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Abstract: 
Bayesian statistics is an approach to statistical inference that is characterized by the
use of probability distributions to describe the state of knowledge about unknown 
quantities and the use of Bayes’ theorem to update the state of knowledge to 
account for observed information.  The basic ideas date to the late 18th century but 
broad application of the approach did not occur until computational developments 
in the late 20th century allowed for simulation-based inference in a wide range of 
scientific applications.  This survey describes the key steps in carrying out a 
Bayesian analysis: model specification, calculation of the posterior distribution, 
and model assessment.
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Bayesian Statistics

Bayesian statistics refers to an approach to statistical inference that is characterized by the use of 
probability distributions to describe the state of knowledge or belief about unknown quantities 
(e.g., parameters in a statistical model) and the updating of such distributions based on observed 
information (e.g., data).  The approach takes its name from the use of Bayes’ theorem (Bayes and
Price, 1763), a mathematical result relating conditional probabilities, to perform the updating of 
probability distributions. As commonly practiced there are three key steps in a Bayesian analysis:
specification of a probability model for the quantities of interest, calculation of the posterior 
distribution of unknown quantities conditional on observed quantities, and assessment of the 
appropriateness of the model for the questions at hand.  These are discussed in detail below. The 
last of these topics, model assessment, is not always incorporated in introductory discussions of 
Bayesian statistics but we argue below that it is an essential part of good statistical practice. 
Naturally the discussion of the Bayesian approach here is brief.  Additional details can be found 
in a wide range of modern statistical treatments including Carlin and Louis (2008), Christensen 
et al. (2010) and Gelman et al. (2013).    

We begin with a brief history of the development of Bayesian ideas. Early work on probability 
focused on what might be called “pre-data” probability calculations.  Given assumptions about a 
random process it is possible to assign or calculate the probability of various outcomes.  For 
example, one can calculate the probability of obtaining an even number in a roll of a die or the 
probability of obtaining ten or more heads in twenty tosses of a coin. Bayes and Laplace receive 
independent credit for “inverting'' probability statements in the late 18th century to make 
probability statements about parameter values given observed data values (Stigler, 1986). Thus, 
for example, having observed a given number of successes in a series of repeated trials it is 
possible to make probability statements about the unknown underlying probability of success in 
the trials.  Modern Bayesian inference developed in the period around and after World War II. 
The name Bayesian inference replaces “inverse probability'' only in this era. Savage (1954) is an 
influential early book using decision theory to justify Bayesian methods.  de Finetti (1974) 
contributed crucial work concerning the role of exchangeability which plays a role analogous to 
that of independent identically distributed observations in the traditional frequentist approach to 
inference.  Raiffa and Schlaifer (1960), Lindley (1972, 1990) and Box and Tiao (1973) 
contributed greatly to the popularization of the Bayesian approach. Computational advances in 
the late 20th century, especially the development of fast, ubiquitous computers and the discovery 
(and rediscovery) of computational algorithms, made it possible to apply the Bayesian approach 
to a wide array of scientific fields and scientific problems.  Indeed one can now find Bayesian 
treatments for a variety of different application areas including the social sciences (Jackman, 
2009), econometrics (Koop et al., 2007), marketing (Rossi et al., 2007), and biostatistics 
(Lesaffre and Lawson, 2012).  

Model Specification 

The basic ideas needed to describe Bayesian statistics can be easily explained in terms of some 
relatively simple notation.  Let y denote data that is to be collected, such as a series of 
measurements or the outcomes of a series of test questions.  Take θ to denote unknown quantities
associated with the collection of the data.  Often θ represents the parameters in a probability 
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model for the data y. This could include the mean measurement of a population of interest or the 
true ability of an individual test taker.  There are of course many situations that are not 
adequately represented by this simple setup.  In some cases, like regression analysis, there may 
be data x (often called covariates) that can help explain y but are not of explicit interest 
themselves.  The unknown θ may include missing values (data that we intended to collect but 
could not) or latent variables (additional unknowns introduced in developing a probability 
model) in addition to standard parameters.  Here we use the simple notation y and θ throughout 
but it is straightforward to accommodate more complex situations like those described above.  
For details see the references provided earlier.  

The specification of a complete probability model for the data y requires two probability 
distributions, a probability distribution for the data given (or conditional on) parameters θ and a 
probability distribution for the parameters θ.  The distribution of the data conditional on the 
parameters is usually denoted p(y | θ) and identified as the data distribution, the data model, the 
sampling distribution, or the likelihood function. The distribution for the parameters θ, denoted 
p(θ), is known as the prior distribution. It can be thought of as describing the relative frequencies
for different values of the model parameters before considering any of the data values.  The 
notation above violates standard conventions in that the same letter p is used to represent two 
different probability distributions.  It is useful for our purposes however in that it avoids the 
introduction of other letters that are not central to our discussion.  The notation above is simple 
but is capable of accommodating the full range of Bayesian methods.  For example, it is 
sometimes desirable to avoid specific parametric forms for one of both of the component 
distributions.  The development of so-called non-parametric Bayesian methods has made this 
possible; in practice they are still of the form p(y | θ) and/or p(θ) but rely on high-dimensional θ 
to avoid being overly restrictive in the choice of the distribution p(.).  See the entry on Non-
parametric Bayes Methods for more details. 

A simple example helps to show how the basic notation works.  Suppose that a student is asked 
to answer a number of mathematics questions believed to measure their knowledge of algebra.  
Assuming there are n questions believed to be of roughly the same level of difficulty then it may 
be natural to let the number of correct responses y follow a binomial distribution with parameter 
θ measuring the probability that the student answers a question correctly (which can be taken as 
a measure of their knowledge of algebra).  Then p(y | θ) is the binomial probability of getting 

exactly y correct responses, (n
y )  θy(1-θ)n-y.  The prior distribution p(θ) should reflect any 

information about θ that is available prior to collecting the data.  We discuss this choice further 
next.  

For many users of statistical methods the largest question about the use of Bayesian methods 
concerns the choice of prior distribution. There are a number of approaches to this choice. The 
subjective approach to choosing a prior distribution is to take the prior distribution to be an 
honest assessment of prior beliefs about the values of the model parameters. Although people are
sometimes hesitant to supply such subjective prior distributions it is often the case that some 
prior information is available.  For our example, we may not know a great deal about the specific
student but previous experience may suggest that typically students in the class are able to 
answer between 60 and 90 percent of such questions correctly.  This may be enough to suggest a 
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prior distribution such as a beta distribution (appropriate for quantities that take values between 
zero and one) with parameters 3 and 1, which takes the form p(θ) =  3θ2.  This beta distribution 
has a mean of .75 with about half of the probability in the interval from .60 to .90.  If it is 
possible to specify a prior distribution, like the beta distribution suggested here, then the 
Bayesian paradigm provides the way to update that prior information given observed data. The 
updating is discussed below.  

Occasionally the choice of a prior distribution is made primarily because of considerations of 
computational convenience. Conjugate families are families of prior distributions that combine 
with a given data distribution to produce posterior distributions in the same family as the prior 
distribution.  The beta distribution developed above is an example; it is the conjugate prior 
distribution for binomial data.  Conjugate prior distributions are capable of supporting a variety 
of prior opinions (e.g., by making different choices within the conjugate family) but of course 
not all. 

The desire to avoid using subjective prior information and/or arbitrary distributional forms has 
led to research on using vague or “non-informative'' prior distributions. Formally a vague prior 
distribution is one that assigns roughly equal probability to a wide range of possible values.  In 
the binomial example we might assert that we have no information at all about θ other than that it
is between zero and one and thus choose a uniform distribution between zero and one.  (In fact 
this is a particular form of the beta distribution.)  The idea is that a vague prior distribution will 
not have a strong influence on our results and hence the data will play the central role in 
determining our conclusions. In this way, the use of vague or “non-informative'' prior 
distributions represents the pursuit of a form of objective Bayesian inference. One difficulty is 
that, in the limit, especially for parameters that are not known to lie in a fixed range, vague prior 
distributions may become so vague as to no longer be proper distributions (they may not 
integrate to one!). It is permissible to use such improper prior distributions as long as it is 
verified that the resulting posterior distribution is a proper distribution. Improper prior 
distributions are popular because sometimes they appear to be “non-informative'' in the sense 
that they rely only on the likelihood. It is probably best to think of improper prior distributions as
approximations to real prior distributions. If the improper prior distribution leads to a proper 
posterior distribution and sufficiently accurate conclusions, then one might use the results from 
this analysis without needing to work any harder to select a more appropriate prior distribution.

Some people find the need to explicitly choose a prior distribution problematic.  For these 
individuals it is disturbing that individuals with different prior distributions will obtain different 
results. There are a number of important points to make here.  First, it is important to recognize 
that situations like this occur every day in the real world when individuals with different 
information make different decisions from the same data.  Second, it is possible to show 
mathematically that the prior distribution does not have a large impact on the results of our 
statistical analysis when we have collected a great deal of data.  This again matches every day 
experiences where a large group of people may all come to agree on a course of action given a 
large amount of evidence.  Perhaps the most important point to make is that prior information is 
not necessarily as rare as we might think.  This is especially true in problems that are more 
sophisticated than our simple math test.  Consider a situation in which the same set of algebra 
questions are given to a number of different individuals.  Each individual has his/her own 
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probability of getting a correct answer.  Though it may not be easy to select a prior distribution 
for each individual, it may be natural to treat the set of parameters as a sample from a common 
population.  This type of model is known as a hierarchical model (reference to Hierarchical 
Models: Random and Fixed Effects) because the prior distribution itself may depend on 
additional parameters (e.g., the mean and variance of algebra knowledge parameters in the 
population).  It is the success of Bayesian methods in multiparameter problems of this type that 
have led to the increased use of such methods.

Calculation of the posterior distribution

The model specification makes it clear that there are two sources of information about θ.  There 
is information about θ in the prior distribution and there is information about θ in the data 
distribution.  This information can be combined using the using the laws of probability, namely 
Bayes' theorem, to obtain the updated probability distribution on θ after observing data y. The 
latter is known as the posterior distribution of θ and denoted p(θ | y ).  Bayes’ theorem is

p(θ | y) = p(y | θ) p(θ) / p(y) = p(y | θ) p(θ) / ∫ p(y | θ) p(θ) dθ.

The denominator of Bayes’ theorem is known as the marginal probability of observing the data y.
Bayes’ theorem allows us update our opinion about the possible values of θ so that values of θ 
that are most consistent with the observed data (i.e., values that have large values of the 
likelihood) have more weight in the posterior distribution then they do in the prior distribution. 
The posterior distribution is fundamental to Bayesian inference for θ. The Bayesian approach 
makes probability statements concerning the unknown quantities after fixing the things that have 
been observed (i.e., the data) at their known values. Note that Bayesian methods differ from 
traditional methods which are justified by repeated sampling considerations -- only the sample at 
hand is considered relevant in the Bayesian approach.

The posterior distribution describes our current state of knowledge about θ after observing the 
data y.  It is possible to draw a wide range of inferential conclusions from the posterior 
distribution.  A point estimate is a one-number summary of the posterior distribution. Of course, 
a single estimate does not describe the full state of our knowledge.  To obtain a point estimate it 
is necessary to specify a loss function that makes explicit the loss that we expect to incur because
of errors in our point estimate.  Given a loss function it is possible to derive the optimal point 
estimate as the value that minimizes the expected loss (computed from the posterior distribution) 
(e.g., see the entry on Bayesian Decision Theory).  An interval estimate specifies a range of 
plausible values for a parameter. The posterior distribution allows us to identify posterior 
intervals that contain a given parameter with any specified probability. Such intervals are 
analogous to standard confidence intervals. One difference is that the posterior intervals have a 
natural probabilistic interpretation in that they summarize our posterior state of knowledge 
regarding plausible values of the parameter.  By contrast, the probability statement underlying 
traditional confidence intervals depends on behavior in a large number of repeated samples.  In 
traditional inference another common form of statistical inference is a hypothesis test about the 
value of a parameter or a set of parameters (e.g., it is common to test whether two means are 
equal).  The information about such tests is equivalent to the information contained in posterior 
intervals, i.e., we can address whether two means are plausibly the same by examining the 
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posterior interval for the difference between the two means. Tests of some hypotheses are also 
possible using the Bayes factor, a ratio that measures the degree to which two competing models 
explain the observed data.  This is discussed further below. 

In relatively simple problems it is possible to analytically determine the form of the posterior 
distribution and subsequently obtain statistical inferences. For the example described earlier in 
which we observed a binomial random variable measuring the number of correct responses y in 
n questions and used a conjugate beta prior distribution (with parameters 3 and 1), it turns out 
that the posterior distribution is also a beta distribution.  The posterior distribution is a beta 
distribution with parameters y+3 and n-y+1. The form of the posterior distribution in this case 
shows us explicitly how our prior information combines with the data.  The mean of this 
posterior distribution is (y+3)/(n+4) which is a compromise between the student’s performance 
on the test y/n and the mean of the prior distribution 3/4 = .75.  For example, a student who 
answered nine out of ten questions correctly would have posterior mean .86.  Posterior intervals 
can also be easily obtained if we know the form of the posterior distribution.

In many realistic models, especially those containing a large number of parameters, it can be 
quite difficult to determine the form of the posterior distribution analytically. It is sometimes 
possible in such cases to develop a useful approximation to the posterior distribution, e.g., a 
normal approximation, but this too is difficult in many realistic problems.  For many years the 
difficulty in calculating the posterior distribution kept people from applying Bayesian methods.  
The wide availability of high-speed computing, beginning in the late 20th century, made it 
possible to develop general purpose simulation algorithms that allowed researchers to 
approximate the posterior distribution by generating a sample of simulations from the posterior 
distribution (e.g., see Computation, Monte Carlo Methods and Bayesian Computation).  The 
most common class of algorithms are known as Markov chain Monte Carlo (MCMC) 
algorithms; these algorithms work by building and then simulating a Markov chain which has the
posterior distribution as its stationary distribution.  If the Markov chain is simulated for a long 
time then the draws from the simulation can be treated as draws from the posterior distribution.  
Though there can be a number of challenges associated with Bayesian computation (e.g., 
developing efficient algorithms, judging when the simulation has run long enough to 
approximate the posterior distribution) there is little doubt that it has allowed researchers to 
apply Bayesian methods in diverse settings and with large data sets.  Recent references 
describing MCMC algorithms and other relevant computational strategies include Chen et al. 
(2001), Liu (2008), and Brooks et al. (2011).

Simulation-based inference is a powerful tool.  A set of simulations from the posterior 
distribution provides an empirical approximation to the posterior distribution.  Any desired 
inference is then estimated using this empirical approximation.  For example, the posterior mean 
is estimated by the sample mean of the simulations and a posterior interval for a parameter is 
obtained using the relevant percentiles of the simulations.  Although the simulations are in fact 
providing estimates of the various quantities of interest, it is generally possible to obtain enough 
simulations to reduce the Monte Carlo or simulation error to acceptable levels.  Simulations 
provide a great deal of flexibility – for example, it is quite straightforward to estimate the 
posterior probability that a given parameter is positive since one needs only look at the 
proportion of simulations in which it is positive.  
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Model assessment

It is important when performing statistical inference based on a probability model to examine the
validity of the assumptions made in the model. For the Bayesian approach to inference the 
assumptions include the form of the prior distribution, the form of the data model, and any other 
assumptions embodied in the data model (independence, constant variance, etc.). There are a 
wide range of activities that can be used to assess the Bayesian model being used to analyze data.
These include sensitivity analysis, model checking and model comparison.  We briefly describe 
approaches to this important task here.  The general references provided earlier give additional 
details.

Sensitivity analysis: The prior distribution is an important part of the Bayesian model.  One can 
argue that there is no need to check the prior distribution in that as long as it is an honest 
reflection of the prior state of knowledge about unknown quantities, then the Bayesian 
machinery will provide the appropriate updated posterior state of knowledge.  At the same time it
is important to be able to describe whether the inferences are likely to change under other 
reasonable prior distributions.  This suggests a form of sensitivity analysis where the prior 
distribution (or other aspect of the model) is varied and the effect on the posterior distribution is 
assessed.  The conclusions of a Bayesian analysis are strengthened if we find that key posterior 
inferences (e.g., the sign of an important parameter) are unchanged under other plausible model 
specifications.  

Model checking: In regression analysis it is common to check the form of the model by 
examining residuals.  The residuals are functions of the data that are expected to have no 
particular structure if the model is correct.  Evidence of structure in the residuals suggests a 
possible problem with the model.  The same basic strategy can be applied more generally to 
assess the fit of a Bayesian model or analysis.  A function of the data (and perhaps parameters) 
can be defined that is expected not to have any structure if the model is correct.  Examining the 
posterior predictive distribution of such functions (i.e., the distribution of the function in future 
data sets that would be expected if the model is correct) can allow one to detect difficulties in the
model.  These are known as posterior predictive model checks.
  
Model comparison: In some applications there are a number of models that are contemplated.  
In this case researchers may want to compare or combine the models.  Model comparison is 
frequently carried out using Bayes factors (see the entry on Model Selection and Model 
Averaging).  It can also be carried out using predictive measures (e.g., cross validation) or 
information criteria.  There are several important points here.  If model selection is used to 
identify a best-fitting model, it is still important to use model checking and sensitivity analysis as
described above to ensure that the selected model is appropriate for the questions of interest.  
Also, one can argue that there are alternatives to model comparison and model selection that 
make more sense in the Bayesian framework.  It may be possible to embed one model into a 
bigger family of models and then average over the entire family.  For example, a normal model 
might be replaced by the Student-t family of models that includes the normal distribution as a 
limiting case. Then the posterior distribution for the degrees of freedom in the Student-t model 
provides information about whether the normal distribution is an appropriate choice.
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Summary

The Bayesian approach to statistics outlined here is in wide use across a wide range of 
application areas, including the social sciences.  Historically there has been controversy about 
the use of Bayesian methods.  This remains true to a limited extent (see, e.g., Efron, 1986).  The 
arguments favoring the use of the Bayesian approach for data analysis follow from its use of 
probability distributions to describe uncertainty about unknown quantities. There is a natural 
probability-based interpretation for Bayesian results (e.g., interval estimates) and great flexibility
in the types of inferences that can be obtained (e.g., one can easily obtain a posterior distribution 
on the ranks of a set of parameters). In addition, the framework is extremely powerful in its 
ability to accommodate increasing degrees of complexity in a data analysis. For example, 
accommodating missing data values is straightforward in the Bayesian framework because the 
values that we had hoped to measure become unknown random variables.  In the same vein 
censoring or truncation of observed values are easily incorporated through modifications of the 
underlying probability model.  The reliance on formal probability distributions also means that it 
is possible to draw valid Bayesian inferences in finite samples without relying on large sample 
results.  
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