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Abstract
Although evolutionary biologists have long theorized that variation in DNA repair efficacy might explain some of the 
diversity of lifespan and cancer incidence across species, we have little data on the variability of normal germline 
mutagenesis outside of humans. Here, we shed light on the spectrum and etiology of mutagenesis across mammals 
by quantifying mutational sequence context biases using polymorphism data from thirteen species of mice, apes, 
bears, wolves, and cetaceans. After normalizing the mutation spectrum for reference genome accessibility and k- 
mer content, we use the Mantel test to deduce that mutation spectrum divergence is highly correlated with genetic 
divergence between species, whereas life history traits like reproductive age are weaker predictors of mutation spec-
trum divergence. Potential bioinformatic confounders are only weakly related to a small set of mutation spectrum 
features. We find that clock-like mutational signatures previously inferred from human cancers cannot explain the 
phylogenetic signal exhibited by the mammalian mutation spectrum, despite the ability of these signatures to fit 
each species’ 3-mer spectrum with high cosine similarity. In contrast, parental aging signatures inferred from human 
de novo mutation data appear to explain much of the 1-mer spectrum’s phylogenetic signal in combination with a 
novel mutational signature. We posit that future models purporting to explain the etiology of mammalian mutagen-
esis need to capture the fact that more closely related species have more similar mutation spectra; a model that fits 
each marginal spectrum with high cosine similarity is not guaranteed to capture this hierarchy of mutation spectrum 
variation among species.
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iscoveries 

Introduction
Germline mutations likely arise from a mixture of DNA rep-
lication errors and chemical DNA damage (Lindahl and 
Wood 1999; Hoeijmakers 2001). Although the relative con-
tributions of these endogenous and exogenous processes 
are unknown, the action of specific mutagens can some-
times be inferred by classifying mutations into a spectrum 
of measurable mutation types, for example, single nucleo-
tide polymorphisms (SNPs) occurring in different 3-mer 
contexts (Hwang and Green 2004; Alexandrov et al. 2013). 
Studies of somatic mutations in cancer have revealed that 
exogenous mutagens and DNA repair deficiencies can dra-
matically affect the mutation spectrum in a way that is in-
formative about the biology of cancer and its likely 
susceptibility to chemotherapies (Nik-Zainal et al. 2012). 
Many of the same mutational processes also affect normal 

tissues and provide insights into mechanisms of aging 
(Martincorena et al. 2015; Cagan et al. 2022).

Germline mutation spectra tend to be less variable than 
somatic mutation spectra—although mutational signa-
ture analysis methods have uncovered scores of different 
mutational processes that operate in different tumor gen-
omes, these methods infer that germline mutations are a 
relatively homogeneous mixture of just 2 to 4 processes 
(Rahbari et al. 2016; Moore et al. 2021). However, more 
sensitive analysis methods have revealed the existence of 
subtle but robust differences among the mutation spectra 
of human populations (Harris 2015; Harris and Pritchard 
2017; Mathieson and Reich 2017; Narasimhan et al. 2017; 
Moore et al. 2021; Gao et al. 2023). Some of these differ-
ences reflect the aging of parental gametes; for example, 
children born to older mothers tend to have more 
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C > G de novo mutations (Goldmann et al. 2016; Wong 
et al. 2016; Jónsson et al. 2017). Measurements of germline 
mutation accumulation patterns are beginning to over-
turn long-held theories about the biology of reproduction, 
including the assumption that most genetic variation 
stems from DNA replication errors in the adult testis 
(Gao et al. 2019; Wu et al. 2020; Seplyarskiy and Sunyaev 
2021; Hahn et al. 2023). If most mutations were the result 
of replication errors, then the number of mutations pre-
sent in maternally inherited DNA should not scale with 
maternal age, yet de novo mutation data have revealed 
that mutations accumulate every year in eggs as well as 
spermatocytes (Jónsson et al. 2017; Goldmann et al. 2018; 
Gao et al. 2019). These maternal germline mutations that ac-
cumulate with age must have an etiology that is not 
replication-dependent, which calls into question the as-
sumption that mutations accumulating in dividing cells 
are the result of cell division errors rather than DNA damage.

One source of information about germline mutagenesis is 
genetic variation: polymorphisms are relics of mutations that 
occurred many generations ago. Polymorphisms’ mutation 
spectra can be complicated to interpret because of perturba-
tions introduced by natural selection and biased gene con-
version (Duret and Galtier 2009; Ratnakumar et al. 2010; 
Vollger et al. 2023), but they suggest that many species 
and populations have distinct mutation spectra (Moorjani 
et al. 2016; Harris and Pritchard 2017; Mathieson and Reich 
2017; Dumont 2019; Jiang et al. 2021; Goldberg and Harris 
2022; Sasani et al. 2022; Bloom et al. 2023) and that these dif-
ferences generally do not fit the classical profile of biased 
gene conversion (Harris and Pritchard 2017; Gao et al. 
2023). Mutation spectrum variation is generally inferred 
from polymorphisms in nonconserved, noncoding genomic 
regions, meaning that natural selection is not likely to be 
the driving force behind these differences.

One pattern that has been qualitatively noted in humans 
and other great apes is that the mutation spectrum appears 
to be a phenotype with phylogenetic signal (DeWitt et al. 
2021; Goldberg and Harris 2022), meaning that more distant-
ly related lineages generally have less similar mutation spec-
tra than more closely related lineages. This pattern is 
consistent with the hypothesis that the mutation spectrum 
is a genetically determined phenotype that evolves over time 
due to the emergence of new mutator alleles (Sturtevant 
1937; Lynch 2010; Sung et al. 2012; Lynch et al. 2016) that 
each perturb different DNA repair pathways and tend to 
act in different sequence contexts. Mutator variants have 
been identified in human families (Robinson et al. 2021; 
Kaplanis et al. 2022) as well as certain populations of yeast, 
mice, and primates (Jiang et al. 2021; Sasani et al. 2022; 
Stendahl et al. 2023), but these variants can only explain a 
small proportion of the mutation spectrum variation that ex-
ists within these species. It is unclear whether the remaining 
variation was created by undiscovered mutators versus envir-
onmental mutagens or changes in the timing of reproduc-
tion, which might also create phylogenetic signal under 
certain circumstances (Thomas et al. 2018; Coll Macià et al. 
2021; Wang et al. 2022; Wang et al. 2023).

Life history traits such as generation time have a clear im-
pact on the germline mutation rate and spectrum (as well 
as the somatic mutation spectrum) (Risch et al. 1987; Sayres 
et al. 2011; Bromham et al. 2015; Cagan et al. 2022). Body 
size and longevity may also affect germline mutagenesis 
by incentivizing evolution of better DNA repair to avoid 
cancer growth (Nabholz et al. 2008; Caulin and Maley 
2011; Abegglen et al. 2015; Vazquez and Lynch 2021); in 
rockfish, longevity appears to be correlated with the rate 
of CpG transition mutations (Kolora et al. 2021). A large 
recent study of vertebrate de novo mutations found 
support for the idea that generation time affects the 
mutation rate, though interestingly it found no support 
for the impact of body size (Bergeron et al. 2023). To 
better understand how genetics, environment, and age 
interact to shape the accumulation of mutations in the 
germline, more standardized mutation data from a 
variety of taxa will be needed.

In this study, we use publicly available whole-genome 
polymorphism data to study mutation spectrum evolution 
over a phylogeny that spans rodents, primates, cetaceans, 
and carnivorans. We generate mutation spectra from each 
species using a pipeline that is designed to minimize variation 
caused by reference genome composition, sample size, gen-
ome accessibility, and population history. Since bioinformatic 
batch effects are a significant obstacle to the reanalysis of 
data from multiple studies that were generated at different 
times using different technologies under different budgetary 
constraints, we explore the apparent dependence of the mu-
tation spectrum on confounders, including genome assem-
bly quality and resequencing read coverage (Taub et al. 
2010; Tom et al. 2017; Leigh et al. 2018; Anderson-Trocmé 
et al. 2020). We then use these data to explore how the mu-
tation spectrum might evolve as a function of biological vari-
ables like reproductive life history, testing the predictions of 
several key hypotheses about the origin and evolution of 
germline mutations.

Results
Standardizing the Mutation Spectrum for Genome 
Composition and Genetic Diversity
We estimated 1-mer, 3-mer, 5-mer, and 7-mer mutation 
spectra (Fig. 1) using SNPs annotated as high quality in 
whole-genome sequence data sampled from 6 primate 
species (human, chimpanzee, bonobo, gorilla, Sumatran 
orangutan, and Bornean orangutan), 2 rodents (house 
mouse and Algerian mouse), 2 cetaceans (fin whale and va-
quita porpoise), and 3 carnivorans (brown bear, polar bear, 
and gray wolf) (Miller et al. 2012; Cahill et al. 2013; Prado- 
Martinez et al. 2013; Liu et al. 2014; Harr et al. 2016; 
Benazzo et al. 2017; Barlow et al. 2018; Byrska-Bishop 
et al. 2022; Morrill et al. 2022; Robinson et al. 2022; 
Nigenda-Morales et al. 2023) (Fig. 2a, supplementary Table S1, 
Supplementary Material online). These species span 100 million 
years of mammalian evolution (supplementary Fig. S1, 
Supplementary Material online). They also vary considerably 
in body size (from 20 g to >40,000 kg), reproductive age 
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(140 d to 23 yr), lifespan (4 to >80 yr), and environment, 
which are important variables that have the potential to in-
fluence DNA damage, repair, and replication.

To interpret the counts of each k-mer-based mutation 
type as proxies for context-dependent mutation rates, we 
developed a novel standardized pipeline to normalize these 
counts for accessible genome composition. We first excluded 
genomic regions where SNP calls are likely to be unreliable 
(low complexity regions, repeat regions, CpG Islands) as well 
as regions subject to strong purifying selection (genic regions 
and surrounding regulatory regions) (Fig. 1). We then trans-
formed raw SNP counts to minimize differences between spe-
cies caused by sample size, k-mer composition of the 

accessible part of the reference genome, and demographic his-
tory (Fig. 1). Finally, we transformed mutation spectrum dis-
tances via Aitchison’s centered log-ratio (CLR) to eliminate 
spurious correlations that can affect vectors of compositional 
data (Pearson 1897; Aitchison 1986).

Principal Component Analysis Reveals That Mutation 
Spectra Cluster by Phylogenetic Clade
After filtering and normalizing all species’ mutation spectra, 
we explored several strategies for measuring their similarity 
to one another. One metric commonly used to compare 
mutation spectra is cosine similarity (Kucab et al. 2019; 
Alexandrov et al. 2020). We observe high cosine similarity 

Fig. 1. Analysis workflow. Our approach for comparing mutation spectra between species. Details in Methods and SI Methods. Mutational sig-
nature images from the Catalogue of Somatic Mutations in Cancer (COSMIC) database.
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between pairs of species’ 1-mer and 3-mer spectra—rough-
ly half the pairs have cosine similarity greater than 0.98, es-
sentially identical by the standards used to compare cancer 
mutation spectra (Fig. 2b) (for comparison, 2 mutational 
processes with cosine similarity 0.9 are considered hard to 

distinguish from each other in Alexandrov et al. (2020)). 
However, since polymorphisms are much more numerous 
than somatic mutation counts derived from individual tu-
mors, we hypothesized that high cosine similarity might 
mask differences that are robust and statistically significant. 

A

C D

B

Fig. 2. Principal components of 1-mer and 3-mer mutation spectrum variation reflect phylogenetic relationships among species. a) RAxML tree 
from Upham et al. (2019), restricted to species included in our study. Branch lengths represent the expected substitutions per site in Upham 
et al.’s 31-gene sequence alignment. b) Distributions of cosine similarities between 1-mer and 3-mer mutation spectra for every pair of species in 
our dataset (supplementary Table S1, Supplementary Material online). Horizontal lines denote the median. c) PCA of 1-mer mutation spectra. 
Each point represents a single individual’s 1-mer mutation spectrum. Points are colored and labeled according to species membership 
(supplementary Table S1, Supplementary Material online). To avoid oversampling any species, 5 representative individuals were chosen at ran-
dom from each species. SNPs were rescaled to the same genomic content across species and multinomial-downsampled to the minimum num-
ber of SNPs observed across all individuals. The resulting mutation spectra were centered log-ratio (CLR) transformed as described in the SI 
Methods. PCA loadings are shown in the panel below, colored and labeled by mutation type (dark green: A > C; orange: A > G; purple: A >  
T; pink: C > A; light green: C > G; yellow: C > T). d) PCA of 3-mer spectra constructed as in (b). 3-mer mutation type loadings in the lower panel 
are colored by their central mutation types (e.g. AAG > AGG is labeled for illustration, and is colored orange as it is a type of A > G mutation). 
Plots including PC3 are shown in supplementary Fig. S2, Supplementary Material online. PCAs of isometric log-ratio (ILR) transformed spectra, 
which qualitatively resemble the CLR transformed spectra, are shown in supplementary Fig. S3, Supplementary Material online. Plots coloring/ 
shaping points by sequencing platform/read length are in supplementary Fig. S4, Supplementary Material online.
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This hypothesis is supported by principal component ana-
lysis (PCA) of our normalized 1-mer and 3-mer spectra 
(Fig. 2c and d; supplementary Figs. S2 to S4, 
Supplementary Material online). The 3-mer spectrum re-
veals a particularly clear clustering of individuals by species 
and higher-order clade (Fig. 2d), echoing previous analyses 
of humans and great apes (Harris and Pritchard 2017; 
Goldberg and Harris 2022). Species and clade clustering 
are noisier in the 1-mer spectrum PCA (Fig. 2c), suggesting 
that sequence context is essential for resolving mutation 
spectrum differences among these species. Species do not 
cluster based on sequencing platform or read length, which 
is well distributed across the phylogeny (supplementary Fig. 
S4, Supplementary Material online). Notably, bears, wolves, 
vaquitas, and fin whales cluster together as per phylogenetic 
expectation (Fig. 2b), despite the fact that these species 
were all sequenced with different bioinformatics protocols 
and mapped to reference genomes of varying quality 
(supplementary SI Methods and Table S1, 
Supplementary Material online). We note that the mice, 
which are outliers on PC1, also have the greatest genetic 
distance to all other clades due to a long internal branch 
in the phylogeny (Fig. 2a) that is likely caused by the short 
murine generation time (Martin and Palumbi 1993).

Testing for the Significance of Phylogenetic Signal
We used the Mantel test to quantify the correlation be-
tween phylogenetic distance and mutation spectrum di-
vergence that is qualitatively seen in Fig. 2. This involves 
permuting the matrix of pairwise mutation spectrum dis-
tances to construct a well-calibrated null for assessing the 
significance of the spectrum distance’s correlation with 
phylogenetic distance (Mantel 1967; Harmon and Glor 
2010; Hardy and Pavoine 2012; Legendre and Legendre 
2012). Phylogenetic branch lengths were calculated from 
a published RAxML tree (Upham et al. 2019) with branch 
lengths representing expected substitutions per site 
(Fig. 2a; ultrametric timetree in supplementary Fig. S1, 
Supplementary Material online). Since the divergence in 
a trait evolving under a Brownian motion model is ex-
pected to scale with the square root of cophenetic dis-
tance (Hardy and Pavoine 2012), we tested for a 
significant correlation between each mutation spectrum 
distance and the square root of the substitution rates 
that Upham et al. (2019) estimated using a multispecies se-
quence alignment.

Using a Mantel Test with 9,999,999 permutations, we 
found that both the 6-dimensional 1-mer mutation spec-
trum and the 96-dimensional 3-mer spectrum exhibited a 
significant phylogenetic signal (r = 0.68, P < 8e−6 and r =  
0.82, P < 3e−7; respectively) (Fig. 3a, supplementary Fig. 
S5, Supplementary Material online for labeled compari-
sons). This phylogenetic signal appears robust to many 
analysis variations, including using an ultrametric 
phylogenetic tree, substituting cosine distance or isomet-
ric log-ratio (ILR) distance for the CLR distance (Egozcue 
et al. 2003), and “folding” the mutation spectrum to re-
move any effects of ancestral allele misidentification 

(supplementary Figs. S6 to S9, Supplementary Material on-
line). Due to their high mutation rates, CpG > TpG muta-
tions are sometimes censored from polymorphism-based 
spectra or separated out as their own mutation class 
(Gao et al. 2023; Wang et al. 2023), and we find that neither 
of these choices appreciably reduces the phylogenetic sig-
nal (supplementary Fig. S10, Supplementary Material
online).

We additionally tested for the presence of phylogenet-
ic signal using the Kmult statistic (Adams 2014; Adams and 
Collyer 2018), a multivariate version of Blomberg’s K 
(Blomberg et al. 2003). We found significant phylogenetic 
signal at both the 1-mer and 3-mer levels (1-mer: Kmult =  
0.31, P < 0.001; 3-mer: Kmult = 0.26, P < 0.001; 999 permuta-
tions) (supplementary Fig. S11, Supplementary Material
online). The values of Kmult were less than 1 (1 being the 
expected value under Brownian motion). This deviation of 
the Brownian motion expectation is typical of most assayed 
multivariate traits and could be due to noise or natural 
selection. Another possibility for Kmult being less than 1 is 
that the number of independently varying mutation 
spectrum components may be much smaller than the 
dimensionality of the full k-mer mutation spectrum 
(Adams and Collyer 2019), as seen in mutational signature 
decompositions where a relatively small number of muta-
tional processes explain mutation spectrum variability 
across samples.

Mutation Spectrum Divergence Is Not Consistent 
With the GC-biased Signature of Gene Conversion
One potential contributor to phylogenetic divergence be-
tween mutation spectra is GC-biased gene conversion 
(gBGC), a process that drives mutations from A/T to G/ 
C to rise in frequency over time while driving mutations 
from G/C to A/T to decline in frequency (Duret and 
Galtier 2009). Species with the highest effective population 
sizes are expected to experience the strongest gBGC, lead-
ing to a well-understood distortion of the mutation spec-
trum. However, gBGC is not expected to affect C > G or 
A > T mutations, and it is not known to affect the 
k-mer sequence composition within each 1-mer mutation 
class.

When we performed Mantel tests on the spectrum of 
3-mer mutation types partitioned into categories that ex-
perience different modalities of gBGC-induced selection 
(neutral A > T and C > G; negatively selected C > A and 
C > T, and positively selected A > C, A > G), we found 
highly significant phylogenetic signal within each category, 
notably including the gBGC-neutral (A > T + C > G) cat-
egory (supplementary Fig. S12, Supplementary Material
online; r = 0.79, P < 5e−6). We then partitioned 3-mers 
by 1-mer mutation class to generate “subspectra” and still 
found significant phylogenetic signal, with Mantel test 
P-values ranging from 3.3e-3 (for C > A 3-mers) to 2e-7 
(for A > G 3-mers; all less than the Bonferroni-corrected 
threshold α = 0.05/6 = 0.0083 appropriate for a set of 6 
tests) (Fig. 3B). This implies that gBGC cannot be the 
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primary force that causes the mutation spectrum to have 
phylogenetic signal.

Differences in Bioinformatic Data Quality Are 
Unlikely to Explain the Observed Mutation Spectrum 
Differences Among Species
A potential caveat to the above results is that if data quality 
and bioinformatic processing tend to be more similar 
among more closely related species, this could create the 
false appearance of a correlation between mutation spec-
trum similarity and phylogenetic relatedness. There are sev-
eral reassuring indications that our dataset does not have 
this property: for example, the best quality chromosomal 
genome assemblies by several metrics are human, mouse, 
and vaquita (supplementary Table S1, Supplementary 
Material online), species which are not closely related, and 
the oldest-generated datasets [the great apes (published 
in 2013), mice (2016), and bears (2012 to 2018)] are likewise 
dispersed across the phylogeny.

To formally test whether technical artifacts are phylo-
genetically distributed across our dataset, we used the 
Mantel test to measure the correlation of phylogenetic dis-
tance with 3 technical variables: average sequencing cover-
age, reference genome scaffold N50, and reference genome 
contig N50. Differences between species’ scaffold N50 
and sequence coverage showed no significant correlation 
with phylogenetic distance (supplementary Fig. S13, 
Supplementary Material online). Differences in contig 
N50 (the relative contiguity of contigs before scaffolding) 
showed a moderate phylogenetic signal (Pearson’s r =  
0.42, P-value < 0.007, Mantel test with 99,999 permuta-
tions) (supplementary Fig. S13, Supplementary Material
online), but this correlation coefficient and P-value are 
more modest than those of the correlation between muta-
tion spectrum distance and phylogenetic distance (Fig. 3a). 
While technical confounders may explain a small portion 
of the phylogenetic signal in the dataset, they do not ap-
pear sufficient to explain the results shown in Fig. 3a.

To more directly assess what role (if any) these technical 
confounders may play in causing differences between 
our species’ mutation spectra, we directly tested each 
technical confounder for correlation with mutation spec-
trum distance (Mantel test with 99,999 permutations) 
(Fig. 3c). Our aim here was to test whether any of these 
measurements explain mutation spectrum divergence bet-
ter than the phylogeny does. We found that differences in 
contig N50, scaffold N50, and sequence coverage between 
species are not significantly correlated with 1-mer and 
3-mer mutation spectrum distance after correction for 
multiple testing (Fig. 3c). Our result indicates that these 
confounders cannot be responsible for the differences 
between mutation spectra we observe, though any corre-
lations between the mutation spectrum and these 
technical measurements could result from a shared phylo-
genetic signal. We obtain qualitatively similar results using 
a phylogenetically aware Mantel test that asks whether 
each technical covariate explains additional mutation 
spectrum divergence on top of what is explained by the 

phylogeny (supplementary Fig. S14, Supplementary 
Material online).

When we look at the 3-mer subspectra of individual 
1-mer mutations (particularly A > T and C > A 3-mers), 
it is less consistently clear that phylogeny explains subspec-
trum variation better than technical factors (Fig. 3d). After 
stratifying the spectra by central basepair, we observed 
that contig N50 is more significantly correlated with differ-
ences in the C > A 3-mer spectrum than phylogenetic dis-
tance is (r = 0.67, P < 1.1e−4 for the correlation between 
C > A 3-mers and contig N50 compared to r = 0.39, P <  
3.3e−3 for C > A 3-mers and phylogenetic distance; 
Fig. 3d, supplementary Fig. S14, Supplementary Material
online for phylogenetically aware Mantel results). 
Scaffold N50 is more correlated with A > T 3-mer spec-
trum distances than phylogenetic distance is (r = 0.6, 
P < 2.1e-3 for A > T 3-mers and scaffold N50 compared 
to r = 0.45, P < 2.4e−3 for A > T 3-mers and phylogenetic 
distance), though neither correlation passes the signifi-
cance threshold after correction for multiple tests (α =  
1e−3). However, after correcting for multiple testing, the 
phylogeny is the only significant covariate with 3-mer mu-
tation spectrum divergence within each of the remaining 4 
mutation types (A > C, A > G, C > G, and C > T).

Differences in Reproductive Age and Effective 
Population Size Are Not the Primary Drivers of 
Mutational Phylogenetic Signal
Recent studies of human and animal de novo mutagenesis 
have found that the mutation rate and spectrum depend 
on age at reproduction (Goldmann et al. 2016; Wong et al. 
2016; Jónsson et al. 2017; Thomas et al. 2018; Bergeron et al. 
2023). Motivated by this, we performed additional tests to 
calculate the correlation of mutation spectrum divergence 
with maximum reproductive lifespan and age at first 
reproduction (Jones et al. 2009; Pacifici et al. 2013). We 
also measured the correlation between mutation spec-
trum distance and the genetic diversity metric 
Watterson’s θ, since diversity is strongly correlated with 
the strength of gBGC. We expected these biological con-
founders to be at least partially phylogenetically distribu-
ted across our dataset, and so first tested each variable 
for a significant phylogenetic signal (supplementary Fig. 
S15, Supplementary Material online). Age at first repro-
duction exhibited no significant phylogenetic signal in 
this dataset after correction for multiple testing 
(Pearson’s r = 0.32, P < 0.024, Bonferroni α = 0.008 as appro-
priate for 6 tests for phylogenetic signal across the 6 con-
founders, supplementary Fig. S15, Supplementary Material
online), but reproductive lifespan and Watterson’s θ each ex-
hibited moderate phylogenetic signal (Pearson’s r = 0.40, 
P < 0.005; r = 0.6, P < 0.0013, respectively) (supplementary 
Fig. S15, Supplementary Material online).

To determine what impact these biological variables 
may have in shaping mutation spectrum distances across 
our species, we then directly correlated each of them 
with pairwise mutation spectrum distances (Fig. 3c). Age 
at first reproduction is significantly correlated with 
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A

B

C
D

Fig. 3. Mutation spectrum distance between species shows a phylogenetic signal. a) Correlation between pairwise mutation spectrum distance 
and the square root of phylogenetic distance between pairs of species. Distances reflect CLR-transformed 1-mer mutation spectra and 3-mer 
spectra for each species such that each point represents a single between-species comparison (e.g. human vs. house mouse). Note that unlike in 
Fig. 2, mutation spectra are calculated across all 5 sampled individuals per species, rather than per individual. P-values are based on the Mantel 
test with 9,999,999 permutations. A version of these plots with each point labeled is shown in supplementary Fig. S5, Supplementary Material
online. b) Correlation between mutation spectrum distance and phylogenetic distance exists within the 3-mer subspectrum of each 1-mer mu-
tation type (e.g. distances in the “A > C” column distances are calculated based on the 16 A > C 3-mers only). c) Values of Pearson’s r for the 
correlations across species between technical and biological variables and mutation spectrum distance, calculated using the Mantel test with 
99,999 permutations. The black “phylogeny” column represents the phylogenetic signal P-values reported in (a). “NS” (nonsignificant) denotes 
P-values that fell above a significance threshold Bonferroni-corrected for 7 tests (α = 0.007 = 0.05/7). P-values below this threshold are 
denoted using “**” if < 0.007 but > 0.001, and “***” if < 0.001, and the specific P-values are written above the corresponding column. d) 
Values of Pearson’s r for the correlation between different variables and the 3-mer spectrum when it is stratified by central 1-mer type (as 
in (B)). P-values from Mantel tests with 99,999 permutations. The black “phylogeny” columns represent the r-values in (b). NS (nonsignificant) 
designates P-values that fall above a significance threshold Bonferroni-corrected for 42 tests: 7 confounders for each of 6 mutation types (α =  
0.05/(6*7) = 0.001). P-values below this threshold are denoted with “***” and the specific P-value is written above the corresponding column. 
Note that when carrying out the Mantel test for these potential confounders we used fewer permutations than in (a) since no confounding 
variable reached the minimum P-value for 99,999 permutations (1e−5) that would have required additional permutations. Phylogenetically 
aware Mantel results for panels C and D are in supplementary Fig. S14, Supplementary Material online.
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differences in the 3-mer spectrum after correction for mul-
tiple testing (age at first reproduction: r = 0.52, P <  
0.00057, Bonferroni α = 0.007 as appropriate for a set of 
7 tests for correlation with different biological and tech-
nical variables) (Fig. 3c), but the correlation of phylogenet-
ic distance with the 3-mer mutation spectrum is stronger 
(r = 0.82, P < 3e−7; Fig. 3a). Correlation between repro-
ductive lifespan and the 3-mer mutation spectrum 
falls just short of the Bonferroni-corrected threshold 
(r = 0.33, P > 0.0072, Bonferroni α = 0.007) (Fig. 3c). Both 
age at first reproduction and reproductive lifespan appear 
significantly correlated with the 3-mer spectrum once 
phylogenetic relationships are accounted for using a 
phylogenetically aware version of the Mantel test (P <  
8 × 10−5 and P < 0.004, respectively), indicating that it is 
unlikely that these relationships are driven by shared 
phylogenetic signal and may instead reflect a role of gen-
eration time in shaping mutation spectrum patterns be-
tween species (supplementary Fig. S14, Supplementary 
Material online). The correlation between age at first re-
production and the 1-mer spectrum falls just above the 
significance threshold after correction for multiple testing 
(r = 0.42, P > 0.0076, Bonferroni α = 0.007) (Fig. 3c), sug-
gesting that it is important to consider sequence context 
when measuring effects of reproductive aging on the mu-
tation spectrum.

If gBGC were responsible for some of this mutation 
spectrum divergence, we would expect to observe a sys-
tematic difference between species with high effective 
population size (which experience more gBGC) and spe-
cies with low effective population size (which experience 
less gBGC). We did find Watterson’s θ, an indicator of re-
cent effective population size, to be correlated with the 
1-mer spectrum (r = 0.55, P < 0.005, Bonferroni α =  
0.007) and 3-mer mutation spectrum (r = 0.48, P < 0.003, 
Bonferroni α = 0.007) (Fig. 3c). These correlations re-
mained significant when using the phylogenetically aware 
version of the Mantel test (P < 0.0008 and P < 0.0004, re-
spectively) (supplementary Fig. S14, Supplementary 
Material online). We note that the correlations between 
Watterson’s θ and 1-mer and 3-mer mutation spectra dis-
tances are still weaker than the correlations between these 
mutation spectra and phylogenetic distance (r = 0.68, P <  
8e−6 and r = 0.82, P < 3e−7, for the 1-mer and 3-mer 
spectrum, respectively; Fig. 3a and c), further indicating 
that differences in biased gene conversion strength driven 
by effective population size are likely not strong enough 
to fully explain the phylogenetic signal we observe in 
the 1- and 3-mer mutation spectra. We also find that 
the correlation of mutation spectrum divergence with 
Watterson’s θ disappears once we partition the 3-mer 
mutation spectrum by 1-mer mutation type, though we 
showed earlier that the 3-mer subspectrum of each 
1-mer type still varies across the phylogeny. This is 
consistent with our expectation that gBGC acts the 
same way on all mutations that are part of the same 
1-mer mutation class (Fig. 3d, supplementary Fig. S14, 
Supplementary Material online).

Evolution of Mutation Rate Dependence on Extended 
Sequence Context
Although 1-mer and 3-mer mutation spectra are com-
monly used to study mutational patterns in datasets of 
modest size, a few studies of human genetic variation 
have found that mutation rate can depend on extended 
sequence context over k-mers of size 7 or greater 
(Aggarwala and Voight 2016; Carlson et al. 2018; Liu and 
Samee 2023; Adams et al. 2023). In theory, more mutation-
al categories could yield greater power to resolve distinct 
mutagenic processes, but this power can only be realized 
given sufficient data to fill out rare mutational categories. 
A study of variation in 5-mer and 7-mer spectra of human 
populations yielded mixed results, finding some indica-
tions that 3-mer sequence context varied more among po-
pulations than extended sequence context did (Aikens et 
al. 2019). A few differences in 5-mer and 7-mer context de-
pendence were observed among human populations, but 
it is unclear whether these results are robust to quality is-
sues later identified in the low coverage 1,000 Genomes 
data (Anderson-Trocmé et al. 2020).

The first 2 principal components of higher-dimensional 
mutation spectrum variation explain less variance than we 
observed in PCAs of 1-mer and 3-mer spectra, but clusters 
within species and higher-order clades appear more visual-
ly distinct, with lower cosine similarities between the most 
distant pairs of species (supplementary Figs. S16 to S18, 
Supplementary Material online). Higher-dimensional mu-
tation spectra have significant but somewhat weaker 
phylogenetic signal compared to the 3-mer mutation spec-
trum (Fig. 4a, see additional 5-mer and 7-mer spectrum and 
subspectrum phylogenetic signal details in supplementary 
Note S1 and Figs. S19 to S23, Supplementary Material
online).

If a phylogenetic signal exists at the 3-mer level, a 
Mantel test on the 5-mer mutation spectrum is likely to 
show a phylogenetic signal even if the effects of extended 
sequence context on mutation rate are invariant among 
species. We therefore devised a permutation test to inves-
tigate whether each 5-mer’s species-specific mutation rate 
is conditionally independent of the phylogeny after con-
trolling for variation of the 3-mer mutation rate among 
species. The test involves randomizing the distribution of 
5-mer counts within 3-mer equivalence classes to generate 
5,000 control spectra per species where the dependence of 
mutation rate on nonadjacent nucleotides is eliminated (SI 
Methods). We then compared the empirical correlation of 
mutation spectrum distance and phylogenetic distance to 
that of the randomized 5-mer control spectra (Fig. 4b; see 
supplementary Fig. S24, Supplementary Material online for 
an example comparing the phylogenetic signal of a single 
randomized 5-mer replicate to that of the empirical 
5-mer spectrum).

We find that the empirical 5-mer spectrum distances 
are significantly more correlated with phylogeny com-
pared to the 5-mer data that was randomized within 
each 3-mer class (P < 6e−4, 5,000 permutations; Fig. 4b, 
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left panel). A similar analysis indicates that the 7-mer spec-
trum does not contain more phylogenetic signal than the 
dataset that is randomized to remove information beyond 
the 5-mer level, at least at our limited sample sizes (P <  
0.09, 5,000 permutations; Fig. 4b, right panel). After remov-
ing the lowest-diversity species in order to sample more 
SNPs, we see an increased separation between the empirical 
and permuted 5-mer spectra (P < 2e−4) but a decrease in 
the suggestive difference between the permuted and empir-
ical 7-mer spectra (P > 0.75) (supplementary Fig. S25, 
Supplementary Material online).

As seen for 1-mer and 3-mer spectra, the phylogeny ex-
plains 5-mer and 7-mer mutation spectrum divergence con-
sistently better than our list of technical confounders (such as 
reference genome contiguity) and biological confounders 
(such as age at first reproduction) (supplementary Fig. S26 
and Note S1, Supplementary Material online). The 7-mer 
spectrum and several of its 1-mer subspectra are significantly 
correlated with scaffold N50, indicating that this technical 
confounder may play an important role in shaping 
spectra at extended sequence contexts (supplementary 
Note S1; Figs. S27 and S28, Supplementary Material online). 
However, this dependence on scaffold contiguity may be dri-
ven by the vaquita porpoise, which has the highest scaffold 
contiguity of any species, but also the sparsest 7-mer muta-
tion spectrum due to its extremely low genetic diversity, 
and clusters apart from all other species in 7-mer spectrum 
PCA (supplementary Fig. S16, Supplementary Material
online). An analysis that excludes the vaquita results in no 
significant correlation being seen between scaffold N50 and 
7-mer mutation spectrum distance after correction for 
multiple testing (supplementary Note S1 and Fig. S25, 
Supplementary Material online). These analyses indicate 
that spectra based on extended sequence context dependen-
cies should be interpreted with caution in modestly sized da-
tasets such as this one due to concerns over data sparsity.

Variation in Motif Hypermutability and 
Hypomutability Across Species
A few sequence motifs, such as CpGs, are extremely hyper-
mutable, with mutation rates nearly an order of magni-
tude above baseline. To measure how the frequency and 
magnitude of extreme hypermutability varies among spe-
cies, we used a 2-sided Fisher’s exact test to systematically 
compare k-mer-based mutation rates to the average mu-
tation rate of the nested 1-mer (Fig. 5). Unsurprisingly, 
many k-mer mutation rates are significantly different 
from the nested 1-mer rate after Bonferroni correction, 
but the 4 NCG > NTG 3-mers are consistently the most 
hypermutable 3-mer types across species: enrichment of 
CpG > TpG above the background C > T rate ranges 
from 6.6× (orangutan) to 9.3× (human) across the species 
surveyed (supplementary Table S3 and Fig. S29, 
Supplementary Material online). If we include mutations 
occurring in CpG islands, which tend to be hypomethy-
lated and therefore have lower CpG > TpG mutation rates 
than the rest of the genome (Carlson et al. 2018), CpG >  
TpG enrichment above C > T background drops to values 

ranging from 4.8× (orangutan) to 6.7× (polar bear) 
(supplementary Table S3 and Fig. S30, Supplementary 
Material online).

As previously seen in humans, certain non-CpG 5-mer and 
7-mer motifs actually have mutation rates that are more sig-
nificantly elevated than those of CpG-containing motifs. This 
could be due to a myriad of factors, including technical fac-
tors such as sequencing chemistry and bioinformatics as well 
as biological factors such as transposase nicking, mutator 
activity, transcription factor interference with DNA repair, 
and exogenous damage. We observed 5 distinct hypermut-
able non-CpG > TpG 5-mer mutation types (Fig. 5, 
supplementary Table S4 and Fig. S31, Supplementary 
Material online): in both cetacean species (fin whale and va-
quita porpoise) and the polar bear, TTAAA > TTTAA is en-
riched ∼9 to 17× over the A > T rate (P-values < 2e−308). 
The rest of the non-CpG-transition 5-mer hypermutability 
is observed in mice and consists of C > A mutations in 
CpG-rich motifs: in Mus musculus and Mus spretus, 
CGCGT > CGAGT (8 to 10×, P-values < 1e−200) and 
CGCGA > CGAGA (8 to 15×, P-values < 1e−148) were sig-
nificantly enriched above the C > A rate. In Mus spretus, 
CGCAA > CGAAA (7×, P-value < 2e−308) and CGCGG >  
CGAGG (8×, P-value < 1e−190) were additionally en-
riched. Note that mice have the highest genetic diversity 
of any species in our dataset, which should allow for the de-
tection of hypermutable motifs with greater precision and 
recall than can be achieved with data from less diverse 
species. If CpG islands are included in the mutation spec-
trum (shifting the CpG > TpG threshold downward), the 
TTAAA > TTTAA enrichment crosses the CpG > TpG 
threshold in 3 additional species: brown bear, bonobo, 
and chimpanzee; supplementary Fig. S32 and Table S4, 
Supplementary Material online).

At the 7-mer level, we observe 101 distinct non-CpG >  
TpG mutation types that exceed the CpG > TpG 
fold-enrichment threshold in at least one species (161 if 
CpG islands are included, lowering the CpG > TpG enrich-
ment threshold) (Fig. 5, supplementary Table S5; Figs. S33 
and S34, Supplementary Material online). As seen for 
5-mers, mice have the largest number of hypermutable 
7-mers, with Mus spretus having over 60 types with greater 
enrichment than CpG > TpG sites, the majority of which 
are C > A 7-mers. Mus musculus had over 40 enriched 
types (majority C > A).

In humans, Carlson, et al. (2018) previously reported 
that the only 7-mer more hypermutable than CpG- 
containing 7-mers was TTTAAAA > TTTTAAA. Aikens, 
et al. (2019) also noted that this motif appears to be slight-
ly more hypermutable in Africans compared to Europeans. 
We find that TTTAAAA > TTTTAAA is one of the most 
hypermutable 7-mer types in every species in our study, 
with enrichments ranging from 9×-59× above species- 
specific A > T rates (Fig. 5b, supplementary Figs. S33 and 
S34, Supplementary Material online). Its hypermutability is 
most extreme (30 to 59× above background) in the fin whale 
and vaquita sister lineages. We note that the fin whale and 
vaquita samples were sequenced on different platforms 
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(NovaSeq6000 and HiSeqX, respectively), processed by differ-
ent researchers, and mapped to reference genomes of very 
different assembly quality (a highly fragmented assembly 
was used for the fin whale study, while a highly contiguous 
chromosomal-level assembly was available for the vaquita). 
Despite this discrepancy, fin whale and vaquita have similar 
hyper-enrichments of TTTAAAA > TTTTAAA, as well as 
shared enrichments of other repetitive 7-mers.

Clock-like Catalogue of Somatic Mutations in Cancer 
Signatures Are Not Phylogenetically Distributed
The underlying mutational processes that generate muta-
tion spectrum patterns can be described as “mutational 
signatures” of known or unknown etiology. Mutational 

signatures are frequently used in the cancer literature to 
link particular environmental exposures or DNA proof-
reading defects to observed 3-mer somatic mutation spec-
trum patterns (Alexandrov et al. 2013), and the resulting 
signatures are maintained in the Catalogue of Somatic 
Mutations in Cancer (COSMIC) database (Tate et al. 
2019). Only 2 COSMIC single base substitution (SBS) signa-
tures are consistently inferred to contribute to germline 
mutagenesis: SBS1 and SBS5 (supplementary Fig. S35, 
Supplementary Material online) (Alexandrov et al. 2015; 
Rahbari et al. 2016; Hamidi et al. 2021; Moore et al. 
2021). SBS1 has a known etiology: the deamination of 
methylated cytosine, resulting in C > T mutations in 
3-mers that contain a central CpG sequence. SBS5 has an 
unknown etiology but is thought to represent a 

A

B

Fig. 4. The 5-mer mutation spectrum exhibits additional phylogenetic signal beyond what is inherited from the 3-mer mutation spectrum. a) 
5-mer and 7-mer spectra show significant phylogenetic signal. Distances were calculated based on CLR-transformed mutation spectra such that 
each point represents a single between-species comparison (e.g. human-house mouse). P-values were calculated using the Mantel Test with 
9,999,999 permutations. A version of these plots with each point labeled is shown in supplementary Fig. S19, Supplementary Material online. 
b) The empirical 5-mer mutation spectrum is significantly more correlated with the phylogeny than a distribution of 5,000 control spectra gen-
erated by randomizing 5-mer mutation counts based on genomic target size within each 3-mer equivalence class (P < 6e−4, left panel). In con-
trast, we observe no significant difference in phylogenetic signal between the empirical 7-mer spectrum and 7-mer spectra that are randomized 
within 5-mer equivalence classes (P > 0.088).
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background endogenous mutational process, given its ubi-
quity and clock-like accumulation pattern.

To determine whether the combination of these 2 sig-
natures could explain the variation in our mammalian 
3-mer spectrum data, we used the R package sigfit (Gori 
and Baez-Ortega 2020), to model our empirical mutation 
spectra as linear combinations of “exposures” to SBS1 
and SBS5 (Methods). We found that sigfit inferred highly 
similar levels of exposure to SBS1 and SBS5 in each species 
in our dataset (Fig. 6a, left panel). The corresponding muta-
tion spectrum reconstructions fit the empirical data with 
high cosine similarity (0.95 to 0.99) (Fig. 6b), albeit with biased 
residuals (across species, the model consistently underesti-
mates the fractions of A > Gs and C > Ts while overestimat-
ing the abundance of C > As and C > Gs) (Fig. 6c).

Despite the high cosine similarity between the empirical 
mutation spectra and SBS1 + SBS5 reconstructions, we find 
that the reconstructed mutation spectra have no significant 
phylogenetic signal (r = 0, P > 0.4, Mantel test with 9,999,999 
permutations; Fig. 6d). Given the strength of the phylogenetic 
signal in the empirical data, our results indicate that an im-
portant source of clade-specific mutation spectrum variation 
is missing from the SBS1 + SBS5 model.

To investigate what the SBS1 + SBS5 model is failing to 
capture in the data, we used sigfit to infer exposures to 
SBS1 and SBS5 jointly with an additional novel signature re-
presenting some uncharacterized mutational process or pro-
cesses (signatures shown in supplementary Fig. S35, 
Supplementary Material online). Although the novel signa-
ture inferred by sigfit is still fairly similar to SBS5 (cosine simi-
larity 0.94), introducing this signature increased the 
phylogenetic signal predicted by the model. Exposure to 
the novel signature is inferred to be highest in mice and low-
est in great apes (Fig. 6a, right panel), perhaps reflecting the 
fact that SBS5 was inferred from human data and is less tai-
lored to the mutational processes of more distantly related 
species. This 3-signature model still fails to reconstruct the 
full phylogenetic signal of the empirical 3-mer data 
(Fig. 6d), indicating that greater complexity is needed to 
model the cladistic mutation spectrum patterns we observe 
between mammals’ 3-mer spectra.

Reproductive Aging Signatures Inferred From Human 
Data Capture 1-Mer Mutation Spectrum Differences 
Among Mammalian Species
After seeing that SBS1 and SBS5 cannot explain the phylo-
genetic signal of the 3-mer mutation spectrum, we turned 
our attention to a second model of mutation spectrum 
etiology that attempts to explain differences at the less 
complex 1-mer mutation spectrum level. A previous hu-
man de novo mutation study trained a Poisson regression 
model to capture the dependence of the mutation spec-
trum on paternal and maternal age (due to data sparsity, 
3-mer mutation spectrum effects were not inferred) 
(Jónsson et al. 2017), and 2 studies have argued that this 
reproductive aging model may largely explain 1-mer muta-
tion spectrum differences observed among human popu-
lations (Coll Macià et al. 2021; Wang et al. 2023). This 

human reproductive aging model also appears sufficient 
to explain de novo mutation spectrum variation within a 
small pedigree of domestic cats, after appropriate rescaling 
for differences in lifespan and the timing of puberty (Wang 
et al. 2022). However, other studies have questioned 
the ability of a parental age model to explain the full 
range of mutation spectrum variation even in humans 
(Gao et al. 2023; Ragsdale and Thornton 2023).

To test whether a reproductive aging model derived 
from human data is able to explain the variation we ob-
serve at the 1-mer level, we attempted to reconstruct 
our species’ 1-mer mutation spectra using a linear combin-
ation of exposures to 3 parental aging signatures derived 
from mutation patterns observed in human families by 
Jónsson et al. (2017). Since Jónsson et al. modeled parental 
mutation contributions to the 1-mer mutation spectrum 
using a regression, we transformed this regression model 
into a mutational signature model by translating the 
slopes into maternal and paternal age signatures and com-
bining the maternal and paternal regression outputs at the 
age of puberty into a “young parent” signature whose ex-
posure is expected to be highest in the children of young 
parents (signatures shown in supplementary Fig. S36, 
Supplementary Material online). As in Wang et al. (2023)
and Gao et al. (2023), we excluded CpG > TpG mutations 
from the signatures and data to avoid confounding by po-
tentially elevated levels of homoplasy and mismapping af-
fecting CpG polymorphisms.

We used sigfit to infer exposures to these reproductive 
aging signatures in our 1-mer mammalian mutation spec-
trum data (Fig. 7a, left panel). The reproductive aging 
model fits all species’ 1-mer mutation spectra with high 
cosine similarities (>0.99), but also with biased residuals 
[across species, the model predicts too many C > Gs and 
too few A > Gs (Fig. 7b and c)]. This bias may be due in 
part to the fact that the model was trained on de novo mu-
tation data and then fit to polymorphism data. The residuals 
do not conform to the expected action of biased gene con-
version, as C > G is a GC-conservative mutation type.

Despite these biased residuals, the reproductive aging 
model is able to capture the phylogenetic signal that is pre-
sent in the empirical 1-mer mutation spectrum data 
(Fig. 7D; reproductive aging model r = 0.62, P < 2.4e−4; 
empirical 1-mer-minus-CpG spectra r = 0.62, P < 1.3e 
−4). We found that adding an additional novel signature 
extracted from the data (supplementary Fig. S36, 
Supplementary Material online) improved the fit to the 
data and reduced the residual bias (Fig. 7b and c), without 
changing the strength of the phylogenetic signal captured 
by the reconstructed spectra (Fig. 7d).

Early Reproduction is Associated With Similar 
Mutational Biases Across Disparate Clades of 
Mammals
It is particularly intriguing that the reproductive aging ex-
posures assign most mouse mutations to the young parent 
signature (Fig. 7a, left panel), possibly because mice repro-
duce at much younger ages (9 to 11 wk of age) than any of 
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the other species. The second- and third-highest young 
parent exposures are inferred in wolves and vaquita, which 
are the second- and third-youngest reproducers in our da-
taset on average, respectively (∼1 yr and ∼5 yr age at first 
reproduction). The mice, wolves, and vaquita all have low-
er Aitchison distances between their 1-mer and 3-mer mu-
tation spectra than comparisons between species with 
similar or greater phylogenetic distance (supplementary 
Figs. S4 and S37 , Supplementary Material online), which, 
given their similar levels of exposure to the young parent 
signature, may be driven by similarities between these spe-
cies’ reproductive times relative to other species.

We were able to reproduce this trend using de novo muta-
tion data from mice (Lindsay et al. 2019) and an independently 
generated wolf polymorphism dataset (Mooney et al. 2023), 
consistently finding that the species’ 1-mer spectra that 
were most similar to that of mice were the wolf’s and vaqui-
ta’s 1-mer spectra (supplementary Fig. S37, Supplementary 
Material online). These results suggest that although the 

reproductive aging model cannot fully reconstruct these spe-
cies’ polymorphism spectra in an unbiased way, the repro-
ductive aging signatures are consistent with some of the 
major 1-mer-level differences that exist between different 
mammalian clades, which may make species with more simi-
lar reproductive strategies have more similar 1-mer spectra.

Discussion
Mammalian Polymorphisms Reveal a Hierarchy of 
Clade-specific Mutational Processes
We have extracted mutation spectra from polymorphism 
data in 13 species spanning 96 million years of mammalian 
evolution, standardizing these spectra to remove differ-
ences caused by the composition of the accessible refer-
ence genome. Our pipeline is designed to facilitate 
comparison between genomically divergent species that 
have been sampled and sequenced using different meth-
odologies; we expect that this flexibility will enable 

Fig. 5. A small subset of 5-mers and 7-mers are hypermutable above the CpG > TpG level. A comparison of the mutabilities of each 5-mer or 
7-mer mutation type relative to the background mutation rate of its central 1-mer (e.g. ATCCA > ATTCA rate divided by C > T rate). The x-axis 
represents the ratio of a particular k-mer’s rate (counts divided by target size) over the rate of its central 1-mer (counts divided by target size). 
The y-axis is the −log10(P-value) from a 2-sided Fisher’s exact test. The horizontal black dashed line represents the Bonferroni-corrected stat-
istical significance threshold, and the red vertical dashed line is the species-specific mutability of CpG > TpG dimers relative to the background 
C > T rate (supplementary Table S3, Supplementary Material online). k-mers are colored by central mutation type. Counts are not rescaled to 
human targets or downsampled since cross-species comparisons are not occurring. Only 4 species are shown: human as a baseline for compari-
son, house mouse which has a large number of outlying k-mers compared to other species, and the 2 cetaceans (fin whale and vaquita porpoise) 
which show extraordinary enrichment of a particular k-mer (TTTAAAA > TTTTAAA enriched >30-fold above the A > T rate). A small subset of 
the ∼100 outlying non-CpG > TpG 7-mers are labeled. Supplementary Tables S4 and S5, Supplementary Material online have lists of significantly 
enriched 5-mers and 7-mers that exceed the CpG > TpG enrichment level. Note that enrichment P-values depend on the number of observed 
SNPs as well as fold enrichment, as evident from the trend toward lower P-values in the low-diversity vaquita. See supplementary Figs. S29 to S34, 
Supplementary Material online for other species’ enrichment profiles and results when CpG islands are included.
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expansion of these analyses to more species as new data 
become available. Although we identified a few correla-
tions between mutation spectrum features and bioinfor-
matic confounding variables, we consistently found 
phylogenetic distance to be a stronger predictor of muta-
tion spectrum divergence between species. Our results 
support the hypothesis that the mutation spectrum 
evolves over time due to slight increases in the rates of 
some mutation types and slight decreases in the rates of 
other mutation types.

Previous papers have used principal component analysis 
to demonstrate that closely related populations appear to 
have more similar mutation spectra than more distantly 
related populations (Harris and Pritchard 2017; Dumont 
2019; Goldberg and Harris 2022). Here, we utilized the clas-
sical phylogenetic Mantel test to quantify the significance 
of this correlation, a technique that we recently used to 
quantify mutation spectrum evolution across the phyl-
ogeny of severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) (Bloom et al. 2023). We expect this test 
to scale well to future datasets containing even more spe-
cies and populations, and it is adaptable for testing how 
much variation among mutation spectra is captured by 
particular mutational signature models or subspectra of 
interest.

We investigated several nested k-mer mutation spec-
tra and found the strongest phylogenetic signal at the 
3-mer context level. However, we also found that a small 
number of 7-mer mutation types exhibit hypermutability 
that varies conspicuously among species. In particular, 
the 7-mer TTTAAAA, whose A > T mutation rate is ex-
tremely elevated in humans, has a consistently high mu-
tation rate across mammals but an exceptionally high 
mutation rate within whales. A previous study (Carlson 
et al. 2018) hypothesized that TTTAAAA > TTTTAAA 
hypermutability is caused by LINE-1 transposase activity, 
which preferentially cuts into specific genomic motifs in a 
manner that is susceptible to error-prone repair. Since 
LINE-1 elements have a documented pattern of hyper-
activity in Minke whales (Ivancevic et al. 2016), the trans-
posase nicking mechanism might explain the observed 
interspecies differences in the rate of this outlier muta-
tion type. Although repetitive k-mers like TTTAAAA 
might have an elevated susceptibility to sequencing er-
rors, the hypermutability of this mutation type does 
not appear to correlate with genome assembly quality 
or sequencing coverage.

Power and Limitations of Polymorphism Data for 
Mutation Spectrum Analysis in Nonmodel 
Organisms
A limitation of our study is the fact that we inferred mu-
tation spectra from polymorphisms, which typically ex-
hibit systematic differences from de novo mutation 
spectra ascertained in the same species (Zhu et al. 2014; 
Carlson et al. 2018; Wang et al. 2022; Ragsdale and 

Thornton 2023). These polymorphisms are descended 
from mutations that occurred many generations ago and 
are impacted by gBGC, which enriches the spectrum for 
A > G and A > C mutations while depleting it of C > A 
and C > T. Since the strength of gBGC is proportional to 
the effective population size, it has potential to create mu-
tation spectrum differences between large, outbred popu-
lations (such as mouse populations) and more inbred 
species such as the vaquita porpoise. However, gBGC is 
not known to impact A > T or C > G mutations or to in-
fluence the 3-mer subspectra of any 1-mer mutation type. 
In contrast to this expectation, we consistently find phylo-
genetic signals in subspectra of mutations that each have 
the same gBGC selective modality (positively selected A >  
G plus A > C; negatively selected C > A plus C > T; neu-
trally evolving A > T plus C > G). This finding, combined 
with the correlation between effective population size 
and mutation spectrum divergence being weaker than 
that of phylogenetic distance, suggests that mammalian 
mutation spectrum variation must be driven by forces 
other than gBGC. Gao et al. (2023) recently used a similar 
partitioning strategy to confirm that gBGC cannot be the 
driver of most signals of human mutation spectrum 
evolution.

It is possible that these mutation spectra are con-
founded by selective forces other than gBGC, such 
as selection to preserve gene regulatory motifs that 
might be unique to particular lineages. This possibility 
will be important to investigate as gene regulatory 
grammar becomes better understood in nonmodel 
species.

Although polymorphisms are biased by evolutionary 
processes, they will likely continue to be indispensable 
for the study of mutation spectrum evolution given that 
comparably large numbers of de novo mutations are not 
possible to sample. A sample of 5 unrelated individuals 
per species allowed us to sample hundreds of thousands 
of variants and quantify context-dependent mutation 
spectra with higher precision than would be possible 
using de novo mutation sets that typically number in 
the high 10s or low 100s. This precision is essential given 
that normal germline mutation spectra are much more 
similar to one another than pathological cancer mutation 
spectra—all of the 1-mer and 3-mer mutation spectra ex-
tracted from species included in this study have pairwise 
cosine similarities in excess of 0.92. Although these differ-
ences are small in magnitude, our Mantel test results show 
that they exist along a robust hierarchy where more closely 
related species accumulate mutations in more similar se-
quence contexts.

Existing Models of Germline Mutational Signature 
Etiology Do Not Fully Capture Phylogenetic Signal
Mutational signature deconvolutions of cancer spectra typ-
ically assume that a model fits a dataset well if the cosine 
similarity between the model and the data is greater than 
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0.95 (Blokzijl et al. 2018; Alexandrov et al. 2020; Gori and 
Baez-Ortega 2020). Our results indicate that this threshold 
is likely too permissive for reconstructing germline muta-
tional spectra, at least at the level of precision that is needed 
to capture the drivers of mammalian mutation spectrum 
evolution. We can see this by considering the SBS1 + SBS5 
clock-like cancer signature model, which captures none of 
the 3-mer spectrum’s phylogenetic signal yet fits each spe-
cies’ spectrum with cosine similarity greater than 0.95.

Although the SBS1 + SBS5 model and the reproductive 
aging model achieve similar cosine similarity fits the data, 
the significant phylogenetic signal captured by the repro-
ductive aging model suggests that it better encapsulates 
some of the forces that are driving mutation spectrum 
evolution. It is particularly intriguing that the mouse and 
the gray wolf have the shortest ages at first reproduction 
in our dataset and also the lowest exposures to the pater-
nal and maternal aging signatures. However, if the parental 
age model captured all mutation spectrum variation 
among mammals, we would expect this model to explain 
all the variation of the 1-mer spectrum between species 

with unbiased residuals, which is not the case. This implies 
that either parental aging cannot explain all mutation 
spectrum variation between species, or the Jónsson et al. 
(2017) model does not fully capture the mutational effects 
of parental aging, perhaps due to the sparsity and bioinfor-
matic complexity of the underlying human mutation data.

Importantly, it is not known how human reproductive 
aging affects the 3-mer mutation spectrum, as currently 
available de novo mutation data are too sparse to deter-
mine this with precision. It is possible that maternal and 
paternal aging signatures have different context depend-
encies that might explain the phylogenetic signal of the 
3-mer and 5-mer spectra. In the absence of such data, 
our results suggest that the reproductive aging model 
may be an important contributor to mammalian mutation 
spectrum variation, particularly at the 1-mer level, but that 
additional factors such as mutator alleles or environmental 
mutagens may be needed to fully explain the 3-mer phylo-
genetic signal we observe. The correlation of 3-mer and 
higher-order mutation spectra with reproductive lifespan 
and age at first reproduction adds additional evidence 

A
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Fig. 6. Clock-like COSMIC cancer signatures fail to reconstruct 3-mer spectra. a) Left panel: exposures to COSMIC cancer signatures SBS1 (pink) 
and SBS5 (brown), derived from human somatic data. Right panel: exposures to a model containing SBS1, SBS5, and an additional third novel 
signature (teal) extracted from the data. Broad phylogenetic clades are outlined and labeled. Signatures are shown in supplementary Fig. S35, 
Supplementary Material online. b) Cosine similarity between the empirical spectrum and the spectrum reconstructed using either only SBS1 +  
SBS5 or the SBS1 + SBS5 + novel signature. Higher cosine similarity indicates a better reconstruction of the data. c) Residuals (observed propor-
tion minus reconstructed proportion) for each spectrum. Boxplots are made up of the 96 3-mer mutation types for all species, separated by their 
central 1-mer type, with the most extreme outliers labeled. Negative residuals indicate the model reconstruction overestimating a proportion of 
a mutation type, positive residuals indicate an underestimate. The simple SBS1 + SBS5 model is indicated in green, the SBS1 + SBS5 + novel sig-
nature model in orange. d) Result of Mantel test on the correlation between Aitchison distance between species reconstructed 3-mer spectra 
under each model (green triangles and orange squares) and the square root of phylogenetic distance, overlaid on results based on empirical 
spectra (black circles). P-values based on 9,999,999 permutations.

Beichman et al. · https://doi.org/10.1093/molbev/msad213 MBE

14

http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad213#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad213#supplementary-data


that these life history features play a role in shaping muta-
tion spectra. However, since these correlations are weaker 
than the mutation spectrum’s phylogenetic signal, they do 
not support the idea that life history is the primary driver 
of mutation spectrum differences between species. The 
significance of the correlations between these reproduct-
ive traits and the mutation spectrum should be inter-
preted with some caution, as the Mantel test can suffer 
from an elevated false positive rate when comparing corre-
lations between traits compared to when it is used to 
measure the phylogenetic signal of a trait (Harmon and 
Glor 2010; Guillot and Rousset 2013), though the fact 
that the traits remain significantly correlated with the mu-
tation spectrum in a phylogenetically aware version of the 
Mantel test increases confidence in the results.

In summary, the observed variation of the mutation 
spectrum across the phylogeny is consistent with theoret-
ical expectations about a heritable polygenic trait. If germ-
line mutations are generated by several different 
mutational processes and the rate of each process is sub-
ject to weak selective constraint, then as species evolve, 
each of their mutation spectra should perform a random 

walk through a multidimensional space. Other explana-
tions of the data are also possible: to the extent that closely 
related species tend to inhabit similar environments 
and reproduce via similar strategies, environmental muta-
gens, and conserved reproductive aging signatures might 
create phylogenetic signal that is consistent with our 
expectations of a mutator allele, particularly for the lower- 
dimensional 1-mer spectrum. To disentangle these possi-
bilities, it will be necessary to sample mutation data 
from a wider variety of species that independently came 
to inhabit similar environments or reproductive niches, 
as well as species that recently came to inhabit new envir-
onments (as humans did). We anticipate that such muta-
tion data will become increasingly available over the 
coming years and that the methodology presented in 
this paper will allow for nuanced modeling of the muta-
genic effects of genotype versus environment.

Methods
Note: extensive additional methodological details are pre-
sented in the SI Methods.

A

C D

B

Fig. 7. Human reproductive aging signatures can reconstruct the phylogenetic signal of the 1-mer mutation spectrum. a) Left panel: exposures to 
3 reproductive aging signatures derived from human trio data in Jónsson et al. (2017) maternal age (red), paternal age (blue), young parents 
(gold). Right panel: exposures to a model containing an additional fourth novel signature extracted from the data (purple). Broad phylogenetic 
clades are outlined and labeled. Signatures are shown in supplementary Fig. S36, Supplementary Material online. b) Cosine similarity between the 
empirical spectrum and the spectrum reconstructed using either the aging signatures alone, or the aging signatures + novel signature. Higher 
cosine similarity indicates a better reconstruction of the data. c) Residuals (observed proportion—reconstructed proportion) for each spectrum. 
Boxplots are made up of the 6 1-mer mutation types (CpG > TpG mutations excluded) for all species. Negative residuals indicate the model 
reconstruction overestimating a proportion of a mutation type, positive residuals indicate an underestimate. The simple 3-signature aging model 
is indicated in green, the aging + additional novel signature in orange. d) Result of Mantel test measuring correlation between species’ recon-
structed 1-mer-minus-CpG spectra under each model (green triangles and orange squares) and the square root of phylogenetic distance, over-
laid on results based on empirical spectra (black circles). P-values based on 9,999,999 permutations.
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Polarization
To assign mutations to spectrum types (e.g. TAC > TGC), 
the ancestral allele state must first be determined. 
Ancestral allele assignments were previously generated 
for the human genome as part of the 1,000 Genomes 
Project (Auton et al. 2015) and for the nonhuman great 
ape species by Goldberg and Harris (2022). We assigned 
ancestral states probabilistically using est-sfs (Keightley 
and Jackson 2018) using outgroup species sequences and 
allele frequencies for the remaining species in our dataset. 
Details on polarization approaches are in SI Methods.

Generating Mutation Spectra From Polymorphism 
Data
The mutation spectrum represents the distribution of rela-
tive abundances of different mutation types, sometimes cal-
culated from all derived alleles present in one individual 
genome and sometimes calculated from all sites that are vari-
able within a larger population sample. In the simplest form 
of the mutation spectrum, which we call the 1-mer spectrum, 
mutations are classified into 6 types (A > T, A > C, A > G, 
C > T, C > G, C > A) with DNA strand complements col-
lapsed. This can be expanded into a 7-dimensional “1-mer  
+ CpG spectrum” by separating C > T mutation types into 
those that are found in a CpG context and those that are 
not. CpG > TpG mutations can also be removed from the 
spectrum entirely (“1-mer-minus-CpG spectrum”).

Finer-grained mutation spectra can be computed by sub-
dividing these basic mutation types by their flanking se-
quence context. In the popular 3-mer spectrum, mutations 
are classified by their immediate 5′ and 3′ flanking basepairs, 
yielding 96 mutation types once reverse complements are 
collapsed (e.g. TCC > TGT, AAC > ATC, ACG > ATG, etc.). 
Higher-dimensional spectra are possible as well, including 
5-mers (2 bp on either side of the mutating base, e.g. 
TACCT > TATCT, resulting in 1,536 mutation types), or 
7-mers (3 bp on either side of the mutating base, e.g. 
TTACCTA > TTATCTA, resulting in 24,576 mutation types). 
These higher-dimensional spectra have considerably more 
mutation types, which can perhaps aid in the detection of 
more subtle mutation signatures, but can also lead to issues 
of data sparsity.

For a set of 5 individuals randomly sampled from each 
species in the dataset, we estimated a nested series of spec-
tra at the 1-mer, 1-mer + CpG, 1-mer-minus-CpG, 3-mer, 
5-mer, and 7-mer levels from our polymorphism data using 
the program mutyper (DeWitt et al. 2023). Shared vari-
ation among individuals was randomly assigned to the 
spectrum of a single individual so that the same mutation 
does not contribute to multiple spectra. Spectra at the 
overall species level were then estimated (the equivalent 
of summing the per-individual spectra). Details on muta-
tion spectrum generation in SI Methods.

Correcting for Genome Content and Amount of 
Genetic Diversity
To compare mutation spectra between individuals and 
species, the mutation spectra must be corrected for several 

factors, including genomic content and genetic diversity. 
The 7-mer, 5-mer, 3-mer, and 1-mer spectra were cor-
rected in the same manner, as described below.

Genomic k-mer content may differ across species. For 
example, one species may have more “ACC” 3-mers in its 
genome, causing more ACC > ANC mutations to accumu-
late due to a larger ACC target size rather than a higher 
ACC > ANC mutation rate). To correct for differences in 
genomic content between humans and any other species 
(here denoted “species A”), we transformed species A’s 
SNP count xm→j,A of 7-mer mutation type m→ j (k-mer 
m mutates to k-mer j) into a rescaled SNP count x(r)

m→j,A 
that is what we would expect to observe if the mutation 
rate were unchanged but the fraction of the ancestral 
k-mer of mutation type m in species A was changed to 
match the human reference genome:

x(r)
m→j,A = xm→j,A ∗

tm,h

Th
tm,A

TA 

where tm,A is the number of times the ancestral k-mer of 
mutation type m is observed in species A’s reference gen-
ome, TA is the total target count (sum of all k-mer targets) 
in species A’s reference genome, tm,h is the number of 
times the ancestral k-mer of mutation type m is observed 
in the human reference genome, and Th is the total target 
count (sum of all k-mer targets) in the human reference 
genome. We rescale all mutation spectra to reflect the hu-
man reference genome’s k-mer composition. Although the 
choice of human as the standard reference is arbitrary, 
supplementary Note S2, Supplementary Material online 
shows that CLR-transformed mutation spectrum compar-
isons actually do not depend on which genome compos-
ition the spectra are rescaled to as long as all spectra are 
rescaled to reflect the same reference composition.

After rescaling all counts to the same genomic content 
multinomial downsampling is carried out using the rmul-
tinom function in R to sample the number of SNPs passing 
all filters and masks found in the lowest diversity species 
using the fraction of each mutation type as the multi-
nomial probabilities. The vaquita had the lowest diversity, 
and so all species were downsampled to match the 
∼130,000 SNPs observed in the vaquita dataset. At these 
lower numbers of SNPs, some mutation categories have 
mutation counts of 0 (particularly in the high-dimensional 
7-mer spectrum, and to a lesser extent, the 5-mer spec-
trum). Since the CLR transformation is incompatible 
with mutation counts of zero, we regularized our data 
by adding a pseudocount of 1 to the number of mutations 
observed within each type category in each species.

Reproductive Aging Mutational Signatures
We extracted mutational signatures related to human re-
productive aging from Poisson regressions carried out by 
Jónsson et al. (2017) from Icelandic human trio data, which 
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measured the effects of maternal and paternal age on de 
novo mutation counts for each 1-mer + CpG mutation 
class (C > A, C > G, C > T, CpG > TpG, T > A, T > C, T  
> G in Jónsson et al.). As in Wang et al. (2023) and Gao 
et al. (2023), we excluded CpG > TpG sites since they are 
so depleted from variation data compared to de novo mu-
tation data due to purifying selection.

For each mutation class c, Jónsson et al. calculate ma-
ternal and paternal age slopes mc,mat and mc,pat as well as a 
y-intercept values bc,mat and bc,pat such that a child who is 
conceived when their mother’s and father’s ages are amat 
and apat is expected to inherit yc,mat and yc,pat mutations of 
type c from their mother and father, respectively:

yc,mat(amat) = mc,mat ∗ amat + bc,mat 

yc,pat(apat) = mc,pat ∗ apat + bc,pat 

We took Jónsson, et al.’s reported values of mc,mat , bc,mat, 
mc,pat , and bc,pat (located in supplementary Table S9, 
Supplementary Material online in Jónsson et al.) and trans-
formed these data into 3 mutational signatures. Letting c’ 
range over the vector of 1-mer mutation types, the paternal 
age signature is a 6-dimensional vector with entries mc,pat

Σc′ mc′ ,pat 

(describing the fraction of paternal non-CpG mutations 
composed of each 1-mer mutation type) and the maternal 
age signature is the vector mc,mat

Σc′ mc′ ,mat
. Finally, we generated a 

“young parent” signature that is representative of the muta-
tions occurring in the offspring of 2 parents who reproduce 
directly after puberty. Assuming puberty occurs at age 13 in 
humans, we calculate that the entries of this young parent 
mutational signature vector should be

yc,mat(13) + yc,pat(13)
Σc′yc′ ,mat(13) + yc′ ,pat(13) 

Using Sigfit to Extract Mutational Signature Exposures
We used the R package sigfit (Gori and Baez-Ortega 
2020) to model our germline mutation spectrum data 
as linear combinations of prespecified mutational 
signatures. The outputs of sigfit are “signature exposures” 
that specify the proportion of mutations in each species 
that were generated by each input mutational signature. 
These exposure proportions are estimated by maximiz-
ing the cosine similarity between each species’ mutation 
spectrum and an exposure-weighted average of all input 
mutational signatures. Since COSMIC signatures are 
defined relative to human genome composition, we 
rescaled all species’ mutation counts to human genome 
content.

We fit each prespecified signature model to our data 
using the multinomial model with 10,000 iterations. This 
procedure was used to fit the SBS1 + SBS5 signatures to 
the 3-mer spectrum and to fit the reproductive aging 
model to the 1-mer-minus-CpG spectrum. We then added 
a novel mutational signature to each of these models using 

the fit_extract_signatures function (multinomial model; 
10,000 iterations; adapt_delta = 0.99).

After fitting each of these 4 models, we calculated co-
sine similarities between each species’ mean reconstructed 
mutation spectrum (based on mutation signatures and ex-
posures inferred by sigfit) and the empirical spectrum that 
was used to fit the model. We calculated per-species 
permutation-type residuals by subtracting the recon-
structed mutation fraction from the empirical fraction.

To measure whether the reconstructions accurately 
capture phylogenetic signals, we carried out Mantel tests 
(9,999,999 permutations) to measure the correlation be-
tween species’ reconstructed spectra and the square root 
of their phylogenetic distance. We then compared these 
results to Mantel test results of the correlation between 
the empirical 1-mer-minus-CpG and 3-mer spectra and 
phylogenetic distance.

Supplementary material
Supplementary material is available at Molecular Biology 
and Evolution online.
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spectra. Data files, including mutation spectra with differ-
ent transformations, input vcf files, genome masking bed 
files, ancestral fasta files, mutyper pipeline output files, 
full results of Fisher’s exact test for enrichment/depletion 
of k-mers, and reproductive aging mutation signatures 
have been placed on Dryad (https://doi.org/10.5068/ 
D1339F) with an extensive readme file describing each 
set of files.
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