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Abstract. The large-scale, near-surface flow of the mid-latitude oceans is
dominated by the presence of a larger, anticyclonic and a smaller, cyclonic

gyre. The two gyres share the eastward extension of western boundary cur-
rents, such as the Gulf Stream or Kuroshio, and are induced by the shear in

the winds that cross the respective ocean basins. This physical phenomenol-

ogy is described mathematically by a hierarchy of systems of nonlinear partial
differential equations (PDEs). We study the low-frequency variability of this

wind-driven, double-gyre circulation in mid-latitude ocean basins, subject to

time-constant, purely periodic and more general forms of time-dependent wind
stress. Both analytical and numerical methods of dynamical systems theory

are applied to the PDE systems of interest. Recent work has focused on the

application of non-autonomous and random forcing to double-gyre models. We
discuss the associated pullback and random attractors and the non-uniqueness

of the invariant measures that are obtained. The presentation moves from ob-

servations of the geophysical phenomena to modeling them and on to a proper
mathematical understanding of the models thus obtained. Connections are

made with the highly topical issues of climate change and climate sensitivity.
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2 MICHAEL GHIL

1. Introduction and motivation. Since the early ‘70s, when I chose a thesis topic
on theoretical climate dynamics and a dynamical systems approach to treat this
topic [20,67,68], the importance of the climate sciences has only been growing [32,
89,90,178,182]. Likewise, the usefulness of dynamical systems and of their successive
bifurcations in navigating across the hierarchy of climate models [52,70–72,162] —
while far from universally accepted in the climate sciences — has found a wide
community of users and produced a substantial literature.

An important recent development in this literature was caused by the realiza-
tion that the theory of differentiable dynamical systems (DDS) — in its classical
form dealing with autonomous DDSs — was fairly well adapted to applications in
which neither the forcing nor the coefficients were time dependent. To a good
approximation, this could be said to be the case in numerical weather predic-
tion [97, 190], but much less so in climate problems in which the seasonal forc-
ing [30,75,80,93,94,161,193,194] or anthropogenic effects [29,32,89,90,178] play a
major role.

To cope with the latter type of problems, applications of the theory of nonau-
tonomous and random dynamical systems (NDS and RDS) have started to appear
in the theoretical climate dynamics literature [19, 36, 57, 79]. The purpose of the
present paper is to give some flavor of the systematic application of DDS, NDS and
RDS theory across the hierarchy of climate models, from the simplest, conceptual
ones all the way to the most elaborate ones [54,70,71,75].

In mathematical terms, this means considering, at the lower end of the hierarchy,
small systems of ordinary differential equations (ODEs) and at the higher end full-
blown systems of nonlinear partial differential equations (PDEs). In the climate
literature, the former are sometimes called “toy models,” while the latter are referred
to as general circulation models (GCMs) or, more recently, as global climate models,
which preserves the GCM acronym.

An interesting problem to which these ideas and results will be applied herein
is that of the wind-driven circulation in mid-latitude ocean basins [52, 54], subject
at first to time-constant and then to purely periodic and more general forms of
time-dependent wind stress. The wind-driven circulation is obviously strongest
near the surface of the oceans, and its variability lies mostly in the subannual and
interannual range. In many simplified, theoretical treatments of the oceans, this
circulation is treated separately from the so-called buoyancy-driven, thermohaline or
overturning circulation. The latter is driven by mass fluxes at the ocean–atmosphere
interface; it involves the density distribution of water masses — which depends on
both temperature and salinity, hence its characterization as thermohaline — and it
reaches all the way to the bottom of the oceans. The variability of this overturning
circulation lies largely in the interdecadal and centennial range [52, 54, 69, 71, 137,
145,183,187]. It will only be mentioned here in passing in Section 4.

Key features of the wind-driven circulation are described in Section 2 below. The
influence of strong thermal fronts — like the Gulf Stream in the North Atlantic
or the Kuroshio in the North Pacific — on the mid-latitude atmosphere above is
severely underestimated, thus contributing to the current range of uncertainties
in climate simulations over the 21st century. Typical spatial resolutions in recent
century-scale GCM simulations [1,89,90,153,178,180] are still of the order of 100 km
at best, whereas resolutions of 50 km and less would be needed to really capture
the strong mid-latitude ocean-atmosphere coupling just above the oceanic fronts
[62,63,132,176].
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An important additional source of uncertainty comes from the difficulty to cor-
rectly parametrize global and regional effects of clouds and their highly complex
small-scale physics. This difficulty is particularly critical in the tropics, where large-
scale features such as the El-Niño/Southern Oscillation (ENSO) and the Madden-
Julian Oscillation are strongly coupled with convective phenomena [75,124,138].

The outline of the paper is the following. First, we describe in Section 2 the most
recent theoretical results regarding the internal variability of the mid-latitude wind-
driven circulation, viewed as a problem in nonlinear fluid mechanics. These results
rely to a large extent on autonomous DDS theory [11, 85]. Next, we summarize in
Section 3 the key concepts and methods of NDS [163] and RDS [7] theory.

With the results of Sections 2 and 3 in hand, we address in Section 4 the changes
in this purely oceanic variability as a result of time-dependent forcing, on the one
hand, and truly coupled ocean–atmosphere variability, on the other. Much of the
material in this section is new [65, 150, 198]. A summary and an outlook on future
work follow in Section 5. Rigorous mathematical results appear in Appendices A,
B and C, which follow closely [79] (Appendix A) and [36] (Appendices B and C).

This paper targets an audience of mathematicians already interested or on the
point of becoming interested in the climate sciences, as well as of climate scientists
with an interest in the formulation and use of a mathematical framework for their
problems. I hope that it will help, rather than hinder, the communication between
these two target audiences.

2. Internal variability of the wind-driven ocean circulation.

2.1. Observations. To a first approximation, the main near-surface currents in
the oceans are driven by the mean effect of the winds. The trade winds near the
equator blow mainly from east to west and are also called the tropical easterlies.
In mid-latitudes, the dominant winds are the prevailing westerlies, and towards the
poles the winds are easterly again. Thus an idealized version of wind effects on
the ocean must involve zonally oriented winds that blow westward at low and high
latitudes, and eastward in mid-latitudes.

Five of the strongest near-surface, mid-and-high-latitude currents are the Antarc-
tic Circumpolar Current, the Gulf Stream and the Labrador Current in the North
Atlantic, and the Kuroshio and Oyashio off Japan. These currents are all clearly
visible in Fig. 1.

The Gulf Stream [184] is an oceanic jet with a strong influence on the climate of
eastern North America and of western Europe. From Mexico’s Yucatan Peninsula,
the Gulf Stream flows north through the Florida Straits and along the East Coast
of the United States. Near Cape Hatteras, it detaches from the coast and begins
to drift off into the North Atlantic towards the Grand Banks near Newfoundland.
Actually, the Gulf Stream is part of a larger, gyre-like current system, which includes
the North Atlantic Drift, the Canary Current and the North Equatorial Current.
It is also coupled with the pole-to-pole overturning circulation.

The Coriolis force is responsible for the so-called Ekman transport, which deflects
water masses orthogonally to the near-surface wind direction and to the right [72,
83, 144]. In the North Atlantic, this Ekman transport creates a divergence and a
convergence of near-surface water masses, respectively, resulting in the formation of
two oceanic gyres: a smaller, cyclonic one in subpolar latitudes, the other larger and
anticyclonic in the subtropics. This type of double-gyre circulation characterizes all
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Figure 1. A map of the main oceanic currents: warm currents in
red and cold ones in blue. Reproduced from [79], with permission
from Elsevier.

mid-latitude ocean basins, including the South Atlantic, as well as the North and
South Pacific.

The double-gyre circulation is intensified as the currents approach the East Coast
of North America due to the β-effect. This effect arises primarily from the variation
of the Coriolis force with latitude, while the oceans’ bottom topography also con-
tributes to it. The former, planetary β-effect is of crucial importance in geophysical
flows and induces free Rossby waves propagating westward [72,83,144].

The currents along the western shores of the North Atlantic and of the other
mid-latitude ocean basins exhibit boundary-layer characteristics and are commonly
called western boundary currents. The northward-flowing Gulf Stream and the
southward-flowing Labrador Current extension meet near Cape Hatteras and give
rise to a strong, mainly eastward jet that eventually reaches Scandinavia. In all
four mid-latitude ocean basins — i.e., the North and South Atlantic, as well as the
North and South Pacific — the confluence of a warm, poleward current with a cold,
equatorward one produces an intense eastward jet. The formation of this jet and
of the associated recirculation vortices near the western boundary, to either side of
the jet, is mostly driven by internal, nonlinear effects.

Figure 2 illustrates how these large-scale wind-driven oceanic flows self-organize,
as well as the resulting eastward jet. Different spatial and time scales contribute
to this self-organization: so-called mesoscales eddies in the ocean play the role of
the synoptic-scale weather systems in the atmosphere. Warm and cold rings last
for several months up to a year and have a diameter of about 100 km vs. the
much larger horizontal dimensions of atmospheric weather systems, of the order of
1000 km; two cold rings are clearly visible in Fig. 2. Gulf Stream meanders involve
larger spatial scales, up to 1000 km, and are associated with interannual variability.

The characteristic scale of the jet and gyres is of several thousand kilometers
and they exhibit their own intrinsic dynamics on time scales of several years to
possibly one or two decades. A striking feature of the wind-driven circulation is the
existence of two well-known North Atlantic Oscillations, with a period of about 7-8
and 14-15 years, respectively. Data analysis of various climatic variables, such as
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Figure 2. A satellite image of the sea surface temperature (SST)
field over the northwestern North Atlantic (in false color, from the
U.S. National Oceanic and Atmospheric Administration), together
with a sketch of the associated double-gyre circulation (white ar-
rows). A highly simplified and smoothed view of the amount of
potential vorticity injected into the ocean circulation by the equa-
torial trade winds, the mid-latitudes’ prevailing westerlies and the
polar easterlies is shown in the sketch to the right. Reproduced
from [79], with permission from Elsevier.

sea surface temperature (SST) over the North Atlantic or sea level pressure (SLP)
over western Europe [49, 135, 201] and local surface air temperatures in Central
England [151], as well as of proxy records, such as tree rings in Britain, travertine
concretions in southeastern France [58], and Nile floods over the last millennium
or so [105], all exhibit strikingly robust oscillatory behavior with a 7-8-yr period
and, to a lesser extent, with a 14-yr period. Variations in the path and intensity of
the Gulf Stream are most likely to exert a major influence on the climate in this
part of the world [184]. These climatic implications add to the intrinsic interest
of theoretical studies of the low-frequency variability of the oceans’ double-gyre
circulation.

Given the complexity of the processes involved, climate studies have been most
successful when using not just a single model but a full hierarchy of models, from
the simplest to models to the most detailed GCMs [70, 75]. In the following, we
describe one of the simplest models of the hierarchy used in studying this problem,
which still retains many of its essential features.

2.2. A simple model of the double-gyre circulation. The simplest model
that includes many of the mechanisms described above is governed by the barotropic
quasi-geostrophic (QG) equations. The term geostrophic refers to the fact that large-
scale rotating flows tend to run parallel to, rather than perpendicular to constant-
pressure contours; in the oceans, these contours are associated with the deviation
from rest of the surfaces of equal water mass, due to Ekman pumping. Geostrophic
balance implies in particular that the flow is divergence-free. The term barotropic,
as opposed to baroclinic, has a slightly different meaning in geophysical fluid dy-
namics than in engineering fluid mechanics: it means that the model describes a
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single fluid layer of constant density and therefore the solutions do not depend on
depth [72,83,144].

We consider an idealized, rectangular basin geometry and simplified forcing that
mimics the distribution of vorticity due to the wind stress, as sketched to the right
of Fig. 2. In our idealized model, the amounts of subpolar and subtropical vorticity
injected into the basin are equal and the rectangular domain Ω = (0, Lx)× (0, Ly)
is symmetric about the axis of zero wind stress curl.

The barotropic two-dimensional (2-D) QG equations in this idealized setting are:

qt + J(ψ, q)− ν∆2ψ + µ∆ψ = −τ sin
2πy
Ly

,

q = ∆ψ − λ−2
R ψ + βy.

(2.1)

Here q and ψ are the potential vorticity and the streamfunction, respectively, and
the Jacobian J gives the advection of potential vorticity by the flow, J(ψ, q) =
ψxqy − ψyqx = u · ∇q, where u = (−ψy, ψx), x points east and y points north.

The physical parameters are the strength of the planetary vorticity gradient β,
the Rossby radius of deformation λ−2

R , the eddy-viscosity coefficient ν, the bottom
friction coefficient µ, and the wind-stress intensity τ . We use here free-slip boundary
conditions ψ = ∆2ψ = 0; the qualitative results described below do not depend on
the particular choice of homogeneous boundary conditions [54,92].

We consider the nonlinear PDE system (2.1) as an infinite-dimensional dynamical
system and study its bifurcations as the parameters change. Two key parameters
are the wind stress intensity τ and the eddy viscosity ν. An important property of
(2.1) is its mirror symmetry in the y = Ly/2 axis. This symmetry can be expressed
as invariance with respect to the discrete Z2 group S, given by

S [ψ(x, y)] = −ψ(x, Ly − y); (2.2)

any solution of (2.1) is thus accompanied by its mirror-conjugated solution. Hence
the prevailing bifurcations are of either the symmetry-breaking or the Hopf type.

2.3. Bifurcations in the double-gyre problem. The development of a compre-
hensive nonlinear theory of the double-gyre circulation over the last two decades
has gone through four main steps. These four steps can be followed through the
bifurcation tree in Fig. 3.

2.3.1. Symmetry-breaking bifurcation. The “trunk” of the bifurcation tree is plotted
as the solid blue line in the lower part of the figure. When the forcing τ is weak or the
dissipation ν is large, there is only one steady solution, which is antisymmetric with
respect to the mid-axis of the basin. This solution exhibits two large gyres, along
with their β-induced western boundary currents. Away from the western boundary,
such a near-linear solution (not shown) is dominated by so-called Sverdrup balance
between wind stress curl and the meridional mass transport [83,186].

The first generic bifurcation of this QG model was found to be a genuine pitch-
fork bifurcation that breaks the system’s symmetry as the nonlinearity becomes
large enough with increasing wind stress intensity τ [27,91,92]. As the wind stress
increases, the near-linear Sverdrup solution that lies along the solid blue line in the
figure develops an eastward jet along the mid-axis, which penetrates farther into
the domain and also forms two intense recirculation vortices, on either side of the
jet and near the western boundary of the domain.

The resulting more intense, and hence more nonlinear solution is still antisym-
metric about the mid-axis, but loses its stability for some critical value of the
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Figure 3. Generic bifurcation diagram for the barotropic QG
model of the double-gyre problem: the asymmetry of the solution
is plotted versus the intensity of the wind stress τ . The stream-
function field is plotted for a steady-state solution associated with
each of the three branches; positive values in red and negative ones
in blue. After [170].

wind-stress intensity, τ = τP. This value is indicated by the filled square on the
symmetry axis of Fig. 3 and is labeled “Pitchfork” in the figure.

A pair of mirror-symmetric solutions emerges and it is plotted as the two red
solid lines in the figure’s lower part. The streamfunction fields associated with the
two stable steady-state branches have a rather different vorticity distribution and
they are plotted in the two small panels to the upper-left and upper-right of Fig. 3.
In particular, the jet in such a solution exhibits a large meander, reminiscent of the
one seen in Fig. 2 just downstream of Cape Hatteras; note that the colors in Fig.
3 were chosen to facilitate the comparison with Fig. 2. These asymmetric flows
are characterized by one recirculation vortex being stronger in intensity than the
other, which deflects the jet accordingly either to the southeast, as is the case in
the observations for the North Atlantic, or to the northeast.

2.3.2. Gyre modes. The next step in the theoretical treatment of the problem was
taken in part concurrently with the first one above [91, 92] and in part shortly
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thereafter [55,164,179]. It involved the study of time-periodic instabilities through
Hopf bifurcation from either an antisymmetric or an asymmetric steady flow. Some
of these studies treated wind-driven circulation models limited to a stand-alone,
single gyre [145, 164]; such a model concentrates on the larger, subtropical gyre
while neglecting the smaller, subpolar one.

The overall idea was to develop a full, generic picture of the time-dependent
behavior of the solutions in more turbulent regimes, by classifying the various in-
stabilities in a comprehensive way. However, it quickly appeared that a particular
kind of instability leads to so-called gyre modes [92, 179], and was prevalent across
the full hierarchy of models of the double-gyre circulation; furthermore, this insta-
bility triggers the lowest nonzero frequency present in all such models [52,54].

These gyre modes always appear after the first pitchfork bifurcation, and it took
several years to really understand their genesis: gyre modes arise as two eigenvalues
merge — one is associated with a symmetric eigenfunction and responsible for the
pitchfork bifurcation, the other is associated with an antisymmetric eigenfunction
[166]; this merging is marked by a filled circle on the left branch of antisymmetric
stationary solutions and labeled M in Fig. 3.

Such a phenomenon is not a bifurcation stricto sensu: one has topological C0-
equivalence before and after the eigenvalue merging, but not from the C1 point
of view. Still, this phenomenon is quite common in small-dimensional dynamical
systems with symmetry, as exemplified by the unfolding of codimension-2 bifurca-
tions of Bogdanov-Takens type [85]. In particular, the fact that gyre modes trigger
the lowest-frequency of the model is due to the frequency of these modes growing
quadratically from zero until nonlinear saturation. Of course these modes, in turn,
become unstable shortly after the merging, through a Hopf bifurcation indicated in
Fig. 3 by a heavy dot marked “Hopf,” from which a stylized limit cycle emerges.
A mirror-symmetric M and Hopf bifurcation also occur on the right branch of
stationary solutions, but have been omitted in the figure for visual clarity.

More generally, Hopf bifurcations of various types give rise to features that re-
cur more-or-less periodically in fully turbulent planetary-scale flows, atmospheric,
oceanic and coupled [52,54,71,72]. In the climate sciences, one commonly refers to
this type of near-periodic recurrence as low-frequency variability (LFV).

2.3.3. Global bifurcations. The importance of the gyre modes was further confirmed
through an even more puzzling discovery. Several authors realized, independently of
each other, that the low-frequency dynamics of their respective double-gyre models
was driven by intense relaxation oscillations of the jet [28,130,136,167–170]. These
relaxation oscillations, already described in [92, 179], were now attributed to a ho-
moclinic bifurcation, with a global character in phase space [72, 85]. In effect, the
QG model reviewed here undergoes a genuine homoclinic bifurcation that is generic
across the full hierarchy of double-gyre models.

This bifurcation is due to the growth and eventual merging of the limit cycles
that arise from the two mutually symmetric Hopf bifurcations. It is marked in
the figure by a filled circle and a stylized lemniscate, and labeled “Homoclinic.”
This global bifurcation is associated with chaotic behavior of the flow due to the
Shilnikov phenomenon [136,170], which induces horseshoes in phase space.

The connection between such homoclinic bifurcations and gyre modes was not
immediately obvious, but Simonnet et al. [170] emphasized that the two were part of
a single, global dynamical phenomenon. The homoclinic bifurcation indeed results
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from the unfolding of the gyre modes’ limit cycles. This familiar dynamical sce-
nario is again well illustrated by the unfolding of a codimension-2 Bogdanov-Takens
bifurcation, where the homoclinic orbits emerge naturally.

Since homoclinic orbits have an infinite period, it was natural to hypothesize that
the gyre-mode mechanism, in this broader, global-bifurcation context, gave rise to
the observed 7-yr and 14-yr North Atlantic oscillations. Although this hypothesis
may appear a little farfetched — given the simplicity of the double-gyre models
analyzed so far — it is reinforced by results with much more detailed model in the
hierarchy, cf. [52, 54] and Section 4 herein.

The successive-bifurcation theory appears therewith to be fairly complete for
barotropic, single-layer models of the double-gyre circulation. This theory also
provides a self-consistent, plausible explanation for the climatically important 7-
year and 14-year oscillations of the oceanic circulation and the related atmospheric
phenomena in and around the North Atlantic basin [49, 52, 54, 62–65, 105, 135, 151,
169,170,201]. The dominant 7- and 14-year modes of this theory survive, moreover,
perturbation by seasonal-cycle changes in the intensity and meridional position of
the westerly winds [185].

In baroclinic models, with two or more active layers of different density, baroclinic
instabilities [17,54,63,72,83,108,144,145,169,184] surely play a fundamental role, as
they do in the observed dynamics of the oceans. However, it is not known to what
extent baroclinic instabilities can destroy gyre-mode dynamics. The difficulty lies
in a deeper understanding of the so-called rectification process [100], which arises
from the nonzero mean effect of the baroclinic component of the flow.

Roughly speaking, rectification drives the dynamics far away from any station-
ary solutions. In this situation, dynamical systems theory by itself cannot be used
as a full explanation of complex, observed behavior resulting from successive bi-
furcations that are rooted in simple stationary or periodic solutions. Other tools
from statistical mechanics and nonequilibrium thermodynamics should, therefore,
be considered [22,60,121,122,125,158,191]. Combining these tools with those of the
successive-bifurcation approach may eventually lead to a more general and complete
physical characterization of gyre modes in realistic models.

3. Non-autonomous and random dynamical systems (NDSs and RDSs).
An additional way of improving upon the simple results so far is to include time-
dependent forcing and stochasticity. As discussed in Section 1, the appropriate
general framework for doing this is the one provided by NDS and RDS theory
[19, 36, 57, 79]. In the present section, we summarize this mathematical framework
in as straightforward a way as possible, and start with some simple ideas about
deterministic vs. stochastic modeling.

3.1. Background and motivation. We are interested in behavior that is robust
across a full hierarchy of climate models in general, and of oceanic double-gyre
models in particular. Moreover, we would like this robust behavior of the models
to be recognizable in the very large and ever-increasing mass of observational data.
Finally, the features in whose robustness we are most interested are those that
obtain over long time intervals.

Classical DDS theory, going back to H. Poincaré [152], is essentially a geomet-
ric approach to studying the asymptotic, long-term properties of solutions to au-
tonomous ODE systems in phase space. Extensions to nonlinear PDE systems are
covered, for instance, in [189]. To apply the theory in a reliable manner to a set
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of complex physical phenomena, one needs a criterion for the robustness of a given
model within a class of dynamical systems. Such a criterion should help one deal
with the inescapable uncertainties in model formulation, whether due to incomplete
knowledge of the governing laws or inaccuracies in determining model parameters.

In this context, A. A. Andronov and L. S. Pontryagin [2] introduced the concept
of structural stability for classifying dynamical systems. Structural stability means
that a small, continuous perturbation of a given system preserves its dynamics up
to a homeomorphism, i.e., up to a one-to-one continuous change of variables that
transforms the phase portrait of our system into that of a nearby system; thus fixed
points go into fixed points, limit cycles into limit cycles, etc. Closely related is
the notion of hyperbolicity formulated by S. Smale [175]. A system is hyperbolic if,
(very) loosely speaking, its limit set can be continuously decomposed into invariant
sets that are either contracting or expanding; see [99] for more rigorous definitions.

A very simple example is the phase portrait in the neighborhood of a fixed point
of saddle type. The Hartman-Grobman theorem states that the dynamics in this
neighborhood is structurally stable. The converse statement, i.e. whether structural
stability implies hyperbolicity, is still an open question; the equivalence between
structural stability and hyperbolicity has only been shown in the C1 case, under
certain technical conditions [126,142,157,159]. Bifurcation theory is quite complete
and satisfying in the setting of hyperbolic dynamics. Problems with hyperbolicity
and bifurcations arise, however, when one deals with more complicated limit sets.

Hyperbolicity was introduced initially to help pursue the “dynamicist’s dream”
of finding — in an abstract space X of all possible dynamical systems with given
dimension and regularity — an open and dense set S consisting of structurally
stable ones. For this set to be open and dense means, roughly speaking, that any
dynamical system in X can be approximated by structurally stable ones in S, while
systems in the complement of S are negligible in a suitable sense.

Smale conjectured that hyperbolic systems form an open and dense set in the
space of all C1 dynamical systems. If this conjecture were true then hyperbolicity
would be typical of all dynamics. Unfortunately, though, this conjecture is only true
for one-dimensional dynamics and flows on disks and surfaces [146]. Smale [174]
himself found several counterexamples to his conjecture. Newhouse [139] was able to
generate open sets of nonhyperbolic diffeomorphisms using homoclinic tangencies.
For the physicist, it is even more striking that the famous Lorenz attractor [119] is
structurally unstable. Families of Lorenz attractors, classified by topological type,
are not even countable [86, 200]. In each of these examples, we observe chaotic
behavior in a nonhyperbolic situation, i.e., nonhyperbolic chaos.

Nonhyperbolic chaos appears, therefore, to be a severe obstacle to any easy clas-
sification of dynamic behavior. As mentioned by J. Palis [142], A. N. Kolmogorov
already suggested at the end of the sixties that “the global study of dynamical sys-
tems could not go very far without the use of new additional mathematical tools,
like probabilistic ones.”

Once more, Kolmogorov showed prophetic insight, and nowadays the concept of
stochastic stability is an important tool in the study of genericity and robustness
for dynamical systems. A system is stochastically stable if its Sinai-Ruelle-Bowen
(SRB) measure [173] is stable with respect to stochastic perturbations, and the SRB
measure is given by limn→∞ 1

n

∑
i δzi , with zi being the successive iterates of the

dynamics. This measure is obtained intuitively by allowing the entire phase space
to flow onto the attractor [59].
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To replace the failed program of classifying dynamical systems based on struc-
tural stability and hyperbolicity, J. Palis [142] formulated his so-called global con-
jecture: The set S of systems satisfying the following conditions is dense in the
Cr-topology for r ≥ 1. The three conditions are:

(i) the system has only finitely many attractors, i.e. periodic or chaotic sinks;
(ii) the union of the corresponding basins of attraction has full Lebesgue measure

in X ; and
(iii) each attractor is stochastically stable in its basin of attraction.

Stochastic stability is thus based on ergodic theory. We would like to consider
a more geometric approach, which can provide a coarser, more robust classification
of climate models across a full hierarchy of such models. In this section, we propose
such an approach, based on RDS theory [7, 39,47,113, and references therein].

RDS theory describes the behavior of dynamical systems subject to external sto-
chastic forcing; its tools have been developed to help study the geometric properties
of stochastic differential equations (SDEs). RDS theory is thus the stochastic, SDE
counterpart of the geometric theory of ODEs, as presented for instance in [11].
This approach provides a rigorous mathematical framework for a stochastic form
of robustness, while the more traditional, topological concepts do not seem to be
appropriate for the climate sciences, given the prevalence of nonhyperbolic chaos.

3.2. Pullback and random attractors. Stochastic parametrizations for GCMs
aim at compensating for our lack of detailed knowledge on small spatial scales in the
best way possible [95,115–117,143,181]. The underlying assumption is that the as-
sociated time scales are also much shorter than the scales of interest and, therefore,
the lag correlation of the phenomena being parametrized is negligibly small. Such
assumptions clearly hold, for instance, for the spatial and temporal scales of cloud
processes, whose parametrization poses a notorious obstacle to realistic climate sim-
ulation and prediction [89,90,178,182]. Stochastic parametrizations thus essentially
transform a deterministic autonomous system into a nonautonomous one, subject
to random forcing.

Explicit time dependence, whether deterministic or stochastic, in a dynamical
system immediately raises a technical difficulty. Indeed, the classical notion of
attractor is not always relevant, since any object in phase space is moving with time
and the concept of forward asymptotics, as considered in autonomous DDS theory, is
meaningless. One needs therefore another notion of attractor. In the deterministic
nonautonomous framework, the appropriate notion is that of a pullback attractor
[26,103,155], which we present below. The closely related notion of random attractor
in the stochastic framework is also explained briefly below, with further details given
in Appendix A.

3.2.1. Pullback attraction. Before defining the notion of pullback attractor, let us
recall some basic facts about nonautonomous dynamical systems. Consider the
ODE

ẋ = f(x, t) (3.1)

on a vector space X; this space could even be infinite-dimensional, if we were
dealing with partial or functional differential equations, as is often the case in fluid-
flow and climate problems. Rigorously speaking, we cannot associate a dynamical
system acting on X with a nonautonomous ODE; nevertheless, in the case of unique
solvability of the initial-value problem, we can introduce a two-parameter family of
operators {S(t, s)}t≥s acting on X, with s and t real, such that S(t, s)x(s) = x(t)
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for t ≥ s, where x(t) is the solution of the Cauchy problem with initial data x(s).
This family of operators satisfies S(s, s) = IdX and S(t, τ) ◦ S(τ, s) = S(t, s) for
all t ≥ τ ≥ s, and all real s. Such a family of operators is called a “process” by
Sell [163].It extends the classical notion of the resolvent of a nonautonomous linear
ODE to the nonlinear setting.

We can now define the pullback attractor as the family of invariant sets {A(t) :
−∞ < t < +∞} that satisfy, for every real t and all x0 in X:

lim
s→−∞

dist (S(t, s)x0,A(t)) = 0. (3.2)

“Pullback” attraction does not involve running time backwards; it corresponds in-
stead to the idea of measurements being performed at present time t in an exper-
iment that was started at some time s < t in the past: the experiment has been
running for long enough, and we are thus looking at the present moment for an “at-
tracting state.” Note that there exist several ways of defining a pullback attractor
— the one retained here is a local one, cf. [111, and references therein]; see [16] for
further information on nonautonomous dynamical systems in general.

A simple example will be helpful for the general reader. Consider the scalar
linear ODE

ẋ = −αx+ σt, (3.3)

with both α and σ positive. Here α > 0 implies the system is dissipative, a crucial
property both mathematically and physically. In the climate context, its importance
has been emphasized by [72,119], among others.

The situation is depicted in Fig. 4. The PBA is easily computed in this case,
and it is given by

A(t) ≡ a(t) =
σ

α
(t− 1

α
). (3.4)

The figure clearly shows that the approximation of the PBA at a given time t = t1
or t = t2 improves as we “pull back” further, from s = s1 to s = s2 (red vs.
blue orbits in the figure); it also shows that the accuracy of the approximation
depends essentially on the time interval |t−s|, rather than on t and s separately. In
practice, the characteristic time for obtaining an approximation with given accuracy
will depend largely on the rate of dissipation α.

In the stochastic context, noise forcing is modeled by a stationary stochastic pro-
cess. If the deterministic dynamical system of interest is coupled to this stochastic
process in a reasonable way — defined below by the “cocycle property” — then
random pullback attractors may appear. These pullback attractors will exist for
almost each sample path of the driving stochastic process, so that the same prob-
ability distribution governs both sample paths and their corresponding pullback
attractors. A more detailed and rigorous explanation is given in Appendix A.

Roughly speaking, the concept of a random attractor provides a geometric frame-
work for the description of asymptotic regimes in the context of stochastic dynamics.
Figure 4 showed how additive and linear deterministic forcing modifies a fixed point.
We illustrate next, following [36, 71], the way that multiplicative stochastic forcing
modifies a strange attractor.

3.2.2. The stochastically perturbed Lorenz model. We consider in this section the
Lorenz convection model [119] and its randomly forced version studied in [36]. The
model is governed by the well-known three nonlinear, coupled ODEs that are now
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Figure 4. Pullback attractor (PBA) for a scalar linear equation,
given by the solid black line. We wish to observe the PBA at
times t = t1, t2, marked by dashed vertical lines, and consider the
convergence to the straight line of orbits started at past times s =
s1, s2; sample orbits for s1 and s2 are plotted in red and blue,
respectively. Courtesy of M. D. Chekroun.

forced by linearly multiplicative white noise [7, 39].

[SLM]

 dx = s(y − x)dt+ σx dWt,
dy = (rx− y − xz)dt+ σy dWt,
dz = (−bz + xy)dt+ σz dWt.

(3.5)

In the deterministic context, purely geometric map models were proposed in the
1970s [85] to interpret the dynamics observed numerically by E. N. Lorenz in [119].
These geometric models attracted considerable attention and it was shown that
they possess a unique SRB measure [42,101], i.e., a time-independent measure that
is invariant under the flow and has conditional measures on unstable manifolds that
are absolutely continuous with respect to Lebesgue measure [59]. This result has
been extended recently to the Lorenz flow [119] itself, in which the SRB measure is
supported by a strange attractor of vanishing volume [6,192].

Even though this result was only proven recently, the existence of such an SRB
measure was suspected for a long time and has motivated several numerical stud-
ies to compute a probability density function (PDF) associated with the Lorenz
model, by filtering out the stable manifolds [51, 134, and references therein]. The
Lorenz attractor is then approximated by a two-dimensional manifold, called the
branched manifold [85], which supports this PDF. Based on such a strategy, Dorfle
& Graham [51] showed that the stationary solution of the Fokker-Planck equation
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for the Lorenz model perturbed by additive white noise possesses a density with
two components: the PDF of the deterministic system supported by the branched
manifold plus a narrow Gaussian distribution transversal to that manifold.
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Figure 5. Snapshot of the Lorenz [119] model’s random attractor
A(ω) and of the corresponding sample measure µω, for a given,
fixed realization ω. The figure corresponds to projection onto the
(y, z) plane, i.e.

∫
µω(x, y, z)dx. One billion initial points have

been used in both panels and the pullback attractor is computed
for t = 40. The parameter values are the classical ones — r = 28,
s = 10, and b = 8/3, while the time step is ∆t = 5 ·10−3. The color
bar to the right of each panel is on a log-scale and quantifies the
probability to end up in a particular region of phase space. Both
panels use the same noise realization ω but with noise intensity (a)
σ = 0.3 and (b) σ = 0.5. Notice the interlaced filamentary struc-
tures between highly (yellow) and moderately (red) populated re-
gions; these structures are much more complex in panel (b), where
the noise is stronger. Weakly populated regions cover an impor-
tant part of the random attractor and are, in turn, entangled with
(almost) zero-probability regions (black). After [36].

It follows that, in the presence of additive noise, the resulting PDF looks very
much like that of the unperturbed system, only slightly fuzzier: the noise smoothes
the small-scale structures of the attractor. More generally, this smoothing appears
in the classical, forward approach that only considers forward asymptotics, with
t → +∞ — as opposed to the pullback approach, introduced here in Section 3.2.1,
in which one considers also the pullback asymptotics of s → −∞ — and it does
so for a broad class of additive as well as multiplicative noises, in the sense of
[7]. More precisely, this smoothing occurs provided that the diffusion terms due
to the stochastic components in the Fokker-Planck equation associated with the
SDE system under study are sufficiently non-degenerate; see [36, Appendix C and
references therein].
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Hörmander’s theorem guarantees that this is indeed the case for hypoelliptic
SDEs [15]. The corresponding non-degeneracy conditions allow one to regularize
the stationary solutions of the transport equation

∂tp(x, t) = −∇ · (p(x, t)F(x)), (3.6)

which is the counterpart of the Fokker-Planck equation in the absence of noise; a
measure-theoretic justification for it can be found, for instance in [112, p. 210].

This transport equation is also known as the Liouville equation and it provides
the probability density at time t of S(t)x when the initial state x is sampled from a
probability measure that is absolutely continuous with respect to Lebesgue measure;
here {S(t)}t∈R is the flow of ẋ = f(x), for some sufficiently smooth vector field f
on Rd. As a matter of fact, when f is dissipative and the dynamics associated
with it is chaotic, the stationary solutions of (3.6) are very often singular with
respect to Lebesgue measure; these solutions are therefore expected to be SRB
measures. For a broad class of noises — such as those that obey a hypoellipticity
condition — the forward approach leads us to suspect that noise effects tend to
remove the singular aspects with respect to Lebesgue measure. This smoothing
aspect of random perturbations is often useful in the theoretical understanding of
any stochastic system, in particular in the analysis of the low- and higher-order
moments, which have been thoroughly studied in various contexts.

For chaotic systems subject to noise, however, this noise-induced smoothing ob-
served in the forward approach compresses a lot of crucial information about the
dynamics itself; quite to the contrary, the pullback approach brings this information
into sharp focus. A quick look at Figs. 5(a,b) and 6 is already enlightening in this
respect. All three figures refer to the invariant measure µω supported by the random
attractor of our stochastic Lorenz model [SLM]. This model obeys the following
three SDEs: In system (3.5), each of the three equations of the classical, determin-
istic model [119] is perturbed by linearly multiplicative noise in the Itô sense, with
Wt a Wiener process and σ > 0 the noise intensity. The other parameter values are
the standard ones for chaotic behavior [72], and are given in the caption of Fig. 5.

Figures 5(a,b) show two snapshots of the sample measure µω supported by the
random attractor of [SLM] — for the same realization ω but for two different noise
intensities, σ = 0.3 and 0.5, while Fig. 6 provides four successive snapshots of µθtω,
for the same noise intensity σ = 0.5 as in Fig. 5(b), but with t = t0 + k∆t and
k = 0, 1, 2, 3 for some t0.

The sample measures in these three figures, and in the associated short video
given in the SM, exhibit amazing complexity, with fine, very intense filamentation;
note logarithmic scale on color bars in the three figures. There is no fuzziness what-
soever in the topological structure of this filamentation, which evokes the Cantor-set
foliation of the deterministic attractor [85]. Such a fine structure strongly suggests
that these measures are supported by an object of vanishing volume.

Much more can be said, in fact, about these objects. RDS theory offers a rig-
orous way to define random versions of stable and unstable manifolds, via the
Lyapunov spectrum, the Oseledec multiplicative theorem, and a random version of
the Hartman-Grobman theorem [7]. These random invariant manifolds can sup-
port measures, like in the deterministic context. When the sample measures µω of
an RDS have absolutely continuous conditional measures on the random unstable
manifolds, then µω is called a random SRB measure.
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Figure 6. Four snapshots of the random attractor and sample measure

supported on it, for the same parameter values as in Fig. 5. The time interval
∆t between two successive snapshots — moving from left to right and top to

bottom — is ∆t = 0.0875. Note that the support of the sample measure may
change quite abruptly, from time to time, cf. short video in [36, Supplementary

Material] for details. Reproduced from [36], with permission from Elsevier.

One can prove rigorously, by relying on Theorem B of [113], that the sample mea-
sures of the discretized stochastic system obtained from the [SLM] model share the
SRB property. Indeed, it can be shown that a Hörmander hypoellipticity condition
is satisfied for our discretized [SLM] model, thus ensuring that the random pro-
cess generated by this model has a smooth density p(t,x) [104]; see [36, Appendix
C1] for the details. Standard arguments [177] can then be used to prove that the
stationary solution ρ of our model’s Fokker-Planck equation is in fact absolutely
continuous with respect to Lebesgue measure.

Since these simulations exhibit exactly one positive Lyapunov exponent, the ab-
solute continuity of ρ implies that the sample measures seen in Figs. 5 and 6 are,
actually, good numerical approximations of a genuine random SRB measure for
our discretized [SLM], whenever δt is sufficiently small; see also the next section.
In fact, Ledrappier & Young’s [113] Theorem B is a powerful result, which clearly
shows that — in noisy systems, and subject to fairly general conditions — chaos can
lead to invariant sample measures with the SRB property; see also [36, Appendix
C2]. It is striking that the same noise-induced smoothing that was “hiding” the
dynamics in the forward approach allows one here to exhibit the existence of an
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SRB measure from a pullback point of view, and thus to compute explicitly the
unstable manifold supporting this invariant measure.

Note that, since the sample measures associated with the discrete [SLM] system
are SRB here, they are so-called physical measures [7,36, and references therein] and
can thus be computed at any time t by simply flowing a large set of initial data from
the remote past s� t up till t, for a fixed realization ω; this is exactly how Figs. 5
and 6 were obtained. Given the SRB property, the nonzero density supported on
the model’s unstable manifolds delineates numerically these manifolds; Figs. 5 and 6
provide therefore an approximation of the global random attractor of our stochastic
Lorenz system.

Finally, these random measures are Markovian, in the sense that they are mea-
surable with respect to the past σ-algebra of the noise [7]. The latter statement
results directly from the fact that these measures are physical, and thus satisfy the
required measurability conditions in the pullback limit. The information about the
moments that is available in the classical Fokker-Planck approach is complemented
here by information about the pathwise moments. These pathwise statistics are
naturally associated with the sample measures — when the latter are SRB — by
taking appropriate averages.

The evolution of the sample measures µθtω — as apparent from the short video
in [36, Supplementary Material] — is quite complex, and two types of motion are
present. First, a pervasive “jiggling” of the overall structure can be traced back
to the roughness of the Wiener process Wt and to the multiplicative way it enters
into the [SLM] model. Second, there is a smooth, regular low-frequency motion
present in the evolution of the sample measures, which seems to be driven by the
deterministic system’s unstable limit cycles and is thus related to the well-known
lobe dynamics. The latter motion is clearly illustrated in Fig. 6.

More generally, it is worth noting that this type of low-frequency motion seems
to occur quite often in the evolution of the samples measures of chaotic systems
perturbed by noise; it appears to be related to the recurrence properties of the
unperturbed deterministic flow, especially when energetic oscillatory modes char-
acterize the latter. To the best of our knowledge, there are no rigorous results on
this type of phenomenon in RDS theory.

Besides this low-frequency motion, abrupt changes in the global structure oc-
cur from time to time, with the support of the sample measure either shrinking
or expanding suddenly. These abrupt changes recur frequently in the video associ-
ated with Fig. 6, which reproduces a relatively short sequence out of a very long
stochastic model integration; see SM.

As the noise intensity σ tends to zero, the sample-measure evolution slows down,
and one recovers numerically the measure of the deterministic Lorenz system (not
shown). This convergence as σ → 0 may be related to the concept of stochastic
stability [101, 202]. Such a continuity property of the sample measures in the zero-
noise limit does not, however, hold in general; it depends on properties of the noise,
as well as of the unperturbed attractor [25,44,48].

As stated in the theoretical section, the forward approach is recovered by tak-
ing the expectation, E[µ•] :=

∫
Ω
µωP(dω), of these invariant sample measures. In

practice, E[µ•] is closely related to ensemble or time averages that typically yield
the previously mentioned PDFs. In addition, when the random invariant mea-
sures are Markovian and the Fokker-Planck equation possesses stationary solutions,
E[µ•] = ρ, where ρ is such a solution. Subject to these conditions, there is even
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a one-to-one correspondence between Markovian invariant measures and stationary
measures of the Markov semi-group [7,46]. The inverse operation of µ 7→ ρ = E[µ•]
is then given by ρ 7→ µω = limt→∞Φ(−t, ω)−1ρ; the latter is in fact the pullback
limit of ρ due to the cocycle property [46]. It follows readily from this result that
RDS theory “sees” many more invariant measures than those given by the Markov
semi-group approach: non-Markovian measures appear to play an important role
in stochastic bifurcation theory [7], for instance.

To summarize, one might say that the classical forward approach considers only
expectations and PDFs, whereas the RDS approach “slices” the statistics very
finely: the former takes a hammer to the problem, while the latter takes a scalpel.
Clearly, distinct physical processes may lead to the same observed PDF: the RDS
approach and, in particular, the pullback limit are able to discriminate between
these processes and thus provide further insight into them.

4. Time-dependent forcing and coupled ocean–atmosphere variability.
Given the NDS and RDS concepts of pullback attraction and time-dependent in-
variant measures, as introduced in the previous section, we are ready now to return
to the wind-driven ocean circulation of Section 2 and consider two additional steps
in its understanding, simulation and prediction, namely time-dependent forcing and
coupling with the atmosphere above. We start by applying a still prescribed but
now time-dependent wind-stress to a double-gyre model.

4.1. Time-dependent forcing. The most obvious way in which wind stress varies
in mid-latitudes is from summer to winter: the so-called atmospheric jet stream is
both stronger and closer to the equator in winter. Such periodic changes in the forc-
ing were already considered in [185], albeit without the theoretical underpinnings
discussed herein. The first application of pullback attractors to the double-gyre
problem appears in [149], for the case of periodic forcing, and we rely here on [150]
for a systematic presentation of this novel application of NDS theory to the wind-
driven ocean circulation.

4.1.1. Model formulation. The model, in its autonomous form [147], differs some-
what from that of Eq. (2.1) by the absence of the Laplacian eddy viscosity — given
by the bilaplacian ∆2ψ of the streamfunction ψ — and by a slightly different form
of the wind stress. Its discretized form is obtained by projection of Eqs (2.1) onto
a set of cartesian basis functions, and low-order truncation of the expansion thus
obtained. The discrete, low-order model is thus governed by four nonlinear coupled
ODEs for the variables {Ψi(t), i = 1, · · · , 4} that are the coefficients of the stream-
function ψ(x, y, t) retained in this expansion. The choice of basis functions follows
up on such idealized double-gyre models introduced in [92, 170], in particular on
this basis including the exponential form of a current that decays away from the
domain’s western boundary.

In the presence of nonautonomous forcing, the model takes the form

Ψ̇1 + L11Ψ1 + L13Ψ3 +B1(Ψ,Ψ) = W1(t),

Ψ̇2 + L22Ψ2 + L24Ψ4 +B2(Ψ,Ψ) = W2(t),

Ψ̇3 + L33Ψ3 + L31Ψ1 +B3(Ψ,Ψ) = W3(t),

Ψ̇4 + L44Ψ4 + L42Ψ2 +B4(Ψ,Ψ) = W4(t).

(4.1)
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Here Ψ denotes the vector of expansion coefficients (Ψ1,Ψ2,Ψ3,Ψ4) of the stream-
function, W is the vector of forcing terms (W1,W2,W3,W4), and the bilinear terms
Bi are given by

B1(Ψ,Ψ) = 2J112Ψ1Ψ2 + 2J114Ψ1Ψ4 + 2J123Ψ2Ψ3 + 2J134Ψ3Ψ4,

B2(Ψ,Ψ) = J211Ψ2
1 + J222Ψ2

2 + J233Ψ2
3 + J244Ψ2

4

+ 2J213Ψ1Ψ3 + 2J224Ψ2Ψ4,

B3(Ψ,Ψ) = 2J312Ψ1Ψ2 + 2J314Ψ1Ψ4 + 2J323Ψ2Ψ3 + 2J334Ψ3Ψ4,

B4(Ψ,Ψ) = J411Ψ2
1 + J422Ψ2

2 + J433Ψ2
3 + J444Ψ2

4

+ 2J413Ψ1Ψ3 + 2J424Ψ2Ψ4.

(4.2)

In [150], the forcing W(x, t) is defined as

W(x, t) = γ
[
1 + εf(t)

]
w(x), (4.3)

where x = (x, y) and w(x) is the time-constant double-gyre wind stress curl used
in [147]; furthermore, γ is the dimensionless intensity of this wind stress, while f(t)
is an aperiodic time dependence weighed by the dimensionless parameter ε. Clearly,
w(x) is projected onto the same four leading-order basis functions as Ψ and W.

4.1.2. Model behavior. The aperiodic forcing f(t) in Fig. 7a corresponds to an ide-
alized but aperiodic choice with a substantial decadal component. Such decadal
climate signals are associated with the so-called Pacific Decadal Oscillation [31,127],
for instance, and climate prediction on such time scales is a matter of great recent
interest for the climate sciences [29,73,151,178,182].

The evolution of the model solutions subject to this forcing is shown in Figs. 7b
and 7c for two reference cases, γ = 0.96 and γ = 1.1, respectively; the solutions
of the corresponding autonomous system, i.e. with ε = 0, are plotted in [150,
Figs. 1(b,c)]. It is clear from the two panels that a regime change occurs as the forc-
ing is increased. This regime change occurs in the autonomous sytem at γ = 1.0 and
corresponds to a global bifurcation associated with a homoclinic orbit; see [147,170]
and Section 2.3.3 here. The persistence of the regime shift in the nonautonomous
case, for ε as large as 0.2, is interesting but none too surprising.

In Figs. 7(b, c), N trajectories Ψk(t) emanate from N initial states uniformly
distributed at time t0 = 0 on a reference subset Γ of the (Ψ1,Ψ3)-plane, while the
(Ψ2,Ψ4) coordinates of the initial states (not shown) are chosen the same way as
in [149]. The panels (b,c) here provide a first representation of the sets that approx-
imate the corresponding PBAs; the small number of trajectories is in fact chosen
for the sake of graphical clarity. The correct identification and characterization of
the PBAs requires, however, an analysis of the PDFs that evolve along the trajec-
tories and of the convergence to the appropriate invariant time-dependent sets; see
Figs. 7(b’,c’). This convergence was shown in [150] to take no longer than about
15 years of model simulation.

4.1.3. Multiplicity of PBAs. The existence of a global PBA is rigorously demon-
strated for the weakly dissipative, nonlinear model governed by Eqs. (4.1)–(4.3)
in [150, Appendix], based on general, NDS-theoretical results [26,103]. Numerically,
though, this unique global attractor seems to possess two separate local PBAs, as
apparent from Fig. 8. Panels (a) and (b) in the figure refer again to the two types
of regimes apparent in Figs. 7(b,c), for γ = 0.96 and γ = 1.1, respectively.
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Figure 7. Ensemble behavior of forced solutions of the double-
gyre ocean model of [150]. (a) Time dependence of the total forcing
1+εf(t), for ε = 0.2 . (b,c) Evolution of N = 644 initial states ema-
nating from the subset Γ in the (Ψ1,Ψ3)-plane for (b) γ = 0.96 and
(c) γ = 1.1. (b’,c’) Corresponding time series of PΨ3 . Reproduced
from [150], with the permission of the American Meteorological
Society.

The mean normalized distance plotted in the figure is defined as follows:

σ(Ψ1,Ψ3) = 〈δn〉Ttot
. (4.4)

Here δt is the distance, at time t, between two trajectories of the model that were a
distance δ0 apart at time t = t0, and the normalized distance δn = δt/δ0 is averaged
over the whole forward time integration Ttot = tfin−tinit of the available trajectories.

The maps of σ in Fig. 8 reveal large chaotic regions where δn � 1 on average
(warm colors) but also non-chaotic regions, in which σ ≤ 1 (blue) and thus initially
close trajectories do remain close on average. The rectangular regions in the two
panels that are labeled by letters A and B and by numbers 1 − 4 correspond to
subdomains of the initial set Γ and are discussed further in [150, Sec. 5]. The
numerical evidence in Fig. 8 suggests, furthermore that the boundary between the
two types of local attractors has fractal properties.

In the autonomous context, the coexistence of topologically distinct local attrac-
tors is well known in the climate sciences [52,54,72,170,171, and references therein].
The coexistence of local PBAs with chaotic vs. non-chaotic characteristics, within
a unique global PBA, as illustrated by Fig. 8 here, seems to be novel, at least in
the climate literature.

4.2. Coupled variability. Accounting for time dependence in atmospheric forc-
ing represents but one step on the way to a fully coupled description of the ocean-
atmosphere system. The striking effects of intrinsic ocean variability on the atmo-
sphere — even in the presence of prescribed, time-independent wind stress, and at
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Figure 8. Mean normalized distance σ(Ψ1,Ψ3) for 15 000 trajec-
tories of the double-gyre ocean model starting in the initial set Γ:
(a) γ = 0.96, and (b) γ = 1.1. Reproduced from [150], with the
permission of the American Meteorological Society.

very small spatial scales — have been abundantly documented in [23,62–65,176, in-
ter alia]. The study of fully coupled ocean-atmosphere models, with two-way inter-
action, is thus an obvious next step.

4.2.1. Coupled model formulation. In the hierarchy of climate models discussed in
Section 1, we rely here on a model that can still be considered as being a low-
order one — like the one of the previous subsection — but is more complex in
terms of the physical mechanisms included. Its ocean component is based on the
quasi-geostrophic model in [147–149] and in Section 4.1 here, while the atmospheric
component is likewise quasi-geostrophic and goes back to work by J. G. Charney
and associates [33,156].

S. Vannitsem and associates [196, 197] had studied the coupling of these two
components via momentum fluxes, as customary in ocean models that focus on the
wind-driven circulation. Here we rely on the model version in [198], which also
includes heat fluxes as an important ingredient in the coupling, and thus respects
the energy balance of the coupled system, cf. [72, Ch. 10, and references therein].

The atmospheric model is based on the vorticity equations of a two-layer, quasi-
geostrophic flow defined on a β-plane [144, 195], while the oceanic model is based
on the reduced-gravity, quasi-geostrophic shallow-water model on a β-plane [77,
148,195]. The originality of the model resides in both the atmospheric and oceanic
components being thermally active and communicating through radiative, latent
and sensible heat fluxes [198]; the latter follow a suggestion in [14].

After the usual procedure of expansion and truncation of the nondimensional
form of the governing PDEs, one obtains na = 20 ODEs for the atmosphere and
no = 16 ODEs for the ocean. The full coupled model is thus based on a set
of na + no = 36 nonlinear ODEs, which couple the expansion coefficients of the
streamfunction field in the atmosphere and in the ocean with the temperature field.
The time-dependent solutions of this system were obtained by very long numerical
integrations, using a time step ∆t = 0.01 nondimensional time units.



22 MICHAEL GHIL

4.2.2. Coupled model behavior. The model’s ocean component has a double-gyre
pattern, while its atmospheric mean circulation reveals the presence of predominant
low- and high-pressure zones, as well as of a subtropical jet [198, Figs. 4 and 5]. The
latter features recall realistic climatological properties of the oceanic atmosphere.

Bifurcation analysis [198, Figs. 1 and 2], along with a large number of numerical
model simulations for various parameter values, reveal the presence of LFV con-
centrated on and near a long-periodic, attracting orbit. This orbit arises for large
values of the meridional gradient of radiative input Co and of the frictional coupling
parameter d; it is plotted in Fig. 9(a) for several values of Co between 270 Wm−2

and 320 Wm−2, and for d = 1×10−8 s−1. A somewhat surprising result of the cou-
pled model is that this long-periodic limit cycle combines atmospheric and oceanic
modes, thus contradicting the expectation — due to the ocean’s greater inertia and
slower time scales — of being limited to oceanic modes only.

Chaotic behavior develops around this limit cycle as it loses its stability. In
Fig. 9(b), one sees several solutions for Co = 300 Wm−2 and 10−9 s−1 ≤ d ≤
8 × 10−8 s−1. It is only for the highest of these d-values that the orbit is purely
periodic and stable (light blue). The other orbits are visibly chaotic, but their
behavior is still dominated by the LFV on decadal and multi-decadal time scales
that is typical of oceanic processes.
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Figure 9. Long-periodic orbits and slow manifold of the coupled
ocean-atmosphere model of [198], in a three-dimensional (3-D) pro-
jection onto the leading modes (ψa,1, ψo,2, To,2) of the atmospheric
and oceanic streamfunction fields and that of the oceanic tempera-
ture field. (a) Long-periodic orbits of the coupled model, for several
values of Co (see legend), with d = 1 × 10−8 s−1. (b) Co = 300
Wm−2 and several values of the friction parameter d: 5×10−9 s−1

(red), 1× 10−8 s−1 (green), 2× 10−8 s−1 (dark blue), 3× 10−8 s−1

(magenta), and 8× 10−8 s−1 (light blue). After [198].

All the periodic orbits plotted in Fig. 9(a) involve not just the three variables
shown, but a total of ds = 17 variables — namely ψo,i for i = 2, 4, 6, 8 in the
oceanic streamfunction, To,i for i = 2, 4, 6 in the oceanic temperatures, ψa,i for
i = 1, 5, 6, 9, 10 in the atmospheric streamfunction, and θa,i for i = 1, 5, 6, 9, 10 in
the atmospheric temperatures — while the df = 19 other variables are equal to 0. If
the latter variables are set to 0 initially, they remain equal to 0 as the flow evolves.
Hence the subspace of the 17 variables listed above is invariant under the phase
space flow induced by the 36 ODEs that govern our coupled model. Moreover, all
the orbits computed within this subspace were dominated by slow motions; hence
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the use of the subscript ‘s’ for “slow” and of ‘f’ for “fast” with respect to the 19
other variables.

The difference in character between orbits dominated by long periods and those
that are much more chaotic — as increasingly apparent in Fig. 9(b) for the magenta,
dark blue, green and red orbits — is shown in Figs. 10(a,b). The time series in
panel (a), while irregular, are fairly smooth and clearly dominated by a decadal
periodicity. Singular-spectrum analysis of such solutions [78, and references therein]
confirmed a statistically significant peak at roughly 11 years, while the total length
of the limit cycles in Fig. 9(a) is of roughly 22 years.

To assess more quantitatively the difference between the hypothetical slow at-
tractors associated with the smoother orbits vs. the ones associated with more
chaotic behavior, the Kaplan-Yorke dimension dKY [98], often called the Lyapunov
dimension, was calculated. In this case, calculations were carried out for orbits that
differ from each other by the third important parameter of the coupled model, λ,
which controls the intensity of the heat flux between the ocean and the atmosphere;
this parameter can also affect strongly the stability of model solutions.

The leading Lyapunov exponent σ1 decreases monotonically as a function of λ
for most values of Co and d, cf. [198, Fig. 14]. Overall, the results there suggest
that increasing the heat fluxes between the ocean and the atmosphere stabilizes the
coupled model.

This stabilizing effect of the fluxes is also seen in examining the Kaplan-Yorke
dimension dKY of the attractor associated with the slow behavior in the coupled
model. This dimension is given by a simple functional of the Lyapunov exponents,

dKY = k∗ +

∑k∗

k=1 σk
|σk∗+1|

,

where k∗ is the largest k such that
∑
k σk > 0. Under fairly general circumstances,

dKY equals the information dimension and hence it is preferable to several other
ways of estimating the dimensionality of attractors [188, Ch. 2].

The results are very instructive, indeed, for five orbits computed at Co = 350 Wm−2

and d = 6× 10−8 s−1, three of which are plotted in [198, Fig. 7]. For the slow limit
cycle at λ = 100 Wm−2K−1 (blue curve in the figure), one obviously has dKY = 1.
As λ decreases, one gets: for λ = 50 (not in the figure) dKY ' 8.7, for λ = 20 (green
curve) dKY ' 14.6, for λ = 1.0 (not in the figure) dKY ' 20.4, and for λ = 0 (i.e.,
no heat flux at all; red curve in the figure) dKY ' 21.5. Visually, the green and red
objects in Fig. 7 of [198] look successively stranger, while the Kaplan-Yorke dimen-
sion calculations indicate that the corresponding attractors have dKY < ds = 17 for
all but the two lowest λ-values, namely 1.0 and 0.

There is thus strong numerical evidence to indicate that, for parameter ranges
within which the coupled model’s solutions are purely periodic or not far from it, a
slow attractor of dimension dKY < ds = 17 exists and that its dimension increases
as solutions become noisier, like in Fig. 10(b).

5. Concluding remarks. Over the last four decades, the climate sciences have
become of paramount importance in understanding, predicting and attempting to
improve the relations between humanity and the planet it inhabits [32, 89, 90, 178,
182]. This development could not have occurred without a strong contribution
from the mathematical sciences. Several books [52, 53, 72, 120, 125, 129, 195] have
documented the mathematics that have been used and that have in turn benefited
from this area of applications.
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Figure 10. Low-frequency variability (LFV) of the coupled ocean-
atmosphere model. Time series of geopotential height difference be-
tween locations (π/n, π/4)) and (π/n, 3π/4)) of the model’s nondi-
mensional domain, for different values of meridional temperature
gradient Co and coupling coefficient d; this height difference plays
the role of a North Atlantic Oscillation index in the model. (a)
Chaotic but smooth trajectories living on a hypothetical slow at-
tractor; and (b) strongly fluctuating trajectories that are not lying
close to such a slow attractor.

Having started this paper in the first person singular, a voice not often used
in contemporary scientific literature, I’d like to ask for the reader’s permision to
conclude in the same voice. It seems to me that — in spite of increasing efforts in this
direction, e.g. [131, and further articles in the same volume] — insufficient attention
has been paid to an understanding of the strong interaction between natural or
intrinsic climate variability [29,137], on the one hand, and the anthropogenic forcing
to which a huge fraction of the recent climate literature has paid attention [178,182].

I would like, therefore, to suggest an avenue for overcoming this gap, and sum-
moning the necessary mathematics for doing so. Not surprisingly for the reader
who has followed me through this paper, it relies heavily on the application of NDS
and RDS theory.
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5.1. A generalized definition of climate sensitivity. The usual way of defining
climate sensitivity, going back to [32], relies on the conceptual picture of Fig. 11a:
climate is in a steady state characterized by a global average temperature T = T 0; a
parameter that is affected by human activities, say CO2 concentration, is suddenly
changed; and T (t) follows — according to the solution of a scalar, linear ODE
like Eq. (3.3), in which T replaces x and a Heaviside function replaces σt on the
right-hand side — so that T (t)→ T 1, and T 1 > T 0 when the CO2 jump is positive.

This cartoon has been, of course, considerably enriched in successive assessment
reports of the the Intergovernmental Panel on Climate Change [89,90,178,182] from
a scalar, linear ODE to the coupled, nonlinear PDE systems that govern GCMs.
But no mathematically consistent picture has emerged for reconciling the intrinsic
variability that those PDE systems include, as illustrated in Sections 2 and 4 herein,
with the complex nature of the forcing, both natural and anthropogenic. Thus
climate sensitivity is still essentially thought of as ∆T/∆CO2, where ∆T = T 1−T 0,
the difference between a final and an initial “equilibrium” temperature, and ∆CO2

is likewise the difference between a final and an initial forcing level. Consideration
has been given to changes in other fields than temperature, such as precipitation
[118,160], to variances and energetics [121,122], or to regional differences [24,123].
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Figure 11. Climate sensitivity for (a) an equilibrium model; and (b,c)
a nonequilibrium model. Given a jump in a parameter, such as CO2 con-
centration, only the mean global temperature T changes in (a), while in
(b) it is also the period, amplitude and phase of a purely periodic oscil-
lation, such as the seasonal cycle or the intrinsic ENSO cycle. Finally, in
panel (c), it is also the character of the oscillation, whether deterministic
or stochastically perturbed, which may change. After [71].

To include these considerations and follow up on ideas formulated in [71], I’d like
to suggest a definition of climate sensitivity γ1 that takes full advantage of the NDS
and RDS framework and that encompasses changes in the natural varibility, in its
most general meaning, as the forcing level or some other parameter changes. This
definition replaces the more-or-less standard definition of γ = ∂T/∂µ [72, p. 320],
with µ an arbitrary parameter generalizing CO2 — a definition that corresponds to
the equilibrium situation in Fig. 11a — by a more appropriate and self-consistent
one that corresponds to the chaotic and random situation in Fig. 11c.

5.2. PBAs, invariant measures and Wasserstein distance. The mathemat-
ical framework of PBAs, in the presence of time-dependent forcing or coefficients,
suggests the definition

γ = ∂dW/∂µ, (5.1)

where dW is the Wasserstein distance [56,71] between the time-dependent invariant
measures supported on the system’s PBA at two distinct parameter values. An idea

1This γ should not be confused with the parameter used in Section 4.1 for the forcing intensity.
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of the large differences that may exist between two such PBAs is given by the three
snapshots of the invariant measure on the PBA of the infinite-dimensional, but still
relatively simple ENSO model of [66] in Fig. 12 below.

The model’s two dependent variables are sea surface temperature T in the eastern
Tropical Pacific and thermocline depth h there, as a function of time t:

Ṫ = f(T (t), h(t)), h(t) = g(T, h, F )(t, τ1, τ2), F (t) = 1 + εcos(ωt+ φ). (5.2)

In Eqs. (5.2), F stands for the seasonal forcing, with period 2π/ω = 12 months,
and all three variables — T, h and F — depend on the time t and the delays τ1
and τ2; these delays characterize the traveling times along the Equator of eastward
Kelvin and westward Rossby waves. Several authors have studied delay-differential
models of ENSO; see [52] for a review and [38,82, and references therein] for further
mathematical details on such models.

The solutions of Eqs. (5.2) exhibit periodic, quasi-periodic and chaotic behavior,
as well as frequency locking to the time-dependent, seasonal cycle. Thus, in prin-
ciple, an infinite number of scalars are required to define the dependence of these
solutions on the parameters τ1 and τ2; these scalars need to include not just the
means of temperature T and depth h, but also their variance and higher-order mo-
ments. In [71, Fig. 7] this dependence was shown for the zeroth, second and fourth
moments of h(t); more precisely the plotted quantities were the mean, standard
deviation and fourth root of the kurtosis of the PDF.
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Figure 12. Time-dependent invariant measures of the [66] model;
snapshots shown at three times t: (a) t1 = 19.23 yr, (b) t2 = 20 yr
and (c) t3 = 20.833 yr. After [40], with the authors’ permision.

While the figure illustrates successive snapshots of the invariant measure sup-
ported on the PBA for the same value of the model parameters, there are simi-
larly large differences between such measures for different parameter values [71,82].
Closer attention to the definition of Eq. (5.1) can provide better insights into the
changes in time, as well as with respect to a pararameter, of higher moments of
a model’s PDF but also into the delicate and important matter of changes in the
distribution of extreme events [34,81].

Steps in the application of the NDS and RDS framework to climate change and
climate sensitivity are being taken by a number of research groups [19, 53, 57, 123].
This area of research is only opening up and should provide many opportunities
for contributions by mathematicians and climate scientists, as well as for fruitful
interactions among them.
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Appendix A. RDS theory and random attractors. We present here briefly
the mathematical concepts and tools of random dynamical systems, random at-
tractors and stochastic equivalence. We shall use the concept of pullback attractor
introduced in Section 3.2.1 to define the closely related notion of a random attrac-
tor, but need first to define an RDS. We denote by T the set Z, for maps, or R,
for flows. Let (X,B) be a measurable phase space, and (Ω,F ,P, (θ(t))t∈T) be a
metric dynamical system i.e. a flow in the probability space (Ω,F ,P), such that
(t, ω) 7→ θ(t)ω is measurable and θ(t) : Ω→ Ω is measure preserving, i.e., θ(t)P = P.

Let ϕ : T×Ω×X → X, (t, ω, x) 7→ ϕ(t, ω)x, be a mapping with the two following
properties:

(R1): ϕ(0, ω) = IdX , and
(R2) (the cocycle property): For all s, t ∈ T and all ω ∈ Ω,

ϕ(t+ s, ω) = ϕ(t, θ(s)ω) ◦ ϕ(s, ω).

If ϕ is measurable, it is called a measurable RDS over θ. If, in addition, X is a
topological space (respectively a Banach space), and ϕ satisfies (t, ω) 7→ ϕ(t, ω)x
continuous (resp. Ck, 1 ≤ k ≤ ∞) for all (t, ω) ∈ T×Ω, then ϕ is called a continuous
(resp. Ck) RDS over the flow θ. If so, then

(ω, x) 7→ Θ(t)(x, ω) := (θ(t)ω, ϕ(t, ω)x), (5.3)

is a (measurable) flow on Ω×X, and is called the skew-product of θ and ϕ. In the
sequel, we shall use the terms “RDS” or “cocycle” synonymously.

The choice of the so-called driving system θ is a crucial step in this set-up; it
is mostly dictated by the fact that the coupling between the stationary driving
and the deterministic dynamics should respect the time invariance of the former,
as illustrated in Fig. 13. The driving system θ also plays an important role in
establishing stochastic conjugacy [43] and hence the kind of classification we aim at.

The concept of random attractor is a natural and straightforward extension of
the definition of pullback attractor (3.2), in which Sell’s [163] process is replaced
by a cocycle, cf. Fig. 13, and the attractor A now depends on the realization ω
of the noise, so that we have a family of random attractors A(ω), cf. Fig. 14.
Roughly speaking, for a fixed realization of the noise, one “rewinds” the noise back
to t → −∞ and lets the experiment evolve (forward in time) towards a possibly
attracting set A(ω); the driving system θ enables one to do this rewinding without
changing the statistics, cf. Figs. 13 and 14.
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Figure 13. Random dynamical systems (RDS) viewed as a flow
on the bundle X ×Ω = “dynamical space” × “probability space.”
For a given state x and realization ω, the RDS ϕ is such that
Θ(t)(x, ω) = (θ(t)ω, ϕ(t, ω)x) is a flow on the bundle. Reproduced
from [79], with permission from Elsevier.
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Figure 14. Schematic diagram of a random attractor A(ω),
where ω ∈ Ω is a fixed realization of the noise. To be at-
tracting, for every set B of X in a family B of such sets, one
must have limt→+∞ dist(B(θ(−t)ω),A(ω)) = 0 with B(θ(−t)ω) :=
ϕ(t, θ(−t)ω)B; to be invariant, one must have ϕ(t, ω)A(ω) =
A(θ(t)ω). This definition depends strongly on B; see [45] for more
details. Reproduced from [79], with permission from Elsevier.

Other notions of attractor can be defined in the stochastic context, in particular
based on the original SDE; see [45, 47] for a discussion on this topic. The present
definition, though, will serve us well.

Having defined RDSs and random attractors, we now introduce the notion of
stochastic equivalence or conjugacy, in order to rigourously compare two RDSs; it
is defined as follows: two cocycles ϕ1(ω, t) and ϕ2(ω, t) are conjugated if and only
if there exists a random homeomorphism h ∈ Homeo(X) and an invariant set such
that h(ω)(0) = 0 and

ϕ1(ω, t) = h(θ(t)ω)−1 ◦ ϕ2(ω, t) ◦ h(ω). (5.4)

Stochastic equivalence extends classic topological conjugacy to the bundle space
X × Ω, stating that there exists a one-to-one, stochastic change of variables that
continuously transforms the phase portrait of one sample system in X into that of
any other such system.
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Appendix B. Mixing in random dynamical systems. In this appendix, we
define rigorously the concept of an ω-wise mixing RDS, in the continuous-time con-
text. Recall first the well-known definition of mixing in a deterministic dynamical
system. Given a flow {φt} on a topological space X, which possesses an invariant
(Borel) probability measure µ, we say that the dynamical system (φt, µ) is mixing
if for any two measurable sets A and B,

µ(A ∩ φ−t(B)) −→
t→∞

µ(A)µ(B), (5.5)

or equivalently, ∫
F · (G ◦ φt)dµ −→

t→∞

∫
Fdµ

∫
Gdµ, (5.6)

for any pair of continuous functions F,G : X → R. Equation (5.5) states that the
set of points in A whose images belong to B by {φt} tends towards having the same
proportion in A as B has in X, with proportions being understood in terms of the
measure µ. Hence any measurable set will tend to redistribute itself over the state
space according to µ.

Let us now consider a cocycle {Φ(t, ω)}(t,ω)∈R×Ω on the base space (Ω,F ,P, {θt}),
which possesses the sample measures {µω}. We say that Φ is ω-wise mixing or fiber
mixing [21] — or even simply mixing, if no confusion is possible — if for any random
sets [45] A(ω) and B(ω),

µω

(
A(ω) ∩ Φ(t, ω)−1

(
B(θtω)

))
−→
t→∞

µω(A(ω))µθtω(B(θtω)), (5.7)

almost surely with respect to P. This mixing concept and its interpretation are
natural extensions of their deterministic counterparts just recalled above, except
that the mixing property has to be checked across the fibers ω and θtω, due to the
skew-product nature of the RDS (Φ, θ) [21].

Appendix C. Low-frequency variability (LFV) and mixing. Low-frequency
variability (LFV) is a widely used, but not clearly defined concept in the atmo-
spheric, oceanic and climate sciences [72, 75, 79]. In general, one just refers to
phenomena whose periods are longer than those previously studied. Examples in-
clude atmospheric LFV — referring to so-called intraseasonal oscillations whose
characteristic time scale of 10–100 days is longer than the 5–10-day life cycle of
mid-latitude storms but not longer than a season [75,76] — or oceanic LFV, refer-
ring to interannual or interdecadal variability whose characteristic time scales are
longer than the several-months–long ones of mesoscale eddies and the seasonal cycle
of a year [70,75].

In this appendix, we clarify the notion of LFV from a mathematical perspec-
tive. Let us reconsider the deterministic Lorenz system [119]. It is known that the
power spectral density, or power spectrum, of this system is exponentially decay-
ing [74,140]. At the same time, one can check numerically that the decay of the auto-
correlation function is exponentially decaying, too. Other types of power-spectrum
behavior may be encountered for chaotic dynamical systems, though. Aside from
pure power-law decay, it may also happen that the power spectrum contains one
or several broad peaks that stand out above the continuous background, whether
the latter has a power-law [18] or exponential decay. If the central frequencies of
these peaks are located in a frequency band that lies close to the lower end of the
frequency range being studied, the system is said to exhibit LFV [74,78].
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This climatically motivated, but vague notion of LFV can be formalized math-
ematically through the mixing concept introduced in Appendix B. Indeed, for a
general flow {φt} on a topological space X, which possesses an invariant (Borel)
probability measure µ, let us define the correlation function by

Ct(F,G) :=
∣∣∣ ∫ F · (G ◦ φt)dµ−

∫
Fdµ

∫
Gdµ

∣∣∣,
using the same notations as above. If the system (φt, µ) is mixing, the rate of
approach to zero of Ct(F,G) is called the rate of decay of correlations for its ob-
servables F and G. A system exhibits a slow decay rate of correlations at short lags
if the rate is slower than exponential over some characteristic time interval [0, T ].

This emphasis on the nonuniform decay rate of correlations is consistent with
the heuristic LFV notion used in the climate sciences, as described above, and it
connects the mixing properties of the flow with its power spectral density. In [37],
the authors elucidated the relationship between these two approaches, as well as the
relationships between the rate of decay of correlations and the occurrence of rough or
smooth parameter dependence of the model’s statistics. Moreover, the quantitative
knowledge about the system’s LFV — when combined with the pathwise approach
discussed in Section 3.2 — can be used, according to [35,106], to improve ensemble
prediction skills of data-driven stochastic models, such as those discussed in [107].
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J.-C.) de l’aqueduc de Fréjus, Archeoscience 30 (2006) 163–171.

[59] J. P. Eckmann and D. Ruelle, Ergodic theory of chaos and strange attractors, Rev. Mod.

Phys. 57 (1985) 617–656 (addendum, Rev. Mod. Phys. 57 (1985) 1115).
[60] B. F. Farrel and P. J. Ioannou, Structural stability of turbulent jets, J. Atmos. Sci. 60 (2003)

2101–2118.
[61] M. J. Feigenbaum, L. P. Kadanoff and S. J. Shenker, Quasiperiodicity in dissipative systems:

A renormalization group analysis, Physica D 5 (1982) 370–386.

[62] Y. Feliks, M. Ghil and E. Simonnet, Low-frequency variability in the mid-latitude atmosphere

induced by an oceanic thermal front, J. Atmos. Sci. 61 (2004) 961–981.
[63] Y. Feliks, M. Ghil and E. Simonnet, Low-frequency variability in the mid-latitude baroclinic

atmosphere induced by an oceanic thermal front, J. Atmos. Sci 64 (2007) 97–116.
[64] Y. Feliks, M. Ghil, and A. W. Robertson, Oscillatory climate modes in the Eastern Mediter-

ranean and their synchronization with the North Atlantic Oscillation, J. Clim. 23 (2010)

4060–4079, doi:10.1175/2010JCLI3181.1.

[65] Y. Feliks, M. Ghil, and A. W. Robertson, The atmospheric circulation over the North At-
lantic as induced by the SST field, J. Clim., 24 (2011) 522–542. doi:10.1175/2010JCLI3859.

1.
[66] E. Galanti and E. Tziperman, ENSO’s phase locking to the seasonal cycle in the fast-SST,

fast-wave, and mixed-mode regimes, J. Atmos. Sci. 57(2000) 2936–2950.

[67] M. Ghil, Steady-State Solutions of a Diffusive Energy-Balance Climate Model and
Their Stability, Report IMM-410, Courant Institute of Mathematical Sciences,

New York University, New York, 74 pp., 1975; available in the Classic Reprint

Series of Förlag Forgotten Books, http://www.bokus.com/bok/9781332200214/

steady-state-solutions-of-a-diffusive-energy-balance-climate-model\

-and-their-stability-classic-reprint/

doi:10.1029/2002RG000122
doi:10.1029/2002RG000122
doi:10.1175/2010JCLI3181.1
doi: 10.1175/2010JCLI3859.1
doi: 10.1175/2010JCLI3859.1
http://www.bokus.com/bok/9781332200214/steady-state-solutions-of-a-diffusive-energy-balance-climate-model\ -and-their-stability-classic-reprint/
http://www.bokus.com/bok/9781332200214/steady-state-solutions-of-a-diffusive-energy-balance-climate-model\ -and-their-stability-classic-reprint/
http://www.bokus.com/bok/9781332200214/steady-state-solutions-of-a-diffusive-energy-balance-climate-model\ -and-their-stability-classic-reprint/


THE OCEAN CIRCULATION: APPLYING DYNAMICAL SYSTEMS TO CLIMATE 33

[68] M. Ghil, Climate stability for a Sellers-type model, J. Atmos. Sci. 33 (1976) 3–20.
[69] M. Ghil, Cryothermodynamics: The chaotic dynamics of paleoclimate, Physica D 77

(1994)130–159.

[70] M. Ghil, Hilbert problems for the geosciences in the 21st century, Nonlin. Proc. Geophys. 8
(2001) 211–222.

[71] M. Ghil, M., A mathematical theory of climate sensitivity or, How to deal with both an-
thropogenic forcing and natural variability?, in Climate Change: Multidecadal and Beyond,

C. P. Chang, M. Ghil, M. Latif and J. M. Wallace (Eds.), World Scientific Publ. Co./Imperial

College Press, 2015, pp. 31–51.
[72] M. Ghil and S. Childress, Topics in Geophysical Fluid Dynamics: Atmospheric Dynam-

ics, Dynamo Theory, and Climate Dynamics, Springer-Verlag, Berlin/Heidelberg/New York,

1987, 512 pp.
[73] M. Ghil and R. Vautard, Interdecadal oscillations and the warming trend in global temper-

ature time series, Nature, 350 (1991), 324–327.

[74] M. Ghil and N. Jiang, Recent forecast skill for the El Niño/Southern Oscillation. Geophys.
Res. Lett. 25(1998) 171–174.

[75] M. Ghil and A. W. Robertson, Solving problems with GCMs: General circulation models and

their role in the climate modeling hierarchy, in: General Circulation Model Development:
Past, Present and Future, D. Randall (Ed.), Academic Press, San Diego, 2000, pp. 285–325.

[76] M. Ghil and A. W. Robertson, “Waves” vs “particles” in the atmosphere’s phase space: A
pathway to long-range forecasting?, Proc. Natl. Acad. Sci. USA 99 (2002) 2493–2500.

[77] M. Ghil, Y. Feliks, and L. Sushama, Baroclinic and barotropic aspects of the wind-driven

ocean circulation, Physica D 167 (2002) 1–35.
[78] M. Ghil, R. M. Allen, M. D. Dettinger, K. Ide, D. Kondrashov, M. E. Mann, A. Robertson,

A. Saunders, Y. Tian, F. Varadi, and P. Yiou, Advanced spectral methods for climatic time

series, Rev. Geophys., 40(1)(2002)3.1–3.41.
[79] M. Ghil, M. D. Chekroun and E. Simonnet, Climate dynamics and fluid mechanics: Natural

variability and related uncertainties, Physica D 237 (2008) 2111–2126.

[80] M. Ghil, I. Zaliapin and S. Thompson, A delay differential model of ENSO variability:
Parametric instability and the distribution of extremes, Nonlin. Processes Geophys. 15 (2008)

417–433.

[81] M. Ghil, P. Yiou, S. Hallegatte, B. D. Malamud, P. Naveau, A. Soloviev, P. Friederichs, V.
Keilis-Borok, D. Kondrashov, V. Kossobokov, O. Mestre, C. Nicolis, H. Rust, P. Shebalin,

M. Vrac, A. Witt, and I. Zaliapin, Extreme events: Dynamics, statistics and prediction,
Nonlin. Processes Geophys. 18 (2011) 295–350, 10.5194/npg-18-295-2011.

[82] M. Ghil and I. Zaliapin, Understanding ENSO variability and its extrema: A delay differen-

tial equation approach, Ch. 6 in Extreme Events: Observations, Modeling and Economics, M.
Chavez, M. Ghil and J. Urrutia-Fucugauchi (Eds.), Geophysical Monograph 214, American

Geophysical Union & Wiley, pp. 63–78.
[83] A. E. Gill, Atmosphere-Ocean Dynamics, Academic Press, 1982, 662 pp.
[84] C. Grebogi, H. Kantz, A. Prasad, Y.C. Lai and E. Sinde, Unexpected robustness-against-

noise of a class of nonhyperbolic chaotic attractors, Phys. Rev. E 65 (2002) 026209-1–026209-

18.
[85] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations

of Vector Fields (2nd ed.), Springer-Verlag, 1991, 453 pp.
[86] J. Guckenheimer and R. F. Williams, Structural stability of Lorenz attractors, Publ. Math.

I.H.E.S. 50 (1979) 59–72.

[87] I. M. Held, The gap between simulation and understanding in climate modeling, Bull. Amer-

ican. Meteorol. Soc. 86 (2005) 1609–1614.
[88] R. Hillerbrand and M. Ghil, Anthropogenic climate change: scientific uncertainties and

moral dilemmas, in this volume, Physica D (2008).
[89] J. T. Houghton, G. J. Jenkins and J. J. Ephraums (Eds.), Climate Change, The IPCC

Scientific Assessment, Cambridge Univ. Press, Cambridge, MA, 1991, 365 pp.

[90] J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell
and C.A. Johnson (Eds.), Climate Change 2001: The Scientific Basis. Contribution of Work-

ing Group I to the Third Assessment Report of the Intergovernmental Panel on Climate

Change (IPCC), Cambridge University Press, Cambridge, U.K., 2001, 944 pp.
[91] S. Jiang, F.-F. Jin and M. Ghil, The nonlinear behavior of western boundary currents in

a wind-driven, double-gyre, shallow-water model in: Ninth Conf. Atmos. & Oceanic Waves

10.5194/npg-18-295-2011


34 MICHAEL GHIL

and Stability (San Antonio, TX), American Meterorological Society, Boston, Mass., 1993,
pp. 64–67.

[92] S. Jiang, F.-F. Jin and M. Ghil, Multiple equilibria, periodic, and aperiodic solutions in a

wind-driven, double-gyre, shallow-water model, J. Phys. Oceanogr. 25 (1995) 764–786.
[93] F.-F. Jin, J. D. Neelin and M. Ghil, El Niño on the Devil’s Staircase: Annual subharmonic

steps to chaos, Science 264 (1994) 70–72.
[94] F.-F. Jin, J. D. Neelin and M. Ghil, El Niño/Southern Oscillation and the annual cycle:

Subharmonic frequency locking and aperiodicity, Physica D 98 (1996) 442–465.

[95] T. Jung, T. N. Palmer and G. J. Shutts, Geophys. Res. Lett. 32 (2005) Art. No. L23811.
[96] T. Kaijser, On stochastic perturbations of iterations of circle maps, Physica D 68 (1993)

201–231.

[97] E. Kalnay, Atmospheric Modeling, Data Assimilation and Predictability, Cambridge Univ.
Press, Cambridge/London, UK, 2003, 341 pp.

[98] J. L. Kaplan and J. A. Yorke, Chaotic behavior of multidimensional difference equations, in

Functional Differential Equations and Approximations of Fixed Points, H.-O. Peitgen and
H. -O. Walter (Eds.), Lecture Notes in Mathematics, 730 (Springer, Berlin), p. 204, 1979.

[99] A. Katok and B. Haselblatt, Introduction to the Modern Theroy of Dynamical Systems,

Cambridge Univ. Press, Encycl. Math. Appl. 54, 1995, 822 pp.
[100] C. A. Katsman, H.A. Dijkstra and S.S. Drijfhout, The rectification of the wind-driven ocean

circulation due to its instabilities, J. Mar. Res. 56 (1998) 559–587.
[101] Y. Kifer, Ergodic Theory of Random Perturbations, Birkhäuser, 1988.
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