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Abstract

Functional linear models are important tools for studying the relationship between

functional response and covariates. However, if subjects come from an inhomogeneous

population that demonstrates different linear relationship between the response and

covariates among different subpopulations/clusters, a single functional linear model is

no longer adequate for the data. A new class of mixtures of functional linear models

for the analysis of heterogeneous functional data is introduced. Identifiability is estab-

lished for the proposed class of mixture models under mild conditions. The proposed

estimation procedures combine the ideas of local kernel regression, functional princi-

pal component analysis and EM algorithm. A generalized likelihood ratio test based

on a conditional bootstrap is given as to whether the regression coefficient functions

are constant. A Monte Carlo simulation study is conducted to examine the finite

sample performance of the new methodology. Finally, the analysis of CO2-GDP data

reveals the dynamic patterns of relationship between CO2 and GDP among different

countries.

Keywords: Mixtures of functional linear regressions; Identifiability; EM-type al-

gorithm; Kernel regression; Functional principal component analysis; Conditional

bootstrap; Hypothesis test.
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1. Introduction

The observations of functional data are functions defined over some set T . The

last two decades have seen tremendous advances in functional data analysis. Ramsay

and Silverman (2002, 2005) offer an excellent introduction to functional data anal-

ysis. Ferraty and Vieu (2006) gives a detailed account of nonparametric methods

for functional data. Horváth and Kokoszka (2012) focuses on statistical inference

for functional data, particulary on hypothesis tests in various functional data set-

tings. Ferraty and Romain (2011) contains a comprehensive and up-to-date review

on a broad range of topics in functional data analysis. Bongiorno et al. (2014) brings

in the recent advances in functional data analysis and related areas. Bosq (2000)

and Bosq and Blanke (2007) lay the mathematical foundations for functional data

analysis.

In regression analysis for functional data, either the response or covariates, or both

can be functions. Functional linear models (FLMs) (Ramsay and Silverman, 2005) are

useful for modeling the linear relationship between a scalar response and functional

covariates. However, FLMs fail for nonlinear regression functions, and nonparametric

techniques have been employed in the literature. Ferraty et al. (2013) introduces the

functional projection pursuit regression. Chen et al. (2011) studies single and multiple

index functional regression models with nonparametric link functions. Kudraszow

and Vieu (2013) proposes a kNN generalized regression estimator for the regression

function and proves its uniform consistency. When both multivariate and functional

covariates are present, semi-functional partial linear regression models can be used

(Aneiros-Pérez and Vieu, 2006).

When both the response and covariates are functions, we can use a specific class

of FLMs, called concurrent FLMs:

y(t) = X(t)Tβ(t) + ε(t), t ∈ T, (1.1)

where y(t) is a univariate response process, X(t) a p-dimensional covariate process,
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β(t) the unknown smooth regression coefficient function, and ε(t) a zero mean er-

ror process that is independent of X(t). The time set T is typically assumed to be

a closed bounded interval. In the concurrent model (1.1), the functional response

y(t) depends on the functional covariates X(t) in a point-wise manner. This type of

FLMs has drawn an increasing attention recently in the functional and longitudinal

data analysis. Hoover et al. (1998) studies the estimation of the regression coefficient

functions using the smoothing spline and the local polynomial regression. Fan and

Zhang (2000) proposes a two-step kernel smoothing procedure for the data collected

at the same scheduled time points for each subject. Eubank et al. (2004) developes

Bayesian prediction intervals via the smoothing spline for the coefficient curves. Yao

et al. (2005) studies a special case of the model (1.1), the mean functional model,

for the irregular and sparse longitudinal data. To study the possible nonlinear rela-

tionship rather than model (1.1), Ferraty et al. (2012) takes a fully nonparametric

approach.

The FLMs are useful for the functional data when all subjects obey the same

linear relationship between the response and covariates. However, in some applica-

tions, the subjects might come from an inhomogeneous population which consists of

several homogenous subpopulations/clusters, but within each subpopulation/cluster

the concurrent linear model still holds. For this type of applications, a single FLM

(1.1) is no longer adequate for modeling the functional data. This motivates us to

extend the FLM (1.1) to heterogeneous functional data and propose a new class of

functional regression models, called mixtures of FLMs. We will explain in more detail

the new model in the next section.

The motivation for our new model also comes from the analysis of a CO2-GDP

dataset. The CO2-GDP dataset contains two related variables for 175 countries for

the years 1980-2005, the CO2 emissions per capita and the GDP per capita. It is of

our interest to model how the CO2 emissions level depends on the GDP. Figure 1(a)

depicts the CO2 emission curves of the 175 countries. Figure 1(b) shows a scatter
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plot of the cross-sectional subset of the data for the year 2005, along with two fit-

ted regression lines, which demonstrates two different economic development paths

among 175 countries. The slope for each subgroup gives the average associated incre-

ment of CO2 emissions per capita given an unit increment in GDP per capita (Huang

and Yao, 2012). Most developed countries are from the lower component which has a

smaller slope, and the representatives include the United States, the United Kingdom,

Canada, Australia, etc. Representative countries from the top component, which has

a bigger slope, include Kuwait, Saudi Arabia, Qatar, etc. For the original functional

data, it is tempting to fit a two-component mixture of linear regressions to the cross-

sectional subset of each year, and check whether the slopes of two components vary

over time. However, this naive fitting-one-mixture-a-year procedure suffers serious

drawbacks. First, the naive procedure can not ensure a consistent labeling for each

country across different years. Second, the slope estimates might change rapidly from

year to year, since all slopes are estimated separately for different years. Third, it

neglects any possible within-subject correlations across years for each country. Thus,

a novel estimation procedure needs to be developed for the analysis of the functional

CO2-GDP data to incorporate the information across different years, which is the

main purpose of this paper. Our analysis of CO2-GDP data is an application of

functional data modeling in the study of climate change. Functional data analysis

has found a broad range of applications, such as economics, biomedicine, geology,

environmetrics, paleoclimatology, etc. For example, a nonparametric functional re-

gression model is applied to analyze and forecast the maximum ozone concentration

(Aneiros-Pérez et al., 2004), bivariate splines are employed to study the ozone con-

centration forecasting (Ettinger et al., 2012). Both applications have a real response

and functional covariates.

In this article, we propose a mixture of FLMs for heterogeneous functional data.

The regression coefficients and covariances for each component are assumed to be

smooth functions of t. We first establish the identifiability result for the proposed
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Figure 1: (a) Observed CO2 emission trajectories of 175 countries; (b) Scatter plot of CO2-GDP
sub-dataset of year 2005 with two fitted regression lines. y: CO2 emission per capita; x: GDP per
capita.

mixture model under mild conditions. To the best of our knowledge, this is the first

identifiability result for mixtures of FLMs so far. We next develop an estimation

procedure for the regression coefficients and covariance functions by combining the

techniques of the kernel regression, the functional principal component analysis, and

the EM algorithm. To choose the number of components for the mixture of FLMs

based on the traditionally used information criteria, such as BIC and AIC, we propose

an effective degree of freedom for both nonparametric regression coefficients and non-

parametric covariance functions by adapting the idea of Fan et al. (2001). The Wilk’s

type of phenomenon (Fan et al., 2001) is also investigated for the model inference, and

a conditional bootstrap method is proposed for the standard error estimation and the

hypothesis testing. Finally, we examine the performance of the proposed estimation

procedure and the bootstrap method empirically via a Monte Carlo simulation study

and an application of the CO2-GDP data.

The rest of the paper is organized as follows. In Section 2, we introduce the

mixture of functional linear models and prove its identifiability. In addition, we

develop an estimation procedure by combining the techniques of kernel regression,

functional principal component analysis, and EM algorithm. Model selection and the
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inference are studied in Section 3. Simulation results and a real data application

are presented in Section 4. In Section 5, we provide some concluding remarks and

discussions. Technical proofs are given in the Appendix.

2. Mixtures of Functional Linear Models

2.1. Model Specification and Identifiability

In this section we begin with the formulation of the mixture of FLMs. Let C be

a latent class variable with a discrete distribution P (C = c) = πc, for c = 1, 2, · · · , C.

We assume that the number of components C is known for the time being, and

will discuss how to select C adaptively in the next section. Conditioning on C = c,

{y(t), t ∈ T} follows a functional linear model

y(t)|C=c = X(t)Tβc(t) + εc(t), (2.1)

where X(t) is a p-dimensional random covariate process, βc(t) is an unknown smooth

regression coefficient function for the cth component, and εc(t) is a zero mean Gaus-

sian process that is independent of X(t). We further assume that the error process

εc(t) consists of two parts, a trajectory effect ζc(t) and a measurement error effect

e(t):

εc(t) = ζc(t) + e(t).

The trajectory process ζc(t) is independent of e(t) and has a covariance function

Γc(s, t) = Cov{ζc(s), ζc(t)}, which is a positive definite smooth function of s and t;

and the measurement error e(t) is an uncorrelated process with a constant variance

function σ2(t) ≡ σ2. The unconditional model of {y(t) : t ∈ T}, without knowing the

latent variable C, is referred to as the mixture of functional linear models.

When there are no real covariates in the data, and the error processes are Gaus-

sian, the mixture model (2.1) reduces to mixtures of Gaussian processes, which are

also known as functional clustering models (James and Sugar, 2003; Luan and Li,

2003; Heard et al., 2006; Ma and Zhong, 2008). Huang et al. (2014) imposes smooth
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structures for both mean and covariance functions in the mixture of Gaussian pro-

cesses, and developes estimation procedures based on the kernel regression. For the

functional data with real covariates, Yao et al. (2011) proposes a mixture of non-

concurrent FLMs. Lu and Song (2012) studies a mixture of varying coefficient models

for the longitudinal data analysis.

Identifiability is of fundamental importance for traditional parametric mixture

models, since the parameter estimation and the inference must be based on identifiable

models. For a classical finite mixture of parametric models, the identifiability issue

is studied in Titterington et al. (1985). Next, we will first give a formal definition

of the identifiability for mixtures of FLMs and then prove that the mixture of FLMs

is identifiable under mild conditions. To best of our knowledge, this is the first

identifiability result for mixtures of FLMs so far.

Definition 1. The mixture of functional linear models (2.1) is said to be identifiable

if it does not admit another representation, i.e., if there is another latent variable G,
P (G = g) = λg, g = 1, . . . , G, such that given G = g, {Y (t), t ∈ T} follows a Gaussian

process with mean function X(t)Tγg(t) and covariance function Cov{Y (s), Y (t)} =

Ωg(s, t), then G = C and

λg = πg, γg(t) = βg(t), Ωg(s, t) = Γg(s, t), s, t ∈ T, g = 1, . . . , C,

up to the permutation of component labels.

Theorem 1. Suppose that for each t ∈ T , the domain of X(t) contains an open

set, and that for any c = 1, . . . , C, Γc(s, t) is a positive definite and bivariate smooth

function of s and t, and that βc(t) is a smooth function of t. Let S = {t ∈ T :

(βi(t),Γi(t, t)) = (βj(t),Γj(t, t)) for some i 6= j, 1 ≤ i, j ≤ C}. If the set T \S is not

empty, then the above proposed mixture of FLMs is identifiable.

Based on the above Theorem, the mixture of FLMs is identifiable under some mild

conditions. The proof is relegated to the Appendix.
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2.2. Estimation Procedure

By the well-known Karhunen-Loève theorem (Sapatnekar, 2011), conditioning on

C = c, an observed curve {yi(t),Xi(t)} can be represented as

yi(t) = Xi(t)
Tβc(t) +

∞
∑

q=1

ξiqcvqc(t) + ei(t), (2.2)

where vqc(·)s are eigenfunctions of the covariance function Γc(s, t) with corresponding

eigenvalues λqcs, and ξiqcs are uncorrelated functional principal component (FPC)

scores of the trajectories ζc(t) satisfying E(ξiqc) = 0, Var(ξiqc) = λqc, λ1c ≥ λ2c ≥ . . . ,

and
∑∞

q=1 λqc < ∞.

Suppose subject yi(t) is observed at time tij , j = 1, · · · , Ni. We define the notation

yij = yi(tij) for the simplicity, and similarly define notations εcij, eij , etc. Based on

(4.1), conditioning on C = c, the observations yij, j = 1, · · · , Ni and i = 1, · · · , n,
can be written as

yij = Xi(tij)
Tβc(tij) +

∞
∑

q=1

ξiqcvqc(tij) + eij , (2.3)

where eijs are independent and identically distributed as N(0, σ2).

Next, we introduce two procedures for estimating the πc, βc(·), and the covariance

structure. In the first estimation procedure, we pretend that the observations are

uncorrelated by ignoring the correlation structure among the data. The idea of using

working independence correlation structure has been traditionally used by generalized

estimating equation in the longitudinal data analysis (Liang and Zeger, 1986; Lin and

Carroll, 2000). Let σ∗2
c (t) = Γc(t, t) + σ2. It follows that

yij = Xi(tij)
Tβc(tij) + ε∗ij, (2.4)

where ε∗ij are independent errors satisfying E(ε∗ij) = 0 and Var(ε∗ij) = σ∗2
c (tij). Hence,
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yij can be considered coming from the following mixture of Gaussian process:

y(t) ∼
C
∑

c=1

πcN{X(t)Tβc(t), σ
∗2
c (t)}. (2.5)

Let φ(y|µ, σ2) be the density function of N(µ, σ2). The log-likelihood function of

(2.5) is

n
∑

i=1

log

[

C
∑

c=1

πc

Ni
∏

j=1

φ
{

yij |Xi(tij)
Tβc(tij), σ

∗2
c (tij)

}

]

. (2.6)

We next introduce an EM-type estimation procedure to estimate the πc, βc(·), and
σ∗2
c (·). The derivation of the procedure is given in the Appendix.

Estimation procedure 1 (Working Independence Covariance Structure)

1. Initial Value: For the pooled data, fit a C-component mixture of linear regres-

sion models with constant proportions and variances and obtain the estimates

β̄c, σ̄
2
c and π̄c. Set the initial values β(1)

c (t) = β̄c, σ
2(1)
c (t) = σ̄2

c , and π
(1)
c = π̄c,

c = 1, . . . , C.

2. E-step: For i = 1, . . . , n, and c = 1, . . . , C, calculate

r
(l+1)
ic =

π
(l)
c

[

∏Ni

j=1 φ{yij|Xi(tij)
Tβ(l)

c (tij), σ
∗2(l)
c (tij)}

]

∑C

c=1 π
(l)
c

[

∏Ni

j=1 φ{yij|Xi(tij)Tβ
(l)
c (tij), σ

∗2(l)
c (tij)}

] . (2.7)

3. M-step: Update the component proportions by

π(l+1)
c =

1

n

n
∑

i=1

r
(l+1)
ic . (2.8)

For any time t0 from a set of grid points {u1, . . . , ungrid
}, update the slope and

9



variance functions by

β(l+1)
c (t0) =

{

n
∑

i=1

XT
i W

(l+1)
ic (t0)Xi

}−1{ n
∑

i=1

XT
i W

(l+1)
ic (t0)yi

}

, (2.9)

σ∗2(l+1)
c (t0) =

∑n

i=1

∑Ni

j=1w
(l+1)
cij {yij −Xi(tij)

Tβ(l+1)
c (t0)}2

∑n

i=1

∑Ni

j=1w
(l+1)
cij

, (2.10)

where yi = (yi1, · · · , yiNi
)T ,Xi = (Xi(ti1), . . . ,Xi(tiNi

))T , w
(l+1)
cij = r

(l+1)
ic Khβ

(tij−
t0), W

(l+1)
ic (t0) = diag{r(l+1)

ic Khβ
(ti1 − t0), . . . , r

(l+1)
ic Khβ

(tiNi
− t0)}, Kh(·) ≡

h−1K(·/h), K(·) is a kernel density, and hβ is a bandwidth parameter.

4. Iteratively update the E-step and the M-step with l = 2, 3, . . . , until the algo-

rithm converges. Denote the resulting estimates of πc, βc(·), and σ∗2
c (·) by π̂c,

β̂c(·), and σ̂∗2
c (·), respectively. Denote the resulting posterior probability as r̂ic.

Note that the above estimate does not use the correlation information among the

data and thus might lose some efficiency. Next, we introduce an improved estimation

procedure which can incorporate the covariance functions into the model estimation

by combining the techniques of the kernel regression, the functional principal compo-

nent analysis (PCA), and the EM algorithm.

Given the estimates from Estimation procedure 1, the covariance function Γc(s, t)

could be estimated by a two-dimensional kernel smoother, which is to minimize

n
∑

i=1

r̂ic
∑

1≤j 6=l≤Ni

[γ̂ic(tij , til)− β0]
2KhΓ

(tij − s)KhΓ
(til − t), (2.11)

with respect to β0, where γ̂ic(tij, til) = {yij − Xi(tij)
T β̂c(tij)}{yil − Xi(til)

T β̂c(til)},
and hΓ is a bandwidth parameter for the covariance smoothing. If we can estimate

the ξiqc and vqc(·) in (2.3) from the estimated covariance function Γ̂c(s, t), then we

can transfer the correlated data into uncorrelated ones based on (2.3). The estimates
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of eigenvalues λ̂qc and eigenfunctions v̂qc(·) are determined by the equations

∫

T

Γ̂c(s, t)v̂qc(s)ds = λ̂qcv̂qc(t), (2.12)

where v̂qc(t) satisfies
∫

T
v̂2qc(t)dt = 1, and

∫

T
v̂pc(t)v̂qc(t)dt = 0 if p 6= q. The above

estimation can be implemented by discretizing the covariance estimate Γ̂c(s, t) (Rice

and Silverman, 1991). The functional principal component score ξiqc can then be

estimated by

ξ̂iqc =

∫

T

{yi(t)−Xi(t)
T β̂c(t)}v̂qc(t)dt. (2.13)

Let

ŷc(tij) = yij −
∑

q

ξ̂iqcI(λ̂qc > 0)v̂qc(tij). (2.14)

Then, conditioning on C = c, model (2.3) can be approximated by

ŷc(tij) ≈ Xi(tij)
Tβc(tij) + eij , (2.15)

where eij ’s are independent and identically distributed as N(0, σ2). Hence, using

functional PCA, we can transform the correlated data to the uncorrelated one. Based

on {ŷc(tij), i = 1, . . . , n, j = 1, . . . , Ni, c = 1, . . . , C} and (2.15), Estimation procedure

1 can be applied to further improve the estimates of πc, βc(·), and σc(·).
Based on the above discussion, we propose the following improved estimation

procedure to incorporate the covariance functions to the model estimation.

Estimation procedure 2 (General Covariance Structure)

1. Calculate β̂c(·), π̂c, and r̂ic using Estimation procedure 1, and obtain ŷc(tij) via

(2.11) — (2.14). Let

σ̂2 =
1

∑n

i=1Ni

n
∑

i=1

C
∑

c=1

Ni
∑

j=1

r̂ic{ŷc(tij)−Xi(tij)
T β̂c(tij)}2.
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Then set the initial values β(1)
c (·) = β̂c(·), π(1)

c = π̂c, r
(1)
ic = r̂ic, c = 1, . . . , C, and

σ2(1) = σ̂2.

2. Estimate the covariance function Γc(s, t) by

Γ(l+1)
c (s, t) =

∑n

i=1 r
(l)
ic

∑

1≤j 6=l≤Ni

γ
(l)
ic (tij , til)KhΓ

(tij − s)KhΓ
(til − t)

n
∑

i=1

r
(l)
ic

∑

1≤j 6=l≤Ni

KhΓ
(tij − s)KhΓ

(til − t)
, (2.16)

where γ
(l)
ic (tij , til) = {yij−Xi(tij)

Tβ(l)
c (tij)}{yil−Xi(til)

Tβ(l)
c (til)}. Let λ(l+1)

qc and

v
(l+1)
qc (·) be the estimated eigenvalues and eigenfunctions, respectively, from the

covariance estimate Γ
(l+1)
c (s, t). To ensure positive-definiteness of the covariance

estimates, we set Γ
(l+1)
c (s, t) =

∑

q λ
(l+1)
qc I(λ

(l+1)
qc > 0)v

(l+1)
qc (s)v

(l+1)
qc (t).

3. Calculate the transformed response

y(l+1)
c (tij) = yij −

∑

q

ξ
(l+1)
iqc I(λ(l+1)

qc > 0)v(l+1)
qc (tij),

where

ξ
(l+1)
iqc =

∫

T

{yi(t)−Xi(t)
Tβ(l)

c (t)}v(l+1)
qc (t)dt. (2.17)

4. One cycle E-step:

r
(l+1)
ic =

π
(l)
c

[

∏Ni

j=1 φ{y
(l+1)
c (tij)|Xi(tij)

Tβ(l)
c (tij), σ

2(l)}
]

∑C

c=1 π
(l)
c

[

∏Ni

j=1 φ{y
(l+1)
c (tij)|Xi(tij)Tβ

(l)
c (tij), σ2(l)}

] . (2.18)
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5. One cycle M-step: For t0 ∈ {u1, · · · , ungrid
},

π(l+1)
c =

1

n

n
∑

i=1

r
(l+1)
ic , (2.19)

β(l+1)
c (t0) =

{

n
∑

i=1

XT
i W

(l+1)
ic (t0)Xi

}−1{ n
∑

i=1

XT
i W

(l+1)
ic (t0)y

(l+1)
ic

}

, (2.20)

σ2(l+1) =
1

∑n

i=1Ni

n
∑

i=1

C
∑

c=1

Ni
∑

j=1

r
(l+1)
ic {y(l+1)

c (tij)−Xi(tij)
Tβ(l+1)

c (tij)}2,

(2.21)

where

y
(l+1)
ic = {y(l+1)

c (ti1), · · · , y(l+1)
c (tiNi

)}T ,

W
(l+1)
ic (t0) = diag{r(l+1)

ic Khβ
(ti1 − t0), · · · , r(l+1)

ic Khβ
(tiNi

− t0)}.

6. Iterate Steps 2 - 5 with l = 2, 3, . . . , until convergence.

3. Model Selection and Inference

3.1. Model Selection

The model selection includes selection of the model type (the full model (2.3) and

the reduced model (2.4)), the number of components C, the bandwidths hβ and hΓ,

and the number of eigenfunctions. We discuss these aspects in this section.

Selection of the number of components C is a difficult yet important issue for

mixture models. Many efforts have been made to solve this problem for paramet-

ric mixture models (Hartigan, 1985; Chen et al., 2001; Li and Chen, 2010; Leroux,

1992; Frühwirth-Schnatter, 2006; McLachlan and Peel, 2000). Bayesian information

criterion (BIC) is one of the most extensively used methods. The BIC has the form

−2L + log(n) × df , where L is the maximum log-likelihood function, and df is the

model degree of freedom which measures the complexity of the model. However, it

is not clear how to define the model complexity for the mixture of FLMs, since it

contains one-dimensional mean functions smoothing, and the two-dimensional covari-
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ance functions smoothing. Next, we propose to adopt the idea of Fan et al. (2001) to

define the effective degree of freedom for nonparametric kernel smoothing and then

apply the traditional information criteria to do model selection.

For the one-dimensional mean functions smoothing, based on Fan et al. (2001),

we define the effective degree of freedom by

dfβ = τKh
−1
β |Ω|

{

K(0)− 1

2

∫

K2(t)dt

}

,

where Ω is the support of the time t, and

τK =
K(0)− 1

2

∫

K2(t)dt
∫

{K(t)− 1
2
K ∗K(t)}2dt.

Note that the dfβ depends on h−1
β |Ω|. As discussed in Remark 3.2 in Fan et al. (2001),

the number of parameters is h−1
β |Ω| if the one dimensional support is partitioned into

intervals of length hβ, and piecewise constant functions are used for approximation.

Similarly, for the two-dimensional covariance functions smoothing, we can define the

effective degree of freedom as

dfΓ = τ 2Kh
−2
Γ |Ω|2

{

K(0)− 1

2

∫

K2(t)dt

}2

.

Based on the above definitions, the degree of freedom for the model (2.4) is (pC+C)×
dfβ+C−1, and the degree of freedom for the model (2.3) is p×C×dfβ+C×dfΓ+C.

We choose the model with the minimum BIC in the candidate set which consists of

the model (2.3) and the model (2.4) with different C. Note that the degree of freedom

depends on both C and bandwidths. In practice, we can apply BIC for a wide range

of bandwidths.

Once the number of components C is determined, we need to choose the band-

widths and the number of eigenfunctions. Choosing the bandwidths has long been

a difficult problem for nonparametric and semiparametric models. For a compre-

hensive review on the bandwidth selection in the kernel regression, see, for example,

Marron (1988) and Fan and Gijbels (1996). In this paper, we consider a multifold
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cross-validation (CV) method to choose the bandwidths. In the model (2.4), a conven-

tional CV is applied as we use the same bandwidth for both the regression functions

and covariance functions for the simplicity. For the model (2.3), we need to select

both hβ and hΓ. Hence, CV needs to be performed in a two-dimensional domain. The

simulation results in Section 4 demonstrate that the proposed estimation procedure

works well for a wide range of bandwidths.

Given selected bandwidths in the model (2.3), the number of eigenfunctions might

be chosen using one-curve-leave-out CV and pseudo-AIC criterion (Rice and Silver-

man, 1991; Yao et al., 2005). From our simulation experience, these methods do not

work very well in our model setting. Following Huang et al. (2014), we choose the

number of eigenfunctions by an empirical criterion such that the percentage of total

variation explained is above certain percentage, such as 95%.

3.2. Model Inference

For the proposed model, it is of interest to test whether the coefficient functions

βc(t)s actually depend on t. This leads to the following hypothesis testing problem:

H0 : βc(t) ≡ βc, c = 1, ..., C. (3.1)

Let ℓ(H0) and ℓ(H1) be the maximum log-likelihoods under null and alternative hy-

potheses, respectively. Then we construct a likelihood ratio test statistic

T = 2{ℓ(H1)− ℓ(H0)}.

Since both the null and alternative models are semiparametric ones, such hypothesis

test belongs to the Wilks phenomenon and generalized likelihood ratio theory (Fan

et al., 2001) for the semiparametric modeling. In this paper, we shall first demonstrate

that the Wilk’s type of results hold for our model via a Monte Carlo simulation study,

i.e., the null distribution of (3.1) does not depend on the nuisance parameters of the

null model. Then we apply a conditional bootstrap method (Cai et al., 2000; Fan

et al., 1999) to estimate the null distribution. See Section 4 for more detail about its
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implementation. The conditional bootstrap method will also be used for the standard

error estimation and to construct pointwise confidence intervals (CIs) for coefficient

functions.

4. Simulation and Application

To measure the performance of our estimators, we use the root of the aver-

age squared errors (RASE). For the estimate of the parameter π, define RASE2
π =

∑C−1
c=1 {π̂c−πc}2. For the estimates of the regression coefficient functions βc(t), define

RASE2
β = n−1

grid

C
∑

c=1

ngrid
∑

j=1

||β̂c(uj)− βc(uj)||2,

where {uj, j = 1, · · · , ngrid} are a set of grid points. The number of grid points is set

to be ngrid = 50, and all the grid points are evenly distributed on the range of t.

4.1. Simulation Study

We shall consider two simulation scenarios as follow.

Scenario 1

π1 = 0.6, π2 = 1− π1 = 0.4, and σ2 = 0.25,

β1(t) = (sin(πt), cos(2πt)) and β2(t) = (t2 − 3, sin(2πt) + 3),

v11(t) =
√
2 sin(4πt) and v21(t) =

√
2 cos(4πt),

v12(t) =
√
2 sin(πt) and v22(t) =

√
2 cos(πt),

λ1c = 0.04, λ2c = 0.01 and λqc = 0, for q > 2, c = 1, 2.

16



Scenario 2

π1 = 0.45, π2 = 1− π1 = 0.55, and σ2 = 0.25,

β1(t) = (0, sin(πt)) and β2(t) = (0, 1.5 sin(πt)),

v11(t) =
√
2 sin(4πt) and v21(t) =

√
2 cos(4πt),

v12(t) =
√
2 sin(πt) and v22(t) =

√
2 cos(πt),

λ11 = 0.16, λ21 = 0.04 and λq1 = 0, for q > 2,

λ12 = 0.04, λ22 = 0.01 and λq2 = 0, for q > 2.

In the first scenario, the two components are well-separated; while in the second

scenario, the two components heavily overlap. In both scenarios, the two components

have different correlation structures. For each scenario, the simulated data of size

n = 100 are observed at grid points {k/N, k = 1, · · · , N} for both components,

where N is set to be 20 and 40, respectively. At each grid point, the predictor X

is generated from a one-dimensional standard normal distribution. The principal

component scores ξiqc are generated from N(0, λqc), q = 1, 2, and c = 1, 2. Typical

samples of the response from the two scenarios are depicted in Figure 2.

NotationsMF andMR stand for the full model (2.3) with the estimation procedure

2, and the reduced model (2.4) with the estimation procedure 1, respectively. The

Epanechnikov kernel is used for the kernel smoothing in estimation.

We first test the performance of the proposed model selection method based on

BIC and the defined effective degree of freedom for BIC. To illustrate the method,

we design a contrast scenario 1b which is the same as scenario 1 except that it has

an independent covariance structure.
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Figure 2: (a) Response of a typical sample for the well-separated setting; (b) Response of typical
sample for heavy-overlap setting.

Scenario 1b

π1 = 0.6, π2 = 1− π1 = 0.4,

β1(t) = (sin(πt), cos(2πt)) and β2(t) = (t2 − 3, sin(2πt) + 3),

σ2
1(t) = 0.2 sin(πt) + 0.25 and σ2

2(t) = 0.3 sin(πt) + 0.25.

For both scenarios 1 and 1b, we fit the mixture of FLMs under both the full model

(MF ) and the reduced model (MR) with 1, 2, and 3 components under 9 different

pairs of bandwidths where hβ ∈ {0.06, 0.08, 0.10} and hΓ ∈ {0.28, 0.35, 0.42}, and
then compare the corresponding BIC scores. The C is selected by minimizing the

BIC scores over MF and MR, the three values of C, and the 9 pairs of bandwidths

(hβ, hΓ). The frequencies of selected Cs in 100 simulations are presented in Table 1.

From these results, we can see that for the data with independent covariance structure

(scenario 1b), the proportions for BIC to choose the correct C and the reduced model

(2.4) are 100%; while for the data with non-isotropic covariance structure (scenario

1), the proportion of selecting the correct C is 100%, and the proportion of selecting

the correct C and the full model (2.3) is 94%. The above results demonstrate the

effectiveness of the proposed model selection method. In addition, the new method
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Table 1: Frequencies of the selected C and the model type by BIC (N = 20)

Scenario 1 Scenario 1b

C=1 0 0
MR C=2 6 100

C=3 0 0

C=1 0 0
MF C=2 94 0

C=3 0 0

can not only choose the correct number of components, but also identify the proper

model (MF or MR) to use.

In the following simulation, we assume that the number of components C is known.

For each simulated dataset, we obtain the optimal bandwidths for coefficient and co-

variance functions using a 5-fold CV method. However, such a CV method performs

well at a computational expense. To ease the computation burden, we fix the band-

width pairs for each simulated dataset. The bandwidth pairs in Table 2 are selected

as the average of optimal CV bandwidths of several simulated datasets. From the

table, we can see that both hβ and hΓ decrease as N increases. Table 3 reports the

mean and standard deviation of RASEβ , RASEπ, and the estimated π for both sce-

narios 1 and 2 over 500 simulations. The results show that MR and MF have similar

performance and work well with the selected bandwidths in scenario 1. In contrast,

in scenario 2, MF does a much better job than MR, producing less bias for the param-

eter π1, and smaller RASEβ and RASEπ. Therefore, when the mixture components

are close, incorporating the covariance functions into the model estimation using MF

could significantly improve the accuracy of the model estimation.

Next, we conduct a simulation study to investigate the Wilk’s type of phenomenon

for the hypothesis testing of coefficient functions. The simulated data are generated

according to scenario 2, with the only difference that the coefficient functions are

constants. We take three different values of the constant βc, {(0,−0.5), (0, 0.5)},
{(0,−0.5), (0, 1)}, and {(0, 0.5), (0, 1.5)}. Since the covariances are non-isotropic, we
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Table 2: Optimal bandwidth pairs (ĥβ , ĥΓ)

MR MF

Scen. N hβ hΓ

1 20 0.0805 0.3500
40 0.0730 0.1290

2 20 0.0650 0.1620
40 0.0560 0.0800

Table 3: Mean and standard deviation of RASEs

MR MF

Scen. N RASEβ RASEπ π1 = 0.6 RASEβ RASEπ π1 = 0.6

1 20 0.013(0.003) 0.002(0.003) 0.602(0.050) 0.013(0.003) 0.002(0.003) 0.602(0.050)
40 0.008(0.002) 0.002(0.003) 0.601(0.047) 0.007(0.001) 0.002(0.003) 0.601(0.047)

Scen. N RASEβ RASEπ π1 = 0.45 RASEβ RASEπ π1 = 0.45

2 20 0.059(0.288) 0.024(0.071) 0.489(0.149) 0.009(0.043) 0.003(0.014) 0.454(0.057)
40 0.017(0.063) 0.021(0.068) 0.496(0.139) 0.002(0.014) 0.003(0.004) 0.451(0.051)

incorporate the covariance functions in the estimation for both models under the null

and alternative hypotheses, and the corresponding log-likelihoods ℓ(H0) and ℓ(H1)

are calculated. Let T denote the likelihood ratio test statistic. We compute the

unconditional null distributions of T based on 500 Monte Carlo simulations. The

resulting three density estimates are very close to each other, plotted as dotted lines in

Figure 3 (a). As expected, the asymptotic distribution of T under the null hypothesis

is not sensitive to the true values of βc. Next, to validate the conditional bootstrap

method, we choose three typical samples generated using these three different βc. For

each typical sample, we first obtain the estimates, and then compute the conditional

null distributions of T based on 500 parametric bootstrap samples. The resulting

three densities are depicted as solid curves in Figure 3 (b). From Figure 3 (b), we can

see that the conditional bootstrapped distributions are very close and work reasonably

well in approximating the true null distribution.

Next, we investigate the accuracy of the conditional bootstrap method to estimate
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Figure 3: (a) The estimated densities of unconditional null distributions of T for three different null
hypotheses; (b) the estimated densities of conditional null distributions of T (solid lines). The online
version of this figure is in color.

Table 4: Standard errors via bootstrap (scenario 1, N = 20)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

SD 0.044 0.044 0.049 0.050 0.047 0.044 0.048 0.047 0.040
β11(·) SE 0.042 0.043 0.044 0.045 0.046 0.046 0.044 0.043 0.042

Std 0.003 0.004 0.004 0.004 0.005 0.005 0.004 0.004 0.004

SD 0.043 0.051 0.054 0.054 0.051 0.047 0.052 0.050 0.042
β12(·) SE 0.042 0.044 0.046 0.046 0.046 0.046 0.045 0.043 0.043

Std 0.004 0.004 0.005 0.005 0.004 0.005 0.004 0.004 0.004

SD 0.052 0.056 0.044 0.057 0.058 0.063 0.054 0.050 0.056
β21(·) SE 0.053 0.052 0.052 0.055 0.059 0.056 0.054 0.052 0.053

Std 0.006 0.006 0.005 0.006 0.007 0.006 0.005 0.005 0.005

SD 0.054 0.054 0.054 0.061 0.062 0.062 0.050 0.057 0.057
β22(·) SE 0.054 0.051 0.053 0.058 0.061 0.057 0.052 0.052 0.054

Std 0.006 0.006 0.006 0.006 0.007 0.006 0.006 0.005 0.005

Table 5: Standard errors via bootstrap (scenario 2, N = 20)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

SD 0.021 0.024 0.021 0.023 0.025 0.024 0.025 0.023 0.026
β12(·) SE 0.025 0.026 0.026 0.027 0.025 0.027 0.027 0.027 0.025

Std 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003

SD 0.026 0.025 0.020 0.022 0.019 0.019 0.020 0.023 0.024
β22(·) SE 0.023 0.024 0.023 0.022 0.022 0.022 0.023 0.024 0.023

Std 0.003 0.003 0.003 0.003 0.002 0.003 0.003 0.003 0.003
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the standard errors for the coefficient estimates. We use SE and Std to denote the

average and the standard deviation of 200 bootstrapped standard errors, respectively,

and use SD to denote the standard deviation of the 200 estimates. SD can be con-

sidered as the “real” standard errors, and serves as a benchmark for the comparison.

These quantities are given in Tables 4 and 5. From the two tables, we can see that

SD and SE are very close, which demonstrates the effectiveness of the conditional

bootstrap method as a tool to provide the standard error estimates.

Now we compare our model with an existing alternative procedure, the the ran-

dom effects regression mixture (RERM) model (DeSarbo and Cron, 1988; Verbeke

and Lesaffre, 1996; Xu and Hedeker, 2001), with a spline representation for the non-

parametric structure. Conditioning on the component membership C = c,

yi(t) = Xi(t)
Tβc(t) + ei(t), (4.1)

where e(t) is an uncorrelated process with a constant variance function σ2(t) ≡ σ2.

We assume that element functions in βc(t) = {βc1(t), · · · , βcp(t)} are approximated

by the following sum of the spline basis Bk(t):

βcj(t) =

K
∑

k=1

γcjkBk(t), (4.2)

for j = 1, · · · , p. Let γcj = (γcj1, . . . , γcjK)
T . For the random effects regression mix-

ture (RERM) model with a spline representation, we assume that γcj ∼ N(µcj,Rcj).

The unknown parameters in the model are {πc,µcj ,Rcj} for c = 1, · · · , C; j =

1, · · · , p, under constrains πc > 0, and
∑C

c=1 πc = 1. The parameters can be estimated

using standard MLE procedure (e.g., EM algorithm) of RERM. Let {π̂c, µ̂cj, R̂cj} be

the estimates. Then the mean function estimation can be expressed as

β̂cj(t) =
K
∑

k=1

µ̂cjkBk(t), (4.3)

where µ̂cjk are elements of µcj. For convenience, we use a cubic-spline representation
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Table 6: Mean and Standard Deviation of RASEs

RERM MF

Scen. N RASEβ RASEπ π1 = 0.6 RASEβ RASEπ π1 = 0.6

1 20 0.005(0.002) 0.003(0.004) 0.597(0.050) 0.013(0.003) 0.002(0.003) 0.600(0.048)
40 0.003(0.001) 0.003(0.004) 0.599(0.050) 0.007(0.001) 0.003(0.004) 0.606(0.051)

Scen. N RASEβ RASEπ π1 = 0.45 RASEβ RASEπ π1 = 0.45

2 20 0.011(0.036) 0.012(0.023) 0.385(0.091) 0.009(0.043) 0.003(0.014) 0.454(0.057)
40 0.003(0.016) 0.004(0.018) 0.438(0.065) 0.002(0.014) 0.003(0.004) 0.451(0.051)

with evenly spaced knots. The number of knots is chosen such that the degree of

freedom of the RERM is about the same as the effective degree of freedom of our

proposed model (see section 3.1 of our paper). We perform the calculation using R

package “mixtools” (see Young et al., 2007).

We summarize the comparison results in Table 6. Notations “RERM” and “MF”

stand for the random effects regression mixture model and our model respectively.

The two scenarios are the same as those in section 4.1. From Table 6, we can see that

when the two components are well-separated (Scenario 1), both estimation procedures

give similar results for the estimation of π, while RERM has better estimation of β(t).

When the components are heavily overlap (Scenario 2), the proposed procedure MF

gives better results compared to RERM.

We also compare our method with the fully nonparametric functional regression

model (NFRM) of Ferraty et al. (2012). We use the scenario 2 (N = 20) as an

illustration. Each dataset is split randomly into a training sample of 75 observations

and a testing sample of 25 observations, and the process is replicated 100 times. The

training sample is used to select and estimate the parameters of the models and the

testing sample is used to compare prediction performance for the two models. The

criteria for prediction comparison are the absolute error AE = Σi|Yi − Ŷi| and the

quadratic error QE = Σi(Yi − Ŷi)
2. Table 7 gives the mean values of AE and QE

and shows that our model works better in terms of the prediction errors.
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Table 7: Mean value of the criterion errors on the test sample

Model Absolute error Quadratic error

NFRM 13.050 15.574
MF 3.388 1.187

4.2. CO2-GDP data application

In this section, we analyze the CO2-GDP data using the proposed model and

estimation procedure. The data record the CO2 emission per capita and the GDP

per capita for 175 countries from 1980 to 2005. It has a balanced structure, with one

observation each year for each country. The trajectories of the CO2 emission for all

the 175 countries are assembled in Figure 1(a). Huang and Yao (2012) showed that

a cross-sectional subset of the data in year 2005 can be modeled by a 2-component

mixture of regression models with varying proportion, with each component revealing

a linear effect of the GDP per capita on the CO2 emission per capita. In this study,

we are interested in whether this linear effect of the GDP on the CO2 emission varies

over time for the two components.

We first choose the model type and the number of components C via BIC. Using

bandwidths hβ ∈ {0.07, 0.09, 0.11} and hΓ ∈ {0.11, 0.13, 0.15}, we fit a mixture of

FLMs by MF and MR to the data with one, two, three, and four components, re-

spectively. Then we calculate and compare their corresponding BIC scores. For these

bandwidths, the minimum BIC score is achieved at C = 2 with MF . Hence a two-

component mixture model is selected. This agrees with the cross-sectional analysis

by Huang and Yao (2012). Our result also indicates that we should use the full model

(2.3) and the estimation procedure two to incorporate the correlation structure. With

MF and C = 2, a 5-fold CV suggests that the optimal bandwidths for estimating co-

efficient and covariance functions are 0.085 and 0.13, respectively. With these optimal

bandwidths, the 95% percent rule-of-thumb criterion selects 2 eigenfunctions for each

component. We then apply the test procedure from Section 3.2 to test whether the
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Figure 4: The estimated coefficient functions with the 95% pointwise confidence intervals for the
CO2-GDP data. (a) Coefficient functions of component 1 ; (b) coefficient functions of component 2.

coefficient functions change over time. The test statistic T is 571.81 using the esti-

mation procedure 2, with p-value (< 0.01) being close to zero. Therefore, we reject

the null hypotheses of constant coefficient functions, and conclude that a mixture of

FLMs with general covariance structure is needed for the analysis of the CO2-GDP

data.

The estimated mixing proportions for the two components are 0.1524 and 0.8476,

respectively. We label the component with the proportion 0.1524 as the first com-

ponent, and the other as the second component. Countries in the first component

are those of low GDP per capita and relative high CO2 emissions, including Kuwait,

United Arab Emirates, Russian Federation, Georgia, etc. Countries in the second

component are those of high GDP per capita with relative low CO2 emissions and

thus have healthier economic development path. Representatives in the second com-

ponent are the United States, Canada, Australia, France, etc. Two estimated co-

efficient functions βc(t) are shown in Figure 4, together with their bootstrapped

point-wise confidence intervals. Figure 4(a) demonstrates that the slope function for

the first component increases with time for the period of 1980 to 1994, and then re-

mains relatively flat at a high level from 1995 to 2005. In contrast, Figure 4(b) shows
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that for countries in the second component, the slope function decreases slowly over

the period of 1980-2005. Therefore, for the countries in component 2, the increment

of the CO2 emissions per capita associated with a unit increment of the GDP per

capita decreases slowly over the period of 1980-2005, and is lower than that of the

component 1 after 1985. Therefore, the countries in the second component had been

improving their economic structure along the years. Our result is in agreement with

the finding of Garnaut et al. (2008) on emissions/GDP elasticity in general.

We now use NFRM of Ferraty et al. (2012) to analyze the CO2-GDP data and

compare the result with the analysis above. Similar to what we did in simulation, we

randomly split the dataset into a training sample of 125 observations and a testing

sample of 50 observations, and repeat it 100 times. The training and testing samples

are used for parameter estimations and prediction testing respectively. The mean

values of AE and QE are given in Table 8, which demonstrate again the our method

performs favorably.

Table 8: Mean value of the criterion errors on the test sample

Model Absolute error Quadratic error

NFRM 5.375 3.831
MF 0.712 0.153

5. Concluding Remarks

In this paper, we proposed a new class of mixture of functional linear models to

study relationship in inhomogeneous functional data. We showed that the proposed

mixture models are identifiable under mild conditions. We developed estimation

procedures using the kernel regression, the EM algorithm, and the functional principal

component analysis. In order to check whether the coefficient functions are actually

varying over time, we employed a semiparametric maximum likelihood ratio test

and estimated its null distribution by a conditional bootstrap method. Simulation
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studies and a real data application demonstrated the effectiveness of the proposed

methodology.

The simulated and real data in this paper are observed at regular grid points. For

irregular and unbalanced data, one may linearly interpolate the data over a regular

grid points, and then apply our estimation procedure. Theoretical properties, such as

the consistency and the asymptotic normality, of the proposed estimation procedure

have not been established. One might be able to establish these properties in the

spirit of the work of Hoshikawa (2013). It requires more research.
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Appendix

Lemma 1. Consider mixtures of linear regression models with Gaussian errors

Y |x ∼
C
∑

c=1

πcN(xTβc, σ
2
c ), (5.1)

where βc = (β0c, β1c, ..., βpc)
T . Suppose that (βc, σ

2
c ), c = 1, . . . , C, are distinct pairs,

and that the domain X of x contains an open subset in R
p. Then the above mixture

of linear regression models is identifiable.

Lemma 1 can be viewed as a special case of Theorem 1 from Huang and Yao (2012)

with constant proportions. Hennig (2000) also obtained a similar result earlier.

Lemma 2. The multivariate Gaussian mixtures are identifiable.
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This lemma is the Proposition 2 from Yakowitz and Spragins (1968).

Proof of Theorem 1. The proof can be done in a similar manner to Huang et al.

(2014). Suppose that {Y (t), t ∈ T} admits another representation such that given a

latent variable G = g, {Y (t), t ∈ T} follows a Gaussian process with mean function

X(t)Tγg(t) and covariance function Cov{Y (s), Y (t)} = Ωg(s, t), g = 1, . . . , G. In

addition, P (G = g) = λg. Therefore,

Y (t) ∼
G
∑

g=1

λgN(X(t)Tγg(t),Ωg(t, t)) =
C
∑

c=1

πcN(X(t)Tβc(t),Γc(t, t)).

For any fixed t ∈ T \ S, (βc(t),Γc(t, t)), c = 1, . . . , C, are distinct pairs. By lemma 1,

G = C, and there exists a permutation ωt = {ωt(1), . . . , ωt(C)} which may depend

on t such that

λωt(c) = πc, γωt(c)(t) = βc(t), Ωωt(c)(t, t) = Γc(t, t), c = 1, . . . , C. (5.2)

Now let s ∈ T \ S and r ∈ T be two other time points such that r, s and t are

all distinct. Then (Y (r), Y (s), Y (t))T follows a mixture of 3-dimensional Gaussian

distributions

(Y (r), Y (s), Y (t))T ∼
C
∑

c=1

λcN3(νc(r, s, t),Ωc(r, s, t)) =

C
∑

c=1

πcN3(µc(r, s, t),Γc(r, s, t)).

where

νc(r, s, t) =





x(r)Tγc(r)
x(s)Tγc(s)
x(t)Tγc(t)



 Ωc(r, s, t) =





Ωc(r, r) Ωc(r, s) Ωc(r, t)
Ωc(s, r) Ωc(s, s) Ωc(s, t)
Ωc(t, r) Ωc(t, s) Ωc(t, t)





µc(r, s, t) =





x(r)Tβc(r)
x(s)Tβc(s)
x(t)Tβc(t)



 Γc(r, s, t) =





Γc(r, r) Γc(r, s) Γc(r, t)
Γc(s, r) Γc(s, s) Γc(s, t)
Γc(t, r) Γc(t, s) Γc(t, t)





Since s, t ∈ T \ S, from lemma 2, the distribution of (Y (r), Y (s), Y (t))T as a

mixture of 3-dimensional Gaussian distributions is identifiable, hence the permutation
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ωt is actually independent of t. Therefore, for any t1, t2 ∈ {r, s, t},

λω(c) = πc, X(t1)
Tγω(c)(t1) = X(t1)

Tβc(t1), Ωω(c)(t1, t2) = Γc(t1, t2), c = 1, . . . , C,

(5.3)

and for t3 ∈ {s, t},

γω(c)(t3) = βc(t3), Ωω(c)(t3, t3) = Γc(t3, t3). (5.4)

By the continuity of βc(·) and Γc(·, ·), equation (5.4) also holds for t3 = r. This

completes the proof of identifiability.

Derivation of Estimation Procedure 1.

Define the random variables for component membership as

zic =

{

1, if {yi(t), t ∈ T} is in the cth group,
0, otherwise.

The complete likelihood of {(yij, zic), j = 1, · · · , Ni, i = 1, · · · , n, c = 1, . . . C} is

n
∏

i=1

C
∏

c=1

[

πc

Ni
∏

j=1

φ{yij|Xi(tij)
Tβc(tij), σ

∗2
c (tij)}

]zic

.

In the E-step, we calculate the expectation of zic given π
(l)
c , σ

∗2(l)
c (·), and β(l)

c (·),
c = 1, · · · , C, which is showed in (2.7). In the M-step, we maximize the logarithm of

complete log-likelihood function with zic replaced by r
(l+1)
ic , which is

n
∑

i=1

C
∑

c=1

[

r
(l+1)
ic log(πc) + r

(l+1)
ic

Ni
∑

j=1

log φ{yij|Xi(tij)
Tβc(tij), σ

∗2
c (tij)}

]

.

The maximization with respect to πc leads to (2.8). For nonparametric smoothing

functions βc(·) and σ∗2
c (·), we consider kernel regression for estimation. For any t0 ∈

T , we approximate βc(tij) by βc(t0) and σ∗2
c (tij) by σ∗2

c (t0) for tij in the neighborhood
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of t0. Thus, the corresponding local log-likelihood function is

n
∑

i=1

C
∑

c=1

r
(l+1)
ic

Ni
∑

j=1

[log φ{yij|Xi(tij)
Tβc(t0), σ

∗2
c (t0)}]Kh(tij − t0), (5.5)

where Kh(t) is a rescaled kernel function h−1K(t/h) with a kernel function K(t).

Maximizing (5.5) with respect to βc(t0) and σ∗2
c (t0) yields (2.9) and (2.10).
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