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OPEN

ORIGINAL ARTICLE

Blood metabolite markers of neocortical amyloid-β burden:
discovery and enrichment using candidate proteins
N Voyle1, M Kim2, P Proitsi3, NJ Ashton3,4, AL Baird3,5, C Bazenet3,4, A Hye3,4, S Westwood3,5, R Chung6, M Ward6, GD Rabinovici7,
S Lovestone3,5, G Breen4, C Legido-Quigley2, RJB Dobson4,8, SJ Kiddle1,8 for the Alzheimer’s Disease Neuroimaging Initiative9

We believe this is the first study to investigate associations between blood metabolites and neocortical amyloid burden (NAB) in
the search for a blood-based biomarker for Alzheimer’s disease (AD). Further, we present the first multi-modal analysis of blood
markers in this field. We used blood plasma samples from 91 subjects enrolled in the University of California, San Francisco
Alzheimer’s Disease Research Centre. Non-targeted metabolomic analysis was used to look for associations with NAB using both
single and multiple metabolic feature models. Five metabolic features identified subjects with high NAB, with 72% accuracy.
We were able to putatively identify four metabolites from this panel and improve the model further by adding fibrinogen gamma
chain protein measures (accuracy = 79%). One of the five metabolic features was studied in the Alzheimer’s Disease Neuroimaging
Initiative cohort, but results were inconclusive. If replicated in larger, independent studies, these metabolic features and proteins
could form the basis of a blood test with potential for enrichment of amyloid pathology in anti-amyloid trials.

Translational Psychiatry (2016) 6, e719; doi:10.1038/tp.2015.205; published online 26 January 2016

INTRODUCTION
The most common form of dementia is Alzheimer’s disease (AD), a
neurodegenerative condition that leads to severe cognitive
impairment in later life. Currently, the disease mechanism of AD
is not comprehensively understood, and consequently no
disease-modifying treatments are available. Unfortunately, current
symptomatic treatments only have a moderate effect.1 There is
therefore a desperate need for a disease-modifying treatment
for AD.
A definitive AD diagnosis can only be made post-mortem;

however, neuropathological biomarkers (amyloid-β (Aβ) plaques
and phosphorylated tau tangles) can be used to help differentiate
AD from other dementias during a person’s lifetime. These can be
used in a clinical trial setting to ensure that all recruited
participants have evidence of the target pathology. In a trial of
Bapineuzumab, an anti-amyloid therapeutic, 14% of subjects had
low amyloid. It was therefore unlikely that these subjects would
see any benefit from the treatment. Furthermore, their involvement
in that study would have reduced the statistical power of finding a
treatment effect.2 Many trials now test for elevated neocortical
amyloid burden (NAB) as an eligibility requirement.
Elevated NAB is also becoming an eligibility criterion for some

prevention trials, such as the A4 trial.3 This trial aims to assess
whether anti-amyloid therapeutics can delay early cognitive
decline in asymptomatic individuals, a concept that has developed
as a result of research showing that AD has a long prodromal

stage.4,5 The characteristic disease pathology of AD can begin to
develop up to 20 years before any clinical symptoms.6,7 This
provides a window of time for a potential treatment to stop, or at
least slow down, future progression of the disease.
Neuropathological biomarkers are measured by quantifying the

concentrations of Aβ, tau and phosphorylated tau in the
cerebrospinal fluid (CSF) or via positron emission tomography
(PET) imaging. In addition, metabolites in CSF have been studied
as possible biomarkers for AD and related phenotypes.8 However,
the methods used to capture this information are invasive, require
specialized equipment and are often expensive and hence
impractical on a large scale.
Consequently, there is a high demand for a blood-based

biomarker of AD that would be easier and potentially cheaper to
attain.9 Metabolites are typically smaller than other biological
molecules, and therefore have a greater chance of passing
through a possibly weakened blood–brain barrier.10 This increases
the chance that blood metabolites could serve as a biomarker of
AD. A review of AD biofluid metabolite studies has highlighted
sphingolipid and glutamate metabolism as being altered in
AD, besides the metabolism of molecules with antioxidant
properties.11 In addition, Proitsi et al. used a case–control study
design to discover a set of long-chain cholesteryl esters associated
with AD, whereas other studies have aimed to predict conversion
from mild cognitive impairment (MCI) to AD.12–14 Mapstone
et al.13 discovered a lipid panel from peripheral blood that
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predicted conversion from control status to amnestic MCI or AD
with 90% accuracy. The panel highlighted metabolites involved in
cell membrane integrity and lipids involved in cell signaling, as
also suggested by Whiley et al.15

These studies should now be extended to identify markers of
amyloid pathology. Such markers could then be used to enrich
clinical trials with elevated NAB as an eligibility criterion. Using a
blood test as a filter before a confirmatory lumbar puncture or PET
scan could improve the efficiency of clinical trials by reducing the
cost of recruitment.16

Analogous approaches have already been applied to identify
genetic and protein biomarkers of NAB. A polygenic risk score
trained on AD diagnosis has been shown to associate with CSF Aβ
levels in the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
cohort.17 Similarly, multiple studies have identified potential
blood protein biomarkers of NAB, as reviewed in Voyle et al.18

Of particular interest are replicated markers of NAB including
pancreatic polypeptide (PPY) and fibrinogen gamma chain
(FGG).16,18

This is the first study to investigate associations between blood
metabolites and NAB. Further, we present the first multi-modal
analysis of blood markers in AD biomarker discovery. We consider
whether a blood metabolite signal complements that of
previously discovered blood protein biomarkers of NAB.

MATERIALS AND METHODS
Cohorts
UCSF. Subjects were recruited from those enrolled in the University of
California, San Francisco (UCSF) AD Research Centre. Study information has
been given elsewhere.19,20 The study was approved by the UCSF and
Lawrence Berkeley National Laboratory committees for human research.
All subjects provided written informed consent before participating.

ADNI. ADNI is a longitudinal cohort study aiming to validate the use of
biomarkers in AD clinical trials and diagnosis. Data used in the preparation
of this article were obtained from the ADNI database (adni.loni.usc.edu).
The ADNI was launched in 2003 as a public–private partnership, led by
Principal Investigator Michael W Weiner. The primary goal of ADNI has
been to test whether biological markers and clinical and neuropsycholo-
gical assessment can be combined to measure the progression of MCI and
AD. For information, see www.adni-info.org. ADNI was approved by the
institutional review boards of all participating institutions, and written
informed consent was obtained from all participants.

Metabolomics
UCSF. Blood plasma samples were available for 91 subjects enrolled
in the UCSF AD Research Centre. The ultra performance liquid
chromatography-tandem mass spectrometry (UPLC-MS/MS) method used
in this study has been previously published.15 Twenty microliters of plasma
per subject was required for analysis, with sample treatment being
described elsewhere.15,21 The method primarily detects lipids and has
been shown to measure abundances of over 4500 metabolic features. The
instruments included a Waters ACQUITY UPLC and Xevo Quadrupole
Time-of-flight System (Waters, Milford, CT, USA). The Xevo Quadrupole
Time-of-flight System was operated in both negative and positive ion
modes. Samples were analyzed as one batch in a randomized order,
with pooled plasma quality-control (QC) samples run between every
10 samples.

ADNI. Metabolite data were available for 853 blood serum samples.
Twenty-four subjects had two samples included in the study. Targeted
metabolomics analysis was performed using the AbsoluteIDQ p180 assay
(Biocrates Life Sciences, Innsbruck, Austria) requiring 10 μl of serum per
sample. The samples were run in 11 batches with two pooled QC samples
present in each batch: one run before the samples and one afterward.
More information on the assay, sample treatment and instruments can be
downloaded from the ADNI website (adni.loni.usc.edu/).

Candidate protein assays (UCSF only)
The proteomics approach used in this study has been described
elsewhere.16 In short, a set of candidate proteins was quantified using
single analyte sandwich enzyme-linked immunosorbent assays. In this
study we investigated two proteins that have been replicated as NAB
markers: FGG and PPY.16,18,22,23

NAB measurements
UCSF. Details of PET imaging are given elsewhere.20 All PET scans used
Pittsburgh compound B (11C-PiB) as the radioactive tracer. Scans were
performed using two different scanner types, Biograph TruePoint 6 PET/
computed tomography (N= 9) and Siemens ECAT EXACT HR PET (N= 69),
and were processed using methods described by Lehmann et al.24

We considered two PET outcomes. Two experienced raters who were
blinded to plasma and clinical data rated the scans as either high NAB
or low NAB to give a dichotomous outcome. Second, the 50–70-min
standardized uptake value ratio (SUVR) was used as a continuous
outcome.25

ADNI. Details of PET imaging in ADNI (using both PiB and AV45 markers)
and CSF measurements are detailed elsewhere (www.adni-info.org). PET
end points were dichotomized into high and low NAB at the SUVR
thresholds previously used in ADNI (1.5 for PiB and 1.11 for AV45). CSF
measures of amyloid were taken from the data set ‘UPENNBIOMK2’
available on the ADNI website. The CSF measures were dichotomized at
the previously published threshold (192 pg ml− 1). We combined the three
amyloid end points into a combined amyloid end point to maximize
sample size. A subject was classified as NAB-positive if at least one
measurement indicated high brain amyloid burden, and classified as NAB-
negative otherwise.

Statistical analysis
All statistical analyses were performed in R version 3.1.1.26

Data pre-processing
In UCSF, metabolic feature data were extracted from netCDF files using the
R package ‘XCMS’.27 The package performed filtration and peak identifica-
tion before matching peaks across samples and performing a retention
time correction. Following data extraction, the negative- and positive-
mode data were processed separately using the pipeline detailed in
Supplementary Text 1. ADNI data were also processed using this pipeline.
The processing included outlier removal, normalization through autoscal-
ing and a log base 2 transformation as well as batch correction using the
empirical Bayes method, ComBat.28

After pre-processing, the UCSF data collected in negative and positive
modes were merged.
Protein data were subject to a natural logarithm transformation and

screened for per sample, per protein outliers defined as values outside of 6
s.d.'s of the mean (as above). Each protein was autoscaled.

Single metabolic feature analysis
Single metabolic feature analysis was performed in UCSF for both NAB
outcomes for each of the 2760 metabolic features detected. SUVR was
linearly regressed against each metabolic feature in turn with APOE ε4
status and age included as covariates in the model. The APOE ε4 status is
defined as 1 if a subject’s genotype contained any ε4 alleles and 0
otherwise. Similarly, logistic regression was performed for the dichotomous
outcome. In both cases, a Benjamini–Hochberg correction of the false
discovery rate was applied.

Multiple metabolic feature analysis
Multiple metabolic feature analysis was performed on UCSF data using the
R package ‘caret’.29 Partial least squares (PLS) and PLS discriminant analysis
were used for the continuous and dichotomized outcomes, respectively.
Ideally, we would have split the data into a training and test set; however,
owing to relatively small sample size, this was not possible and a
cross-validation (CV) approach was taken instead. All metabolic features,
age and APOE ε4 status were included in the model building. The number
of components to include was tuned using five-fold CV through the ‘train’
function. Recursive feature elimination was used to select a subset of
variables using five-fold CV. The subset sizes considered varied from 2 to
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99 in steps of 1 and from 100 to the total number of covariates in steps
of 100. In PLS modeling, the lowest root mean squared error (RMSE) was
used to select the best model, whereas for PLS discriminant analysis the
highest accuracy was used. The function ‘pickSizeTolerance’ was then
applied in an attempt to find a smaller subset of variables that maintained
RMSE or accuracy to within 5% of the best model. We also built models
using the 10 most important predictors, the maximum number of
metabolic features we could feasibly identify. Model statistics resulting
from five times CV within recursive feature elimination are presented in
this report.
For comparison, we used five-fold CV to build a model based on age and

APOE ε4 status alone using the ‘train’ function to tune the number of
components as above. This method was used, despite the small number of
predictors, to ensure continuity between modeling techniques. We
checked that the results were consistent with those gained from a linear
regression model. This model is referred to as the demographic-only
model throughout.

Metabolic feature and protein joint analysis
The final multiple metabolic feature models were updated by adding
proteins. Model building followed that of the demographic-only model
detailed above. FGG and PPY were included both together and separately.
We also modeled PPY and FGG (with and without age and APOE ε4 status)
against continuous and dichotomized NAB without metabolic features for
comparison.

Putative metabolite identification
Putative identification of selected metabolic features from statistical
analysis was attempted using the median m/z and their corresponding
retention time, initially using an in-house database and the Human
Metabolome Database.21,30 To enable the confirmation of features from
the database-matching, fragmentation patterns were analyzed using level-
two MS spectra.

Replication in ADNI
We searched the ADNI metabolite data for any of the metabolic features
putatively identified in UCSF. Logistic regression models of the combined
amyloid end point were built using individual metabolites as predictors,
covarying for age and APOE ε4 status.

Code availability
All R codes used to generate this analysis are available from the
corresponding author on request.

RESULTS
Data pre-processing
UCSF. The R package ‘XCMS’ extracted data for 248 metabolic
features from negative ionization mode and 2807 metabolic
features from positive ionization mode. We ran UPLC-MS/MS in
the positive mode on 91 subject samples and 11 pooled QC
samples. In the negative mode, data were available for 90 samples
and 10 pooled QC samples.

ADNI. Data were available for 141 metabolites in 853 samples.
This included 22 pooled QC samples and 24 replicates. As no
documentation of technical replicates was given by ADNI, the first
value was taken. This reduced the sample size to 829, including
the 22 QC samples.
Figure 1 gives an overview of the pre-processing steps. In UCSF,

this processing resulted in 78 subjects with dichotomous NAB and
76 subjects with continuous NAB. We had a total of 2760
metabolic features: 240 from the negative mode and 2520 from
the positive mode. In ADNI, the processing resulted in 531
subjects with the combined amyloid end point and 116 metabolic
features.

Cohort demographics
An overview of demographics for subjects included in the
dichotomous NAB analysis is given in Table 1. The subjects used
here have a wide range of diagnoses that can be grouped into
four categories: AD, fronto-temporal dementia, MCI and healthy
controls. Of these 78 subjects, 2 did not have SUVR available,
reducing the number of subjects in the continuous analysis to 76.
The demographics of this subpopulation are given in
Supplementary Table 1. It is important to note that the population
is relatively balanced in terms of age and scanner type between
high and low NAB groups.
An overview of demographics for subjects included in the ADNI

replication analysis is also shown in Table 1.

Single metabolic feature analysis
For both continuous and dichotomized NAB, no metabolic
features passed a q-value threshold of 0.1. Supplementary
Tables 2 and 3 give full results.

Multiple metabolic feature analysis
Continuous NAB. The multiple metabolite model with the lowest
error was found for 100 predictors, all of which were metabolic
features (CV RMSE= 0.53, CV R2 = 0.10). A tolerance set was
generated to maintain error (that is, CV RMSE) within 5% of the

UCSF Positive mode UCSF Negative mode ADNI
Metabolic features identified

Metabolic features (p) = 
2807
Samples (N) = 91

Metabolic features (p) =
248

Samples (N) = 90

Metabolic features (p)
= 141

Samples (N) = 831

UCSF: Remove any batches with only one sample
ADNI:Remove duplicate samples

p = 2807
N = 90

p = 248
N = 90

p = 141
N = 807

Remove metabolic features that elute before 1 minute or after 35 minutes
p = 2520
N = 90

p = 241
N = 90

N/A

Identify per sample, per metabolic feature outliers and set to missing 

Remove metabolic features not present in at least 80% of samples
p = 2520
N = 90

p = 240
N = 90

p = 117
N = 807

Remove samples with greater than 20% missingness
p = 2520
N = 90

p = 240
N = 90

p = 117
N = 806

Investigate missingness 
Normalize using autoscaling

Test normality of each metabolic feature
Log base 2 transformation

Adjust for batch effects using ComBat
Use probabilistic principal component analysis to ensure QC samples 

cluster
Impute data using 10 nearest neighbors

Merge metabolic features discovered in positive and negative modes
p = 2760
N = 89

N/A

Remove samples with missing APOE genotype
p = 2760
N = 78

N/A

UCSF: Remove samples with missing continuous NAB from continuous NAB 
analysis

ADNI: Remove samples with no amyloid measurement 
p = 2760
N = 76

p = 117
N = 531

Figure 1. Overview of pre-processing steps affecting the number of
metabolic features and samples.
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value achieved by the optimal model (0.53). The reduced model
contained 17 of these metabolic features (CV RMSE= 0.55, CV
R2 = 0.07).
The 10 predictor models contained only one component (CV

RMSE= 0.56, CV R2 = 0.05). Cross-validated model statistics are
given in Table 2, illustrating that the models including metabolic
features do not outperform age and APOE in this training data. For
information on the metabolic features included in the final models
see Table 3.
Addition of the proteins FGG and PPY to the 17-metabolic-

feature model increased cross-validated R2 to 0.57, explaining
more variation in NAB than metabolic features or proteins alone
(R2 = 0.07 and 0.21, respectively).

Dichotomized NAB. The best model and tolerance set model
were the same, both containing five-metabolic-feature predictors
(CV accuracy = 0.72, CV sensitivity = 0.65, CV specificity = 0.76).

Model statistics for the final models are given in Table 2. We see
an improved accuracy of 72% compared with age and APOE alone
at 58%. For information on the five metabolic features included in
the final model see Table 3.
The addition of the protein FGG to the five-metabolic-feature

model increased accuracy to 79%, with sensitivity and specificity
both above 70% (71% and 84%, respectively). The two
protein models (FGG and PPY only) gave an identical accuracy
to the five-metabolic-feature model at 72%, driven by a high
specificity (93%).

Putative metabolite identification. We aimed to putatively identify
the five metabolic features that were included in the final model
of dichotomized NAB (Figure 2). We were able to identify four of
these five metabolic features. No suitable surrogate metabolic
feature was available for the unidentified metabolite.

Table 1. Cohort demographics

UCSF Total (N= 78) Low NAB (N= 48) High NAB (N=30) P-value

Median NAB SUVR (IQR)a 1.3 (0.9) 1.2 (0.1) 2.3 (0.4) —

Plasma sample median days in storage 1354.5 (560.8) 1400 (432.8) 1247 (835.3) 0.435
Median number of days' difference between sample
collection and scan (IQR)

18.5 (69.8) 18.5 (62.3) 16 (101.5) 0.963

Median age (IQR) 65.5 (10.7) 65.8 (9.1) 63.1 (12.7) 0.472
Median MMSE (IQR) 25.5 (6.0) 27 (4.3) 22.5 (9.8) o0.001

Scanner type (%)
Biograph 9 (11.5) 6 (12.5) 3 (10.0) 40.999
Siemens 69 (88.5) 42 (87.5) 27 (90.0)

Gender (%)
Female 32 (41.0) 18 (37.5) 14 (46.7) 0.482
Male 46 (59.0) 30 (62.5) 16 (53.3)

APOE ε4 status (%)
0 57 (73.1) 38 (81.2) 18 (60.0) 0.065
1 21 (26.9) 10 (18.8) 12 (40.0)

Diagnosis (%)
AD 24 (30.8) 2 (4.2) 22 (73.3) o0.001
FTD 48 (61.5) 42 (87.5) 6 (20.0)
HC 4 (5.1) 3 (6.3) 1 (3.3)
MCI 2 (2.6) 1 (2.1) 1 (3.3)

ADNI N= 531 N= 265 N=266

Median age (IQR) 75.1 (8.70) 75.8 (8.60) 74.3 (8.78) 0.497

Gender (%)
Female 213 (40.1) 110 (41.5) 103 (38.7) 0.536
Male 318 (59.9) 155 (58.5) 163 (61.3)

Median years in education (IQR) 16 (4) 16 (4) 16 (4) 0.505

APOE ε4 status (%)
0 279 (52.5) 115 (43.4) 164 (61.7) o0.001
1 252 (47.5) 150 (56.6) 102 (38.3)

Median MMSE (IQR) 27 (5) 26 (6.75) 28 (4) 0.001

Diagnosis (%)
Other 88 (16.6) 36 (13.6) 52 (19.5) o0.001
Dementia 157 (29.5) 101 (38.1) 56 (21.0)
MCI 172 (32.5) 80 (30.2) 92 (34.6)
HC 114 (21.5) 48 (18.1) 66 (24.8)

Abbreviations: AD, Alzheimer’s disease; ADNI, Alzheimer’s disease neuroimaging initiative; FTD, fronto-temporal dementia; HC, healthy control; IQR,
interquartile range; MCI, mild cognitive impairment; MMSE, mini mental state exam; NAB, neocortical amyloid burden; SUVR, standardized uptake value ratio;
UCSF, University of California, San Francisco. aThis is based on those subjects with SUVR available (N= 76; low NAB N= 48; high NAB N= 28). Kruskal–Wallis Χ2

was used to test between high and low groups for continuous demographic variables. Fisher’s exact was used to test between high and low groups for
categorical demographic variables.
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One of the four metabolic features was discovered in negative-
mode UPLC-MS/MS (median m/z= 775.68) and has been identified
as a phosphatidylethanolamine (PE 39:7). The remaining metabolic
features were discovered in the positive mode. The metabolic
feature with median m/z= 647.59 and an isotope (median
m/z= 648.59) are likely to be anandamide (linoleoyl ethanolamide
(2M+H)).31 As expected, these isotopes are highly correlated
(Pearson’s correlation coefficient = 0.966). Fragmentation patterns
of the metabolic feature with the median m/z= 778.63 suggest a
phosphatidylcholine (PCaa 36:6).

Replication in ADNI. One of the four putatively identified
metabolites from UCSF was found in the ADNI data: PCaa 36:6.

In the logistic regression model of the combined amyloid end
point, PCaa 36:6 had an estimate of − 0.729 (P= 0.066).

DISCUSSION
To the best of our knowledge, this is the first study to investigate
associations between blood metabolites and amyloid burden in
the brain. We have used non-targeted metabolomics to predict
NAB in subjects from the UCSF AD research center. We also
present the first analysis to combine protein and metabolite data
in the search for a biomarker for AD.
We found a panel of five metabolic features that predicted

amyloid positivity with an accuracy of 72%. If the model specificity
(76%) seen here is maintained in a replication study, it could be

Table 2. Multiple metabolic feature analysis

Continuous NAB models R2 RMSE

Tolerance set (17 metabolic features) 0.07 0.55
10 Metabolic features 0.05 0.56
Age and APOE status 0.12 0.55
Tolerance set (17 metabolic features) with FGG 0.57 0.37
Tolerance set (17 metabolic features) with PPY 0.57 0.38
Tolerance set (17 metabolic features) with FGG and PPY 0.57 0.37
FGG and PPY 0.21 0.49
FGG with APOE status and age 0.09 0.53
PPY with APOE status and age 0.01 0.54
FGG and PPY with APOE status and age 0.08 0.52

Dichotomized NAB models Accuracy Sensitivity Specificity

Five metabolic features 0.72 0.65 0.76
Age and APOE status 0.58 0.10 0.88
Tolerance set (five metabolic features) with FGG 0.79 0.71 0.84
Tolerance set (five metabolic features) with PPY 0.75 0.58 0.86
Tolerance set (five metabolic features) with FGG and PPY 0.78 0.65 0.89
FGG and PPY 0.72 0.43 0.93
FGG with APOE status and age 0.70 0.43 0.90
PPY with APOE status and age 0.58 0.26 0.83
FGG and PPY with APOE status and age 0.65 0.39 0.86

Abbreviations: FGG, fibrinogen gamma chain; NAB, neocortical amyloid burden; PPY, pancreatic polypeptide; RMSE, root mean square error. Table shows cross-
validated model statistics for continuous NAB.

Table 3. Metabolic features included in the multiple metabolic feature models

Continuous NAB tolerance set model Continuous NAB 10 predictor model Dichotomized NAB model

Mode Median m/z Median retention
time (min)

Mode Median m/z Median retention
time (min)

Mode Median m/z Median retention
time (min)

Positive 184.10 2.85 Positive 184.10 2.85 Positivea 647.59 10.69
Positive 370.41 11.51 Positive 370.41 11.51 Positivea 648.59 10.69
Positive 565.64 18.24 Positive 565.64 18.24 Negativea 775.68 16.38
Positive 700.62 17.09 Positive 700.62 17.09 Positivea 778.63 14.94
Positive 718.65 17.20 Positive 718.65 17.20 Negative 829.66 16.52
Negative 726.62 18.54 Negative 774.62 18.38
Positive 755.64 13.93 Negativea 775.68 16.38
Negative 774.62 18.38 Negative 775.63 18.38
Negativea 775.68 16.38 Positive 776.66 18.53
Negative 775.63 18.38 Negative 829.66 16.52
Positive 776.66 18.53
Positivea 778.63 14.94
Positive 784.68 16.19
Positive 791.68 16.85
Negative 829.66 16.52
Positive 903.81 21.38
Positive 903.86 29.42

Abbreviation: NAB, neocortical amyloid burden. aIdentified metabolic feature.

Blood metabolite markers of neocortical amyloid burden
N Voyle et al

5

Translational Psychiatry (2016), 1 – 8



useful in a screening setting where a large proportion of subjects
would have high amyloid burden. As the metabolite panel
correctly identified subjects with low amyloid levels, 76% of the
time it could be useful in reducing the number of patients with
low amyloid burden unnecessarily subjected to further proce-
dures. Interestingly, no metabolic feature model retained age or
APOE ε4 status. This population appeared relatively balanced with
respect to these two variables, possibly accounting for the lack of
inclusion. Alternatively, effects of age and APOE, which are well
known to be associated with amyloid burden, could be accounted
for in surrogate metabolic feature variables.6,7 Analysis of single
metabolic features gave no significant results. However, low
statistical power in the current study means that this approach
should not be ruled out in further study of larger cohorts.
We were able to putatively identify four of the five metabolic

features included in the model of dichotomized NAB. Of those
identified, one was a phosphatidylcholine compound (PCaa 36:6).
PCs are a group of compounds previously implicated in AD by
Whiley et al. and others.12,15 In particular, PCaa 36:6 was included
in the 10-lipid panel suggested by Mapstone et al. to predict
conversion to amnestic MCI or AD with 90% accuracy. The
association is in the opposite direction to that seen here, which
could be explained by differences in disease stage between the
cohorts. PCs are phospholipids that form a substantial component
of biological membranes, and in this study show increased
abundance in subjects with high NAB. Chung et al. state that PCs
improve memory in mouse models, corresponding with the
direction of association seen by Mapstone et al.13 However, a
Cochrane review has surmised that there is not sufficient evidence
to extend this conclusion to humans.33

We were able to test associations of PCaa 36:6 in the ADNI
cohort. We saw a direction of association concurrent with that
seen by Mapstone et al. but opposite to that seen in the UCSF
cohort.32 Subjects in the ADNI cohort are diagnostically more
similar to those used by Mapstone et al., which could account for
this similarity. Further, as we could only test the one metabolite, it
is possible that this discrepancy is because we could not include
the other four metabolites. ADNI is currently the only other cohort
that has both metabolite and amyloid data available, and
consequently this is the maximum extent of replication we can
perform. It is essential that further attempts at replication are
made in larger, independent studies.
We were also able to identify a PE (39:7). PEs are also a subtype

of phospholipids that can be found in biological membranes.
Interestingly, in humans they are largely found in tissues of
the central nervous system and when methylated yield
phosphatidylcholines.34 PEs are also implicated in prion disease,
where they cause aggregation of the prion protein.35 In this study
PE 39:7 was reduced in subjects with high NAB. PEs are also
substrates for the synthesis of the final metabolic feature we were
able to identify: anandamide.36 Anandamide is an endogenous
cannabinoid neurotransmitter that, on connection with receptors
in the cell membrane, reduces the release of other neurotrans-
mitters in the brain.37 Anandamide is fat soluble, allowing it to
pass through the blood–brain barrier and is made in areas of the
brain important in memory. It is hypothesized that anandamide is
involved in the creation and deletion of short-term connections
between nerve cells.38 In support of this theory, the presence of
anandamide has been shown to impair memory in rats.38 In this
study anandamide is reduced in subjects with high NAB. This

Figure 2. Boxplots showing metabolic feature levels between high and low neocortical amyloid burden (NAB) groups for the five metabolic
features included in the final model of dichotomized NAB. Student’s t-test was used to generate a P-value.
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supports findings by Jung et al.39 who see an Aβ-dependent
association of anandamide with cognitive decline in samples of
brain tissue.
This study shows for the first time that the addition of candidate

proteins (FGG and PPY) to metabolic feature models improves
results. These results are promising and warrant further study
while reinforcing the idea that a multi-modal approach may be
more effective in AD biomarker discovery than single modality
approaches.
Although the results we present here are interesting, and we

are reassured by the fact that the findings make biological sense,
this study does have limitations—in particular, a lack of test data
and the difference of direction of association for PCaa 36:6 in
ADNI. Without a full independent test set it is likely that model
statistics will be inflated, and therefore the results should be
interpreted cautiously. Our preference would have been to split
the data into a training and test set; however, the relatively small
sample size made this suggestion infeasible. Instead, we choose to
use a five-fold CV approach in this study. It is essential to validate
this work in independent cohorts of a larger size, for example, in
an asymptomatic cohort with high amyloid levels, to reflect the
populations eligible for trials such as the A4 trial.3 A further issue
caused by small sample size is a lack of statistical power. This
could be causing the substantial differences in R2 seen in the
continuous NAB analysis and provides further rationale for this
work to be replicated in larger cohorts.
A further limitation of this study is the confounding factor of

diagnosis: the majority of subjects with high NAB have AD,
whereas the majority of subjects with low NAB are diagnosed with
fronto-temporal dementia. It is therefore impossible to tell
whether the markers we identify here differentiate between high
and low NAB or AD and fronto-temporal dementia. Both
applications are important and interesting; however, it is vital
that we aim to understand this confounding in future studies
perhaps through similar analysis in an AD-only cohort.
In further research, targeted metabolite analysis would be

beneficial. With an increased annotation, the biological under-
standing of any findings would grow, potentially deepening our
knowledge of the disease mechanism of AD. Metabolite
identification using the current methods is time-consuming, often
inconclusive and can only be confirmed when the pure standard
compounds are available. Further, the presence of annotated data
would enable pathway analysis and more ready replication of
findings. The data available in ADNI begin to work toward this.

CONCLUSION
This study used metabolomic information to predict NAB in
subjects from the UCSF AD Research Centre. Five metabolic
features identified subjects with high NAB with 72% accuracy.
We were able to identify four metabolic features from this panel
(PCaa 36:6, PE 39:7 and Anandamide and an isotope) and improve
the model further with the addition of FGG protein measures
(accuracy = 79%). If replicated in large, independent studies, these
metabolic features and proteins could form the basis of a
blood test with potential for enrichment of amyloid pathology
in anti-amyloid trials.
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