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Ewald method for 3D periodic dyadic Green’s functions
and complex modes in composite materials made of spherical
particles under the dual dipole approximation

Salvatore Campione1 and Filippo Capolino1

Received 2 April 2012; revised 9 July 2012; accepted 19 July 2012; published 26 September 2012.

[1] We derive the Ewald representation for the dyadic periodic Green’s functions
to represent the electromagnetic field in a three dimensional (3D) periodic array of electric
and magnetic dipoles. Then we use the developed theory to analyze the modes
with real and complex wave number in a 3D periodic lattice of lead telluride (PbTe)
microspheres at infrared frequencies and in a 3D periodic lattice of titanium dioxide (TiO2)
microspheres at millimeter waves. Each microsphere is equivalently modeled with
both an electric and a magnetic dipole, via a method here called the dual dipole
approximation (DDA). The 3D lattices exhibit first a magnetic-induced then an
electric-induced feature determined by microsphere magnetic and electric resonances.
The DDA wave number results are compared to the ones computed with single electric
or single magnetic dipole approximation and to the ones retrieved by using the
Nicolson-Ross-Weir (NRW) retrieval method from reflection and transmission of finite
thickness slabs computed by a full-wave simulation. It is shown that the DDA method is in
very good agreement with NRW, in contrast to the previously reported single dipole
approximation methods that fail to predict one of the two features (either electric
or magnetic). A mode with transverse polarization is found to be dominant and able to
propagate inside the lattice, and therefore the composite material can be treated as a
homogeneous one with effective refractive index. This is obtained by adopting
five different retrieval procedures for each lattice, and their agreement
or disagreement is discussed.

Citation: Campione, S., and F. Capolino (2012), Ewald method for 3D periodic dyadic Green’s functions and complex modes in
composite materials made of spherical particles under the dual dipole approximation, Radio Sci., 47, RS0N06,
doi:10.1029/2012RS005031.

1. Introduction

[2] Artificial composite materials (metamaterials) proved to
be a feasible way to increase the degrees of freedom in the
interaction of electromagnetic fields with matter from micro-
waves to optical frequencies.
[3] Collective resonances and wave propagation in com-

posite materials can be characterized by modal analyses of
arrays periodic in three dimensions (3D) [Alù and Engheta,
2007; Benenson, 1971; Campione et al., 2011a, 2011b, 2012;
Ham and Segall, 1961; Shore and Yaghjian, 2007, 2010,
2012; Steshenko and Capolino, 2009;Wheeler et al., 2005b].
In particular, under certain circumstances of polarization
and excitation, a 3D periodic array of particles with finite

thickness could be described with good approximation as
a homogeneous slab with effective parameters [Campione
et al., 2011a, 2011b, 2012;Collin, 1960; Shore and Yaghjian,
2012], such as relative permittivity (ɛeff), relative permeability
(meff), and refractive index (neff).
[4] The aim of this paper is to characterize the modes with

real and complex wave number in 3D periodic arrays made
of particles with spherical shape modeled through the dual
(electric and magnetic) dipole approximation (DDA). The
DDA is a good approximation when the two dipolar terms (or
any of them) dominate the scattered-field multipole expan-
sion. For transverse polarization, the structure is treated as a
homogeneous slab with effective refractive index. Here we
are interested in analyzing composite materials made of large
dielectric permittivity materials (e.g., lead telluride, titanium
dioxide, etc.) which in general exhibit first a magnetic then an
electric resonance. The DDA is more accurate than the single
dipole approximation (SDA) approach, since it accounts for
electric and magnetic couplings, and the method described
here could also be used to characterize the artificial magnetic
(i.e., meff ≠ 1) or electric (i.e., ɛeff ≠ 1) properties of the 3D
lattice. Possible routes for obtaining artificial magnetism,
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such as the use of split ring resonators, binary mixtures,
etc., have been recently summarized in the introduction of
Campione et al. [2012]. The present work has been indeed
partly motivated by the observations made in [Campione
et al., 2012] about the fact that the results shown in that
paper could be further improved by modeling the particle
with the DDA model, instead of the two SDA models based
only on magnetic dipoles shown therein.
[5] The approach described in the present paper allows

for the tracking and especially for the characterization of
the evolution of modes varying frequency. First, we develop
the formulation with coupled electric and magnetic dipoles
through DDA to model the particle behavior (as done, for
example, inMulholland et al. [1994] and Shore and Yaghjian
[2010, 2012]) in order to analyze modes with real and com-
plex wave number in 3D periodic arrays of spherical parti-
cles. The numerical procedure developed in this paper for
evaluating the complex zeros of the dispersion relation
uses the Ewald representation for the dyadic periodic Green’s
functions (GFs) to represent the field in 3D periodic arrays,
and is partly based on previous scalar developments [Kustepeli
and Martin, 2000; Lovat et al., 2008; Park et al., 1998;
Stevanoviæ and Mosig, 2007] and dyadic developments
[Campione et al., 2011b, 2012]. The Ewald representation,
besides providing analytic continuation to the complex wave
number space, results in two series with Gaussian convergence
where only a handful of terms are needed [Ewald, 1921;
Kustepeli and Martin, 2000; Lovat et al., 2008; Park et al.,
1998; Stevanoviæ and Mosig, 2007]. In Shore and Yaghjian
[2010, 2012] the authors treat similar problems of arrays of
spherical particles where both electric and magnetic dipoles
have been considered. They evaluate the modes with complex
wave number by using a method based on polylogarithmic
functions, which is different from the Ewald method employed
here. Furthermore, in our formulation, the direction of electric
and magnetic dipoles is arbitrary.

[6] The structure of the paper is as follows. We discuss in
section 2 the rigorous representation of the field in 3D peri-
odic arrays using the dyadic GFs including the case with
coupled electric and magnetic dipoles. Then, in section 3,
we derive the new expressions for the dyadic GFs using
the Ewald method related to both electric and magnetic
dipole excitations. The convergence properties of scalar and
dyadic GFs are briefly inspected as well. Last, in section 4,
we analyze the modal wave numbers for transverse polari-
zation in two composite metamaterials: one made of an
array of non-magnetic lead telluride (PbTe) microspheres,
and the other made of non-magnetic titanium dioxide (TiO2)
microspheres. Modal wave numbers are computed through
various methods: DDA, SDA based on electric dipoles only
(SDA-E), SDA based on magnetic dipoles only (SDA-M),
and Nicolson-Ross-Weir (NRW) retrieval method from
reflection and transmission of finite thickness slabs computed
by full-wave simulations. The 3D lattices are then described
in terms of effective refractive index, computed by using
the four methods above andMaxwell Garnett (MG) formulas,
and their agreement or disagreement is discussed. The pro-
cedure for the singularity regularization of the spatial
series counterparts in the Ewald representations is discussed
in Appendix A. Supporting mathematical expressions are
reported in Appendix B.

2. Formulation Using Periodic Green’s Functions

[7] Themonochromatic time harmonic convention exp(�iwt)
is assumed here and throughout the paper, and is therefore
suppressed hereafter. In the following equations, bold letters
refer to vector quantities, a caret ‘^’ on top of a bold letter
refers to unit vectors, and a bar under a bold letter refers to
dyadic quantities.

2.1. Field in Periodic Arrays

[8] Consider a 3D periodic array of particles (Figure 1)
described by dipole-like electric and magnetic polarizabilities.
Each particle is characterized by its induced electric (p) and
magnetic (m) dipole moments as described in section 2.4. The
array is immersed in a homogeneous background, with relative
permittivity ɛh. Particles are placed at positions rn = r0 + dn,
where dn = n1ax̂ + n2bŷ + n3cẑ, n = (n1, n2, n3) is a triple index
with n1, n2, n3 = 0,�1,�2,…, r0 = x0x̂ + y0ŷ + z0ẑ denotes a
reference particle location, and a, b and c are the periodicities
along the x-, y- and z-directions, respectively [Campione et al.,
2011b, 2012; Steshenko and Capolino, 2009].
[9] Suppose that the 3D array is either excited by an external

incident field or supports a mode, with wave vector kB =
kxx̂ + kyŷ + kẑz, such that the nth dipole (at rn) is related
to the 0th one (at r0) by pn = p0 exp(ikB � dn) and mn = m0

exp(ikB � dn). Then, the electric and magnetic fields at a
general position r are given by

E rð Þ
H rð Þ

� �
¼ Einc rð Þ

Hinc rð Þ

" #
þ G∞

EP r; r0; kBð Þ G∞
EM r; r0; kBð Þ

G∞
HP r; r0; kBð Þ G∞

HM r; r0; kBð Þ

" #
:
p0
m0

� �
:

ð1Þ

[10] The Green’s function matrix in (1) accounts for all the
coupling between electric and magnetic dipoles. The blocks
GEP

∞ and GHM
∞ in the principal diagonal of (1) represent the

Figure 1. Three-dimensional periodic array made of spher-
ical particles with relative permittivity ɛm embedded in a
homogeneous medium with relative permittivity ɛh. The
radius of each sphere is denoted as r and a, b and c are the
periodicities along the x-, y- and z-directions, respectively.
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periodic Green’s functions that connect all pn to E and allmn

to H, respectively. The blocks in the antidiagonal GEM
∞ and

GHP
∞ represent the periodic Green’s functions that connect all

mn to E and all pn to H, respectively.

2.2. Principal Diagonal Blocks: GEP
∞ and GHM

∞

[11] Both the principal diagonal blocks GEP
∞ (r, r0, kB) =

(ɛ0ɛh)
�1Gpd

∞ (r, r0, kB) [Campione et al., 2011b] and
GHM

∞ (r, r0, kB) = Gpd
∞ (r, r0, kB) [Campione et al., 2012] are

defined in terms of a “principal diagonal” dyad Gpd
∞ for the

periodically phased array of dipoles, defined as

G∞
pd r; r0; kBð Þ ¼

Xþ∞

n¼�∞
Gpd r; rnð ÞeikB �dn : ð2Þ

[12] Here G pd(r, r0) denotes the “free space” dyadic
Green’s function in the homogeneous background, given by
Campione et al. [2012, equation (6)]. The principal diagonal
dyad

�
Gpd

∞ can be also expressed as

G∞
pd r; r0; kBð Þ ¼ k2G∞ r; r0; kBð Þ

�
IþrrG∞ r; r0; kBð Þ; ð3Þ

which will be used later in section 3.1, where the scalar term
G∞ is represented as a sum of “spatial” spherical waves as

G∞ r; r0; kBð Þ ¼
Xþ∞

n¼�∞
G r; rnð ÞeikB �dn ; ð4Þ

where G(r, r0) = eikR/(4pR), with R = |R| and R = r � r0.
Moreover, k = w

ffiffiffiffiffi
ɛh

p
/c0 = k0

ffiffiffiffiffi
ɛh

p
is the host wave number,

where k0 denotes the free space wave number and c0 the
speed of light in free space, ɛh is the relative permittivity of
the host medium, and

�
I is the unit dyad.

2.3. Antidiagonal Blocks: GEM
∞ and GHP

∞

[13] Both antidiagonal blocks GEM
∞ (r, r0, kB) = imwGad

∞ (r,
r0, kB) and GHP

∞ (r, r0, kB) = �iwGad
∞ (r, r0, kB) are defined in

terms of an “antidiagonal” dyad Gad
∞ for the periodic phased

array of dipoles, computed as

G∞
ad r; r0; kBð Þ ¼

Xþ∞

n¼�∞
Gad r; rnð ÞeikB �dn : ð5Þ

[14] Here G ad(r, r0) denotes the “free space” dyadic
Green’s function in the homogeneous background, defined
as Gad(r, r0) = rG(r, r0) �

�
I, and hence

Gad r; r0ð Þ ¼ ik

4p
eikR

R
1� 1

ikR

� �
R̂ �

�
I

� �
; ð6Þ

where R = r � r0, R = |R| and R̂ = R/R. The antidiagonal
dyad Gad

∞ for the 3D periodic array can be also expressed as

G∞
ad r; r0; kBð Þ ¼ rG∞ r; r0; kBð Þ �

�
I; ð7Þ

with G∞(r, r0, kB) the scalar GF in (4), and this will be used
later in section 3.2.

2.4. Spherical Particle Modeling and Modal Analysis
in 3D Arrays

[15] The induced electric (p0) and magnetic (m0) dipole
moments for the 0th spherical particle at position r0 are
given by [Alù and Engheta, 2006; Ishimaru et al., 2003]

p0
m0

� �
¼ aee aem

ame amm

� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

a

Eloc r0ð Þ
Hloc r0ð Þ

� �
ð8Þ

where a is a 6� 6 matrix, aee = aee
�
I andamm = amm

�
I , with

aee and amm the isotropic electric and magnetic polariz-
abilities of the spherical particle. Moreover, here we assume
a em = ame = 0 in the dipole approximation [Alù and
Engheta, 2006], with 0 being the null dyad. Therefore in
this paper we are limiting the nanoparticle interactions to
only the dipole-dipole terms, however including both elec-
tric and magnetic ones, and this approximation is very sat-
isfactory for a large class of problems involving collections
of nanoparticles or microparticles [Capolino, 2009].
[16] According to Mie theory, the electric and magnetic

polarizabilities of a sphere are [Bohren and Huffman, 1983;
Steshenko and Capolino, 2009; Wheeler et al., 2005a]

aee ¼ 6piɛ0ɛh
k3

a1; amm ¼ 6pi
k3

b1 ð9Þ

with

a1 ¼ mry1 mrkrð Þy′1 krð Þ � y1 krð Þy′1 mrkrð Þ
mry1 mrkrð Þx′1 krð Þ � x1 krð Þy′1 mrkrð Þ ; ð10Þ

b1 ¼ y1 mrkrð Þy′1 krð Þ � mry1 krð Þy′1 mrkrð Þ
y1 mrkrð Þx′1 krð Þ � mrx1 krð Þy′1 mrkrð Þ : ð11Þ

[17] In (9)–(11), r is the sphere radius, a1 and b1 are the
electric and magnetic Mie dipole scattering coefficients
[Bohren and Huffman, 1983], respectively, y1(r) = rj1(r) =
sin r/r � cos r and x1(r) = rh1

(1)(r) = (�i/r � 1)eir are the
Riccati-Bessel functions [Abramowitz and Stegun, 1965],mr =ffiffiffiffiffiffiffiffiffiffiffiffi

ɛm=ɛh
p

is the relative refractive index contrast, and ɛm is the
relative permittivity of the spheres. Notice that a prime in (10)
and (11) refers to the first derivative of the functions y1(r) and
x1(r) with respect to their argument r.
[18] The local fields Eloc and Hloc in (8) acting on the 0th

particle at position r0 are computed as [Campione et al.,
2011b, 2012; Steshenko and Capolino, 2009]

Eloc r0ð Þ
Hloc r0ð Þ

� �
¼

⌣
G

∞
EP r0; r0; kBð Þ ⌣

G
∞
EM r0; r0; kBð Þ

⌣
G

∞
HP r0; r0; kBð Þ ⌣

G
∞
HM r0; r0; kBð Þ

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A kBð Þ

� p0
m0

� �
;

ð12Þ

where A is a 6 � 6 matrix, since each block is a 3 � 3
matrix. In the definition of the local fields in (12) the con-
tribution from the 0th particle itself has been removed and
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the value of the regularized periodic GF
⌣
G ∞(r0, r0, kB)

(either in the principal or antidiagonal) is determined by the
limit

⌣
G∞(r0, r0, kB) = lim

r→r0
[G∞(r, r0, kB) � G(r, r0)] since

both G∞ and G are singular at r = r0. In particular, the
principal diagonal GFs possess a singularity at the source
location which is of one higher power in |r � r0| than the
antidiagonal ones, as also stated in Yaghjian [1980].
[19] By combining (12) with (8), one obtains a linear

system from which one could compute the modal complex
wave numbers by solving

det a�1 � A kBð Þ
h i

¼ 0 ð13Þ

for complex kB.

3. Ewald Representation for the Dyadic GFs
for 3D Periodic Arrays

3.1. Expressions for the Regularized Principal Diagonal
Dyad

⌣
Gpd

∞

[20] According to the Ewald representation [Ewald, 1921;
Ham and Segall, 1961] the scalar GF in (4) for a 3D array of
dipoles is split into the hybrid sum of spectral and spatial
scalar terms

G∞ r; r0; kBð Þ ¼ G∞
spectral r; r0; kBð Þ þ G∞

spatial r; r0; kBð Þ; ð14Þ

as described also in Kustepeli and Martin [2000], Lovat
et al. [2008], Park et al. [1998], and Stevanoviæ and
Mosig [2007]. Accordingly,

G∞
spectral r; r0; kBð Þ ¼ 1

abc

Xþ∞

n¼�∞

e�
g2n
4E2

g2n
ei kBþknð Þ� r�r0ð Þ ð15Þ

G∞
spatial r; r0; kBð Þ ¼ 1

8p

Xþ∞

n¼�∞

eikB�dn

Rn
f Rnð Þ ð16Þ

where gn
2 = |kB + kn|

2� k2, with kn = (2pn1/a)x̂ + (2pn2/b)ŷ +
(2pn3/c)ẑ, and

f Rnð Þ ¼ e�ikRnerfc b�ð Þ þ eþikRnerfc bþ
 �
: ð17Þ

[21] The function erfc(n) denotes the complementary
error function [Abramowitz and Stegun, 1965] of argument
b� = RnE � ik/(2E). The adopted Ewald parameter E is
[Kustepeli and Martin, 2000]

E ¼ p2 1=a
2 þ 1=b2 þ 1=c2

a2 þ b2 þ c2

� �1=4
ð18Þ

which is chosen based on optimizing the total number of
necessary terms in both the scalar spatial and spectral series,
since with this choice they both exhibit the same Gaussian
convergence rate. Note that the spatial 1/R singularity is
fully represented by the n = 0 term of the spatial sum.

[22] Similarly to what discussed after (12), the regularized
scalar periodicGF evaluated at r0 is given by

⌣
Gspatial
∞ (r0, r0,kB) =

lim
r→r0

[Gspatial
∞ (r, r0, kB) � G(r, r0)]. After performing the limit

for r → r0 (see details in the Appendix A) one has

⌣
G

∞
spatial r0; r0; kBð Þ ¼ 1

8p

X
n≠ 0;0;0ð Þ

eikB �dn

Rn
f Rnð Þ þ f ′ 0ð Þ � 2ik

8p
: ð19Þ

[23] In (19) a prime ( f ′) denotes a derivative of f in (17)
with respect to its argument Rn, whose expression is given
in Appendix B.
[24] Then, we accordingly split the dyadic GF in (3) as

G∞
pd r; r0; kBð Þ ¼ G∞

pd;spectral r; r0; kBð Þ þG∞
pd;spatial r; r0; kBð Þ; ð20Þ

where

G∞
pd;type r; r0; kBð Þ ¼ k2G∞

type r; r0; kBð Þ
�
IþrrG∞

type r; r0; kBð Þ; ð21Þ

where “type” is either spectral or spatial. The first term of the
dyad in (21) is proportional to the scalar GF which is given
in (15) for the spectral and in (16) for the spatial type. The
terms rrGspectral

∞ and rrGspatial
∞ are derived based on (15)

and (16) leading to

rrG∞
spectral r; r0; kBð Þ ¼ � 1

abc

Xþ∞

n¼�∞
kB þ knð Þ kB þ knð Þ e

� g2n
4E2

g2n

� ei kBþknð Þ� r�r0ð Þ; ð22Þ

and

rrG∞
spatial r; r0; kBð Þ ¼ 1

8p

Xþ∞

n¼�∞
eikB �dnFspatial;n; ð23Þ

where

Fspatial;n ¼
f ′ Rnð Þ
R2
n

� f Rnð Þ
R3
n

� �
�
Iþ f ″ Rnð Þ

Rn
� 3f ′ Rnð Þ

R2
n

þ 3f Rnð Þ
R3
n

� �
R̂nR̂n;

ð24Þ

and R̂n = Rn/Rn. Furthermore, f ″ and f‴ are the second and
third derivatives of f in (17) with respect to its argument Rn,
respectively, whose expressions are given in Appendix B.
Similarly to what discussed for the scalar GF, here
rr⌣

G spatial
∞ (r0, r0, kB) = lim

r→r0
[rrGspatial

∞ (r, r0, kB) �
rrG(r, r0)]. In its computation we need to evaluate the
limit because bothrrGspatial

∞ andrrG have singular terms
at r = r0 of the kind 1/R0

p with p = 1, 2, 3. After performing
the limit for r → r0 (see details in the Appendix A) one has

rr⌣
G

∞
spatial r0; r0; kBð Þ ¼ 1

8p

X
n≠ 0;0;0ð Þ

eikB�dnFspatial;n

þ 1

24p
f ‴ 0ð Þ þ 2ik3


 �
�
I: ð25Þ
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3.2. Expressions for the Regularized Antidiagonal
Dyad

⌣
Gad

∞

[25] Similarly to what done for the principal diagonal dyad
in the previous section, also the dyadic GF in (7) is split into
the hybrid sum of spectral and spatial dyadic terms

G∞
ad r; r0; kBð Þ ¼ G∞

ad;spectral r; r0; kBð Þ þG∞
ad;spectral

r; r0; kBð Þ; ð26Þ

through the Ewald method, where

G∞
ad;type r; r0; kBð Þ ¼ rG∞

type r; r0; kBð Þ �
�
I; ð27Þ

and “type” is either spectral or spatial. The terms
rGspectral

∞ and rGspatial
∞ are derived based on (15) and (16)

leading to

rG∞
spectral r; r0; kBð Þ ¼ i

abc

Xþ∞

n¼�∞
kB þ knð Þ e

� g2n
4E2

g2n
ei kBþknð Þ� r�r0ð Þ;

ð28Þ

rG∞
spatial r; r0; kBð Þ ¼ 1

8p

Xþ∞

n¼�∞
eikB�dn f ′ Rnð Þ

Rn
� f Rnð Þ

R2
n

� �
R̂n: ð29Þ

[26] Analogously to what discussed for the scalar GF, here
r⌣
Gspatial
∞ (r0, r0, kB) = lim

r→r0
[rGspatial

∞ (r, r0, kB) � rG(r, r0)].

In its computation we need to evaluate the limit because both
rGspatial

∞ andrG have singular terms at r = r0 of the kind 1/R0
and 1/R0

2. After performing the limit for r → r0 (see details in
Appendix A) one has

r⌣
G

∞
spatial r0; r0; kBð Þ ¼ 1

8p

X
n≠ 0;0;0ð Þ

eikB �dn
f ′ Rnð Þ
Rn

� f Rnð Þ
R2
n

� �
R̂n:

ð30Þ

3.3. Convergence of the Scalar GFs and of the Principal
and Antidiagonal Blocks of the Dyadic GF

[27] As stated in section 3.1, the Ewald method allows
for obtaining series with Gaussian convergence rate, so
only a handful of summation terms are needed to achieve

convergence. In order to verify this, we define the relative
error as

Errspectral ¼
KN
spectral � Kexact

spectral

��� ���
Kexact
spectral

��� ��� Errspatial ¼
⌣
K

N

spatial �
⌣
K

exact

spatial

��� ���
⌣
K

exact

spatial

��� ���
ð31Þ

with Kspectral either Gspectral
∞ (r0, r0, kB), or rGspectral,i

∞ (r0, r0,
kB), or rrGspectral,ij

∞ (r0, r0, kB) and
⌣
K spatial either

⌣
Gspatial

∞ (r0,
r0, kB), or r⌣

Gspatial,i
∞ (r0, r0, kB), or rr⌣

Gspatial,ij
∞ (r0, r0, kB),

and i, j = x, y, z indicating the vector and dyad components.
In (31), Kspectral

exact and
⌣
Kspatial
exact are evaluated with a sufficiently

large number of terms to achieve high numerical accuracy,
whereas Kspectral

N and
⌣
K spatial

N are evaluated with n1 = n2 =
n3 = 0, �1, …, �N terms only, as was done in Capolino
et al. [2005, 2007]. As shown in section 2, the two principal
blocks in (12) are proportional to one regularized principal
diagonal dyad

⌣
Gpd

∞ whereas the two antidiagonal blocks are
proportional to one regularized antidiagonal dyad

⌣
G ad

∞ . This
fact implies that it is sufficient to check the convergence rate
of

⌣
Gpd

∞ and
⌣
G ad

∞ for a given wave vector kB.
[28] Consider the 3D lattice of PbTe microspheres shown

in Figure 1, and analyzed in section 4, and assume a pseudo-
periodic wavefield with frequency of 25 THz. Assume first,
for simplicity, a wave vector kB = kzẑ; in Figure 2 we show
the relative error Err in (31) of the scalar spectral and spatial
GFs in (15) and (19), and of the ẑ (for rG∞ terms) and
the x̂x̂ (for the rrG∞ terms) components versus the total
number of summation terms N computed for their evaluation.
Note that for symmetry reasons, it follows that rGx

∞ =
rGy

∞ = 0,rrGxx
∞ =rrGyy

∞ ≠rrGzz
∞,rrGxy

∞ =rrGyx
∞ = 0,

and rrGxz
∞ = rrGyz

∞ = rrGzx
∞ = rrGzy

∞ = 0.
[29] In general, however, under oblique field propagation

also other vector and dyad components play a role. As an
example, considering again the 3D lattice of PbTe micro-
spheres analyzed in Figure 1, and in section 4, at 25 THz,
and assuming kB = kB (sin qx̂ + cos qẑ ) with q = 30�, we
show in Figure 3 the relative error Err in (31) of the x̂ and ẑ
(for rG∞ terms) and the x̂ẑ and ẑẑ (for the rrG∞ terms)
components versus the total number of summation terms N
computed for their evaluation.

Figure 2. Relative error Err in (31) of the scalar and dyadic quantities in the legends for kB = kzẑ for the
3D lattice of PbTe microspheres analyzed in section 4 at 25 THz.
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[30] Note that, as expected, scalar spectral and spatial
components in Figures 2 and 3 converge very rapidly, with
about the same rate (i.e., same number of summation
terms N). The same applies to the shown dyadic quantities.
For example, in Figures 2 and 3, Err < 10�8 for all the series
when using N = 2. Note that even N = 1 would already
guarantee a relative error Err < 10�3.
[31] To provide enough evidence of the functionality of

the proposed DDA method, consider the 3D lattice of TiO2

microspheres shown in Figure 1, and analyzed in section 4,
and assume a field is present with frequency of 300 GHz.
Assume a wave vector kB = kzẑ ; in Figure 4 we show the
relative error Err in (31) of the scalar spectral and spatial GFs
in (15) and (19), and of the ẑ (forrG∞ terms) and the x̂x̂ (for
the rrG∞ terms) components versus the total number of
summation terms N computed for their evaluation. Similar
conclusions to the results in Figure 2 apply to Figure 4.
[32] Last, from a numerical point of view, one can notice

that still in the provided numerical examples only a rela-
tively small number of summation terms (N = 2) are needed
to achieve convergence when using the Ewald method pro-
posed here, with respect to the fully spatial (singular when
computed at the dipole location, as in the present case) or the
fully spectral (which needs an infinite number of terms to

reconstruct the singularity when computed at the dipole
location, as in the present case) counterparts.

4. Modes With Real or Complex Wave Number
and Description of Composite Materials Through
Effective Refractive Index

[33] We analyze some electromagnetic properties of two
composite materials made of a 3D array of (i) PbTe micro-
spheres at infrared frequencies and (ii) TiO2 microspheres
at millimeter waves. Due to the high frequency values, one
may assume that the chosen material composing the micro-
spheres has m = m0 (though the effective permeability of the
composite meff may differ from unity). We compute and
compare the modal wave numbers through mode analysis
based on three different approximations: (i) single dipole
approximation (SDA) using only electric dipoles [Campione
et al., 2011b], (ii) only magnetic dipoles [Campione et al.,
2012], and (iii) the DDA that uses both electric and mag-
netic dipoles discussed in sections 2 and 3 (we assumed N = 2
in the evaluation of the GF summations because it already
guarantees convergence as explained in the previous section,
in the shown frequency range), from which also the effective
refractive index is retrieved. We want to stress that the DDA

Figure 3. Relative error Err in (31) of the dyadic quantities in the legends for kB = kB (sin qx̂ + cos qẑ)
with q = 30� for the 3D lattice of PbTe microspheres analyzed in section 4 at 25 THz.

Figure 4. Relative error Err in (31) of the scalar and dyadic quantities in the legends for kB = kzẑ for the
3D lattice of TiO2 microspheres analyzed in section 4 at 300 GHz.
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is a good approximation when the two dipole moments
(or any of them) dominate the scattered-field multipole
expansion. We also adopt Maxwell Garnett (MG) homoge-
nization theory [Sihvola, 1999, 2009], and Nicolson-Ross-
Weir (NRW) retrieval method [Boughriet et al., 1997;
Nicolson and Ross, 1970; Simovski, 2009; Smith et al., 2002;
Weir, 1974] from scattering parameters for finite thickness
structures, computed here through a full-wave simulation
software employing the finite element method in frequency
domain (high frequency structure simulator, HFSS by Ansys
Inc.). In general, the NRW solution should be proven to be
consistent for varying the number of layers, as shown in
Campione et al. [2011b] for example. For simplicity in
Figures 6–9 we show only the result obtained with 4 layers,
because results with other number of layers are found to be in
good agreement.

4.1. Microsphere Resonances

[34] We consider microspheres with radius r = 1 mm made
of PbTe, with permittivity ɛm= 32.04 + 0.0524i [Basilio
et al., 2011; Palik, 1985], and with r = 52 mm made of
TiO2, with permittivity ɛm = ɛ′m + iɛ″m, where ɛ′m = 3.33f +
92.34 and ɛ″m = 0.28f 2 + 7.64 f � 1.54, with f being the
frequency in THz [Berdel et al., 2005; Lannebere, 2011].
PbTe microspheres resonate at infrared frequencies between
20 THz and 40 THz, and TiO2 microspheres resonate at

millimeter waves between 200 GHz and 500 GHz. With
these assumptions, in Figure 5 we report the magnitude of
the Mie dipole-like scattering coefficients a1 and b1 (see (10)
and (11)) versus frequency. It can be observed that the PbTe
(TiO2) particles, for increasing frequency, exhibit first a
magnetic resonance around 26 THz (300 GHz) (due to |b1| >
|a1|) with residual electric contributions, and then an elec-
tric resonance around 36 THz (420 GHz) (due to |a1| > |b1|)
with residual magnetic contributions. All these effects are
accounted for in the DDA model proposed here, whereas the
residual ones are not considered in the SDA models. This is
why the DDA solution is expected to provide results in
better agreement with the full-wave NRW result than sim-
pler SDA models. Since these two electric and magnetic
dipole-like terms are dominant in the scattering process,
microsphere electromagnetic interactions can be based only
on dipole-dipole mechanisms, including both electric and
magnetic kinds.

4.2. Modes With Real or Complex Wave Number

[35] In this section, we first show the modes with real
or complex wave number for traveling modes along the
z-direction (i.e., kB = kzẑ , with kz = bz + iaz) with dipole
moments polarized along either the x- or y-direction (trans-
versal polarization, “T-pol,” with respect to the mode trav-
eling direction) in a 3D periodic array of PbTe microspheres

Figure 5. Frequency behavior of the magnitude of the electric (a1) and magnetic (b1) Mie dipole coeffi-
cients for (a) a PbTe microsphere with radius 1 mm and (b) a TiO2 microsphere with radius 52 mm.

Figure 6. Wave number kz = bz + iaz versus normalized frequency dispersion diagram for T-pol modes,
for the considered 3D periodic array made of PbTe microspheres, retrieved with four different methods.
The DDA is the one that better computes the mode wave number, when compared with NRW-HFSS.
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embedded in free space (i.e., k = k0, ɛh = 1) with cubic lattice
(i.e., a = b = c), with c = 3 mm.
[36] The dispersion diagrams for the 3D periodic array

described above are shown in Figure 6, computed with
various methods: (i) the SDA method (including only mag-
netic effects Mode-SDA-M, obtained by imposing aee = 0
in (13) and neglecting the contribution from

⌣
G HP

∞ ), (ii) the
SDA with only electric effects Mode-SDA-E, obtained by
imposing amm = 0 in (13) and neglecting the contribution
from

⌣
GEM

∞ ), (iii) the DDA method in (13), and (iv) the NRW
method. The latter method is applied as follows: first,
reflection and transmission coefficients are retrieved through
a HFSS simulation for 4 layers of microspheres. These
coefficients are used to retrieve the effective refractive index
neff (see the next section). Then, the modal wave number is
retrieved as kz = neff k0. The plot in Figure 6 shows only the
dominant transverse mode. Other modes with transverse
polarization with large attenuation constant az, symptom of
a weak spatial dispersion, are present and much weaker than
the fundamental one. Indeed, the effect of these highly atten-
uated modes can be neglected as discussed in Campione et al.
[2011b, 2012]. In Figure 6 one should note how the
Mode-SDA-M fails to predict the feature in the range 0.6 <
kc/p < 0.8 (i.e., frequency range between 30 and 40 THz),
which is mainly related to the strong scattering by the electric
dipoles in the same frequency range, shown in Figure 5a.
Vice versa, the Mode-SDA-E fails to predict the feature in the
range 0.4 < kc/p < 0.6 (i.e., frequency range between 20 and

30 THz), associated to the strong scattering by the magnetic-
dipoles in the same frequency range, shown in Figure 5a. On
the contrary, the DDA method allows getting results in good
agreement with NRW in the entire analyzed frequency range.
In this particular case however, the Mode-SDA-M is in good
agreement with DDA and NRW in the range 0.45 < kc/p <
0.55 (i.e., frequency range between 22.5 and 27.5 THz, where
the magnetic dipole-like scattering is dominant), and the same
happens for the SDA-E in the range 0.65 < kc/p < 0.8 (i.e.,
frequency range between 32.5 and 40 THz, where the electric
dipole-like scattering is dominant).
[37] Note however that in general there could be cases

where the SDA approximations provide quite different
results than the ones computed through NRW in the whole
frequency range, as for example shown in Campione et al.
[2012]. For this reason, we report in Figure 7 the modes
with real or complex wave number for traveling modes
along the z-direction (i.e., kB = kzẑ, with kz = bz + iaz) with
dipole moments polarized along either the x- or y-direction
(transversal polarization, “T-pol,” with respect to the mode
traveling direction) in a 3D periodic array of TiO2 micro-
spheres embedded in free space (i.e., k = k0, ɛh = 1) with
cubic lattice (i.e., a = b = c), with c = 106 mm. This case is
quite extreme because the spheres are very packed in the
lattice (i.e., multipolar terms may have some effect), how-
ever the DDA provides results still in good agreement with
NRW since it accounts for both electric and magnetic
dipolar interactions among microspheres. Note again that the

Figure 7. As in Figure 6, for TiO2 microspheres.

Figure 8. Effective refractive index retrieved by different methods for the array of PbTe microspheres.
The DDA method is the one that better computes the refractive index, when compared with the NRW-
HFSS. MG is the worst approximation.
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Mode-SDA-M fails to predict the feature in the range 0.25 <
kc/p < 0.35 (i.e., frequency range between 350 and
500 GHz), which is mainly related to the strong scattering by
the electric dipoles in the same frequency range, shown in
Figure 5b. Vice versa, the Mode-SDA-E fails to predict the
feature in the range 0.15 < kc/p < 0.25 (i.e., frequency range
between 200 and 350 GHz), associated to the strong scat-
tering by the magnetic-dipoles in the same frequency range,
shown in Figure 5b. In this case, however, the two SDA
models provide curves with only salient propagation fea-
tures. In contrast, the DDA model allows for a better esti-
mation of the complex propagation constant kz when
compared to the full-wave simulation result (NRW).

4.3. Effective Refractive Index

[38] As described in the previous section one mode only,
with transverse polarization, is dominant and able to propa-
gate inside the lattice, and therefore the composite material is
now considered for refractive index homogenization. We
compute the effective refractive index by using the four
methods employed in the previous section, and also by using
Maxwell Garnett method [Sihvola, 1999, 2009]. In particu-
lar, the refractive index can be easily retrieved through
modal analysis (SDA or DDA) as neff = kz/k0, with kz being
the complex wave number shown in Figures 6 and 7. With
Maxwell Garnett, first ɛeff and meff are computed indepen-
dently [Sihvola, 1999, 2009], then neff =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ɛeffmeff

p
. Through

NRW, instead, neff is computed after retrieving reflection
and transmission coefficients through a HFSS simulation
with four layers of microspheres. The effective refractive
index computed by the five different methods is shown in
Figures 8 and 9. Notice how in the considered 3D arrays the
DDA method provides a result in very good agreement with
the NRW method. Maxwell Garnett is the one that disagrees
the most because it does not include field retardation effects
and electric-magnetic particle interactions accounted for in
all the other methods. Also, in the MG method, electric and
magnetic effects are considered separately, and not together
as in the DDA or in the NRW methods.

5. Conclusion

[39] A formulation for electromagnetic analysis of com-
posite materials made of periodic arrays of electric and

magnetic dipoles has been carried out by using new
expressions for the dyadic GF for periodic arrays based on
the Ewald method. Then we have used the developed
theory to analyze two 3D periodic arrays made of (i) lead
telluride (PbTe) and (ii) titanium dioxide (TiO2) micro-
spheres, for which we have evaluated the modes with real or
complex wave number. Each microsphere has been modeled
according to the dual (electric and magnetic) dipole approx-
imation (DDA). A mode with transverse polarization has
been found to be dominant and able to propagate inside the
lattice, thus the composite material has been described
through an effective refractive index. Both the modal wave
number and homogenized refractive index results have been
compared with those obtained from the algorithm based on
scattering parameters for finite thicknesses, and from single
dipole approximation based on electric or magnetic dipoles
only. The effective refractive index has also been calculated
fromMaxwell Garnett homogenization theory. The proposed
DDA method has been found to be in very good agreement
with full-wave simulations and showed better performance
than the MG and SDA methods.

Appendix A: Regularization of the Spatial Terms
of the Dyadic Green’s Functions

[40] The regularized GF
⌣
G spatial

∞ (r0, r0, kB) reported in
(19) is evaluated by subtracting the n = (0, 0, 0) spherical
wave term of the purely spatial GF. This leads to

⌣
G ∞

spatial r0; r0; kBð Þ ¼ lim
r→r0

G∞
spatial r; r0; kBð Þ � G r; r0ð Þ

h i
¼

¼ 1

8p

X
n≠ 0;0;0ð Þ

eikB �dn

Rn
f Rnð Þ

þ lim
R→0

1

8p
f Rð Þ
R

� 1

4p
eikR

R

� �
¼

¼ 1

8p

X
n≠ 0;0;0ð Þ

eikB �dn

Rn
f Rnð Þ þ f ′ 0ð Þ � 2ik

8p
ðA1Þ

Figure 9. As in Figure 8, for TiO2 microspheres.
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[41] The same regularization is applied to rr⌣
G spatial

∞

(r0, r0, kB) in (25), which leads to

rr⌣
G ∞

spatial r0; r0; kBð Þ ¼ lim
r→r0

rrG∞
spatial r; r0; kBð Þ � rrG r; r0ð Þ

h i
¼

¼ 1

8p

X
n≠ 0;0;0ð Þ

eikB�dnFspatial;n

þ lim
R→0

1

8p
Fspatial;000 �rr 1

4p
eikR

R

� �� �
ðA2Þ

[42] The limit is evaluated as follows:

[43] The same regularization is applied to r⌣
Gspatial

∞ (r0, r0,
kB) in (30), which leads to

r⌣
G∞

spatial r0; r0; kBð Þ ¼ lim
r→r0

rG∞
spatial r; r0; kBð Þ � rG r; r0ð Þ

h i
¼

¼ 1

8p

X
n≠ 0;0;0ð Þ

eikB �dn
f ′ Rnð Þ
Rn

� f Rnð Þ
R2
n

� �
R̂n

þ lim
R→0

1

8p
f ′ Rð Þ
R

� f Rð Þ
R2

� �
R̂

�
�r 1

4p
eikR

R

� ��
ðA4Þ

[44] The limit is evaluated as follows:

lim
R→0

1

8p
f ′ Rð Þ
R

� f Rð Þ
R2

� �
R̂ �r 1

4p
eikR

R

� �� �
¼

¼ lim
R→0

1

8p
f ′ Rð Þ
R

� f Rð Þ
R2

� �
R̂ � 1

4p
ikeikR

R
� eikR

R2

� �
R̂

� �
¼

¼ lim
R→0

1

16p
f ″ Rð Þ þ 2k2eikR


 �
R̂

� �
¼ 0 ðA5Þ

Appendix B: Supporting Mathematical Expressions

[45] The expressions for the derivatives of the function f
in (17) are here summarized. The first derivative f ′ (with
respect to the argument Rn) is given by

f ′ Rnð Þ ¼ ik eþikRnerfc bþ
 �� e�ikRnerfc b�ð Þ �� Aþ Bð Þ; ðB1Þ

where

A ¼ 2Effiffiffi
p

p e� b�ð Þ2e�ikRn ; B ¼ 2Effiffiffi
p

p e� bþð Þ2eikRn : ðB2Þ

[46] The second derivative f ″ is given by

f ″ Rnð Þ ¼ �k2f Rnð Þ þ 2ik A� Bð Þ þ C þ Dð Þ; ðB3Þ
where

C ¼ 4E2ffiffiffi
p

p b�e� b�ð Þ2e�ikRn ; D ¼ 4E2ffiffiffi
p

p bþe� bþð Þ2eikRn : ðB4Þ

[47] The third derivative f ‴ is given by

f ‴ Rnð Þ ¼ �k2f ′ Rnð Þ þ 3ik D� Cð Þ þ 2k2 þ 2E2

 �

Aþ Bð Þþ

� 8E3ffiffiffi
p

p b�ð Þ2e� b�ð Þ2e�ikRn þ bþ
 �2
e� bþð Þ2eikRn

h i
: ðB5Þ

[48] Last, note that (17), (B1), (B3) and (B5), when com-
puted for Rn = 0 as required in (A1), (A3) and (A5), assume
the following values:

f 0ð Þ ¼ 2; f ′ 0ð Þ ¼ � 4Effiffiffi
p

p e
k2

4E2 þ ik erfc
ik

2E

� �
� erfc � ik

2E

� �� �
;

f ″ 0ð Þ ¼ �2k2; f ‴ 0ð Þ ¼ 8E3ffiffiffi
p

p e
k2

4E2 � k2f ′ 0ð Þ:

ðB6Þ
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