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Weak interaction rate Coulomb corrections in big bang nucleosynthesis
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We have applied a fully relativistic Coulomb wave correction to the weak reactions in the full Kawano/

Wagoner big bang nucleosynthesis (BBN) code. We have also added the zero-temperature radiative

correction. We find that using this higher accuracy Coulomb correction results in good agreement with

previous work, giving only a modest �0:04% increase in helium mass fraction over correction

prescriptions applied previously in BBN calculations. We have calculated the effect of these corrections

on other light element abundance yields in BBN, and we have studied these yields as functions of electron

neutrino lepton number. This has allowed insights into the role of the weak neutron-proton interconversion

processes in the setting of the neutron-to-proton ratio during the BBN epoch. We find that the lepton

capture processes’ contributions to this ratio are only second order in the Coulomb correction.

DOI: 10.1103/PhysRevD.81.065027 PACS numbers: 26.35.+c, 14.60.Pq, 95.30.�k

I. INTRODUCTION

The study of big bang nucleosynthesis (BBN) has been
and is a powerful tool for testing cosmological models and
constraining the fundamental parameters of the Universe.
Since primordial nucleosynthesis occurs relatively soon
after the big bang (� 1 s), BBN provides one of the best
windows into the physics of the early universe.

Before the launch of the Wilkinson Microwave
Anisotropy Probe (WMAP), BBN predictions along with
direct observation of the primordial element abundances
were used to constrain the baryon-to-photon ratio, �. The
independent high precision determination of � from the
ratio of the acoustic peak amplitudes in the cosmic micro-
wave background (CMB) from WMAP [1–3] allows us
now to use BBN to constrain other unknowns in the early
universe and physics beyond the standard model.

The CMB measurement of � increases in precision with
accumulating WMAP data [3,4] and the future Planck
mission promises even higher precision, with a projected
�1% accuracy in � [3,5]. The measurement of primordial
deuterium also shows promise for higher accuracy deter-
mination as more quasistellar object lines of sight become
available [6–10]. This fuels the motivation to further refine
the calculation of predicted primordial element abundan-
ces. For this reason, we have analyzed the effect of adding
the full relativistic Coulomb wave correction factor (rela-
tivistic Coulomb barrier factor) to the weak reaction rates
in the BBN calculation.

Among many issues, a key piece of physics that sets the
stage for primordial element nucleosynthesis is the evolu-
tion of the neutron-to-proton ratio, n=p. The n=p ratio is
critical in determining the synthesis of the primordial
elements, because it sets the number of neutrons available
to build nuclei.

The neutron-to-proton ratio is effectively determined by
the competition between the charge-changing weak inter-

action rates and the expansion rate of the Universe. Listed
below are the weak reactions which interconvert neutrons
and protons:

�e þ n Ð pþ e�; (1)

�� e þ p Ð nþ eþ; (2)

n Ð pþ e� þ ��e: (3)

The corresponding rates for these weak reactions are de-
noted by ��en and �e�p, � ��ep and �eþn, �ndecay and �pe� ��e

for the forward and reverse reactions in Eqs. (1)–(3),
respectively. Defining �n ¼ ��en þ �eþn þ �ndecay and

�tot ¼ �n þ � ��ep þ �e�p þ �pe� ��e
, and defining the

neutron-to-proton ratio to be n=p, we can show that in
the early universe

d

dt

�
n

p

�
¼ ð1þ n=pÞ2

�
�tot

1þ n=p
��n

�
; (4)

where t is the Freidmann-Lemaitre-Robertson-Walker
timelike coordinate [9]. Note that the net number of elec-
trons minus positrons per baryon is Ye � ðne� �
neþÞ=nb ¼ ð1þ n=pÞ�1. At high temperatures, T �
1 MeV, the weak reaction rates are fast compared to the
expansion rate of the Universe, steady state equilibrium
[ d
dt ðn=pÞ ¼ 0] is a good approximation, and the neutron-

to-proton ratio is given by [9,11]

n

p
¼ � ��ep þ �e�p þ �pe� ��e

��en þ �eþn þ �n decay

: (5)

The relatively slow rates at high temperatures for both
free neutron decay and the corresponding reverse three-
body reaction allow the steady state equilibrium neutron-
to-proton ratio to be approximated as

n

p
� � ��ep þ �e�p

��en þ �eþn
: (6)
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If the neutrinos have thermal, Fermi-Dirac energy distri-
bution functions, this can be written as [9]

n

p
� ð�e�p=�eþnÞ þ e���eþ�e��

ð�e�p=�eþnÞe��e��eþ� þ 1
; (7)

where ��e
¼ ��e

=T is the electron neutrino degeneracy

parameter, �e ¼ �e=T is the electron degeneracy parame-
ter, with ��e

and �e the electron neutrino and electron

chemical potentials, respectively, and � is the neutron-
proton mass difference divided by temperature, � ¼
�mnp=T with �mnp ¼ mnc

2 �mpc
2 � 1:293 MeV,

where we take the Boltzmann constant to be kB ¼ 1.
At high temperatures, the weak reactions can be fast

enough to maintain chemical equilibrium. In chemical
equilibrium, the chemical potentials satisfy the Saha equa-
tion, ��e þ�n ¼ �e� þ�p. When chemical equilibrium

is maintained, the neutron-to-proton ratio will be

n

p
� eð�e���e��mnpÞ=T: (8)

This result can be obtained directly from the ratio of the
appropriate Fermi-Dirac distribution functions or, alterna-
tively and equivalently as long as all reactants have a
Fermi-Dirac form for their energy spectra, from evaluation
of the rates in Eq. (7) [9].

As the Universe cools and expands, the rates of the weak
reactions become slow compared to the expansion rate of
the Universe. At this point, chemical equilibrium can no
longer be maintained and a period known as ‘‘weak freeze-
out’’ occurs as the neutron-to-proton ratio pulls away from
its equilibrium value. For a faster expansion rate the weak
reaction rates become comparatively slow earlier and the
neutron-to-proton ratio falls out of equilibrium at higher
temperatures, yielding a relatively larger n=p value.
Likewise, for a slower expansion rate, the weak reactions
can maintain chemical equilibrium longer, and the
neutron-to-proton ratio consequently would be lower.
The expansion rate of the Universe is set by the local total
energy density through the Freidman equation.

Figure 1 shows the neutron-to-proton ratio as a function
of temperature for a standard big bang scenario with zero
lepton numbers, i.e., ��e

¼ � ��e
¼ �e ¼ 0. This figure

shows both the actual n=p ratio and the approximation to
this with an enforced chemical equilibrium condition.
Obviously, these agree for a high temperature but diverge
once the weak reaction rates become slow compared to the
expansion rate of the Universe. Note that the actual n=p
ratio becomes constant once nearly all free neutrons are
incorporated into alpha particles at T < 100 keV.

Primordial element abundance yields are calculated by a
BBN code that time evolves the temperature and expansion
rate of the Universe along with the nuclear and weak
reactions rates. We have used a modified version of the
Kawano/Wagoner BBN code [12–15] to investigate the
effect of integrating the relativistic Coulomb barrier factor

in the appropriate weak reaction rates. The nuclear reaction
network employed includes the original Kawano reaction
rates plus an update described in Ref. [16]. In Sec. II we
discuss the calculation of the weak reaction rates. In
Sec. III we discuss the relativistic Coulomb correction
employed here and Coulomb correction prescriptions
studied previously. In Sec. IV we present results and give
a discussion, and in Sec. V we give conclusions.

II. THE WEAK REACTION RATES

We calculate the individual weak interaction rates with
the following phase space factor forms and with a common
matrix element which is proportional to the inverse of an
effective ft value, hfti [9,11,17–21]:

�e�p � ln2

hftiðmec
2Þ5

Z 1

�mnp

F½Z; Ee�ðEe � �mnpÞ2

� EeðE2
e �mec

2Þ1=2½Se��½1� S�e
�dEe; (9)

� ��ep � ln2

hftiðmec
2Þ5

Z 1

mec
2
ðEe þ �mnpÞ2EeðE2

e �mec
2Þ1=2

� ½S ��e
�½1� Seþ�dEe; (10)

�eþn � ln2

hftiðmec
2Þ5

Z 1

mec
2
ðEe þ �mnpÞ2EeðE2

e �mec
2Þ1=2

� ½Seþ�½1� S ��e
�dEe; (11)
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FIG. 1 (color online). Neutron-to-proton ratio as a function of
temperature. The full standard BBN zero lepton number case is
given by the solid line. The dashed line is the neutron-to-proton
ratio as calculated with an enforced assumption of steady state
equilibrium, i.e., Eq. (8).
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��en �
ln2

hftiðmec
2Þ5

Z 1

�mnp

F½Z; Ee�ðEe � �mnpÞ2

� EeðE2
e �mec

2Þ1=2½S�e
�½1� Se��dEe; (12)

�ndecay �
ln2

hftiðmec
2Þ5

Z �mnp

mec
2
F½Z; Ee�ð�mnp � EeÞ2

� EeðE2
e �mec

2Þ1=2½1� S ��e
�½1� Se��dEe; (13)

�pe� ��e
� ln2

hftiðmec
2Þ5

Z �mnp

mec
2
F½Z; Ee�ð�mnp � EeÞ2

� EeðE2
e �mec

2Þ1=2½S ��e
�½Se��dEe; (14)

where Ee is the total electron or positron energy as appro-
priate, mec

2 is the electron rest mass, and F½Z; Ee� is the
Coulomb correction Fermi factor which will be discussed
in detail below. Note that the nuclear charge relevant here
is Z ¼ 1. Se�=þ and S�e= ��e

are the phase space occupation

probabilities for electrons/positrons and neutrinos/antineu-
trinos, respectively. For neutrinos and electrons with en-
ergy distributions with the expected thermal form, the
occupation probabilities are

S�e
¼ 1

eE�=T����e þ 1
; (15)

S ��e
¼ 1

eE�=T��� ��e þ 1
; (16)

Se ¼ 1

eEe=T þ 1
; (17)

where T� is the neutrino temperature parameter, �� is the
neutrino degeneracy parameter (the ratio of chemical po-
tential to temperature), and E� is the appropriate neutrino
or antineutrino energy. In what follows, we have neglected

eþ=� annihilation corrections to the weak decoupling pro-
cess [22] and the associated neutrino spectral distortion.

We take

ln2

hfti ¼ cðmec
2Þ5

@c
� � � G

2
FjCV j2ð1þ 3jCA=CV j2Þ

2�3
; (18)

where GF � 1:166� 10�11 MeV�2 is the Fermi constant,
CV and CA are the vector and axial vector coupling con-
stants, respectively, and we have taken the absolute squares
of the Fermi and Gamow-Teller matrix elements for the
free nucleons to be jMFj2 ¼ 1 and jMGTj2 ¼ 3, respec-
tively. Here, � is a factor which includes both Coulomb and
other (‘‘radiative correction’’) effects which amount to a
few percent change in the effective ft value, hfti.

Of course, CV and CA are coupling constants that are
renormalized by the particular strong interaction environ-
ment characterizing free neutrons and protons. (Absent
strong interactions CV ¼ CA ¼ 1.) Given that these are
a priori unknowns, as is �, we follow the standard proce-

dure [15]: we take the free neutron decay rate as the
product of Eq. (18) and the phase space factor in
Eq. (13) (with S ��e

¼ Se� ¼ 0), and we then set this equal

to the inverse of the laboratory-measured free neutron
lifetime, �n. The world average of the laboratory measure-
ments is �n ¼ 885:7 seconds [23].
Note that changing the prescription for the Coulomb

correction factor F½Z; Ee� in Eq. (13) will have the effect
of renormalizing the effective free nucleon weak interac-
tion matrix elements (i.e., renormalizing hfti) for a given
�n. As we will see below, this renormalization will be the
dominant component of the Coulomb correction alteration
in, e.g., the 4He BBN yield.
The rates for all the individual weak reactions are shown

as functions of temperature in Fig. 2. At high temperatures
the forward and reverse rates of the lepton capture reac-
tions in Eq. (1) and (2) dominate the neutron-proton inter-
conversion process. Note that the rates for the forward
process in Eq. (2) and the reverse process in Eq. (1) are
affected by the threshold, �mnp þmec

2. At lower tem-

peratures, this threshold makes these rates relatively slower
than the rates for the lepton capture channels without this
threshold, i.e., the forward process in Eq. (1) and the
reverse process in Eq. (2).
This figure shows that at a lower temperature (T 	

�mnp), the electron capture rate �e�p and the three-body

rate �pe� ��e
track each other closely, differing by a factor of

order unity. This is readily explained as follows. First, note
that the integrands in the phase space factors in Eqs. (9) and
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FIG. 2 (color online). All six weak reaction rates as a function
of temperature. The solid (red) line is for ��en, the dashed

(green) line is for �eþn, the dotted (blue) line is for �ndecay , the

small-dashed (pink) line is for � ��ep, the dash-dotted (cyan) line

is for �e�p, and the black dotted-spaced line is for �pe� ��e
. All

lepton chemical potentials are set to zero here.
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(14) are identical. Although the former phase space factor
is proportional to 1� S�e

and the latter to S ��e
, when the �e

and ��e energies in these distributions are expressed in
terms of electron energy, E�e

¼ Ee � �mnp and E ��e
¼

�mnp � Ee, respectively, we see that 1� S�e
¼ S ��e

.

Second, though the limits of integration for these phase
space factors differ, we note that when T 	 �mnp, the

upper limits are effectively the same. Only the lower limit
is different in the two cases, � 1:3 MeV in the former and
� 0:511 MeV in the latter.

As the temperature decreases, free neutron decay be-
comes the dominant weak reaction. This remains the case
through the epoch when strong and electromagnetic nu-
clear reactions freeze out of equilibrium (‘‘nucleosynthe-
sis’’), when nearly all free neutrons are incorporated into
alpha particles.

As evident from this discussion, and in other analyses
such as Ref. [9], there is not a well-defined, sharp weak
freeze-out epoch. And although at high temperatures the
lepton capture reactions dominate the overall neutron-
proton interconversion rate, at lower temperature free neu-
tron decay dominates. If all weak interactions except free
neutron decay were to be turned off at T ¼ 0:8 MeV, an
oft-quoted weak freeze-out temperature, then n=p � 0:3 at
4He formation, producing an unacceptably large yield
Yp ¼ 0:46. Likewise, if only lepton capture reactions are

employed, without n Ð pþ e� þ ��e, then at T �
0:08 MeV we would obtain n=p � 0:18 which would
imply Yp � 0:31. These results are shown in Fig. 3.

III. COULOMB CORRECTION TO THE WEAK
INTERACTION RATES

For weak interaction processes that have an electron and
a proton in either the initial or final state, the Coulomb
interaction must be taken into account. In fact, the phase
space factors presented above are derived by using plane-
wave functions for the entrance and exit channel leptons,
but then ‘‘correcting’’ where Coulomb waves should be
used instead by multiplying the appropriate phase space
integrals by the Fermi factor FðZ; EeÞ.

The Coulomb potential is attractive in the e�=p channel.
This has the effect of increasing the electron probability
amplitude at the nucleus (proton) and, in turn, this will
always increase the affected phase space factors. In other
words, the phase space factors in the expressions for the
rates for both the forward and reverse processes in Eqs. (1)
and (3) will be increased over a case where only plane
waves are used.

A. Previous corrections to the BBN weak reaction rates

The Coulomb correction to the weak rates in BBN was
first employed by Wagoner [24] in an early version of the
BBN code. Wagoner took a representative value of the
correction from around the time of weak freeze out,

when the weak rates have the largest effect on the n=p
ratio, and used this to scale the neutron lifetime, �n. This
had the effect of increasing the effective neutron lifetime
over what had been chosen for �n by about 2%. This
effectively slowed down all weak interaction rates by
2%, because the weak rates are all normalized by the
neutron lifetime. Wagoner’s correction over estimated the
Fermi factor, giving an erroneous increase in the helium
mass fraction, Yp, of about 0.5%. This over production was

largely a result of correcting weak reactions that should not
have been corrected, e.g., nþ eþ Ð pþ ��e. Wagoner did
not include any radiative corrections.
Dicus et al. [17] were the first to add an energy depen-

dent Coulomb correction to the BBN calculation, along
with the zero-temperature radiative corrections and finite-
temperature radiative corrections. They approximated the
Coulomb correction using the nonrelativistic form for the
Fermi factor

Fþð	Þ ’ 2�
=	

1� e�2�
=	
; (19)

where 	 ¼ v=c is the electron velocity. It was pointed out
in Ref. [25] that Ref. [17], like Wagoner, Coulomb-
corrected the rates that should not have had a Fermi factor
in their phase space integrands.
Reference [17] derived the zero-temperature radiative

corrections for a point nucleon, finding that all the weak
rate integrands should be multiplied by

1þ 


2�
Cð	; yÞ; (20)

where 	 is again the electron velocity and y and � are the
neutrino energy and electron energy divided by the elec-
tron mass, respectively, and

Cð	; yÞ ffi 40þ 4ðU� 1Þðy=3�� 3=2þ ln2yÞ
þUð2ð1þ 	2Þ þ y2=6�2 � 4	U�
� 4½2þ 11	þ 25	2 þ 25	3 þ 30	4 þ 20	5

þ 8	6Þ=ð1þ 	Þ6: (21)

Here, U is defined to be

U � 	�1tanh�1	: (22)

The corrections in Ref. [17] resulted in a�0:4% reduction
in Yp from a calculation with the Coulomb effect alone,

plus a �0:2% increase stemming from the zero-
temperature radiative corrections.
References [26,27] appropriately applied the Coulomb

correction to only those rates which require one.
Reference [26] used the Fermi factor approximated at
order 
, while Ref. [27] used a nonrelativistic version of
the Fermi factor in Eq. (19). They also applied the zero-
temperature radiative corrections defined above as well as
several other corrections.
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B. New Coulomb correction and modifications to the
BBN code

In this work, we employ a version of the Coulomb
correction which can better take into account the poten-
tially relativistic kinematics of initial or final state elec-
trons. We use the Coulomb correction that is discussed in
Refs. [18,28,29]:

Gð�Z; EeÞ � xFð�Z; EeÞ; (23)

and we define x � ðE2
e � ðmec

2Þ2Þ1=2=Ee, the ratio of
charged lepton (electron here) momentum to energy. In
Eq. (23), Fð�Z; EeÞ is the Fermi factor (or relativistic
Coulomb barrier factor) approximated here as

Fð�Z; EeÞ � 2ð1þ sÞð2pRÞ2ðs�1Þe�!
��������
�ðsþ i!Þ
�ð2sþ 1Þ

��������:
(24)

In this expression, the upper signs are for electron emission
and capture, the lower signs are for positron emission and
capture in the general case for a nucleus of electric charge

Z (in our case Z ¼ 1), s ¼ ½1� ð
ZÞ2�1=2, 
 is the fine
structure constant, ! ¼ �Z=x (‘‘þ’’ for the e� in our
cases), and R is the nuclear radius in electron Compton

wavelengths, R ¼ 2:908� 10�3A1=3 � 2:437A�1=3 where
A is the nuclear mass number and A ¼ 1 in our case. This is
the most accurate Coulomb correction that has been em-
ployed in a BBN calculation.

In order to properly apply these features of the correc-
tion, we used a version of the Kawano/Wagoner code
where the weak reaction rates have been entirely rewritten.
We will only briefly describe this code here. A detailed
description can be found in Ref. [11].

The original Kawano/Wagoner code calculates the weak
rates with a total lumped sum of the n ! p and p ! n
rates:

�n ¼ ��eþn!pþe� þ �nþeþ!pþ ��e
þ �n!pþe�þ ��e

(25)

�p ¼ �pþe�!�eþn þ � ��eþp!nþeþ þ �pþe�þ ��e!n: (26)

In our version, we have separated these summed rates to
calculate all 6 weak reaction rates individually. Another
key feature of the code is that each rate is modularized, so
that any neutrino and antineutrino distribution function and
time dependence thereof can be applied.

Because of this modularization, we were able to apply a
Coulomb correction to only those rates that require one. In
other words, we were also able to include an appropriate
relativistic Fermi factor in the integrand of those weak
rates.

Additionally, this is the first time this version of the
correction has been applied to the full reaction network
in the Kawano/Wagoner code. This allowed us to study the
effect of the correction on all of the light element abun-
dances. We were also able to study the effect of the

correction on nucleosynthesis in the presence of neutrino
degeneracy (a lepton number).

IV. RESULTS AND DISCUSSION

We have applied the Coulomb correction described
above along with zero-temperature radiative corrections
in the full Kawano/Wagoner BBN code. The integrated
effect of these corrections can be assessed by the corre-
sponding changes in the light element abundances.
The Coulomb correction described above affects BBN

abundance yields in a subtle, but interesting way which
gives insight into the weak interaction’s role in setting the
neutron abundance in the early universe. First, as outlined
in the last sections, the key effect of calculating the weak
rates with Coulomb waves instead of plane waves is to
increase the electron’s probability amplitude at the proton.
This means that the rates corresponding to e� þ p ! nþ
�e, �e þ n ! pþ e�, n ! pþ e� þ ��e, and pþ e� þ
��e ! n will all increase over plane-wave calculated rates.
This is true, but in the BBN calculation the net effect of

adding a Coulomb or radiative correction which increases
the phases space factor for free, vacuum neutron decay is to
reduce the weak matrix element (increase hfti) common to
all of the rates of the forward and reverse processes in
Eqs. (1)–(3). This is because for a given vacuum (Se ¼
S ��e

¼ 0) neutron lifetime, �n, we set �ndecay jvacuum ¼ ��1,

and an increased phase space factor then implies an in-
creased value for hfti.
Therefore, the chief effect of a Coulomb correction-

mediated increase in phase space factors is a decrease in
the overall strength of the weak interaction. In turn, a
weaker weak interaction would cause a higher temperature
for freeze-out from chemical equilibrium and a concom-
itant increase in the neutron-to-proton ratio emerging from
the weak freeze-out process. Since, to first approximation,
all neutrons will eventually be incorporated into alpha
particles, the phase space factor-enhancing Coulomb cor-
rection should give rise to an increase in the primordial
mass fraction Yp.

In broad brush this is indeed what the BBN calculations
show. Our modularized code, which allows us to track the
individual weak rates, affords us a deeper insight into what
is happening. Though all rates are renormalized downward
by the Coulomb correction, the rates for the particular
processes with a Fermi factor in their phase space integrals
[Eqs. (9) and (12)–(14)] are decreased less. In other words,
they are increased relative to the rates in Eqs. (10) and (11),
� ��ep and �eþn, respectively.

Nevertheless, neutron decay has more leverage over the
eventual n=p ratio than do the lepton capture processes. At
higher temperatures where the n=p ratio is well approxi-
mated as the ratio of the sum of the neutron production
rates to the sum of the neutron destruction rates, Eq. (6),
note that the small and comparable fractional relative in-
creases in �e�p and ��en tend to compensate each other to
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first order. This is because �e�p is in the numerator and

��en is in the denominator in Eq. (6). As a consequence,

changes in n=p stemming from lepton capture processes
are second order in the Coulomb corrections.

Our BBN code differs from the originalWagoner code in
a number of respects, most notably in the handling of weak
interaction rates, as described above. Our code uses a
sufficiently large number of time steps so that the
‘‘Kernan and Krauss’’ correction [30] is unnecessary. For
example for a baryon-to-photon ratio � ¼ 6:11� 10�10

and neutron lifetime �n ¼ 885:7 s (the world average), but
with sufficient time steps to avoid the Kernan and Krauss
correction, the original Wagoner code 4He and 2H yields
are Yp ¼ 0:2483 and D=H ¼ 2:623� 10�5, respectively.

The original Wagoner code uses a series approximation to
calculate the weak rates. This contributes a small source of
error. We ran the original Kawano/Wagoner code without
this approximation, numerically calculating the weak re-
action rates with the ‘‘summed version’’ of the total n to p
and p to n phase space factors (see Ref. [11]). This yields
Yp ¼ 0:2473 and D=H ¼ 2:617� 10�5. We then removed

the Wagoner version of the coulomb correction, which
essentially just increases the neutron lifetime by 8 sec.
Without the series approximation and the Wagoner cou-
lomb correction in the Kawano/Wagoner code, we get
Yp ¼ 0:2437 and D=H ¼ 2:579� 10�5. By contrast,

with the same values of � and �n and with our full code,
including independently numerically-integrated weak in-
teraction rate processes and no Coulomb or radiative cor-
rections, we obtain Yp ¼ 0:2392 and D=H¼2:521�10�5.

We adopt this case as our ‘‘baseline’’ case. Abundances
calculated using this BBN code are shown as a function of
baryon-to-photon ratio in Fig. 4.

As an additional consistency check, we used 15 point
Laguerre integration as opposed to the standard 6 point
Gaussian integration to numerically integrate the weak
reaction rates. We find that the effect from using a different
integrator is insignificant.

Ultimately, in our calculations, the lepton capture-
induced neutron destruction rates in the temperature inter-

val T � 1 MeV to T � 0:4 MeV are larger than those in
the ‘‘summed’’ standard Kawano-Wagoner prescription by
�1%. Cumulatively, this seems to result in a 4He yield
some �2% lower than in the Kawano/Wagoner calcula-
tion. This is an interesting result that begs further inves-
tigation, but here we are interested only in relative
abundance yield changes for different Coulomb and radia-
tive correction prescriptions.
To gauge the effects of various prescriptions for

Coulomb and radiative corrections, we compare to the
Baseline version of the code described above. Table I
presents a comparison of BBN calculations of the 4He
mass fraction, Yp, and the deuterium abundance relative

to hydrogen, D=H, all performed with our code. Shown in
this table are a baseline, standard (��e

¼ �e ¼ 0) BBN

case with no Coulomb corrections [i.e., FðZ; EeÞ ¼ 1], and
cases where the same calculations were done but where the
Coulomb corrections of Wagoner in Ref. [24], Esposito
et al. in Ref. [26], and Lopez and Turner in Ref. [31], were
used. This table also shows results from the same BBN
calculation but using our new relativistic Coulomb correc-
tion for cases with and without a radiative correction.
Consistent with the arguments given above, we see that
the Coulomb correction prescriptions in all of these cases
give a �1% increase in Yp. All of the various versions of

the Coulomb correction are consistent with each other. The
relativistic Fermi factor used in this work gives 4He abun-
dance yields in agreement, within the commonly-accepted
4He error or 0.0005, with other Coulomb correction
prescriptions.
The modular nature of the weak rates in our BBN code

allows us to examine the effects of the Coulomb correction
for scenarios in which the lepton numbers residing in the
�e and ��e seas are nonzero. This is the first such study of
the Coulomb and radiative correction effects in a case with
nonzero values for ��e

and � ��e . (Here, we take ��e
þ

� ��e
¼ 0, reflecting assumed neutrino chemical equilib-

rium at high temperatures.) We define the lepton number
residing in these neutrino seas to be

TABLE I. Fractional changes in the BBN primordial yields of 4He (�Yp=Yp),
2H

[�ðD=HÞ=D=H], 3H [�ðT=HÞ=T=H], 3He [�ð3He=HÞ=3He=H], and 7Li [�ð7Li=HÞ=7Li=H]
relative to our adopted baseline yields (see text) for these species. Here, the cases considered
are: (1) the Wagoner et al. (1967) [24] prescription for the Coulomb correction; (2) a non-
relativistic Coulomb correction prescription (e.g., as in Lopez and Turner [31]); (3) an order 

Coulomb correction (e.g., as in Esposito et al. [26]); (4) our relativistic Coulomb correction; and
(5) our relativistic Coulomb correction plus a radiative correction prescription [31].

�Yp=Yp �ðD=HÞ=D=H �ðT=HÞ=T=H �ð3He=HÞ=3He=H �ð7Li=HÞ=7Li=H
Case 1 1.513% 0.835% 0.994% 0.275% 0.913%

Case 2 1.092% 0.576% 0.596% 0.199% 0.713%

Case 3 1.075% 0.568% 0.588% 0.196% 0.701%

Case 4 1.092% 0.576% 0.596% 0.199% 0.714%

Case 5 1.331% 0.704% 0.729% 0.243% 0.868%
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L�e
¼ n�e

� n ��e

n�
; (27)

where n�e
and n ��e

are the �e and ��e proper number

densities, respectively, and n� ¼ ð2�ð3Þ=�2ÞT3
� is the cor-

responding photon number density with �ð3Þ � 1:20206
the Riemann-Zeta function of argument 3. The primordial
helium abundance plus observationally- and
experimentally-determined neutrino flavor oscillation
data restrict jL�e j< 0:1 [32–35]. This upper limit conceiv-

ably could rise to� 0:2 if allowance is made for additional
contributions to the energy density in the early universe
[35,36]. Models which attempt to reconcile light-mass
sterile neutrinos with BBN and large scale structure plus
cosmic microwave background-derived overall neutrino
mass closure constraints usually invoke lepton numbers.
But the lepton numbers invoked in these schemes can
increase the 4He-based upper limit on jL�e j [8,37].

Sterile neutrino dark matter scenarios [38–52] also can
invoke significant lepton numbers. We therefore consider
a range 0 � L�e

� 0:3 as an interesting example.

Unlike the neutrino degeneracy parameter, L�e
is not a

comoving invariant. The ratio of the neutrino temperature
parameter, T�, in S�e

and S ��e
to the temperature of the

plasma, T�, evolves in time. This ratio starts out as unity

for T � 1 MeV and, as electrons and positrons annihilate
and transfer their entropy preferentially to the photons and

plasma, eventually asymptotes to ð4=11Þ1=3 at low tem-
peratures. The lepton numbers and the neutrino degeneracy
parameters are related by

L�

¼

�
�2

12ð3Þ
��

T�

T�

�
3½��


þ �3
�

=�2�; (28)

and at small lepton number ��e
� 1:46L�e

when T� ¼ T�

at high temperature. Here, we consider only positive values
of L�e

, i.e., cases with a preponderance of �e ’s over ��e’s, as

these are the most interesting with respect to 4He.
An effect of nonzero ��e

and � ��e
will be to change the

energy weighting in the phase space integrands in Eqs. (9)
and (12)–(14). We might then expect a concomitant alter-
ation in the effect of the Coulomb correction over the zero
lepton number cases for �e�p, ��en, �ndecay , and �pe� ��e

,

respectively. In Fig. 5, we show the relative change in
BBN abundance yields for 4He, 7Li, 3H, 2H, and 3He,
over the Baseline (no Coulomb or radiative corrections)
case as a function of L�e . In the figure, the percent change

in the 4He mass fraction is designated by �4He, while the
percent change in the abundances for deuterium, tritium,
and 3He are given by �D=H, �T=H, and �3He=H, respec-
tively. First, we note that the overall sense of the Coulomb
correction is to increase Yp and all of the nuclear abun-

dances yields over the baseline case for the lepton number
range examined.
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FIG. 3 (color online). The neutron-to-proton ratio as a function
of temperature. The solid (red) upper line is for a case with an
enforced weak freeze-out so that all weak reactions, except free
neutron decay, are turned off at T ¼ 0:8 MeV. The dashed
(green) line is for a case where neutron decay is turned off.
The lower dotted (blue) line is for standard BBN where all of the
weak reactions are included. The solid (black) line is the
equilibrium value of the neutron-to-proton ratio.

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 1e-10  1e-09

A
bu

nd
an

ce
s

η

Yp

D/H

3He/H

7Li/H

FIG. 4 (color online). The light element abundances calculated
as a function of the baryon-to-photon ratio �. The dotted (blue)
line is the mass fraction of 4He, Yp. The solid (red) line, dashed

(green) line, and lower dotted (magenta) line are for the ratios of
2H, 3He, and 7Li to hydrogen, respectively.
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A higher L�e
and the accompanying higher number

density n�e
and lower number density n ��e

, will have the

effect of increasing ��en and �ndecay and decreasing �e�p

and �pe� ��e
over the zero lepton number case. This is simply

a result of an enhancement or reduction in final state
blocking or entrance channel lepton number density as
appropriate. Figure 5 shows that while the 4He and 3He
Coulomb correction abundance yield enhancements are
essentially flat with increasing L�e

, the abundance yield

enhancement for 7Li increases while the corresponding
enhancements for 3H and 2H decrease with increasing
L�e

. The trends with L�e
of 7Li=H, 3H=H, and 2H=H,

versus those for the 3;4He yields reflect the different times
at which these species are formed and the sensitivity of the

relevant reaction production mechanisms to the local neu-
tron abundance and temperature.

V. CONCLUSION

We have for the first time implemented a relativistic
version of the Coulomb correction in the full reaction
network of the Kawano/Wagoner BBN code. We have
used this code to study BBN abundance yields for a range
of neutrino chemical potentials. We find that the fully
relativistic Coulomb correction essentially agrees with
previous nonrelativistic prescriptions. Our calculations
show interesting trends in the light element abundance
yields with increasing electron lepton number. The modu-
larization of the individual weak interaction processes in
our code has allowed us to gain insights into how the rates
for these processes are altered by the Coulomb and radia-
tive corrections and how these alterations affect the
neutron-to-proton n=p ratio in the early universe during
the BBN epoch. In particular, we point out that the lepton
capture processes produce changes in the n=p ratio which
are only second order in the small Coulomb corrections.
As the accuracy of measurements of the CMB and the

primordial abundances of the light elements increase, BBN
will give even better constraints on physics in the early
universe. Currently, the increase in precision gained from
including this relativistic version of the correction is proba-
bly unnecessary. However, in the future as the measure-
ments for the main parameters affecting BBN, such as the
baryon-to-photon ratio and the neutron lifetime, increase in
precision, it may be beneficial to include this version of the
correction.
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