cut into

small pieces and incubated with collagenases type 1 and 4 for 40 min at 37 �C and
5% CO2. Following this incubation, the dermis and epidermis were separated using
forceps and the epidermis was washed in wash buffer (1x Hank’s balanced salt
solution, 1 mM CaCl2, 0.005% DNase, 20% FCS). After washing, it was centrifuged
for 5 min at 1,100 r.p.m. at room temperature. The resulting cell pellet was
resuspended in dissociation buffer (GIBCO) and incubated at 37 �C and 5% CO2

for 10 min in a petri dish. Next, the cells were put through 18- and 20-g needles and
washed in a 15-ml tube with wash buffer for 10 min, allowing for the removal of
grease and hairs. The supernatant was centrifuged for 5 min at 1,100 r.p.m. at room
temperature (RT) and the resulting cell pellet was resuspended in PBS and counted.
The cells were then centrifuged again for 5 min at 1,100 r.p.m. (room temperature)
and plated in tissue-culture dishes in F12 media supplemented with 10% FCS and
200 nM 12-O-tetradecanoylphorbol-13-acetate.

Human melanoma cell lines were obtained from Ruth Halaban (Yale), Sylvie
Robine, Florence Faure and Alain Mauviel (Institut Curie), and were previously
published by the laboratory43–48. Human melanoma cell lines were grown in RPMI
1640 media (GIBCO, 21875-034), supplemented with 10% fetal bovine serum
(GIBCO, 10270-106), 1% penicillin–streptomycin (GIBCO, 15140) and 1%
L-glutamine (GIBCO, 25030). Normal human epidermal melanocytes were
obtained from Promocell, grown and transfected according to the manufacturer’s
instructions (OZ Biosciences).

Plasmid constructs. PTEN-GFP WT, PTEN-C124S-GFP, PTEN-G129E-GFP
and PTEN-Y138L-GFP expression vectors were obtained49. A different WT
pcDNA-PTEN-GFP construct was acquired from Addgene (13039)50. The p110
WT and E545K mutant plasmids were previously described51. pCDNA–b-catenin
was previously described52. The rest of the plasmids were kindly donated by several
individuals, noted in the Acknowledgement section.

Western blotting. Whole-cell lysate was prepared from human melanoma cell
lines using RIPA buffer and whole-tissue lysate was prepared from mouse
melanoma tumour using SDS lysis buffer53. Membranes were probed with
antibodies against ERK (Cell Signaling, 9102), pERK (Thr202/Thr204, Cell
Signaling, 9106), CREB (Cell Signaling, 9192), pCREB (Cell Signaling, 9191S),
PTEN (Cell Signaling, 9559), AKT (Cell Signaling, 2938), pAKT (Ser473, Cell
Signaling 3787), GSK3-b (Santa-Cruz, sc-9166), pGSK3-b (Ser9, Cell Signaling,
9336), S6 (Cell Signaling, 2317), pS6 (Ser235/236) (Cell Signaling, 4857),
b-catenin (Abcam, ab-6302), pb-catenin (Ser675, Cell Signaling, 4176), pb-catenin
(Ser33-37/Thr41, Cell Signaling, 9561), pb-catenin (Thr41/Ser45, Cell Signaling,
9565S), p16 (Santa-Cruz, sc-1661), CAV1 (Cell Signaling, 3238) and b-actin
(Sigma, A5441). All antibodies were used at a dilution of 1/1,000, except b-actin
(1/5,000). Full scans of blots accompanied by the position of the molecular weight
markers are shown in Supplementary Fig. 9.

Immunofluorescence microscopy. Primary murine melanocytes were grown to
near confluence upon which point were counted, 2.5 105 cells were seeded in 18mm
glass cover slips and allowed 24 h to recover prior immunofluorescence analysis.
Similar procedure was followed for CSG, KPC1 and KCPTEN2 cells. Human
Hs944T melanoma cells were transfected with CMV::PTEN-GFP (#1031) and
allowed 48 h to recover before being fixed in 4% paraformaldehyde (PFA) for
20 min at RT. Human or mouse cells were permeabilized with 0.2% v/v PBS/Triton
X-100 for 5 min at RT. Then, cells were washed twice with PBS and blocked with
1% BSA (w/v) and 10% fetal bovine serum in PBS for 20 min at RT. Cells were
incubated with the primary antibody anti-b-catenin (dilution 1/100) at 4 �C
overnight. Alexa 555 anti-rabbit (Sigma) secondary antibody was incubated for
1 h at RT in the dark. Cells were counterstained with 0.5 mg ml� 1 4,6-diamidino-2-
phenylindole to visualize the nucleus.

Determination of the number of melanoblasts. Tyr::Cre/�;PTENf/f, Tyr::Cre/�;
PTENf/þ and Tyr::Cre/�;PTENþ /þ mice were crossed with Dct::LacZ mice54 and
the resulting embryos were collected at various times during pregnancy. Embryos
were stained with 5-bromo-4-chloro-3-indolyl-b-D-galactoside, as previously
described55.

Co-immunoprecipitation. Co-IP experiments were performed as previously
described56. After reaching 100% confluence in 150 mm tissue culture dishes, Rosi
and HCT116 cells were washed two times with cold PBS on ice. After washing, cells
were scraped off of the dishes in 1 ml of IP buffer (10 mM Tris (pH 8), 150 mM
NaCl, 1% (v/v) Triton X-100, 60 mM Octyl b-D-glucopyranoside (Sigma, O8001),
1� protease and phosphatase inhibitors) and were incubated on ice for 30 min.
Next, the lysates were centrifuged at 13,000 r.p.m. for 10 min at 4 �C. Following
centrifugation, the supernatant (extract) was removed and used for IP and the
pellet discarded. Fifty microlitres of the extract was kept for a total cell lysate
(Input). For each IP, 1 ml extract (corresponding to B1.5� 107 (Rosi) and 2� 107

(HCT116) cells, respectively) was used. Extracts were pre-cleared for 2 h at 4 �C
(with rotation) by incubation with 150 ml of 1:1 PBS:protein-G sepharose beads
(GE Healthcare, 17-0618-01). After pre-clearing, the lysates were centrifuged at
10,000 r.p.m. for 10 min at 4 �C. The supernatants were transferred to new
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tubes and pre-incubated (with rotation) with anti-b-catenin (Abcam, ab6302),
anti-CAV1 (Cell Signaling, 3238), anti-PTEN (Cell Signaling, 9559) or control
IgG (Cell Signaling, 2729) antibodies at 4 �C for 3 h (all at 1/50 antibody:extract).
Following pre-incubation, 150 ml PBS:protein G sepharose (2:1) was added to each
antibody-extract mixture and left to rotate at 4 �C overnight.

The next morning, the immune complexes were collected by centrifugation at
14,000 r.p.m. for 10 min at 4 �C. The IP supernatants were removed and the beads
were washed four times with IP buffer, with centrifugation at 10,000 r.p.m. for 10 s
between each wash. The beads were then washed four times with EDTA buffer
(50 mM Tris (pH 8), 150 mM NaCl, 1 mM EDTA, 1% (v/v) Triton X-100).
Following the last wash, the immunoprecipitated proteins were solubilized in SDS
sample buffer and boiled for 10 min. Samples were then resolved by SDS–PAGE.
Trueblot anti-rabbit IgG HRP (18-8816-33, Rockland Immunochemicals) was used
as a secondary antibody for western blotting in Fig. 2b,c and Supplementary Fig. 2a.

Nuclear b-catenin quantification. Quantification of all images was performed
using the ImageJ imaging software. Briefly, using the Threshold function, all images
were equally calibrated to either control GFP or si Scramble. Once a black and
white image was obtained after processing through the Threshold function, a
merge with 4,6-diamidino-2-phenylindole and other fluorescent channels (that is,
GFP or red fluorescent protein) was generated, after which point we manually
counted only the cells that were positive for GFP or red fluorescent protein
(depending on the construct) and displayed a nuclear signal.

Subcellular fractionation. Hs944T cells transfected with complementary DNAs
encoding either GFP or PTEN were separated into nuclear and cytoplasmic
fractions. Cells were lysed with cytoplasmic extraction buffer (10 mM HEPES
pH 7.9, 10 mM KCl, 0.1 mM EDTA, 1.5 mM MgCl2, 1 mM dithiothreitol, 0.2%
Nonidet P-40, 1 mM NaF, 1 mM Na3VO4 and protease inhibitor cocktail), while
rotating on a rocker rotator at 4 �C for 15 min. The cells were then centrifuged at
14,000 r.p.m. at 4 �C for 5 min and the resulting supernatant (cytoplasmic fraction)
was collected. The pellet was resuspended in nuclear extraction buffer (20 mM
HEPES pH7.9, 420 mM NaCl, 0.1 mM EDTA pH8, 1.5 mM MgCl2, 1 mM
dithiothreitol, 0.2%Triton X-100, 1 mM NaF, 1 mM Na3VO4 and protease inhibitor
cocktail) and incubated at room temperature for 10 min, after which it was
centrifuged at 14,000 r.p.m. at 4 �C for 5 min. The resultant supernatant (nuclear
fraction) was removed from the pellet (cytoskeleton) and the purity of each fraction
was assessed by immunoblotting with antibodies to a-tubulin and lamin B1,
respectively.

LiCl and LY294002 treatment. After transfection, cells were treated with 40 mM
LiCl for 1 h (ref. 33). Similarly, cells were treated with the PI3K inhibitor LY294002
(Calbiochem, 440202), with 50 mM before lysis for 1 h (ref. 57).

Pull-down experiments. Five hundred micrograms of whole-cell lysates were
incubated with 20ml of b-catenin–GST beads in PBS supplemented with
Protease inhibitors for 3 h at 4 �C under slight agitation. Beads were then
collected by centrifugation at 10,000 r.p.m. for 10 min at 4 �C and washed
4 times with 10 mM Tris (pH8), 150 mM NaCl, 1%(v/v) Triton X-100,
60 nM Octyl b-D-glucopyranoside (Sigma, O8001). Samples were resolved in
12% SDS–PAGE gel.

Luciferase assay. Cells were transiently transfected in 12-well plates with
Magnetofectamine (OZ Biosciences) following the manufacturer’s specifications.
Briefly, cells were transfected with 1.25 mg of total plasmid DNA. As control cells
were also co-transfected with thymidine kinase::Renilla luciferase58. Luciferase
activity was determined 48 h post transfection using a MicroLumat PLUS LB 96 V
luminometer (Berthold Technologies) and normalized to Renilla activity.
Briefly, cells were transfected with 750 ng of either CMV::CAV1-GFP (#1040),
CMV::PTEN-GFP50 (1031), CMV::b-catenin33 (997) or CMV::GFP (1085) and
350 ng of CDKN2A::Luciferase or MITF::Luciferase32 (778 and 961) and TOP (390)
or FOP (391) constructs. The TOP activity is normalized with FOP. Cells were
co-transfected with thymidine kinase::Renilla luciferase construct as a control.
Luciferase activity was determined 48 h post transfection and normalized to Renilla
luciferase. Statistical analysis was performed using Prism v5.0.

siRNA knockdown. siRNA targeting human Caveolin 1 (39) b-catenin (35) were
purchased from Dharmacon as a SMART pool mix of four sequences and PTEN
(38) from Santa Cruz Biotechnologies as a mix of three sequences. Caveolin-1:
50-GCA AAU ACG UAG ACU CGG A-30 , 50-AUU AAG AGC UUC CUG AUU
G-30 , 50-GCA GUU GUA CCA UGC AUU A-30 and 50-CUA AAC ACC UCA
ACG AUG A-30 . b-Catenin: 50-GAA CGC AGC AGC AGU UUG U-30 , 50-CAG
CUG GCC UGG UUU GAU A-30 , 50-GCA AGU AGC UGA UAU UGA C-30 and
50-GAU CUU AGC UUA UGG CAA U-30 . si Scrambled, with no known human
targets, was purchased from Invitrogen as a mix. Briefly, cells were transfected with
50 pmol of siPTEN, siCAV1, sib-catenin or siScrambled (siScr) and were assayed
for Luciferase activity or protein content 48 h post transfection.

Patients and tumour material. The first set of anonymized human melanoma
samples was genomically profiled59. The current analyses did not contain patient-
specific information and did not need patients’ consent. The second human
melanoma set included specimens (101 paraffin-embedded samples) from 15
primary melanomas (9 superficial spreading melanomas, 3 nodular melanomas,
1 melanoma, 2 lentigo malignant melanomas), 16 lymph node metastases,
65 cutaneous metastasis and 5 visceral metastases from the pathology archive of the
Radboud University Nijmegen Medical Center. Tissues were obtained, stored and
used in an anonymized manner according to the code for proper secondary use
of human tissue that is published by the Dutch Council of the Federation of
Medical Scientific Societies (www.federa.org/codes-conduct) and approved by the
institutional review board of the Radboud University Nijmegen Medical Center.
Pathological and genomic data were obtained from paraffin-embedded tumour
tissue.

Immunohistochemistry of human tissues. Staining for p16 and CAV1 expres-
sion was performed on a Discovery XT Autostainer (Ventana Medical System).
All solutions used for automated immunohistochemistry were from Ventana
Medical System, unless otherwise specified. Tissue section (4 mm) underwent
de-paraffinization with the EZ PREP solution, heat-induced epitope retrieval with
Cell Conditioning solution CC1, pH 8.0, at standard condition (60 min at 95 �C).
Pre-diluted mouse monoclonal anti-p16 (clone E6H4, CINTec Roche) or
polyclonal anti-CAV1 (1/200, 3238, Cell Signalling) diluted in antibody diluent
were incubated for 32 min at 37 �C, then followed by the detection kit (Omnimap
anti-Mouse HRP, Ref 760–4310) and developed with 3,30-Diaminobenzidine
(DAB). A negative control was performed by the omission of the primary antibody.
Slides were counterstained with haematoxylin for 4 min , blued with Bluing
Reagent for 4 min , removed from the autostainer, washed in warm soapy water,
dehydrated through graded alcohols, cleared in xylene and mounted with Per-
mount. Immunostaining for PTEN was performed manually. Following de-waxing
and rehydration through xylene and graded alcohol baths, quenching of endo-
genous peroxidase (6% hydrogen peroxide in PBS, 30 min, RT), a microwave
antigen-retrieval step was performed (TRIS/EDTA pH 9, 10 min at 95 �C and then
cooled for 1 h). Each section was incubated with mouse monoclonal anti-PTEN
antibody (1/100, clone 6H2.1, Dako) overnight at 4 �C. Following three 10-min
washes with PBS, tissues were incubated with powervision poly-HRP-GAM/R/R
IgG (Immunologic) and immunoreactivity visualized with PowerDAB (Immuno-
logic), counterstained with haematoxylin and mounted with Permount. Slides were
scanned with a ScanScope AT Turbo scanner (Aperio, Leica Biosystems) at � 20
magnification. Vascular endothelium served as an internal positive control for
PTEN expression and breast carcinoma as an external positive control.
Cytoplasmic and nuclear PTEN and p16 expression was scored as positive
immunostaining. CAV1 staining included membranous and/or cytoplasmic
expression. Two events occur independently when the % PTEN negative
(36/(101–3)) times the % NRAS mutant (11/(101–3)) equals to the % PTEN
negative and % NRAS mutant (3/101).

Detection of NRAS mutations from human tissue. DNA was extracted from
20-mm-thick paraffin-embedded sections using NucleoSpin Extract II (Macherey-
Nagel, 740590250) according to the manufacturer’s instructions and was amplified
by PCR. Allele-specific PCR of the NRAS gene was performed using a 50 WT PCR
primer (LL1827, 50-CAT ACT GGA TAC AGC TGG AC-30) and a mutated PCR
primer corresponding to the NRASQ61K mutation (LL1828, 50-CAT ACT GGA
TAC AGC TGG GA-30). The reverse primer (LL1800, 50-TGA CTT GCT ATT
ATT GAT GG-30) was used for all the PCR reactions60. The PCR mixture
contained Expand High fidelity buffer, 200 mM of each dNTP (dNTP mix,
Finnzyme, F560XL), 50 pM of each primer, 2.6 U of Expand High fidelity (Roche,
11732650001) and 100 ng of DNA. PCR was performed for 38 cycles of 30 s at
94 �C, 90 s at 56 �C and 30 s at 72 �C. Samples were incubated for 10 min at 94 �C
before the cycles. The NRAS gene in DNA extracted from tumours was also
sequenced following PCR amplification. The primer sequences were 50-GTT ATA
GAT GGT GAA ACC TG-30 (LL1901; forward) and 50-GAG GTT AAT ATC CGC
AAA TGA CTT-30 (LL1918; reverse). The NRAS gene exon 3 sequences were
analysed by direct DNA sequencing according to the Sanger technology.

Transgenic mice and tumour collection. The transgenic Tyr::N-RASQ61K/� mouse
line was described previously3. Floxed PTEN mice were provided by H. Wu
(UCLA, Los Angeles, CA, USA) and were obtained from F. Beermann (EPFL,
Lausanne, Switzerland). The characterization of the PTEN flox mice61,62 and
Tyr::Cre mice55 has been reported previously. All mice were backcrossed onto a
C57BL/6 background for more than ten generations. Mice were maintained in the
specific pathogen-free mouse colony at the Institut Curie, in line with French and
European Union law. Ethical authorization number is P2.LL.029.07. Floxed PTEN
heterozygous mice were crossed with Tyr::Cre and Tyr::NRASQ61K/� to generate
Tyr::NRASQ61K/�;Tyr::Cre; PTENf/þ (NRAS-DPTEN mice), Tyr::NRASQ61K/�;
PTENf/þ (NRAS mice) and Tyr::NRASQ61K/�;PTENf/f (NRAS mice). Mice were
genotyped by PCR using DNA extracted from tails. The mice were evaluated
weekly for tumour appearance and progression. Once tumours were 1 cm across,
the mice were killed and autopsied. Some mice were also killed because of poor
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health. Tumour samples were fixed in 4% PFA and paraffin-embedded for
histological analysis and immunostaining. When sufficient tumour tissue was
available, samples were frozen for subsequent western blot analysis.

Histology and immunostaining of mouse tissues. Mouse melanomas were
collected, rinsed in cold PBS and fixed in 4% PFA at 4 �C O/N. Samples were
dehydrated, embedded in paraffin wax and sectioned into 5-mm-thick transverse
sections. Paraffin-embedded sections were stained with haematoxylin and
eosin, and examined by light microscopy. For immunostaining, sections were
deparaffinized, rinsed in Tween Buffer saline (TBS; Tris 20 mM pH 7,6, NaCl
150 mM and Tween 20 0.1%), boiled for 20 min in 10 mM sodium citrate and
treated overnight at 4 �C in TBST (TBS/0.1% Tween-20) containing 5% normal
goat serum with antibodies against S100 (Dako, Z0311, dilution 1/100). AEC
(Sigma-Aldrich, A6926) was used to reveal bound antibody according to the
manufacturer’s instructions. All sections were counterstained with haematoxylin.
Ki-67 (Nova-Costra, NCL-Ki67p) and gp84 (ECAD antibody) antibodies were both
produced in rabbit.

miRNA overexpression. Cells were transfected with 100 nM of miRNA mimics,
hsa-miR-203 (miRIDIAN microRNA mimic; Dharmacon c-300562-03-0002) and
hsa-miR-199a-5p (miRIDIAN microRNA mimic; Dharmacon c-300533-03-0005).
Forty-eight hours post transfection, cells were lysed for mRNA and protein
contents, and analysed.
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and Cancéropole IdF, and it was supported by the CRUK Manchester Institute
((C5759/A12328)) and the Wellcome Trust (WT100181/Z/12/Z).

Author contributions
A.C.P., B.C.B., O.S., R.M., L.C.L.T.V.K. and L.L. conceived and designed the experiments.
A.C.P., G.G., C.L., M.P., V.P., Z.A., A.V., F.G., V.D., F.R., A.D.C., S.C. and I.P. performed
the experiments. A.C.P., G.G., M.P., V.P., Z.A., A.V., F.G., V.D., F.R., B.C.B., A.D.C., S.C.,
I.P., A.B., O.S., R.M., L.C.L.T.V.K. and L.L. analysed the data. O.S., R.M. and L.L.
contributed reagents/materials/analysis tools. A.C.P., A.B. and L.L. contributed to the
writing of the manuscript. L.L. supervised the study.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Conde-Perez, A. et al. A caveolin-dependent and PI3K/AKT-
independent role of PTEN in b-catenin transcriptional activity. Nat. Commun. 6:8093
doi: 10.1038/ncomms9093 (2015).

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9093

14 NATURE COMMUNICATIONS | 6:8093 | DOI: 10.1038/ncomms9093 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	title_link
	Results
	PTEN affects beta-catenin nuclear localization
	PTEN inhibits the CAV1solbeta-catenin immunocomplex

	Figure™1PTEN affects beta-catenin nuclear localization.(a) Confocal microscopy revealed cells (labelled with arrows) with a heavily laden beta-catenin (bcat) nuclear staining (b), in contrast to nearby PTEN-GFP-positive cells, where beta-catenin staining 
	Figure™2PTEN inhibits the CAV1solbeta-catenin immunocomplex.(a) Interactome of PTEN and beta-catenin (BCAT) as determined by the in silico Ingenuity Pathway Analysis (IPA). The Venn diagram reveals 63 common members. Interaction of CAV1 with beta-catenin 
	CAV1 regulates the transcriptional activity of beta-catenin
	NRASQ61K and PTEN loss cooperate during melanoma initiation

	Figure™3CAV1 regulates the transcriptional activity of beta-catenin.(a) TOP-FLASH activity in Hs944T cells in the presence of GFP, PTEN andsolor CAV1 beta-catenin (BCAT). (b) Similarly, TOP-FLASH activity was measured in the same cells post transfection o
	Figure™4NRASQ61K and PTEN loss cooperate during melanoma initiation.(a) Human melanoma library containing 101 samples was subjected to immunohistochemical analysis for PTEN expression alongside NRAS mutational status. For each case type: the minimized win
	The absence of PTEN promotes efficient metastasis formation
	beta-Catenin induces CAV1 through repression of miRs

	Figure™5NRAS DeltaPTEN melanoma characteristics.(a,b) Dorsal melanoma appearing in NRAS (a) and NRAS-DeltaPTEN (b) mice (arrow). Melanoma arose from different part of the body including hairy part, pinnae and tailssolpaws (see Supplementary Table™1). (c-f
	Figure™6Immunoblot analysis of murine melanoma.Immunoblot analysis of the MAPK and PI3KsolAKT pathways reveals differential regulation of key proteins. Immunoblot analysis of protein lysates from eight murine uncultured melanoma samples: four from NRAS an
	Figure™7PTEN loss induces ECAD internalization and metastasis.(a) mRNA levels of ECAD (top), CAV1 (middle) and BCAT (bottom) in NRAS and NRAS-DeltaPTEN mouse melanoma as measured by quantitative reverse transcriptase-PCR (fc, fold change). Experiments wer
	Discussion
	Figure™8beta-catenin induces CAV1 through miR-199a and miR-203.(a) miR-199a-5p and miR-203 gene expression in NRAS and NRAS-DeltaPTEN mouse tumour samples from miRNA expression arrays. (b) CAV1 mRNA expression post transfection with miRNA mimics for miR-1
	Methods
	Cell culture and cell lines
	Plasmid constructs
	Western blotting
	Immunofluorescence microscopy
	Determination of the number of melanoblasts
	Co-immunoprecipitation
	Nuclear beta-catenin quantification
	Subcellular fractionation
	LiCl and LY294002 treatment
	Pull-down experiments
	Luciferase assay
	siRNA knockdown
	Patients and tumour material
	Immunohistochemistry of human tissues
	Detection of NRAS mutations from human tissue
	Transgenic mice and tumour collection
	Histology and immunostaining of mouse tissues
	miRNA overexpression

	DhomenN.Oncogenic Braf induces melanocyte senescence and melanoma in miceCancer Cell152943032009MichaloglouC.BRAFE600-associated senescence-like cell cycle arrest of human naeviNature4367207242005AckermannJ.Metastasizing melanoma formation caused by expre
	We are grateful to F. Haluksa and R. Halaban (Yale SPORE in Skin Cancer Tissue Resource Core), and S. Robine, F. Faure, A. Mauviel, Ph. Chavrier, L. Cantley, H. Clevers, N. Leslie and R. Kemler for providing human melanoma cell lines and CAV1-RFPsol-GFP, 
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information




