Lawrence Berkeley National Laboratory

Recent Work

Title CASCADE SHOWERS IN LEAD

Permalink https://escholarship.org/uc/item/5932b972

Authors

Crowe, Kenneth M. Hayward, Evans

Publication Date 1950-05-26

BERKE CALIFORNIA L О JNIVERSITY

im

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545 UCRL-719

RADIATION LABORATORY

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

Copy 2

UCRL 719 Unclassified Distribution

UNIVERSITY OF CALIFORNIA

Radiation Laboratory

Contract No. W-7405-eng-48

GNCLASSIFIED

CASCADE SHOWERS IN LEAD

Kenneth M. Crowe and Evans Hayward

May 26, 1950

Unclassified Distribution

INSTALLATION:		No.	of	Copi
Argonne National Laboratory			8	
Armed Forces Special Weapons Project			1	
Atomic Energy Commission, Washington		• .	2	
Battelle Memorial Institute	• .		·l	
Brush Beryllium Company			1	
Brookhaven National Laboratory			8	
Bureau of Medicine and Surgery			1	
Bureau of Ships			1	
Carbide and Carbon Chemicals Div.,		•		
Union Carbide and Carbon Chemicals Corp. (K-25	Plan	t)	· 4	
Carbide and Carbon Chemicals Div.,	. *			
Union Carbide and Carbon Chemicals Corp. (Y-12	Plan	t)	4	
Chicago Operations Office			1	
Cleveland Area Office, AEC	,		1	
Columbia University (J. R. Dunning)			2	
Columbia University (G. Failla)			1	
Dow Chemical Company			1	
H. K. Ferguson Company			1	
General Electric Company, Richland		,	3	
Harshaw Chemical Corporation			1	
Idaho Operations Office			1	
Iowa State College			2	
Kansas City Operations Branch			1	
Kellex Corporation			2	
Knolls Atomic Power Laboratory			• 4	
Los Alamos Scientific Laboratory			3	
Mallinckrodt Chemical Works			1	
Massachusetts Institute of Technology (A. Gaudin)			1	
Massachusetts Institute of Technology (A. R. Kaulmann)			1	
Mound Laboratory			ິ ວ	
National Advisory committee for Aeronautics			ມ ຈ	
Naval Podiological Defense Isberatory			2	÷
Naval Radiological Delense Laboratory			1	
New York Openations Office	••	, <i>+</i>	5	
North American Aviation Inc		•	ĩ	-
Oak Ridge National Laboratory			8	
Patent Branch Washington			ĩ	
Rand Corporation			ī	
Sandia Laboratory			ī	
Santa Fe Operations Office			l	
Svlvania Electric Products. Inc			1	
Technical Information Division. Oak Ridge			15	
USAF. Air Surgeon (R H Blount)			1	
USAF. Director of Armament (C. I. Browne)			1	
USAF. Director of Plans and Operations (R. L. Applegate)			1	
USAF. Director of Research and Development				
(F. W. Bruner, and R. J. Mason)			2	
USAF, Eglin Air Force Base (A. C. Field)			1	

٢٩

USAF, Eglin Air Force Base (A. C. Field)

es

-2a+

INSTALLATION:

No. of Copies

USAF, Kirtland Air Force Base (M. F. Cooper) 1 USAF, Maxwell Air Force Base (F. N. Moyers) 1 USAF, NEPA Office 2 USAF, Office of Atomic Energy (A. A. Fickel, H. C. Donnelly) 2 USAF, Offutt Air Force Base (H. R. Sullivan, Jr.) 1 USAF, Wright-Patterson Air Force Base (Rodney Nudenberg) 1 U. S. Army, Atomic Energy Branch (A. W. Betts) 1 U. S. Army, Army Field Forces (James Kerr) 1 U. S. Army. Commanding General, Chemical Corps Technical Command (J. A. MacLaughlin thru Mrs. G. Benjamin) 1 U. S. Army, Chief of Ordnance (A. R. Del Campo) 1 1 U. S. Army, Commanding Officer Watertown Arsenal (C. H. Deitrick) U. S. Army, Director of Operations Research (Ellis Johnson) 1 U. S. Army, Office of Engineers (Allen O'Leary) 1 U. S. Army, Office of the Chief Signal Officer (Curtis T. Clayton thru G. C. Hunt) 1 U. S. Army, Office of the Surgeon General (W. S. Stone) 1 1 U. S. Geological Survey (T. B. Nolan) U. S. Public Health Service 1 1 University of California at Los Angeles 5 University of California Radiation Laboratory 2 University of Rochester 1 University of Washington 2 Western Reserve University 4 Westinghouse Electric Company 1 University of Rochester (R. E. Marshak) California Institute of Technology (Dr. Robert F. Bacher) 1

Total 144

Information Division Radiation Laboratory University of California Berkeley, California

CASCADE SHOWERS IN LEAD

Kenneth M. Crowe and Evans Hayward

Radiation Laboratory University of California Berkeley, California

May 26, 1950

Abstract

A study has been made of the energy and angular distributions of the electrons produced when the x-ray beam from the 322 Mev Berkeley synchrotron falls on a slab of lead one-half inch in thickness. A cloud chamber containing the piece of lead was in a magnetic field of 1800 gauss. Measurements were made on 1286 electron secondaries having energies greater than 3 Mev. The energy and angular distributions of these electrons are in satisfactory agreement with the theory.

CASCADE SHOWERS IN LEAD Kenneth M. Crowe and Evans Hayward

May 26, 1950

Introduction.

The diffusion equations of cascade theory¹ describe the course of an electron-photon shower as it progresses through matter. When the initial boundary conditions are introduced, these equations determine the average number of the electrons and gamma-rays of a given energy as a function of thickness in the material. The lateral² development of the shower has been studied extensively and in particular the lateral spread and angular distributions of shower particles have been obtained under different simplifying assumptions. Other properties of cascade showers that have also been studied theoretically are the fluctuations in the number of particles as a function of thickness resulting from a single primary of a given energy.

Before the advent of high energy electron accelerators, the experimental investigation of these shower problems was restricted to experiments on the soft component of cosmic rays. Many experiments³ have been done which measured the counting rate or ionization as a function of thickness of material. The transition (or shower) curves that are obtained rise rapidly to a maximum and then decrease more slowly as the thinkness of absorber is increased. These results are in qualitative agreement with the theory but suffer from a number of difficulties: (1) it is necessary to integrate over the not too well known primary spectrum in order to compare with the theory; (2) the experiments are subject to various large geometrical corrections; and (3) the hard component must be separated out.

A more direct comparison with experiment may be obtained from cloud

-5-

chamber data. From a study of fifty showers, Hazen⁴ has been able to compare with the theory the number of particles at the maximum of the shower as a function of the total number of particles under eight 0.7 cm lead plates. Nassar and Hazen⁵ have also determined the shape of the shower curve but in addition they have measured the energy spectrum of the electrons at the maximum of the shower as well as the fluctuations in the number of particles. Their results are certainly consistent with the theory but are unsatisfactory in two ways: (1) the energy of the incident electron is never experimentally determined and (2) the number of showers observed is rather small.

When the 322 Mev Berkeley synchrotron began to operate, the systematic and controlled measurement of these quantities became possible. Blocker etal⁶ have determined the shape of the shower curve for lead, copper, aluminum, and carbon. They have measured the current from an ionization chamber as a function of thickness of material and have obtained the transition curves with extreme accuracy. We have set out to measure the energy spectrum at the maximum of the shower in lead; i.e., at the point where the maximum ionization occurs which is under approximately one-half inch of lead.

Experimental Details.

A cloud chamber, described in a previous paper⁷, in a magnetic field of 1800 gauss was located in the x-ray beam of the Berkeley synchrotron and 88-1/2 feet from its target. Two collimators were used. The first was a 1/8 inch x 3/8 inch horizontal slot located 5 feet from the synchrotron target, and the second was a 1/16 inch x 3/4 inch slot, 30 feet from the target and at the same vertical height as the center of the illuminated region of the cloud chamber. These produced a spray of electrons emerging from the lead and occupying an area about $1/4 \ge 2$ inches. The x-ray beam traversed the 3/4 inch quartz wall of the synchrotron donut, 88-1/2 feet of air and the 1/4 inch glass wall of the cloud chamber before impinging on a half-inch lead plate inside the chamber. (See Fig. 1.)

The energy and angular distributions of the electrons that emerge from the half-inch thick lead plate have been measured by reprojection⁷. Besides the radius of curvature ρ , two angles, α and β , were measured. α is the dip angle or the angle that the start of the track makes with the horizontal. β is the angle that the start of the track makes with the plane defined by the beam direction and the vertical. The energy of the electron is then given by E = 300 H ρ cos α and the scatter angle $\theta = \cos^{-1}(\cos \alpha \cos \beta .)$

The photographs measured were selected on the basis of their quality and population. For example, a photograph that contained fifteen tracks was easy to measure whereas one having twenty-five was measurable only in cases where the photography was exceptional. Each photograph represented, of course, a single pulse from the synchrotron and indeed a single pulse of extremely low intensity. The tracks have in all cases been selected and measured by two independent observers and from their reproducibility we believe that the errors in the angles are about $\frac{1}{2}$ 2° and in the radii of curvature, $\frac{1}{2}$ 5 percent. Multiple scattering by the gas (a mixture of argon and helium) at the magnetic field used (1800 gauss) produces a standard error of approximately $\frac{1}{2}$ 6 percent over the whole energy range.

In the first part of the experiment all the tracks corresponding to electrons above 3 Mev were included; later, becuase of the preponderance of low energy electrons, we set the lower limit at 10 Mev and have normalized the data accordingly. With these limitations, all tracks were measured if their dip angles were less than 45° ; a geometrical correction based on the assumption of azimuthal symmetry was made for the omitted tracks:

$$\frac{\pi}{2 \sin^{-1} \left(\frac{\sin 45^{\circ}}{\sin \theta}\right)}$$

Since the scatter angles of the electrons result from their Coulomb scattering in the lead, they are a strong function of the energies of the electrons. Thus, for example, the geometrical correction mentioned above is necessary only below 40 Mev and is really important only below 20 Mev. Another result of this energy dependence is that it has effectively extended the upper limit of the energies that could be measured, for the high energy electrons come out from the lead plate essentially in the forward direction and traverse the diameter of the cloud chamber giving about 30 cm of track on which to make an otherwise very difficult curvature measurement. Results.

We have measured a total of 1286 tracks. Table I shows the numbers of tracks in ten Mev and ten degree intervals. These numbers have been corrected for the omission of tracks with dip angles greater than 45° and the lowest energy group has been normalized relative to the second to correct for the omission of electrons between three and ten Mev in the second half of the experiment. This group has also been corrected for the fact that the interval includes only seven Mev instead of ten.

Fig. 2 shows a histogram of the measured energy distribution. The standard deviations are based only on the number of tracks measured.

UCRL 719

-8-

Mr. Walter Aron has very kindly calculated for us the energy spectrum of the electrons by applying the initial condition of a 1/E gamma-ray spectrum in approximation B of Rossi and Greisen. The x-ray spectrum of the synchrotron differs from thin target bremsstrahlung spectrum because of pair prodution in the target and the differential absorption of the x-rays, by the synchrotron's target and quartz donut, the air between the synchrotron and the cloud chamber, as well as the quarter-inch glass wall of the chamber. Powell⁸ has shown that the effect of all these corrections is to reduce the intensity of the x-rays almost uniformly over the whole spectrum, and since we are interested in relative intensities only, the corrections to the theory are unnecessary. The limitation of the Rossi and Greisen representation is that the asymptotic cross sections, which break down at low energies, are used. Mr. Aron has corrected this difficulty by increasing the shower unit to 0.782 cm from the asymptotic value 0.5 cm. This value was obtained from the analysis of the curves of Blocker etal⁶. The theoretical curve has been normalized for best fit with the experimental one. The agreement is really more than satisfactory. The low energy group is expected to be low due to the large fraction of shower particles which travel backwards as is apparent from the shape of the angular distribution.

Fig. 3 shows a plot of the root-mean-square angle of scattering as a function of the energy. The rather large deviations from a smooth curve above 50 Mev result from the limited number of events at high energies. (See Table I) The fluctuations in the number of particles in the shower are themselves large and have a large effect on the root mean square angle for all energies.

-9-

The smooth curve results from the calculations of Roberg and Nordheim². They have calculated the mean square angle of scattering as a function of energy from the lateral spread of the shower, taking into account the Coulomb scattering of the emergent electron and its ancestors. Although the calculation was intended primarily for small scattering angles in which the angular distribution is taken to be gaussian, the extrapolation to large angles appears to fit the observations.

A calculation by Belenky² does not include the small angle approximation and should, therefore, be more applicable to the case of lead. We have compared our results with the distribution function of Belenky and find them to be consistent, though the number of events observed in the experiment is not great enough to draw any definite conclusion between the various available calculations.

Acknowledgements.

The authors wish to thank Drs. E. M. McMillan, W. M. Powell, and R. Serber for their very helpful advice. Walter Aron, Leonard Eyges, and Sidney Fernbach contributed greatly by their discussions with us of the theory. We are also very much indebted to the synchrotron crew for their cooperation.

LMB/6-12-50 Information Division

-10-

References

- H. S. Snyder, Phys. Rev. <u>76</u>, 1563 (1949)
 B. Rossi and K. Greisen, Rev. Mod. Phys. <u>13</u>, 240 (1941)
- 2 G. Moliere in W. Heisenberg, <u>Cosmic Radiation</u>, New York, Dover Publications (1946)
 S. Z. Belenky, J. Phys. U.S.S.R. <u>8</u>, 347 (1944)
 J. Roberg and L. W. Nordheim, Phys. Rev. <u>75</u>, 444 (1949)
- J. C. Street and R. T. Young, Phys. Rev. <u>46</u>, 823 (1934); <u>47</u>, 572 (1935)
 C. G. Montgomery and D. D. Montgomery, Phys. Rev. <u>48</u>, 786 (1935)
- 4 W. E. Hazen, Phys. Rev. <u>66</u>, 254 (1944)
- 5 S. Nassar and W. E. Hazen, Phys. Rev. <u>69</u>, 298 (1946)
- 6 W. Blocker, R. Kenney, and W. K. H. Panofsky, in press
- 7 K. Brueckner, W. Hartsough, E. Hayward, and W. M. Powell, Phys. Rev. 75, 1274 (1949)

UCRL 719

-11 --

TABLE I

. **.** .

E(Mev)	0-9	10 - 19	20-29	30-39	40-49	50-59	60-69	70 - 79	80-89	Total
3-9 10-19 20-29 30 - 39 40 - 49	43.5 42 47 42 36	95.0 82 69 43 24	79.2 76 51 32 12	155 63 29 8 4	55.5 42 12 3 1	65.5 30.5 16.5 4.5	48.7 24.3 5.8	7.52 11.5 1.9	2.0	548 ± 33 373 ± 20 230 ± 15 134 ± 12 77 ± 9
50-59 60~69 70-79 80~89 90-99	21 21 26 19 11	17 16 7 8 4	7 7 2 1 5	1	l			• •		46 ± 7 45 ± 7 35 ± 6 28 ± 5 20 ± 4.5
100-109 110-119 120-129 130-139 140-149	13 11 12 9 8	7 4 1 1					•			$20 \pm 4.5 \\ 15 \pm 4 \\ 13 \pm 4 \\ 10 \pm 3 \\ 8 \pm 3$
>150	13	1								14 ± 4

The observed number of tracks in 10 MeV and 10° intervals. These numbers have been corrected for the omission of tracks having dip angles greater than 45°. The lowest energy group has been normalized relative to the second to correct for the omission of electrons between three and ten MeV in the second half of the experiment. This group has also been corrected for the fact that the interval includes only seven MeV instead of ten.

10

· 🍦

n

The geometry of the experiment. Two lead collimators were used between the synchrotron and the cloud chamber.

UCRL 719

-13-

Fig. 2

10

The differential energy spectrum of the electrons. The standard deviations on the histogram are based only on the number of tracks measured. The smooth curve is the theoretical result obtained from Approximation B of Rossi and Greisen and has been normalized for the best fit with the experimental points.

The root mean square angle versus energy of the electrons. The smooth curve is taken from the paper by Roberg and Nordheim.