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Abstract

BACKGROUND AND AIMS: Colon cancer can occur sporadically or in the setting of chronic 

inflammation, such as in patients with inflammatory bowel disease. We previously showed that 

A20, a critical negative regulator of tumor necrosis factor signal transduction, could regulate 

sporadic colon cancer development. In this report, we investigate whether A20 also acts as a tumor 

suppressor in a model of colitis-associated cancer.

METHODS: Colitis and colitis-associated tumors were induced in wild-type and A20 intestinal 

epithelial cell-specific knockout (A20dIEC) mice using dextran sodium sulfate and azoxymethane. 

Clinicopathologic markers of inflammation were assessed in conjunction with colonic tumor 

burden. Gene expression analyses and immunohistochemistry were performed on colonic tissue 

and intestinal enteroids. Nitric oxide (NO) production and activity were assessed in whole colonic 

lysates and mouse embryonic fibroblasts.
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RESULTS: A20dIEC mice develop larger tumors after treatment with dextran sodium sulfate and 

azoxymethane than wild-type mice. In addition to elevated markers of inflammation, A20dIEC 

mice have significantly enhanced expression of inducible nitric oxide synthase (iNOS), a well-

known driver of neoplasia. Enhanced iNOS expression is associated with the formation of reactive 

nitrogen species and DNA damage. Loss of A20 also enhances NO-dependent cell death directly.

CONCLUSION: Mechanistically, we propose that A20 normally restricts tumor necrosis factor–

induced nuclear factor kappa B–dependent production of iNOS in intestinal epithelial cells, 

thereby protecting against colitis-associated tumorigenesis. We also propose that A20 plays a 

direct role in regulating NO-dependent cell death.
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Introduction

Colorectal cancer (CRC) is the third most common cancer and the third leading cause of 

cancer-related death in the United States. CRC accounts for over 50000 deaths in the United 

States annually, while in 2017, the National Cancer Institute estimated that there were over 

1 million Americans living with CRC. Although mortality from CRC has been declining 

overall in the United States, death rates are rising among younger individuals.1 CRC is also 

more common among African Americans and significant disparities in outcomes exist based 

on race and ethnicity, as well as socioeconomic status.2 Recent estimates suggest that the 

economic burden of CRC exceeded $16 billion in 2018.3 Overall, CRC remains a significant 

problem and new treatments are still needed.

CRC can occur sporadically in the general population or can be associated with chronic 

inflammation. One well-known predisposing factor associated with CRC development 

is inflammatory bowel disease (IBD). Patients with IBD have as much as a six-fold 

increased risk of developing CRC compared to the general population.4,5 Moreover, this 

colitis-associated cancer accounts for 10%–15% of the mortality associated with IBD.6

The pathophysiology of sporadic colon cancers and colitis-associated cancers is distinct. 

Seminal work from Dr Vogelstein and colleagues demonstrated a sequence of mutations 

commonly found in sporadic colon cancers proceeding from an initiating mutation in 

adenomatous polyposis coli (APC) progressing to mutations in Kirsten rat sarcoma virus and 

finally, p53.7-11 Studies in colitis-associated cancer show that specific genetic mutations also 

correlate with the adenoma to carcinoma progression12; however, the nature and order of 

these mutations are altered. Indeed, in contrast to sporadic colon cancers, loss of p53 appears 

to be an early event in colitis-associated cancers and is seen in up to a third of biopsy 

specimens with only low-grade dysplasia.13,14 In contrast, APC mutations are uncommon 

in colitis-associated cancers and dysplasia, occurring in less than 10% of cases in some 

series.15,16

Colitis-associated cancers may be accelerated by dysregulation of the nuclear factor 

kappa B (NFkB) signaling pathway. The NFkB pathway is a critical regulator of both 
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inflammation and cell death.17,18 Major activators of NFkB are the tumor necrosis factor 

(TNF) superfamily, including TNF, TRAIL, and FAS, as well as the Toll-like receptor 

family and reactive oxygen species.19 Multiple studies have shown that tumor growth 

and neoplastic progression depend on NFkB signals.20 NFkB p65 has been shown to be 

overexpressed in human CRC tissues,21 potentially enhancing tumorigenesis by upregulating 

antiapoptotic genes. Additionally, overactivity of the NFkB pathway is sufficient to drive 

colon carcinogenesis in mice.22

A20, encoded by TNF alpha-induced protein 3 (TNFAIP3), is a ubiquitin binding and 

editing enzyme that negatively regulates inflammation.23-25 Defects in A20 in humans 

cause a systemic inflammatory syndrome, while A20 defects in mice cause early lethality 

due to widespread inflammation.26,27 A20 has been shown to be a critical regulator of 

NFkB signaling through the regulation of proximal TNF-receptor signaling.23,28 Of note, 

although the majority of the literature supports the role of A20 as a negative regulator of 

inflammation and apoptosis, a recent report demonstrated that, conversely, overexpression of 

A20 can promote TNF-induced and receptor interacting serine/threonine kinase 1-dependent 

inflammation and apoptosis in intestinal epithelial cells (IECs).29

A20 is a tumor suppressor for multiple types of malignancy. Deletion or downregulation 

of A20 has been found in multiple B-cell lymphoma subtypes.30-34 Similarly, A20 

dysregulation has been shown to contribute to the initiation or progression of gastric 

cancer,35,36 breast cancer,37 esophageal cancer,38,39 thyroid cancer,40 and colon cancer.41,42 

We previously reported that A20 could act as a tumor suppressor in a murine model of 

sporadic CRC.42

In this report, we investigated the effect of IEC-specific A20 deletion in a well-characterized 

dextran sodium sulfate and azoxymethane (AOM-DSS) model of colitis-associated cancer. 

We found that epithelial A20 knockout mice had increased tumor burden. Enteroid cultures 

from A20 knockout mice revealed strong induction of inducible nitric oxide synthase 

(iNOS) in response to inflammatory signals, which were confirmed in vivo. In addition 

to restricting TNF-induced iNOS, we also show that A20 may directly regulate nitric oxide 

(NO)-dependent cell death.

Results

To investigate the role of A20 in colitis-associated cancer, we used a mouse strain with 

an intestinal epithelial cell-specific knockout of A20 (A20dIEC). Eight- to twelve-week-old 

wild-type (WT) and A20dIEC mice were treated with the mutagen AOM-DSS to induce 

colitis-associated tumorigenesis. AOM was administered on day 0 followed by 3 rounds of 

DSS treatment, each lasting 5 days and separated by a 16-day rest period (Figure 1A). Mice 

were culled after the final rest period on day 70, and the colon, spleen, mesenteric lymph 

nodes, and serum were harvested for downstream analyses.

We observed no significant differences between WT and A20dIEC mice when assessing 

traditional markers of DSS-induced intestinal inflammation, including weight loss, colon 

length, spleen weight, or clinical score (Figure 1B-E). However, A20dIEC mice appeared 
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to have a generally more immunoreactive profile compared to WT mice after AOM-DSS 

treatment, as suggested by significantly higher serum levels of TNF and elevated IL-12 

(Figure 1F and G). Additionally, A20dIEC mice had lower levels of naive splenic CD4 T 

cells and higher levels of activated splenic monocytes (Figure 1H and I). Together, these 

results suggest that loss of A20 expression specifically in IECs supports systemic immune 

activation in the AOM-DSS colitis model of colon cancer, although loss of A20 does 

not result in worsening of traditional clinicopathologic markers of DSS-induced intestinal 

inflammation under our experimental conditions.

WT and A20dIEC mice had similar numbers of colonic tumors on day 70 (Figure 2A). 

However, despite similar tumor numbers, the average tumor size was larger in A20dIEC 

mice compared to WT, resulting in an increased tumor burden (Figure 2B and C). Histologic 

examination revealed that colonic tumors were grossly similar between WT and A20dIEC 

mice in regard to the severity of dysplasia and the level of invasiveness (Figure 2D-I). These 

results suggest that A20 slows tumor growth and overall tumor burden without affecting 

tumor formation in the AOM-DSS colitis model of colon cancer.

To identify molecular mechanisms underlying the increased tumor burden in A20dIEC mice, 

we first measured global gene expression using RNA-seq in WT and A20dIEC-derived 

small intestinal enteroids stimulated with TNF. Among the most differentially expressed 

genes was NOS2, encoding the iNOS. Reads mapping to NOS2 were significantly enriched 

in A20dIEC mice compared to WT (Figure 3A). We also confirmed increased expression 

of NOS2 in A20dIEC-derived colonic enteroids by qRT-PCR under both TNF-stimulated 

and unstimulated conditions (Figure 3B). Importantly, expression of TNFAIP3, the gene 

encoding A20, was detected only in WT colonic enteroids, where its expression increased 

in a TNF-dependent manner (Figure 3C). This finding confirmed that A20 was successfully 

depleted in our A20dIEC-derived colonic enteroids and that its expression is controlled by 

TNF signaling under our experimental conditions. We also observed increased expression 

of IkBa in A20dIEC-derived colonic enteroids (Figure 3D). IkBa is positively regulated 

by NFkB and served as a positive control for TNF stimulation.43 Increased NOS2 gene 

expression was correlated with increased iNOS functional activity, as measured by a 

TNF-dependent increase in the reactive nitrogen species (RNS) nitrite, specifically in 

the supernatant of A20dIEC-derived colonic enteroids (Figure 3E). To determine whether 

the increased NOS2 expression in A20dIEC-derived colonic enteroids is associated with 

elevated expression of iNOS in vivo, we measured iNOS protein levels by Western blot in 

IEC extracts isolated from colonic tissue of WT and A20dIEC mice treated with one round 

of DSS. We observed a DSS-dependent increase in expression of iNOS in A20dIEC mice 

relative to WT (Figure 4A). Increased expression was corroborated by immunohistochemical 

staining of tissue sections of colonic epithelium (Figure 4B and C). Surprisingly, iNOS 

expression in A20dIEC mice was significantly increased compared to WT in the normal 

colonic epithelium but not in sections of colonic tumors (data not shown). Based on 

these results, we conclude that A20 negatively regulates NOS2 gene expression and RNS 

production in intestinal tissues, potentially via inhibition of NFkB signaling.

RNS are known to cause DNA damage and apoptosis, contributing to tumor formation and 

tumor progression.44 Accordingly, we observed increased expression of the DNA damage 
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marker p53 in whole colonic lysates from A20dIEC mice (Figure 5A). We also found that 

A20-deficient mouse embryonic fibroblasts showed increased cell death when treated with 

exogenous NO (Figure 5B). This latter finding was surprising because it suggests that in 

addition to regulating the production of RNS via NOS2 gene expression, A20 independently 

protects cells against RNS-mediated toxicity. In agreement with this finding, loss of A20 

was associated with enhanced activation of intrinsic apoptosis in the presence of NO in both 

mouse embryonic fibroblasts and colonic enteroids (Figure 5C-F). Together, these findings 

suggest that A20 protects against RNS-mediated DNA damage and apoptosis in the setting 

of colitis-associated cancer and provide a potential explanation for the increased tumor 

burden in mice lacking this critical regulator.

Discussion

The underlying pathophysiology of colon cancers that arise in the setting of inflammation is 

poorly understood. One factor that may play a role is abnormal production or function of the 

small molecule NO. NO is produced by 3 isozymes of nitric oxide synthase, nNOS/NOS1, 

iNOS/NOS2, and eNOS/NOS3. Previous reports have shown focal NO induction in the 

intestinal epithelium of patients with ulcerative colitis,45 and our data strongly corroborate 

the role of enhanced NO production in the setting of chronic inflammation. The fact that our 

final tissue analysis was performed 16 days after the final DSS cycle (Figure 4B and C) also 

suggests that a sustained upregulation of iNOS occurs in A20dIEC mice. Taken together, 

our data support the usefulness of the AOM-DSS model for studying A20-regulated NO 

production and activity in the intestine.

NO may promote CRC development through multiple mechanisms. RNS such as 

peroxynitrite can cause DNA mutations directly but may also inhibit the function of DNA 

repair proteins or stimulate angiogenesis.46-48 Additionally, NO may induce cell death 

directly through a mitochondrial-dependent pathway.49 Our data show that loss of A20 

may facilitate carcinogenesis by potentiating the expression of iNOS and by enhancing the 

lethality of the resulting increase in NO production.

Excess apoptosis has been noted in inflammatory diseases such as IBD50,51 and graft-

versus-host disease,52,53 while dysregulated apoptosis could contribute to the development 

of CRC.54 Our finding that A20 may regulate NO-induced apoptosis independently of its 

role in regulating NO production is intriguing as a potential contributor to these conditions. 

Although low levels of NO are known to inhibit apoptosis, high levels can trigger apoptosis 

through multiple mechanisms.55 Covalent incorporation of NO (s-nitrosylation) has been 

shown to alter the function of death receptors such as TRAIL56 and FAS57 but can also 

alter the function of downstream death-inducing molecules including the proapoptotic 

caspase-3 and caspase-8.58 Alternatively, s-nitrosylation of NFkB can inhibit the expression 

of antiapoptotic proteins.59 A20 could potentially regulate NO-induced cell death through 

dysregulation of NFkB signaling or alternatively through its known roles in regulating 

caspase-8 containing death complexes via regulation of receptor interacting serine/threonine 

kinase 1.23,25,60,61 However, a detailed mechanistic explanation of the regulatory role A20 

plays in apoptosis is the subject of ongoing investigations.
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Surprisingly, iNOS expression was specifically increased in the normal surrounding colonic 

epithelium but not within the tumors of A20dIEC mice relative to WT (Figure 4B and C and 

data not shown). This finding suggests that increased iNOS expression may promote early 

tumor formation in normal colonic epithelium but may play a less important role in tumor 

progression. However, our finding that the total number of tumors was similar between WT 

and A20dIEC mice at the end of the experiment seemingly contradicts this notion (Figure 

2A). The observed increase in tumor size despite similar tumor numbers instead suggests 

that increased iNOS expression accelerates tumor progression without affecting net tumor 

incidence. A careful examination of the dynamics of tumor formation and progression will 

shed more light on this observation and perhaps resolve the apparent discrepancy.

Overall, our findings suggest that A20 acts as a tumor suppressor in colitis-associated 

cancers by regulating NFkB-dependent expression of iNOS and the ensuing production of 

RNS. Although direct inhibition of NO production would likely have pleiotropic effects, 

our results raise the intriguing possibility that inhibition of iNOS activity, or the quenching 

of RNS byproducts, could serve an adjunctive therapeutic role in the treatment of colitis-

associated cancer. Additionally, our findings support an independent role for A20 in 

protecting cells against RNS-mediated lethality (Figure 6).

Methods

Antibodies and Reagents

DETA-NONOate was obtained from Abcam (Cambridge, United Kingdom). Antibodies to 

A20, cleaved-caspase 3, iNOS, and PARP were obtained from Cell Signaling Technologies 

(Danvers, MA). GAPDH was obtained from Millipore Sigma (Burlington, MA). p53 was 

obtained from Santa Cruz Biotechnology (Dallas, TX). Anti-rabbit Cy3 was obtained from 

Jackson ImmunoResearch (West Grove, PA). DAPI and Phalloidin were obtained from 

Thermo Fisher Scientific and Abcam, respectively. Recombinant mTNF was obtained from 

R&D Systems (Minneapolis, MN). Cycloheximide was obtained from Sigma-Aldrich (St. 

Louis, MO). Cell Titer Glo was obtained from Promega (Madison, WI). DSS 40 kDa was 

obtained from Chem-Impex Int’l INC (Wood Dale, IL). AOM was obtained from Sigma (St. 

Louis, MO).

Mice: A20FL mice were generated as described previously.62 WT and A20-deficient mouse 

embryonic fibroblasts were generated as described previously.63 Villin-Cre mice were 

purchased from Jackson Labs. Villin-ERT2-Cre mice were originally obtained from Dr 

Sylvie Robine.64

Induction of Colitis-Associated Tumors

AOM was injected intraperitoneally into eight- to twelve-week-old WT and A20dIEC mice 

at a concentration of 10 mg/kg body weight on experimental day 0. 3 cycles of DSS were 

administered at a concentration of 1.75%. Tumor number and burden were determined at 4 

months of age with the aid of a stereomicroscope equipped with a sizing reticle (Klarman 

Rulings, Litchfield, NH). The clinical score was calculated as the average of the combined 

score of weight loss, stool consistency, and bleeding following each DSS cycle. Each 
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category was scored as followed: weight loss: 0 (no loss), 1 (1%–5%), 2 (5%–10%), 3 

(10%–20%), and 4 (>20%); stool consistency: 0 (normal), 2 (loose stool), and 4 (diarrhea); 

and bleeding: 0 (no blood), 2 (visual blood on bedding), and 4 (gross bleeding, blood around 

anus).65 All animal studies were conducted in accordance with the University of Southern 

California (IACUC #20192) Institutional Animal Care and Use Committee.

Histology/Immunohistochemistry

Formalin-fixed paraffin sections were deparaffinized and rehydrated. Antigen retrieval was 

performed with 10 mM sodium citrate buffer, pH 6.0 in a 95 °C water bath for 30 minutes. 

Tissue was permeabilized with 0.3% Tween-20 in 1× phosphate-buffered saline (PBS) for 

45 minutes at 37 °C. Sections were blocked using SEA BLOCK Blocking Buffer (Thermo 

Fisher, Waltham, MA) for 1 hour at room temperature. Primary antibodies were incubated 

overnight at 4 °C in blocking buffer. Slides were incubated for 1 hour at room temperature 

with secondary antibody and counter stained with Phalloidin-iFluor 488 (Abcam) and DAPI 

(Thermo Fisher) and mounted with ProLong Gold (ThermoFisher) and glass coverslips 

sealed with nail polish. Images were captured using a Leica TCS SP5 multiphoton confocal 

microscope and quantified using Fiji.66 iNOS fluorescence was quantified by normalizing 

the total integrated density (Alexa 594) to the total surface area of colonic epithelium.

Flow Cytometry

Cells were resuspended to a concentration of 1×106 cells/ml. Cells were stained with 

antibodies CD44-FITC, CD69-PE, CD4-PE/Cy7, CD62L-APC, CD8-vFluor450, CD25-

APC/Cy7, CD80-FITC, CD86-PE, CD11b-PE/Cy7, F4/80-APC, IA/E-vFluor 450, GR 1-

APC/Cy7, and B220-PerCP/Cy5.5 (Tonbo Bioscience, San Diego, CA) and Zombie Yellow 

Fixable Viability Kit (BioLegend). Cells were incubated in the dark at room temperature for 

30 minutes. Flow cytometry acquisition was performed on a FacsVantage (BD Biosciences, 

San Jose, CA) and analyzed using FlowJo software (BD Biosciences, San Jose, CA).

Enzyme-Linked Immunosorbent Assay

IL-12 and TNF cytokine enzyme-linked immunosorbent assay was performed according 

to the manufacturer’s instructions (PeproTech, Cranbury, NJ). Briefly, enzyme-linked 

immunosorbent assay plates (Corning) were coated with capture antibody diluted to 1 

μg/ml. Nonspecific binding was blocked using PBS containing 1% bovine serum albumin 

(Sigma). Cell supernatants were added and incubated at room temperature for 2 hours. 

Detection antibody was added at a concentration of 500 ng/ml for 2 hours, followed by an 

avidin-horseradish peroxidase conjugate at a dilution of 1:2000 for 30 minutes. Plates were 

washed between each step 5× with PBS containing 0.05% Tween-20 (Sigma P9416). Plates 

were developed using TMB substrate and read using a Fluostar Omega (BMG Labtech, 

Cary, NC).

Enteroids

Large and small intestine enteroids were isolated as previously described.67,68 A20FL/FL 

VillinERCre+ and A20FL/FL VillinERCre− mice were euthanized according to IACUC-

approved protocols. Colons and small intestines from each mouse were removed and gently 
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flushed with cold PBS. They were then cut open lengthwise and cut into 2 mm pieces. 

Intestinal pieces were washed 15× with ice-cold PBS by pipetting the suspended pieces 

up and down 3 times. Tissue pieces were then incubated in Gentle Cell Dissociation 

Reagent (StemCell) for 20 minutes at room temperature. Fractions were then collected 

from the intestinal pieces in 0.1% bovine serum albumin/PBS. Fractions that contained 

crypts were used for enteroid culture. The crypts were resuspended in a 1:1 mixture of 

Matrigel (Corning) and complete IntestiCult Media (StemCell), which was then plated in a 

prewarmed 24-well plate and covered with 750 μl complete IntestiCult. The medium was 

changed every 2–3 days and enteroids were split every 7–10 days. Enteroids were incubated 

with 4-OH tamoxifen for 72 hours to knockout A20. Following knockout, enteroids were 

treated with recombinant murine TNF at 10 ng/ml in complete IntestiCult for 24 hours.

Nitrite Measurement

Total nitrite concentrations were measured via Parameter kit (R&D systems) according to 

the manufacturer’s instructions. Briefly, dilutions of supernatants from enteroid cultures, 

standards, or blanks were added to 96-well plates. Griess reagents I and II were added and 

incubated for 10 minutes at room temperature. Optical density of each sample was recorded 

at both 540 and 690 nm on a Fluostar Omega plate reader.

Western Blot

Colonic tissue was flash frozen in liquid nitrogen and homogenized using a mortar and 

pestle. For Western blot, pellets from these homogenates were lysed in ice-cold buffer 

containing 200 μg/ml digitonin (150 mM NaCl and 50 mM HEPES) and the Roche complete 

mini protease inhibitor cocktail for 20 minutes, then cleared by centrifugation. Lysates were 

prepared identically for enteroids and mouse embryonic fibroblasts. Protein concentrations 

were determined by bicinchoninic acid assay (Thermo). Samples were mixed with NuPage 

loading buffer and NuPage sample reducing agent (Invitrogen) and resolved on 4%–12% 

Bis-Tris (Invitrogen) gels, then transferred to 0.4 μM polyvinylidene fluoride (Millipore). 

Western blot development was performed using the Clarity chemiluminescent substrate 

(Bio-Rad, Hercules, CA) and imaged on a ChemiDoc Touch (Bio-Rad) system. Analysis 

was performed using Image Lab (Bio-Rad).

RNA-Seq

Total RNA was isolated using the RNeasy Plus Mini Kit (Qiagen, Hilden, Germany). 

RNA quality was determined by Bioanalyzer 2100 (Agilent, Santa Clara, CA). Libraries 

were prepared from 500 ng of total RNA using a Kapa mRNA HyperPrep Kit for 

Illumina platforms (Kapa Biosystems, Inc., Wilmington, MA). Final library products were 

quantified using the Qubit 2.0 Fluorometer (Thermo Fisher Scientific Inc., Waltham, MA), 

and the fragment size distribution was determined with the Bioanalyzer 2100. Equimolar 

concentrations of the libraries were then pooled and the final pool was quantified via qPCR 

using the Kapa Biosystems Library Quantification Kit according to the manufacturer’s 

instructions. The pool was sequenced in an Illumina HiSeq 2500 platform (Illumina, San 

Diego, CA) in Rapid Single-Read 75 cycles format, targeting at least 30 million reads per 

sample. The preparation of the libraries and the sequencing was performed at the UPC 

Genome Core (University of Southern California, Los Angeles, CA).
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Initial read quality and adaptor content of FASTQ files were assessed with FastQC.69 

Reads were then trimmed based on quality score and adaptor sequences removed using 

Trimmomatic.70 After filtering, surviving reads were checked again in FastQC to ensure that 

only high-quality transcriptome reads were put into the analysis pipeline. These high-quality 

reads were mapped to the human genome (ver. GRCh38.p7) using the ultra-fast aligner 

STAR71; the same software was used to obtain uniquely mapping read counts for each gene 

feature included in a gene transfer format (GTF) file. Both the genome and the GTF file 

were downloaded from the GENCODE database (https://www.gencodegenes.org).

Quantitative PCR

mRNA was extracted using Trizol (Invitrogen) and the DirectZol column purification 

kit (Zymo). First strand cDNA synthesis was performed using Maxima H- Mastermix 

(Thermo). Primers to NOS2, A20, and NFKBIA were designed using IDT Primer Quest 

(Table 1). Quantitative PCR was performed using TB Green Premix Ex Taq II Rox plus 

(Takara, Japan, Lot #AJF1254A) and run on a CFX-384 Touch Real-Time PCR Detection 

System (Bio-Rad).

Statistical Analysis

Statistical analysis was performed with GraphPad Prism 4 (GraphPad Software, San Diego, 

CA). Comparisons between 2 groups were performed by two-tailed unpaired Student’s t-
test. Multigroup comparisons were performed by one-way analysis of variance. P < .05 was 

used as the threshold for statistical significance. All experiments shown are representative of 

at least 3 independent experiments.

All authors had access to the study data and had reviewed and approved the final manuscript.
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Abbreviations used in this paper:

A20dIEC A20 intestinal epithelial cell-specific knockout

AOM-DSS dextran sodium sulfate and azoxymethane

APC adenomatous polyposis coli

CRC colorectal cancer

GTF gene transfer format

IBD inflammatory bowel disease

iNOS nitric oxide synthase

NO nitric oxide

NFkB nuclear factor kappa B
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PBS phosphate-buffered saline

RNS reactive nitrogen species

TNF tumor necrosis factor

WT wild type
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Figure 1. 
Phenotype of IEC-specific A20-deficient mice treated with AOM-DSS. (A) Schematic 

diagram of experimental design. Mice were injected at day 0 with 10 mg/kg AOM. Three 

rounds of treatment were performed with 1.75% DSS with a sixteen-day interval between 

each treatment. Mice were euthanized and tissues collected after a total of 70 days. (B) 

Body weight in wild-type (boxes) and A20dIEC (triangles) expressed as a percentage of 

initial body weight. Periods of treatment with DSS are shown on the x-axis. Only upper 

error bars for wild-type and lower error bars for A20dIEC mice are shown for clarity. (C) 

Colon length normalized to total body weight at the conclusion of the experiment on day 

70 in WT and A20dIEC (KO) mice. (D) Average clinical scores for wild-type (black bars) 

and A20dIEC (open grey bars) during each cycle of DSS. Clinical scores range from 0 

to 4 (see methods). (E) Spleen weights normalized to total body weight at the conclusion 

of the experiment on day 70 in WT and A20dIEC (KO) mice. (F) Serum TNF from WT 

and A20dIEC (KO) mice at the conclusion of the experiment on day 70 as measured by 

enzyme-linked immunosorbent assay. (G) Serum interleukin 12 from WT and A20dIEC 

(KO) mice at the conclusion of the experiment on day 70 as measured by ELISA. (H) Naive 
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splenic T cells (CD3+CD4+CD62L+CD44−) in WT and A20dIEC (KO) mice as determined 

by flow cytometry. Results are displayed as a percentage of total CD4+ T cells. (I) Mean 

fluorescence intensity of MHC class II expression on CD11b+Gr-1 low monocytes in the 

spleen of WT and A20dIEC (KO) mice as determined by flow cytometry. *P < .05, **P < 

.01. Comparison between 2 groups was performed by two-tailed unpaired Student’s t-test. 

Multigroup comparisons were performed by one-way analysis of variance. n = 3-5 WT and 

n = 3–5 A20dIEC mice per experiment. Experiments were repeated 3 times. In total, 11 WT 

males, 4 WT females, 9 A20dIEC males, and 5 A20dIEC females were analyzed.
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Figure 2. 
Increased tumor burden in A20dIEC mice treated with AOM-DSS. (A) Tumor number per 

mouse in WT and A20dIEC (KO) mice. (B) Average tumor size in WT and A20dIEC 

(KO) mice. (C) Total tumor burden per mouse in WT and A20dIEC (KO) mice. Tumor 

burden was calculated by multiplying the tumor number by the average tumor size. (D–I) 

Representative histologic images from WT (D–F) and A20dIEC (G–I) mice. Normal areas 

of colon (D, G) and areas of dysplasia (E, H) are shown at 20X magnification. Areas of 

dysplasia shown at 40X magnification (F, I). *P < .05, **P < .01. Comparison between 2 

groups was performed by two-tailed unpaired Student’s t-test. Multigroup comparisons were 

performed by one-way analysis of variance. n = 3–5 WT and n = 3–5 A20dIEC mice per 

experiment as in Figure 1. Experiments were repeated 3 times.
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Figure 3. 
Upregulation of NOS2 in IEC-specific A20-deficient enteroids after an inflammatory 

stimulus. (A) The top 5 most highly upregulated (top) and downregulated (bottom) genes 

in WT vs A20dIEC-derived small intestinal enteroids stimulated with TNF (10 ng/ml) 

for 24 hours determined by RNAseq. Arrow highlights the expression of inducible nitric 

oxide (iNOS/NOS2). (B–D) Expression of iNOS (B), A20 (C), and IKBa (D) in WT and 

A20dIEC (KO)-derived colonic enteroids stimulated with and without TNF (10 ng/ml) for 

24 h. (E) Total nitrite level in the supernatants of WT and A20dIEC (KO)-derived colonic 

enteroids stimulated with and without TNF (10 ng/ml) for 24 hours as determined by Griess 

reaction. **P < .01. Comparison between 2 groups was performed by two-tailed unpaired 

Student’s t-test. Multigroup comparisons were performed by one-way analysis of variance. 

All experiments shown are representative of at least 3 independent experiments.
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Figure 4. 
NOS2 is upregulated in the epithelial cells of IEC-specific A20-deficient mice treated with 

AOM-DSS. (A) Expression of iNOS, A20, and GAPDH (loading control) by Western blot 

of intestinal epithelial cells isolated from colonic tissue in WT or A20dIEC mice treated for 

3 days with DSS or untreated. (B) Representative immunofluorescence images taken from 

WT or A20dIEC colons after AOM-DSS treatment. (C) Quantification of iNOS expression 

in the colonic epithelium of WT or A20dIEC (KO) mice after AOM-DSS treatment. *P < 

.05. Comparisons between 2 groups were performed by two-tailed unpaired Student’s t-test. 

Multigroup comparisons were performed by one-way analysis of variance. All experiments 

shown are representative of at least 3 independent experiments.
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Figure 5. 
A20 deficiency enhances susceptibility to DETA-NO cell death. (A) Expression of p53, 

A20, and GAPDH (loading control) in WT or A20dIEC whole colonic lysates from mice 

treated with AOM-DSS. (B) Cell death in WT or A20-deficient (A20KO) mouse embryonic 

fibroblasts (MEFs) treated with TNF (10 ng/ml) and cycloheximide (CHX, 10 μg/ml) or 

DETA-NO at the indicated concentrations for 24 hours as measured by Cell-Titer Glo assay. 

(C) Expression of PARP, cleaved-caspase 3 (Cl-Casp3), A20, and GAPDH (loading control) 

in WT and A20-deficient (A20KO) MEFs stimulated with TNF (10 ng/ml) and CHX (10 

μg/ml) or DETA-NO (200 μM) for the indicated times as measured by Western blot. Open 

arrowhead and closed arrowhead highlight full-length and cleaved PARP, respectively. (D) 

Expression of PARP, cleaved-caspase 3 (Cl-Casp3), A20, and GAPDH (loading control) 

in WT and A20-deficient (KO) colonic enteroids stimulated with DETA-NO (200 μM) for 

the indicated times as measured by Western blot. Open arrowhead and closed arrowhead 

highlight full-length and cleaved PARP, respectively. (E, F) Densitometry of cleaved PARP 

(E) and cleaved caspase-3 (F) from Western blot shown in D. **P < .01. Comparisons 

between 2 groups were performed by two-tailed unpaired Student’s t-test. Multigroup 

comparisons were performed by one-way analysis of variance. All experiments shown are 

representative of at least 3 independent experiments.
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Figure 6. 
Proposed model for the regulation of colitis-associated cancer by intestinal epithelial 

cell expression of A20. Inflammation, for example mediated by TNF, leads to the NFkB-

dependent upregulation of inducible nitric oxide synthase (iNOS/NOS2). iNOS can produce 

reactive nitrogen species which can lead to DNA damage and cell death potentially 

promoting carcinogenesis. A20 is an early NFkB-induced gene and can dampen further 

inflammation by restricting TNF-receptor signaling in a classical negative feedback loop 

leading to decreased expression of iNOS but may also restrict nitric oxide–dependent cell 

death directly. In the absence of A20, enhanced NFkB activity may lead to increased 

expression of iNOS and increased production of reactive nitrogen species leading to greater 

DNA damage. In combination with enhanced nitric oxide–dependent cell death in the 

absence of A20, carcinogenesis is amplified.
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Table 1.

Primers Used in This Study

msNOS2

 msNOS2-5 Fwd TCAGGAAGAAATGCAGGAGATG

 msNOS2-5 Rev TGAACGTAGACCTTGGGTTTG

msA20

 msA20 Fwd CTGACCTGGTCCTGAGGAAG

 msA20 Rev GAAAAGTCCTGTTTCCACAA

msNFKBIA

 msNfkbia Fwd TGAAGGACGAGGAGTACGAGC

 msNfkbia Rev TGCAGGAACGAGTCTCCGT

msGAPDH

 msGapdh-2 Fwd AGGTCGGTGTGAACGGATTTG

 msGapdh-2 Rev TGTAGACCATGTAGTTGAGGTCA
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