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Abstract 

 

Substrate facies monitoring is critical for the understanding of fluvial geomorphologic 

and ecohydraulic patterns and processes. However, direct substrate measurement is 

time-consuming and subjected to data sparsity because of small sample, size, and 

limited data collections within an area of interest, which make it difficult to capture facies 

patterns. Most new experimental studies focus on mapping substrate based on median 

grain size of a specific grain size class using automatic or semiautomatic photosieving 

techniques. This study aimed to develop and apply a method to accurately predict size-

mixture facies patterns on exposed riverbeds with minimal ground truth plots (100) 

using airborne lidar and machine learning. The selected testbed river was a 37.5-km 

stretch of the regulated lower Yuba River in California, USA, mapped at sub-meter 

resolution in 2017. First, we designed a grid-by-point grain size sampling method and 

binned grain sizes into representative mixtures, such as fine or large gravel, to assign 

subaerial facies labels. Second, we classified facies based on a multivariate cluster 

analysis. Third, we generated 15 lidar-derived topographic and spectral predictors. Six 

distinct size-mixture facies were identified from field data and a seventh, pure sand 

facies, from UAV data. A random forest predictive model with an 86% 10-fold cross-

validation accuracy was applied to produce a facies map at the 1.54 m pixel scale. The 

detrended elevation was identified as the most important variable for predicting facies 

spatial patterning, followed by baseflow, wetted area proximity, and green lidar intensity. 

We conclude that machine learning combined with intensity lidar data is highly effective 
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for distinguishing mixed classes of substrates. Ultimately, the new substrate mixture-

binning approach also provides novel insights into the arrangement of river sediment 

facies patterns. 

 

Keywords: grain size, lidar, substrate, gravelometry, machine learning, remote sensing, 

fluvial geomorphology 
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Highlights 

● Cluster analysis of field-plot grain-size data yields mixed-size sediment facies to 

train machine learning. 

● A supervised random forest machine learning model accurately predicts 

subaerial  facies using only airbone lidar. 

● The top lidar predictor is detrended elevation. 

1. Introduction 

1.1. Need for rapid, detailed substrate mapping 

Substrate facies are broadly defined as areas of sediment that are recognizably 

different from adjacent sediment patches because every patch formed in a different 

depositional context. Visible substrate facies constitute the top layer of the active 

riverbed with variable thickness and potentially high lateral spatial variability (Brierly, 

1991). The characteristics of substrate facies can also be attributed to hydrodynamics 

(Jackson et al., 2013; Hou et al., 2019) and morphodynamics, which drive differential 

grain size mobility (Nelson et al., 2010, 2009; Venditti et al., 2017). Thus, facies 

differences can be identified through grain size distributions (GSDs), spatial sorting of 

different sizes, degree of weathering, and patterning of grain stacking and orientation 

(Buffington and Montgomery, 1999; Heritage and Milan, 2009; Wittenberg, 2002). In 

addition, a spatio-temporal reciprocal link exists between facies, landform units, and 

hydraulic response (Abu-Aly et al., 2014; An et al., 2017; Chanson, 2004; Nelson et al., 

2015). It is therefore no surprise that facies are ecologically important for: (i) maintaining 
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sustainable habitats in rivers (Fryirs and Brierley, 2012; Hauer et al., 2018; Moniz et al., 

2019; Pasternack, 2019); (ii) efficient restoration design (Hauer et al., 2018); and (iii) 

fluvial morphodynamics that renew physical habitats (Escobar-Arias and Pasternack, 

2010).  

Common methods for obtaining spatially explicit facies patterning include visual facies 

mapping, GSD measurement methods coupled with a spatial sampling scheme, 

photosieving techniques, and aerial methods. Visual facies mapping is fast, but 

potentially inaccurate and unable to yield desired quantitative metrics for ecohydraulic 

or geomorphic applications (Jackson et al., 2013). Field GSD sampling methods 

typically measure coarse bed sediment directly in the field (e.g., using Wolman pebble 

counts coupled with a spatial sampling pattern; Wolman, 1954), which is labor intensive 

(Kondolf and Li, 1992; Marcus et al., 1995; Whitaker and Potts, 2007). Photosieving 

techniques assess individual grains and calculate percentiles using a graphical 

algorithm or semiautomatic segmentation software (e.g., BASEGRAIN). They are 

relatively low-cost but only cover the small viewing area captured by a digital camera 

(Barnard et al., 2007; Bertin and Friedrich, 2016; Detert and Weitbrecht , 2012; Di 

Francesco et al., 2016; Graham et al., 2010; Groom et al., 2018; Weitbrecht et al., 

2013). Aerial methods combine airborne survey data with digital image texture analysis, 

such as aerial photo-sieving. The accuracy of aerial methods depends on the range of 

grain size variability and imagery quality. Yet, aerial methods can require extensive and 

time-consuming calibration (Carbonneau et al., 2005a, 2004; Dugdale et al., 2010; 

Verdú et al., 2005). Generally, manual post-processing is required to delineate the real 

shape of grains for reducing misidentification. On a riverbed with overlapping grains and 
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a fine matrix, segmentation methods are prone to errors when detecting the grain size 

because of weak edge clarity of the grains or shadows, which leads to over-

segmentation (Purinton and Bookhagen, 2019). 

At a time when topography, water surface elevation, water depth, and vegetation are 

being widely mapped at high resolution, substrate facies pattern remain the most 

important variable yet to benefit from technological revolution (Piégay et al., 2020; 

Tomsett and Leyland, 2019). One of the main reasons for this discrepancy is that 

mapping river substrate facies is labor-intensive, time-consuming, expensive, and 

difficult to deploy over large areas at high resolution. Further, fluvial dynamism 

necessitates that all these problems be addressed on a repeat basis. Consequently, 

many significant spatial details of substrate heterogeneity are missed and unavailable 

for use in understanding and managing rivers. Yet, remote sensing data processed with 

machine learning (ML) algorithms could offer a viable solution.  

1.2. Recent advances in remote sensing and machine learning 

In recent years, researchers have employed lidar remote-sensing technologies to 

estimate the GSDs on exposed riverbeds using multiple sensors and methodologies. In 

a fluvial river system, Škarpich et al. (2019) analyzed variations in bar material GSDs 

and the hydraulic conditions of managed and re-naturalized gravel reaches. The study 

used lidar to obtain a digital elevation model (DEM) (grid size 5 m x 5 m) with a 

photosieving software for estimating gravel size metrics. Chardon et al. (2020) 

presented the first riverbed evidence that lidar intensity standard deviations provide a 

GSD proxy for non-submerged areas. In addition, grain size measurement, delineation, 
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and sorting on a gravel riverbed was successfully conducted with terrestrial laser 

scanning (Heritage and Milan, 2009; Hodge et al., 2009; Neverman et al., 2019; Wu et 

al., 2018). From this data a GSD map could be produced, where the median particle 

size ranged from less than 32 mm to 181 mm (Brasington et al., 2012). However, this is 

a site-specific method with limited areal extent. 

The use of airborne green lidar enables submerged substrate mapping (Carrivick and 

Smith, 2019) and is well-suited for long (> 5 km) and wide river corridors (Chardon et 

al., 2020). However, there is no standard workflow for processing lidar cloud point data 

(Kashani et al., 2015), especially to estimate GSDs, rather than just qualitative substrate 

facies labels. Another challenge is that the need for frequently repeated surveys and 

high temporal resolution for river analyses results in high survey costs (Chardon et al., 

2020; Tomsett and Leyland, 2019). Thus far, no studies of continuous substrate 

mapping in rivers have used lidar. 

To facilitate airborne surveying of rivers, Unmanned Aerial Vehicles (UAVs) have been 

used to decrease costs, ease manipulation, increase spatio-temporal resolution, and 

obtain high-quality orthophoto mosaics (Buscombe, 2020; Carbonneau et al., 2018; 

Hemmelder et al., 2018; Langhammer et al., 2017; Langhammer and Vacková, 2018; 

Rusnák et al., 2018; Vázquez-Tarrío et al., 2017; Woodget et al., 2018a, 2017). The 

structure-from-motion (SfM) survey technique provides high-quality dense 3D point 

clouds, high spatial density (points/m2), and high point accuracy (Carrivick and Smith, 

2019; Leduc et al., 2019). GSDs maps have been generated using UAS 

photogrammetry combining semi-automatic grain size estimation methods, imagery 
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texture processing, and point cloud roughness at the reach scale distribution at a 2-cm 

pixel size, for a 2.5-km reach extent (Carrivick and Smith, 2019; Langhammer et al., 

2017; Pearson et al., 2017; Vázquez-Tarrío et al., 2017; Woodget et al., 2018b, 2017). 

Fluvial substrates based on dominant grain size were also mapped using object-based 

image analysis (OBIA) with an RGB orthomosaic acquired from a UAV (Arif et al., 

2017). Nevertheless, this method currently is highly problematic, complicated, and labor 

intensive when used over wide areas.  

Recently, ML frameworks have advanced the development of GSD assessment tools 

that improve edge detection between grains and their shadowed interstitial space 

(Buscombe, 2020; Lang et al., 2020; Purinton and Bookhagen, 2019). Combined with 

emerging remote sensing techniques, GSDs can today be measured and mapped by 

imaging the ground from elevated platforms, such as poles, balloons, UAVs, airplanes, 

helicopters, and satellites (Carbonneau et al., 2020, 2018, 2005b, 2004,; Dietrich, 2016; 

Dugdale et al., 2010; Pearson et al., 2017; Piégay et al., 2020). Thus, remote sensing 

data and ML is used extensively in environmental science to resolve classification 

mapping challenges (Lary et al., 2016; Maxwell et al., 2018; Sofia, 2020) such as 

mapping soil types, glacier facies, and coastal sediments (Liu et al., 2019; Misiuk et al., 

2019; Zhang et al., 2020). In beach environments, ML algorithms, such as support 

vector machine (SVM) and maximum likelihood, have been successfully used to classify 

cobble coverage (Matsumoto and Young, 2018). In fluvial environmental research, 

substrate classification can be enhanced using the spectral and geomorphometry 

information with ML algorithms that accept a variety of predictors and produce higher 

accuracy (Lary et al., 2016; Legleiter et al., 2016; Sofia, 2020). 
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1.3. Study purpose 

This study aims to develop state-of-the-art substrate mapping methods that are less 

limited with respect to the spatial extent of images (mostly mapped from UAV), one 

characteristic grain size (e.g., the median grain size), and topographic roughness 

proxies that are typically used to infer grain size ranges. These methods primarily yield 

qualitative facies labels, but they do not meet scientific and management needs 

because there is no procedure for quantitatively mapping subaerial substrate facies in 

high (~1-3 m) resolution over long (~20-50 km) river stretches with remote sensing data. 

This study hypothesizes that identifying substrate facies based on GSD data can 

provide quantitative metrics to efficiently support a variety of geomorphic and 

ecohydraulic applications. Given the evidence that grain size is linked with spectral-

topographic signals, mapping broad areas might capitalize upon the substrate’s 

information and the relation between facies and topographic variability derived from a 

DEM. To investigate this possibility, this study asks the fundamental question: can 

substrate facies patterns and GSDs be accurately predicted using lidar datasets and 

low-cost fieldwork with ML? 

This study addresses the challenge of developing an accurate ML facies predictive 

model based on airborne lidar, including quantitative substrate metrics as labels at the 

lower Yuba River (LYR) in California, USA, as a testbed. Specifically, it determines 

subaerial substrate river facies based on GSD abundance, predicts facies spatial 

patterns, and quantifies subaerial surficial riverbed sediment facies with minimal ground 

truth using an ML framework. The prediction performance is statistically assessed and 
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the most useful predictors are identified to better understand physical processes 

controlling substrate facies patterning. Based on a review of ML articles making 

geoscience related predictions, 83% concluded that an ML model was successful when 

it achieved an accuracy of > 70%. Therefore, this threshold was adopted as the 

performance indicator to determine whether the test in this study resulted in a 

successful outcome. 

2. Study area: Low Yuba River 

The Yuba River is a tributary of the Feather River in north-central California that drains 

~3480 km2 of the western Sierra Nevada (Fig. 1). The ~37.5 km (by valley centerline) 

segment between the 1941 Englebright Dam (ED) and the confluence of the Feather 

River is referred to as the lower Yuba River (LYR). The LYR is a regulated river with 

(~20 emergent bars/islands at bankfull), low sinuosity, high width-to-depth ratio, and 

slight to no entrenchment. The geomorphically determined bankfull discharge was 

estimated as 141.6 m3·s-1, with ~82% annual exceedance probability (Wyrick and 

Pasternack, 2014). 

Numerous sedimentary processes have influenced LYR substrate facies. The 

watershed experienced a strong anthropogenic impact with historic hydraulic gold 

mining activities and management strategies. The consequences were severe channel 

aggradation with deposition of millions of tons of mining sediment during the mid to late-

nineteenth century (James et al., 2009). Since its construction, Englebright Dam is a 

sediment barrier promoting downstream geomorphic recovery (Carley et al., 2012; 

Gilbert, 1917). Daguerre Point Dam (DPD) splits the LYR into an upstream and 
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downstream section and it was constructed in 1910. Levees, bank stabilization, and 

channelization were constructed for flood control and reduce the complexity of in-

channel landform pattern (Wyrick et al., 2014; Wyrick and Pasternack, 2012; Wyrick and 

Pasternack, 2014). 

The LYR substrate lithology corresponds to auriferous, rounded and subangular-to-

subrounded clasts of coarse granite, rhyolite, and metavolcanic rocks, which dominate 

the lithology of the quaternary gravels in a matrix of sand and silt (Adler, 1980). The 

LYR bed material source is a relatively homogenized mixture of sand, gravel, and 

cobble that is being exhumed from the river corridor by the flows coming out of and over 

ED. A little downstream, 11.9 million m3 of sediment was stored in a horse-shoe bend, 

where it forms alluvial terraces on the hillsides (Pasternack, 2008). Boulders are found 

primarily along the banks where bedrock has broken off the hillside and tumbled into the 

channel. Downstream from ED, the LYR flows into a 12-km stretch dominated by 

extensive dredge spoils of the Yuba Goldfields, piled in gravel ridges 7-20 m high on 

both sides of the channel, providing additional material to the river (Jackson et al., 

2013). The LYR’s cobble-gravel bed has well-rounded imbricated coarse substrate 

(0.30 m) at ED and much finer substrate (0.04 m) close to its confluence with the 

Feather River. In the bankfull wetted area downstream of ED, cobble is the dominant 

size class, but a range of silt to bedrock can be observed in the channel. The mean 

particle size for the entire bankfull segment is 97.4 mm. In-channel landforms are 

primarily composed of small or medium cobble (i.e., 32-90 mm and 90-128 mm, 

respectively; Jackson et al., 2013). The longitudinal substrate distribution shows that 10-
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50% of riverbed sediment serves as rearing cover for Chinook salmon (i.e., large cobble 

and boulders; Moniz et al., 2019; Pasternack et al., 2013). 
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Fig. 1. Maps of the lower Yuba River (California, USA), which serves as a testbed 

in this study. 

3. Material and methods  

3.1. Substrate mapping workflow 

A novel substrate mapping workflow was designed and applied to the LYR (Fig. 2). A 

pre-processing phase comprised two activities. First, preparing lidar data by identifying 

and producing potential substrate facies predictors. All predictors were stacked into a 

set and clipped to each field observation (5 X 5 m plot to generate training datasets for 

a random forest (RF) algorithm. Second, identifying substrate facies clusters based on 

GSDs from field data using hierarchical cluster analysis. Facies clusters were assigned 

categorical names, referred to as “labels” in ML training, which include GSD information 

and are consequently more than just nominal labels. 

A processing phase included ML implementation with a supervised classification 

learning task. In this study, ML algorithms did not predict the sizes of individual grains, 

but instead predicted which substrate facies each raster pixel belonged to. Because 

each substrate facies has a measured representative GSD, every pixel’s GSD is 

inferred from its ML-predicted label. Predicting substrate facies is easier and more 

suitable than trying to predict individual grains because airborne lidar cannot resolve 

individual sand, gravel, and cobble grains. Finally, an accuracy assessment using 

performance measurement was applied. 
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Fig. 2. Substrate mapping workflow with pre-processing (lidar-derived predictors 

development and substrate facies label generation based on field data and UAV 

imagery) and ML processing (supervised learning classification, substrate 

predictive model performance assessment, and model application for substrate 

facies mapping). 

3.2. Data collection 

This study focused on an exposed river corridor of the LYR, outside the wetted area at a 

baseflow discharge of 28.43 m3 s-1 (~20% of bankfull discharge). Further, two-

dimensional, validated numerical hydrodynamic models of steady baseflow were 
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available in high resolution (1.54 m) for 2017 (Barker et al., 2018), and were used to clip 

out the wetted area. 

3.2.1. Airborne lidar 

Airborne lidar data were collected in September 2017 at a survey altitude of 500 m with 

a beam size of 50 cm and a scan angle reduced to a maximum of ±20º from nadir 

(Quantum Spatial, 2017). Discharge during flight days was between 29.45 m3 s-1 and 

22.5 m3 s-1 upstream and downstream of DPD, respectively. Near-infrared (NIR, 1064 

nm) and green (532 nm) lidar laser first-return (33.78 points/m2) rasters were generated 

at 0.45 m (1.5 ft) pixel resolution. The lidar data contains the occurrence of a return from 

every location on the ground, and the intensity (strength) of the backscattered laser 

signal on a scale of 0-255.  

3.2.2. UAV imagery 

UAV imagery was acquired across the LYR from 2018 to 2020 (recorded with a Matrix 

600 platform with an FC550 camera model), at a pixel resolution of 4608 X 3456 and a 

focal length of 12 mm. RGB imagery was collected across four reaches (Sierra 

Overhead Analitycs, 2018). More than 3000 images were captured for every reach, with 

75-80% overlapping at 44-52 m above ground level. Between 40 and 80 ground control 

points were recorded on the riverbanks (with a Trimble R10 device) prior to the UAV 

surveys. The flight mission was planned using the Pix4d app for data collection and 

operated with an automatic pilot. An orthophoto mosaic was derived with a pixel size of 

1.5·10-2 m. 
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3.3. Ground truth field data to create training variables 

3.3.1. Pebble counts 

A GSD dataset of large (>1000 m2) alluvial bars above the highest 2018 flood stage (to 

ensure no changes in the substrate since the 2017 aerial mapping) was generated with 

Wolman pebble counts (Wolman, 1954). One hundred bar polygons were identified for 

the LYR in 2018 based on Google Earth. Bar subsets were selected randomly. Then, for 

every bar, sample locations were chosen based on a stratified random approach to yield 

an equal effort sampling for every stratum (facies cluster) to be representative for the 

patch-pattern (Chawla et al., 2002; Lane et al., 2017). 

Two site characterization approaches were used. First, 35 out of 100 sample locations 

were collected with a transversal line approach, which consisted of collecting grains 

along a transversal line crossing the bar. Second, the remaining 65 samples were 

observed with the grid-by-number Wolman pebble count method (Wolman, 1954). We 

used a 5 X 5 m plot, discretized into 100 nodes spaced 0.5 m apart from each other 

(around twice the largest grain size) (Fig. 3). The grain size of each particle was 

measured using a metal gravelometer, providing higher accuracy than ruler 

measurements and reducing the variability between different operators (Bunte and Abt, 

2001). The individual grains located at every node in a plot were handpicked, with pinky 

finger extended and eyes closed, to pick up the first grain touched (Leopold, 1970), 

yielding 100 samples measured per plot. In total, 100 ground truth sample plots were 

selected, each with 100 grains measured, yielding a total of 10,000 grains measured 

from December 2018 to June 2019. A GPS position was recorded at the center of every 
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plot using a Trimble GeoExplorer 2008 polygon file that was created to overlay the 

sample locations in the later geospatial analyses. Collection time was ~15 min per plot 

with two operators working simultaneously. Field data sheets consisted of 16 size 

measurement bins. Counts for every size bin were normalized by the total count to 

obtain the percentage of each size class per plot. 

 

Fig. 3. Example of substrate sample plots. Observation points were spaced 0.5 m 

apart and the total grid covered 25 m2. 

3.3.2. Manual sand facies clustering using UAV imagery 

Sand facies are easy to identify on cm-resolution UAV imagery (Bae et al., 2019). Sixty 

training samples of different sizes and shapes of the sand facies with highly 

homogeneous fine substrate (grain size < 2 mm) were collected from the 2018 UAV 
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orthomosaic (Figs. 4 and 5). This approach was used instead of collecting and sieving 

bulk samples as the particles were too small for a gravelometer. All sampled locations 

were above the 2018 and 2019 flood extents. 



  

19 

 

Fig. 4. Sand samples site locations. 
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Fig. 5. Locating the sand facies clusters above flooded areas using ~1.5 cm 

resolution UAV imagery (Wolman pebble counts are not intended for sand and 

silt). 
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3.3.3. Extracting predictors from airborne lidar 

Possible substrate predictors were generated from airborne lidar in raster format at 1.54 

m (5 ft) resolution. Topographic predictors were derived from a high quality 2017 DEM 

generated from the lidar point cloud with extensive quality control measures (Silva and 

Pasternack, 2018). Fifteen predictor layers were used in this model (Table 1). The 

raster for every predictor was processed to clip out inundated terrain, upland areas 

outside the river corridor, and ground covered by vegetation (details in supplemental 

material). 

 

Table 1. Variables used in the ML algorithm to predict substrate facies. 

Predictor Method of 

Detrended Elevation Pasternack et al., 2018 

Green Lidar Return Intensity Lidar survey 

NIR Lidar Return Intensity Lidar survey 

Std Lidar Intensity Matsumoto and Young, 2018 

Mean Lidar Intensity Matsumoto and Young, 2018 

Baseflow Wetted Area Proximity This study 
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Longitudinal relative Aspect This study 

Lateral relative Aspect This study 

Topographic Slope Hijmans et al., 2018 

Terrain Ruggedness Index (TRI) Hijmans et al., 2018 

Topographic Roughness Hijmans et al., 2018 

Topographic Position Index (TPI) Hijmans et al., 2018 

Topographic Flow Direction Hijmans et al., 2018 

Topographic Curvature Evans, 2020 

Pixel-scale Topographic Variability Weber and Pasternack, 2017 

 

3.3.4. Classifying GSDs for cluster analysis 

A combination of statistical methods was applied to the field data to identify the river’s 

differentiable substrate facies (Fig. 6). The rational classification method used here is 

almost identical to that used in Lane et al. (2017) and Byrne et al. (2020), but there is 

only one source variable to differentiate substrate facies: observed GSDs. The strategy 

to turn GSDs into a set of variables involves binning grain size data into discrete ranges 

and computing the abundance of particles in each bin as a variable. The key challenge 

is to mindfully decide how many bins are needed in support of cluster analysis. Too 
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detailed, excessive size-class binning is not optimal for cluster analysis, because it 

yields clustering variables with extreme highs and lows that produce many individual 

clusters with only a few field plots in each. The goal is to have broader clusters with 

many field samples. To create a parsimonious number of clustering variables, the initial 

16 GSD size bins were aggregated to four. Every aggregated size class was given a 

name reflecting the size of the particles in that class: sand and fine gravel (< 5.6 mm), 

gravel (5.6 – 22.6 mm), large gravel (22.6 – 64 mm) and cobble (64-256 mm). The 

percent abundance of every bin was computed for every plot. Then, data in every bin 

were normalized to a 0-1 scale and a hierarchical cluster analysis (Murtagh and 

Legendre, 2014; Ward, 1963) was performed to reveal substrate facies. 

The choice to use four bins was not only made considering conventional sedimentology 

and the impact of bin number on statistical analysis performance, but also recognizing 

the eco-geomorphic significance of different size classes. Habitat protection requires a 

64 mm grain size class threshold to differentiate larger grains that function as cover that 

protects smaller organisms from predators and direct sunlight (Fischer, 2000). Also, 63 

mm is the differentiable threshold of gravel from cobble (ISO, 2017; Wentworth, 1922). 

Chinook spawning requires a large gravel grain size range (22.6 – 64mm) in the LYR 

(Kondolf, 2000). Spawning steelhead trout prefer the gravel substrate bin range (5.6-

22.6 mm) (Kammel et al., 2016; Kondolf and Wolman, 1993). Grains smaller than 5.6 

were lumped into one class of sand and fine gravel. 
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3.3.5. Identifying LYR substrate facies 

Cluster analysis required an expert decision regarding the number of size classes to 

use as input variables, which was chosen as four classes. Cluster analysis then 

analyzed all of the field locations to reveal groups of locations with similar mixtures of 

those four sizes. Theoretically, cluster analysis can yield any combination of the four 

variables, based on what is actually present at the observed locations. For example, it is 

plausible to end up with a sandy cobble mixture as a cluster, if that is what is found on 

the riverbed. Similarly, there could be a cluster composed of an equal mixture of all size 

classes. One situation in which each data-driven cluster could theoretically yield 

groupings that match the four input size classes would be if the river exhibited near-

perfect hydraulic sorting to yield highly homogenous patches in just the same size range 

as the input size classes consist of. Therefore, regardless of the number of final 

substrate facies clusters that an expert chooses based on the hierarchical clustering 

diagram, it is extremely unlikely that the clusters will coincide with a single bin range of 

sizes exactly matching the input size classes. After all, the whole point of the cluster 

analysis is to identify the mixtures of sediment among the four size classes that are 

revealed in the field training samples. 

In this study, a single threshold distance value was used to delineate substrate facies in 

the hierarchical clustering diagram. The choice of this value can be difficult to make and 

justify in some applications, but in this study it turned out to be very simple, as will be 

presented in the results. To make that decision, the key insight comes from interpreting 
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what mixture of the four grain size class variables each grouping of sites represents at 

different hierarchical levels. 

Therefore, a suite of analyses was performed to evaluate differences in the resulting 

facies and to decide at what level in the hierarchy to formalize facies delineations. A 

one-way analysis of variance (ANOVA) was done to compare the mean values of the 

aggregated grain size classes among facies clusters. A post-hoc Tukey’s honestly 

significant differences (HSD) test was applied at the 95% confidence level to indicate 

the most representative grain sizes of every substrate facies cluster (Lane et al., 2017). 

A stability analysis was conducted by comparing the results of clustering analysis when 

every aggregated grain size class column was removed one at a time. Four stability 

metrics were used to aid in the selection of the optimal number of clusters: (1) the 

average proportion of non-overlap, (2) the average of distance, (3) the average distance 

between means, and (4) the figure of merit (Datta and Datta, 2003). 

Finally, facies clusters names were assigned on an expert basis by interpreting facies 

GSD attributes and considering 1.5 cm UAV imagery of individual facies clusters plots. 

Considering traditional classification system naming conventions, facies clusters names 

were selected based on the dominant grain size class, when such was present. Some 

facies clusters ended up with mixtures of different aggregated size classes, so they 

were given mixed names. 
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Fig. 6. Identifying LYR substrate facies clusters workflow. 

3.4. Machine learning implementation 

Given 100 field plots with substrate facies clusters labels identified from statistical 

clustering serving as training data, the next step involved evaluating an ML algorithm 

and hyperparameters regarding their ability to predict those labels from a set of 15 

predictors (Table 1, Fig. 2). The hyperparameters are parameters related to the model’s 

architecture and have effects on the resulting model performance. The process of 

tuning consisted of finding the hyperparameters that yielded the best model 

performance (Kuhn and Johnson, 2013). 

A supervised classification task with a (RF) algorithm was performed. A statistical 

resampling method was applied to segregate observation data into training and 

validation subsets. A suite of performance metrics was analyzed. The best-performing 

model was applied to the entire study area. 
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3.4.1. Supervised classification with ML 

The ML supervised learning task applied the known information (ground truth), in this 

case labels, and was trained to recognize similar patterns distinguishing label 

boundaries in multidimensional predictor spaces. The RF algorithm by Breiman (2001) 

is an ensemble of tree decisions and depends on the value of an independently 

sampled random vector. RF has shown high performance and accuracy compared to 

other ML models in mapping with remote sensing derived variables and small training 

samples (Liu et al., 2019; Zhang et al., 2020), as well as with high dimensional and non-

normally distributed data (Guillon et al., 2020; Maxwell et al., 2018; Millard and 

Richardson, 2015). The number of tree (ntree) selected was 500 as conservative default 

value (Maxwell et al., 2018). The number of predictor variables randomly sampled as 

candidates at every split (mtry) was defined by a grid-search method with a grid 

resolution of 1, and mtry values between 1 and the number of predictors (15) (Probst et 

al., 2018; Zhang et al., 2020). Implementation was performed using the caret package 

in R (Kuhn et al., 2008).  

Resampling is a technique to evaluate the model’s efficacy by splitting the data into a 

sample subset to fit and a subset to test the model. Selecting a robust resampling 

method in spatial classification problems is a key step in the ML framework (Guillon et 

al., 2020; Ramezan et al., 2019). The process of doing multiple cross-validations is 

called “repeated” k-fold cross-validation, where k indicates the number of groups that a 

given dataset will be split into. The cross-validation method increases the statistical 

significance and reduces model overfitting by using all observations to train and validate 
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the model (Burman, 1989; Hawkins et al., 2003). Twenty repeats of the 10-fold cross-

validation resampling method were used to calibrate and validate the RF model. 

Training data were split randomly (10-fold), where one was used for model assessment 

and the rest for training. A pre-processed facies dataset with 1113 training pixels each 

having 15 predictor variables was used to build the model. 

Despite efforts to achieve equal sampling across facies clusters, there were fewer sand 

facies training samples compared to large gravel facies samples. To address the 

imbalance, three methods were considered. The up-sampling method consisted of 

simulating additional minority classes (synthetic observations) to improve the balance 

across classes, while the down-sampling method reduced randomly chosen cases 

among the majority classes to decrease their effect on the classifier. The synthetic 

minority over-sampling technique (SMOTE) used both up- and down-sampling (Chawla 

et al., 2002; Kuhn and Johnson, 2013). However, the application of the imbalance 

methods did not improve the performance of the model and a model without these 

methods was generated as the most representative. 

3.4.2. Measuring performance 

The ML facies predictive model’s statistical performance was assessed using median 

cross-validation overall accuracy as a result of the repeated cross-validation resampling 

method. Computing the ratioof correct predicted facies to the total number of facies 

clusters, the model with the highest median cross-validation was selected (Hawkins et 

al., 2003). To evaluate the relative error among facies, a confusion matrix and sensitivity 

metric were computed. The sensitivity metric represents the ratio between correctly and 
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incorrectly predicted observations (Deng et al., 2016; Kuhn and Johnson, 2013; 

Ramezan et al., 2019). To identify the main facies predictors, the so-called variable of 

importance was computed (Breiman, 2001). In addition, a visual inspection was done to 

qualitatively compare the 1.5 cm pixel size UAV orthomosaic versus the final substrate 

predictive map. To understand the relationship between predictors and facies, 

histograms between predicted facies and most important predictors were generated for 

the total overbank area in the river and a representative bar. 

4. Results 

4.1. Facies training data binning results 

Grain size distributions of 100 field plots show significant substrate variability between 

plots but a general abundance of large gravel (Fig. 7). Histograms of the same data 

aggregated from 16 size classes to four show that this amount of simplification in GSD 

numbers yields meaningful variability across all four classes (i.e., a wide range of %-

abundance) with few empty abundance bins in every size class, supporting the 

suitability of a four-variable scheme in cluster analysis (Fig. 8). As an example of how to 

read the plot, the top left results for the “sand and fine gravel class” show that 76% of 

field plots have 0 -10% abundance of this class. Thus, there was little sand and fine 

gravel in the field plots. Because sand and fine gravel are highly skewed, these grain 

size classes yield a single grouping. The gravel class result shows that 30% of the sites 

have 10-20% of abundance. Less than 10% of field plots have more than 40% 

abundance of gravel. The result for large gravel shows that 22% of the field plots have 
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most of the gravel abundance between 40 and 50%. For large cobble, ~20% of field 

plots show 10-80% abundance of cobble. Large cobble abundance exhibits more 

uniform distributions, helping to explain their dominant roles in structuring the six facies 

cluster. 

 

Fig. 7. Raw GSDs for 15 sites on one large alluvial bar (called PBR). Vertical red 

lines break the GSDs into four aggregated grain size classes. 
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Fig. 8. Histograms of grain size across 100 ground plot samples. The x-axis 

shows bins of percent abundance of every size class. The y-axis shows the 

number (and percentage) of samples with abundance percentage bin (because 

there are exactly 100 samples and frequency equals percentage). 

4.2. Facies clusters in LYR 

Hierarchical clustering using Ward’s methods (Murtagh and Legendre, 2014; Ward, 

1963) showed the clustering structure of the 100 ground truth substrate field plots (Fig. 
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9). Evaluation of the classification performance metrics for scenarios with different 

numbers of clusters revealed that six substrate facies clusters is the most 

representative number of groups to understand LYR substrate diversity. To clarify why 

this is the case, consider the consequences of choosing a four-facies system based on 

a higher threshold distance of ~ 10 in Fig. 9. A consolidation from six down to four 

clusters would result in the mixed gravel and equal mix clusters merging into one 

cluster, while cobble/gravel and large gravel would merge into another cluster. This 

would be a poor outcome. First, the equal mix cluster has ~8.5 times more cobble and 

~2.4 times less gravel than the mixed gravel cluster. Results found that the two clusters 

have roughly similar, low relative abundances on the LYR (5.2 and 4.0%, respectively). 

Therefore, merging those units would have significant and negative consequences for 

ecological analysis, as it would obscure the relatively rare locations of good cobble 

cover available in areas of actual equal mix and over-represent the possibility of cover 

in the rare areas of actual mixed gravel. Second, similar ecological reasoning applies 

when comparing the consequences of merging cobble/gravel and large gravel clusters, 

but this time the result could be a significant overestimation of available cover habitat, 

because cobble/ gravel is the most abundant class (42.3% of study area), whereas 

large gravel is only present at 12.7% of the study area. Merging the two could increase 

estimated cover habitat by a significant 57.5 ha. Therefore, maintaining the 

differentiation of substrate facies with six compared to four clusters is not only 

sedimentologically justified given the wide statistical differences among six clusters, but 

is ecologically important and helpful for river management. Note that decreasing the 

distance threshold to obtain more than six clusters is difficult to support on the basis of 
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available mixed gravel and equal mix sites and their relative infrequency on the LYR 

(Fig. 9), as those two clusters would be the first to split. Therefore, six clusters is the 

best result. 

Names for the six facies clusters reflect the nature of each mixture and the cluster input 

variable (i.e., one of four grain size classes) with the largest abundance in every facies 

clusters, as per the average abundance of every size class among the field plots 

grouped into every facies (Table 2). The first dendrogram split, which represents the 

maximum level of dissimilarity between facies, distinguishes three substrate facies 

clusters with smaller sizes (left side of dendrogram) from three predominantly large 

substrate-size facies (right side of the dendrogram). Three fine grain substrate facies 

clusters splits can be identified and named based on the proportion of gravel: sand/fine 

gravel, mixed gravel, and equal mix. Three substrate facies with larger grain sizes are 

named as large cobble, cobble-gravel, and large gravel. The only exception is the equal 

mix facies, which has an equal composition (~25%) of fine gravel, gravel, large gravel 

and cobble (Table 2). 

Individual one-way ANOVA results indicate that grain size class abundance varied 

significantly among the six substrate facies clusters (p < 0.05). Box-and-whisker plots 

(Fig. 10) show the relative differences in the percentage of grain size classes across the 

six identified substrate facies. These plots indicate that substrate facies cluster 4 

(sand/fine gravel) have a higher percentage of fine gravel than the other facies clusters. 

Multiple comparisons of the mean of the grain size class percentages using Tukey’s 

HSD post hoc at the 95% confidence interval suggest that substrate facies clusters 
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exhibit significant statistical differences. For example, the cobble grain size is 

significantly higher for substrate facies cluster 6 (large cobble) than for all the other 

substrate clusters. Conversely, the fine gravel grain size differs significantly between 

substrate facies clusters 1 and 4, but there is no significant difference among facies 

clusters 1, 2 and 6 (Fig. 10). 

 

Table 2. Substrate facies clusters names. Average abundance of every size class 

among field plots for every facies cluster. 

 Percent abundance of every grain size class 

Facies Cluster 

Name 

Facies 

Cluster 

Number 

 Fine 

gravel  

(<5.6 mm) 

 (%)  

Gravel 

(5.6 – 22.6 

mm) 

 (%) 

Large Gravel 

(22.6 – 64 

mm) 

(%) 

Cobble  

(64 – 256 

mm) 

(%) 

Large Gravel 1 2.22 36.6 50.6 10.6 

Cobble/Gravel 2 2.67 12.1 53.5 31.7 

Equal Mix 3 24.2 21 25.6 29.2 

Sand/Fine Gravel 4 87.2 6.97 3.39 2.4 
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Mixed Gravel 5 26.1 50.3 20.2 3.41 

Large Cobble 6 3.12 7.37 29.5 60 

 

 

Fig. 9. Hierarchical clustering using Ward’s method of 100 ground truth substrate 

sample plots across the LYR, revealing six distinct substrate facies clusters. 

Every line represents a substrate site. Colors highlight identified facies clusters. 
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Fig. 10. Box-and-whisker plots and Tukey’s honestly significant differences (HSD) 

test indicate differences in grain size variability across the six identified facies 

clusters. Facies cluster number 1. Cobble/Gravel, 2. Large gravel, 3. 

Cobble/Gravel, 4. Mixed, 5. Equal mix, 6. Sand/Fine Gravel. Letters on the top 

indicate the significance of differences. Same letters indicate no significant 

difference between facies clusters. 

Stability measures reveal the minimum variation among the possible number of clusters. 

The average proportion of non-overlap is relatively low for all possible numbers of 

facies, which means that the clustering is stable. The figure-of-merit measure 
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represents the average intra-facies variance of the removed variable and the lowest 

value is at 10 clusters (0.47). The average of distance measures the average distance 

between observations for every site in the same facies cluster and the average distance 

between means measure the average distance between facies cluster centers. Smaller 

values are preferred. Both metrics showed the minimum value at ten clusters. However, 

ten facies clusters were deemed too many because of the resulting small number of 

sites in certain clusters. Six clusters were selected to represent LYR substrate facies 

because that number was deemed optimal to describe physical differences in real-world 

substrate characteristics and the stability measures show a decreasing degree of 

stability improvement as the number of clusters increases from six to ten (Fig. 11). 
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Fig. 11. Stability measure by facies cluster number. The average proportion of 

non-overlap (APN), the average of distance (AD), the average distance between 

means (ADM), and the figure of merit (FOM). 

4.3.  Substrate facies predictive model 

The RF model predicted different abundances of the six clusters, as touched on earlier. 

Cobble/gravel was present for 191.7 ha (43.2% of study area), while sand/fine gravel 

only covered 7.8 ha (1.7% of area). Large cobble was second in abundance (28.2%). 

Sand, equal mix, and mixed gravels were in the 4-6% of area range. The LYR stands 

out for its widespread occurrence of cobbles on open dry terrain in the river corridor, 

and hence supports less riparian vegetation than rivers elsewhere with abundant mud 

and sand. 

The RF model predicted facies with a cross-validation accuracy of 86% with 15 

variables available for splitting at every tree node (Fig. 12). Predictive success varied by 

facies. The confusion matrix (Table 3) suggests that all seven labels corresponded to 

the predicted value with a sensitivity higher than 0.73. Sand/fine gravel had the highest 

sensitivity value of 0.95, which is remarkable. That was followed by sand, with a 

sensitivity of 0.91 corresponding to 7487 correctly identified sand pixels. Nevertheless, 

cobble/gravel facies were confused in a higher proportion by large gravel facies, and 

vice versa. Large gravel’s sensitivity of 0.88 is the highest of the gravel-abundant facies. 

In addition, large cobble facies, with a sensitivity of 0.81, was confused in a higher 

proportion with cobble/gravel facies observations. 
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Mixture facies had the lowest sensitivity. Mixtures have relatively low abundance on the 

LYR, which means they can be difficult to adequately sample in the field and 

characterize using lidar. The equal mix’s sensitivity was 0.73 and highly confused with 

large cobble facies. This can be understood by the field observation that large cobbles 

protrude well above sand, fine gravel, and gravel, making the equal mixture appear 

more like the large cobble facies. Because they are mixed, it is unsurprising that the 

mixture facies are the hardest to distinguish. However, mixed gravel’s sensitivity was 

0.87, confused mainly by sand facies. Interestingly, every mixture was not confused 

much with another mixture. 

The detrended DEM was the most important variable in the model compared to other 

topographic and laser intensity predictors (Fig. 13). The next influential facies predictors 

were baseflow wetted area proximity (77% importance), and green lidar return intensity 

(32% importance). 

A visual inspection was done to qualitatively compare the 1.5 cm pixel size UAV 

orthomosaic and the final substrate prediction map. In the UAV orthomosaic, centered 

on the so-called Long Bar, large cobble patches have clear boundaries, but in the 

predictor map, large cobble shows a speckled pattern with some large gravel pixels. 

Sand and mixed gravel facies show random pixels distributed in the facies map that are 

not presented in the UAV orthomosaic. However, visually narrow sand patches can be 

observed behind shrub vegetation as well in the prediction map. Also, homogenous 

large cobble patches in front of shrubs are observed as dark substrate in UAV imagery 

and in the predicted map. To this end, the model correctly distinguishes coarse facies 
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from fine facies (Fig. 14) and visual validation indicates that the model is highly 

accurate. 

 

Fig. 12. Overall accuracy for the facies random forest predictive model by number 

of predictor variables 

 

 

 



  

41 

Table 3. Confusion matrix; the major diagonal represents the facies cluster observations 

that were correctly predicted. 

   Reference observations 

   

Large 

Gravel 

Cobble/ 

Gravel 

Equal  

Mix 

Sand/ 

Fine 

Gravel 

Mixed  

Gravel 

Large  

Cobble Sand 

P
re

d
ic

te
d

  
o
b

s
e

rv
a
ti
o

n
s
 

Large Gravel 10179 1123 65 0 88 255 132 

Cobble/Gravel 1404 16918 633 61 162 1322 290 

Equal Mix 21 112 5857 13 13 241 36 

Sand/Fine Gravel 32 0 1 1604 0 0 4 

Mixed Gravel 163 282 67 0 3672 200 125 

Large Cobble 642 877 1013 0 12 10426 86 

Sand 99 188 284 2 253 336 7487 

Total 12540 19500 7920 1680 4200 12780 8160 

Sensitivity 0.88 0.86 0.73 0.95 0.87 0.81 0.91 
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 Fig. 13. Variable importance for the random forest facies predictive model. 
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Fig. 14. Substrate facies distribution derived from the random forest predictive 

model (top). Visual inspection (bottom) shows correspondence between facies 

map (1.54 m pixel size) and UAV orthomosaic (1.5 cm pixel size). 

As a second example, facies spatial patterns correlation with predictor variability on a 

bar in the so-called Timbuctoo Bend are featured in Fig. 15. The statistical predictive 

performance was analyzed by comparing the distribution of predictor values and facies 

for the whole study area and for just the bar shown in Fig. 16. Results reveal that 

distance from baseflow wetted area was slightly higher for sand/finer facies compared 

to coarser facies in the total overbank areas (Fig. 16). For example, mean distance from 

the baseflow wetted area is 77.7 m for the sand facies at the bar and the total overbank. 

Meanwhile, detrended elevation mean values were distributed differently. Finer facies 
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with sand abundance were at higher elevations compared to coarser facies. Green 

intensity mean values were higher for finer facies. Large cobble showed lowest mean 

green lidar return intensity values. Green lidar return intensity values gradually 

increased from coarse to fine facies at the total overbank scale. 

The lateral relative aspect distributions reveal a strong difference between sand and 

sand/fine gravel facies compared to coarser facies in the overbank areas. For the total 

overbank areas, finer facies face away (-1) from the channel. However, this distribution 

is not clear at the Timbuctoo Bend bar site. Meanwhile, longitudinal relative aspect 

mean values showed similar distribution among facies, failing to distinguish between 

them. 
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Fig. 15. Facies map comparison of the bar in the so-called Timbuctoo Bend with 

main facies predictors (lidar-derived). Coarser facies correlate with low green 

intensity values. A) facies map B) detrended elevation, C) green intensity, D) 

lateral relative aspect, E) aerial imagery.  
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Fig. 16. Statistical distribution between facies clusters and the most important 
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predictors at A) the bar in Timbuctoo Bend and B) total overbank area in LYR. 

Red dots indicate mean values. 

5. Discussion 

In this study, we set out to determine if one could accurately predict the roughly meter-

resolution spatial pattern of subaerial substrate facies in a large gravel-cobble river 

knowing only what is obtained from an airborne lidar campaign and field training data. 

The source lidar point cloud did not resolve individual sand, gravel, and cobble grains. 

Nevertheless, our results suggest that, yes, airborne lidar can detect and map substrate 

facies with sufficient accuracy for many real-world and scientific applications. The 

extensive model validation and analysis of facies patterns with respect to important 

predictors is discussed. Then, substrate mapping workflow challenges are described. 

Finally, application opportunities are highlighted. 

5.1. Gravel-cobble river substrate facies model 

A subaerial facies map was developed along 37.5 km of the LYR at a spatial resolution 

of 1.54 m, thereby distinguishing seven facies clusters using airborne lidar predictors 

and ML, achieving 86% cross-validation accuracy. RF delivered strong performance, in 

line with similar multi-classification learning tasks showing that RF is a powerful ML 

method (Maxwell et al., 2018; Zhang et al., 2020). Currently, no similar models exist for 

fluvial systems for mixed-size facies. 
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Large gravel, cobble-gravel, and large cobble with an abundance of gravel-cobble were 

accurately predicted by the model (Table 3). Sand/fine gravel and sand showed the 

highest accuracy, which might be because facies with sand abundance were under-

sampled because of a limited presence in the river, thus overestimating the accuracy 

level. However, based on a visual assessment, finer facies are coherently predicted 

(e.g., examples in Fig. 14). The predictive model demonstrated low sensitivity for mixed 

facies, both equal mix and mixed gravel, which might be caused by unclear boundaries 

and the limited amount of training data for mixed gravel facies, thereby limiting the 

algorithm’s learning from the predictors. Overall, the developed model succeeds in 

identifying and mapping facies. 

In environmental sciences, clustering analysis has been broadly used to group objects 

(Jain et al., 1999). In river substrate studies, cluster analysis has been applied to 

delineate riverbed patchiness in flume experiments (Nelson et al., 2014). In this study, 

cluster analysis was used to identify six facies classes for dry terrain on the basis of 

GSDs by grid sampling methods. Incorporating a mixture approach that includes four 

bins of grain size class as the structure variables and considering fish habitat 

requirement through an eco-based approach maximizes the usefulness in distinguishing 

meaningful facies classes. The presented approach is beyond traditional ternary 

classification, where mean grain size quantifications use only the abundance of a 

specific grain size (Buffington and Montgomery, 1999). Consequently, eco-facies could 

be determined, including bin thresholds that can be adjusted by particular requirements. 

The main advantage of the proposed method is that it can provide insight in quantitative 

facies spatial patterns analysis, diversity, and connectivity – critical in habitat 
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restoration. While this study investigated the utility of aerial near-infrared lidar observing 

dry terrain with a sampling density of ~ 32 pts/m2, the same framework should also 

currently work for submerged riverbed data collected with multibeam echosounders (a 

technology with far higher point density) where they can be used. When green lidar 

(currently sampling ~ 8 pts/m2) achieves a similar point density as current near-infrared 

lidar, then the framework should apply to that data as well, though limited to relatively 

shallow and clear water that green light can penetrate. 

5.2. Laser intensity and topographic predictors influencing facies patterns 

The variable importance in analysis of the RF model indicated that detrended elevation, 

proximity to the baseflow wetted area, and green lidar return intensity are the most 

useful facies predictors. Moreover, topographic roughness and lateral and longitudinal 

relative aspect predictors explained facies distribution. It is important to understand the 

mechanistic drivers of these statistical outcomes. Detrended elevation was identified as 

the main driver in predicting the spatial distribution of facies classes. The facies patterns 

analyzed showed that detrended elevation varies among facies, with sand facies found 

0.60 – 1.2 m (2-4 ft) higher compared to the other facies at the overbank and bar scales 

in the LYR. These patterns are consistent with the literature that low elevations with 

more dynamic and energetic fluid mechanics have coarser facies, where sediment 

transport processes are different from those at higher elevation (Rice and Church, 

1998). Facies patterns and sorting are linked to elevation variability and are associated 

with hydraulic variables and topography (Powell, 1998; Thonon et al., 2007; Wittenberg, 

2002). Simultaneously, facies are influenced by vegetation at different spatial scales 
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(McKenney et al., 1995). This interaction was coherently observed on the substrate 

map, where shrubs dissipate energy and generate the accumulation of sand behind 

them. 

Proximity to the baseflow wetted area was revealed as the second-most important 

predictor to determine facies distribution. The facies spatial pattern was such that 

coarser facies are closer to the wetted area than finer facies for both the whole river and 

intra-bar variability. This accords with Asselman (1999) and He and Walling (1998). 

These studies observed that distance to the river controls the grain size patterns on 

overbank floodplain deposits and depend on flow frequency. Because flow velocity 

decreases over the floodplain, finer sediment deposits there, while velocity is high near 

to the channel and can transport coarser sediment. Similarly, Groom et al. (2018) found 

the same distance signal consistent with lateral accretion at the bar scale in gravel 

rivers using photogrammetry. Consequently, the developed substrate predictor model 

coherently captured the facies spatial patterns signals, enabled substrate mapping 

along the 37.5 km, and provided insight into floodplain sediment transport processes 

over a large area. 

Green lidar return intensity was the third useful predictor of facies distribution. These 

values are higher on finer facies. Recently, Near-Infrared has also been linked to grain 

size distribution at the bar scale (Chardon et al. 2020). However, this study found that 

Near-Infrared variability was not as important in predicting facies distribution at a large 

scale. This suggests that there could be important benefits to multi- and hyper-spectral 

lidar technology for understanding substrate facies and fluvial geomorphology as a 
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whole (Kaasalainen et al., 2009; Shao et al., 2019), rather than resting with Near-

Infrared alone. The developed model is highly sensitive in predicting large cobble facies 

with an abundance of large cobble as well as facies with an abundance of fine gravel 

and sand. This may be explained by the fact that green lidar return intensity captures 

the reflectance variability of the grain size range in every facies. The level of detection 

of the grain size range in this model ranges from 2 to 256 mm. Including green and 

Near-Infrared intensity provided insight in distinguishing facies in overbank areas. Also, 

return intensity can be affected by petrographic characteristics of the grains (Burton et 

al., 2011; Chardon et al., 2020; Kashani et al., 2015). Likely, facies with a marked 

difference in lithological composition could be mapped with greater accuracy. 

Previous studies have found topographic roughness to be a direct grain size proxy, 

although at high spatial resolution with data collected from a UAV, in flume experiments, 

or with the point sampling method in the field (Bertin et al., 2017; Gomez, 1993; 

Heritage and Milan, 2009; Pearson et al., 2017; Smart et al., 2004; Vázquez-Tarrío et 

al., 2019). Our results reveal that DEM-derived topographic variability predictors have 

high predictive power to distinguish facies distribution in the LYR. Specifically, the 

topographic variability, the amount of elevation difference in the terrain, was captured by 

the Terrain Ruggedness Index. For example, a facies cluster with a wide range of grain 

sizes and shapes generates micro-topographic altitude differences at the pixel scale 

that can be captured by topographic variability at the same scale. The longitudinal 

relative aspect predictor indicating if the pixel is facing upstream or downstream showed 

slightly different patterns among the facies at the bar and overbank scales. However, 

the substrate model visually indicates that coarser facies are distributed against the flow 
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direction on the head of the bar and there is a reduction of the grain size in accordance 

with other field studies (Rice and Church, 2010). 

The lateral relative aspect emerged as the fourth most important variable. The lateral 

relative aspect predicted power is linked with the effect of hydraulic processes and 

morphodynamic pattern described above. The facies spatial distributions revealed that 

the model correctly maps coarser facies facing towards the channel, supporting the 

hydraulic influence, while sand/fine gravel and sand facies face away from the channel. 

The lateral variability pattern is captured at the overbank and bar scales. This finding 

might support the concept that the mobility of larger grains is negatively related to the 

distance from the thalweg because of high flow velocity and flood-driven elevation 

change (Thonon et al., 2007). This provides insight to the hydrodynamic influence on 

sediment transport and it is evident that hydraulic characteristics, such as flow velocity 

and water depth, are strong predictors. However, our model excluded potential 

hydraulic predictors, avoiding the need for hydraulic models. The proposed method 

allowed the generation of a 37.5 km continuous facies map, exceeding the extension of 

existing substrate maps and mapping methods. Understanding the connection between 

predictors and facies could lead to new knowledge of facies patterns and connectivity 

with complex hydraulic, morphodynamic, and morphological processes in fluvial 

environments. 

5.3. Key challenges and opportunities 

We found multiple challenges in the implementation of the substrate mapping workflow. 

Generating facies labels for training was a key challenge that emerged during the data 
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collection and was related to maintaining representative and balanced training data. 

This step is where the most expert knowledge is required. Determining the plot sample 

size and plot spacing needs can be adjusted based on the total area to be mapped, by 

considering different river scales (reach, segment, morphological unit), and by 

measuring the maximum grain size that can be found in the river. The grain size data 

may be obtained with sieves and/or semiautomatic methods, but the mixture abundance 

approach is challenging. Moreover, UAV data can be used to generate facies from pure 

sand as training data. Yet, the main novel finding in distinguishing facies is the evidence 

that the mixture and eco-based approach enhances the cluster analysis method to 

distinguish representative facies clusters. 

Hydrodynamic variables for specific discharges (e.g., velocity and depth) are potentially 

strong predictors. However, the model application might be limited to areas with multi-

dimensional numerical simulations available. Predictors derived from multispectral or 

hyperspectral sensors may increase model accuracy while reducing the interpretability 

level. Developing interpretable models with predictors that can provide insight into 

facies distribution is key. 

Temporal challenges emerged from the need to map broad areas to conduct field data 

collection at the same time, or at least close to the time when the data acquisition was 

carried out by the remote sensor. Many factors can change a river’s substrate, such as 

floods and human activities between the field collection dates and the predictors’ 

acquisition date used in the model. Training data and predictors need to be as close in 

time as possible. 



  

54 

The developed substrate mapping workflow constitutes an important step forward for 

river science, because substrate data is currently one of the most limited types of 

information derived from remote sensing. Notably, the LYR is only lightly vegetated and 

the climate (including its disturbance flow regime) supports a large area of subaerial 

sediment. Nevertheless, if this method were applied to similar exposed rivers globally, it 

would likely yield novel and transformative geomorphic understanding. 

The approach presented here can improve change detection studies as the frequency 

of remote sensing missions increases. Having a continuous substrate map before and 

after flood events would provide insight in sediment transport processes using a 

quantitative abundance metric for every facies. Furthermore, quantitative facies metrics 

can identify pattern transitions and enhance ecohydraulics analysis needed for 

restoration projects. This novel approach can enhance the speed of substrate 

monitoring needed in flood event analysis, ecohydraulic river design, and river 

management.  

6. Conclusions 

Combining airborne lidar with ML is an efficient strategy for large scale predictions of 

substrate facies distribution. A continuous substrate map spatial of seven facies clusters 

was developed at the 1.54 m pixel scale with high accuracy (86%). This study found 

that the mixture approach captured the substrate facies variability, while considering the 

sediment’s mixed nature enabled a better understanding of the facies spatial pattern 

over 37.5 km of the Lower Yuba River. Six substrate facies clusters were identified 

using the novel eco-mixture approach, namely three fine grain substrate facies that 
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were categorized based on the abundance proportion of gravel (fine gravel, mixed 

gravel, and equal mix) and three substrate facies with larger grain sizes (large cobble, 

cobble-gravel, and large gravel). Field data collection combined with UAV data are thus 

shown to be reliable methods to identify facies across large areas providing 

opportunities for fluvial morphology research and environmental management. 
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Methods 

Developing Facies Predictors lidar DEM-derived 
 

Although the factors that control and correlate with substrate facies can be conjectured, 
there is no a priori knowledge and certainty as to what the best substrate predictors 
would be for the LYR. As a result, the typical strategy in ML application is to extract all 
the potential predictors that can be surmised and computed as raster. this study 
possible substrate predictors that were generated included topographic and spectral 
lidar predictors in raster format, at 1.5 m pixel size resolution. Fifteen predictor layers 
were used in this model.  

 

Topographic predictors 

 

Topographic variables were selected as possible substrate predictors. A previous 
analysis of LYR grain size distributions (GSDs) revealed strong correlations between 
slope and mean grain size at the reach scale (Jackson et al., 2013). A reach-scale 
slope raster, derived from 2017 DEM (from lidar), represented the rate of change of 
elevation between one pixel and the eight pixels surrounding it. Inclination values were 
calculated in percent using the “slope” tool in ArcGIS. 

Terrain variability can be analyzed based on the topographic index, leading to improved 
terrain characterization. The topographic roughness variable was calculated based on 
2017 DEM, which is the difference between the maximum and minimum values of a 
pixel and its eight surrounding pixels. The terrain ruggedness index (TRI) was defined 
as the mean of the absolute differences between the value of a pixel and the values of 
its eight neighbors (the amount of elevation difference between adjacent pixels of a 
DEM). TRI provided a relative measure of the elevation changes. TRI values are lower 
in flatter areas and higher in steep or rugged areas. The topographic position index 
(TPI) is the difference between the value of a pixel and the mean value of its eight 
surrounding pixels. Positive TPI values represent locations that are higher than the 
average of their surroundings, as defined by the neighborhood (ridges). Negative TPI 
values represent locations that are lower than their surroundings (valleys). TPI values 
near zero are either flat areas (where the slope is near zero) or areas of constant slope. 
The topographic position is an inherent scale-dependent phenomenon. The topographic 
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terrain variables were generated according to Wilson et al. (2007) using the terrain 
function in the raster package in R (Hijmans et al., 2018). Also, a topographic flow 
direction raster was generated, representing the 'flow direction' (of water), i.e. the 
direction of the highest drop in elevation (or the smallest rise if all neighbors were 
higher). 

Furthermore, the curvature topographic (concavity/convexity) index was also used, 
topographic curvature was computed according to NcNab (1993). This index was based 
on features that confine the view from the center of a 3x3 pixel window. Negative values 
in the profile curvature indicate that the surface is upwardly convex, whereas positive 
values indicate that the surface is upwardly concave. It was computed using the Spatial 
ECO package in R (Evans, 2020).  

Topographic roughness at the pixel scale (derived from the point cloud) has a high 
correlation with grain size (Vázquez-Tarrío et al., 2017; Woodget and Austrums, 2017). 
For this reason, a pixel-scale topographic variability raster defined as the standard 
deviation of lidar points within one pixel, was used as a possible facies model predictor. 
It was computing the Standard Deviation for the 25 points that fall inside every 5x5 pixel 
window in the output raster using the Point Statistics tool from ArcGIS. 

Although a river’s slope is too low to be discernable at the scale of an individual pixel, it 
is large enough that the same local topographic feature (e.g. pool bottom, bar top, bank 
top) will have significantly different elevations down a river. Ideally, if the overall slope of 
the river could be removed, a computation called “detrending”, then it might be possible 
to find that every type of feature has a common elevation. Because individual landscape 
features tend to be composed of the same material with the same GSD, knowing the 
relative elevation of a feature type could be a good predictor of substrate facies. As a 
result, a detrended raster DEM of the LYR was created via linear regression of the river 
channel's longitudinal profile using an open-source Python code developed for this 
purpose by the Pasternack Lab group and available online at: 
https://github.com/klarrieu/GCS_Scripts .The algorithm uses the theory and conceptual 
methods explained in Pasternack et al.(2018). 

Another topographic variable that was generated for testing was longitudinal relative 
aspect, defined as the compass direction that a slope faces. However, these landform 
aspects are not too meaningful when provided as absolute compass directions, 
because rivers meander. The knowledge that a pixel faces due north does not inform 
about whether that landform is a riverbank, scroll bar top, or anything else. Meandering 
has to be taken into account. This is analogous to the need to detrend elevation to 
characterize the relative elevations of landforms along a river. Thus, the aim here is to 
obtain a landform-centric aspect that is not relative to due north like a compass but 
instead relative to whatever direction the river’s centerline points in adjacent to every 
pixel of interest. 

Riverbanks face the river, so the bank on every side of the river has an opposing 
aspect. Meanwhile, other landforms have characteristic relative aspects to the river. 
Simplifying aspect down to the four cardinal direction relative to the river’s centerline a 
landform’s aspect can be facing the centerline, facing away from it, or parallel to the 

https://github.com/klarrieu/GCS_Scripts
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centerline direction facing upstream or downstream. As with elevation, it is possible that 
substrate facies vary with aspect because it is a feature of landform type, and landform 
type is related to substrate facies.  

Adjusting aspect to a centerline requires a decision about what centerline to use to 
characterize a river’s meandering and how to compute the relative aspect. In this study, 
the centerline used was the river’s thalweg at 530 cfs. To avoid wildly changing angles 
arising at locations where the thalweg is highly tortuous due to local noise that is not 
real meandering, the thalweg pathway was smoothed using the ArcGIS "Smooth Line" 
function, applying the PAEK algorithm. The smoothing distance was 20’. Then, the 
thalweg was stationed at 5’ intervals and the local thalweg angle was computed. The 
thalweg was stationed at 5' increments using the ETGeoWizards "Create Station Lines" 
function, which automatically creates an attribute in the XS lines with the angle of the 
thalweg. Thalweg intersection points were then created from the XS lines and the 
"thalweg angle" attribute was interpolated over the DEM area using the nearest 
neighbor method. ArcGIS’s nearest neighbor algorithm was used to assign a thalweg 
angle to every raster pixel away from the thalweg. Lastly, the raster calculator was used 
in ArcGIS to calculate the relative aspect map using the dot product of the aspect and 
the nearest thalweg angle vectors as sin (thalweg angle) * sin(aspect) + cos(thalweg 
angle) * cos(aspect). The longitudinal relative aspect raster ranges between -1 and 1, 
with -1 indicating that the aspect is aligned parallel to the nearest thalweg point facing 
downstream, 0 indicating that the aspect is perpendicular to the thalweg, and 1 
indicating that the aspect is parallel to the thalweg facing upstream. 

Additionally, a lateral relative aspect was computed to distinguish if a perpendicular 
pixel is facing toward or away from the river. It was computed using the thalweg line to 
split a polygon of the DEM area in two and then applied the raster values for every side 
of the river separately. The lateral relative aspect raster ranges between -1 and 1, with -
1 indicating that aspect is facing toward the river and 1 indicating that the aspect facing 
away from the river.  

Distance from the river channel was correlated with grain size variability in gravel-bed 
floodplains. A baseflow wetted area proximity raster was generated based on the 
baseflow wetted area polygon and Euclidean distance using proximity tool of Arcgis. 
Every pixel indicates the distance from the channel in LYR. 

 

Spectral predictors 

 

For the LYR there were both green and NIR wavelengths, meaning there are two 
intensity spectral variables available (Figure S 2). How low or high the value of intensity 
is depends on the nature of the surface the light interacts with. For example, when NIR 
light hits water, most of it gets absorbed, returning a low-intensity value unless the 
surface of the water is rough (i.e., “rippled”), enabling light to reflect off it. That would 
yield a high-intensity value. Similarly, the thicker the vegetation is, the lower the 
intensity of light return will be for green lidar. 
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Green and NIR lidar intensity spectral datasets were available for the LYR as rasters. In 
this study, four such variables were extracted: NIR intensity, green intensity, mean and 
standard deviation of Lidar intensity. Std Lidar intensity and mean lidar intensity were 
calculated by combining the green and NIR intensity rasters using ArcGIS’s raster 
calculator tool. 

 

 

Figure S 1. Topographic lidar DEM derived predictors. 
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Figure S 2. Spectral predictors lidar-derived. 




