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The slowing pace of commodity microprocessor 
performance improvements combined with ever-
increasing chip power demands has become of 
utmost concern to computational scientists.  As a 
result, the high performance computing 
community is examining alternative architectures 
that address the limitations of modern cache-
based designs.  In this work, we examine the 
potential of the using the forthcoming STI Cell 
processor as a building block for future high-end 
computing systems. Our work contains several 
novel contributions.  We are the first to present 
quantitative Cell performance data on scientific 
kernels and show direct comparisons against 
leading superscalar (AMD Opteron), VLIW (Intel 
Itanium2), and vector (Cray X1) architectures.  
Since neither Cell hardware nor cycle-accurate 
simulators are currently publicly available, we 
develop both analytical models and simulators to 
predict kernel performance.  Our work also 
explores the complexity of mapping several 
important scientific algorithms onto the Cell’s 
unique architecture. Additionally, we propose 
modest microarchitectural modifications that 
could significantly increase the efficiency of 
double-precision calculations.  Overall results 
demonstrate the tremendous potential of the Cell 
architecture for scientific computations in terms 
of both raw performance and power efficiency. 
 
Keywords 
Cell, GEMM, SpMV, sparse matrix, FFT, Stencil, 
three level memory 
 
1. Introduction 

Over the last decade the HPC community 
has moved towards machines built on commodity 
microprocessors as a strategy for tracking the 
tremendous growth in processor performance in 
that market.  As this pace slows, and the power 
requirements of these processors continues to 

grow, the HPC community is looking for 
alternative architectures that provide high 
performance on scientific applications, yet have a 
healthy market outside the scientific community.  
In this work, we examine the potential of the 
forthcoming STI Cell processor as a  building 
block for future high-end computing systems, by 
investigating performance across several key 
scientific computing kernels: dense matrix 
multiply, sparse matrix vector multiply, stencil  
computations on regular grids, as well as 1D and 
2D FFTs. 

Cell is a high-performance implementation 
of software-controlled memory hierarchy in 
conjunction with the considerable floating point 
resources that are required for demanding 
numerical algorithms. Despite its radical 
departure from mainstream/commodity processor 
design, Cell is particularly compelling because it 
will be produced at such high volumes that it will 
be cost-competitive with commodity CPUs. The 
current implementation of Cell is most often noted 
for its extremely high performance single-
precision (SP) arithmetic, which is widely 
considered insufficient for the majority of 
scientific applications.  Although Cell’s peak 
double precision performance is still impressive 
relative to its commodity peers 
(~14.6GFLOP/s@3.2GHz), we explore how 
modest hardware changes could significantly 
improve performance for computationally 
intensive DP applications. 
 This paper presents several novel results.  
We present quantitative performance data for 
scientific kernels that compares Cell performance 
to leading superscalar (AMD Opteron), VLIW 
(Intel Itanium2), and vector (Cray X1) 
architectures.  We believe this is the first 
published analysis of its kind.  Since neither Cell 
hardware nor cycle-accurate simulators are 
currently publicly available, we develop both 
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analytical models and simulators to predict kernel 
performance.  Our work also explores the 
complexity of mapping several important 
scientific algorithms onto the Cell’s unique 
architecture in order to leverage the large number 
of available functional units and software 
controlled memory architecture. Additionally, we 
propose modest microarchitectural modifications 
that could increase the efficiency of double-
precision arithmetic calculations, and demonstrate 
significant performance improvements compared 
with the current Cell implementation.   

Overall results demonstrate the 
tremendous potential of the Cell architecture for 
scientific computations in terms of both raw 
performance and power efficiency. We also 
conclude that Cell’s heterogeneous multi-core 
implementation is inherently better suited to the 
HPC environment than homogeneous commodity 
multi-cores. 

 
2. Related Work 
 One of the key limiting factors for 
computational performance is off-chip memory 
bandwidth. Since increasing the off-chip 
bandwidth is prohibitively expensive, many 
architects are considering ways of using available 
bandwidth more efficiently.  Examples include 
hardware multithreading or more efficient 
alternatives to conventional cache-based 
architectures such as software controlled 
memories. Software-controlled memories can 
potentially improve memory subsystem 
performance by supporting finely controlled 
prefetching and more efficient cache-utilization 
policies that take advantage of application-level 
information – but do so with far less architectural 
complexity than conventional cache architectures. 
While placing data movement under explicit 
software control increases the complexity of the 
programming model, prior research has 
demonstrated that this approach can be more 
effective for hiding memory latencies (including 
cache misses and TLB misses) – requiring far 
smaller cache sizes to match the performance of 
conventional cache implementations [12, 13]. 

Over the last five years, a plethora of 
alternatives to conventional cache-based 
architectures have been suggested including 
scratchpad memories [15, 16, 17], paged on-chip 

memories [13, 14], and three level memory 
architectures [11, 12]. Until recently, few of these 
architectural concepts made it into mainstream 
processor designs, but the increasingly stringent 
power/performance requirements for embedded 
systems have resulted in a number of recent 
implementations that have adopted these 
concepts. Chips like the Sony Emotion Engine [8, 
9, 10] and Intel’s MXP5800 both achieved high 
performance at low power by adopting the three 
(registers, local memory, external DRAM) level 
memory architecture.  More recently, the STI Cell 
processor has adopted a similar approach where 
data movement between these three address 
spaces is explicitly controlled by the application. 
This more aggressive approach to memory 
architecture was adopted to meet the demanding 
cost/performance requirements of Sony’s 
upcoming video game console. However, to date, 
an in-depth study to evaluate the potential of 
utilizing the Cell architecture in the context of 
scientific computations does not appear in the 
literature. 

  
3. Cell Background 
 Cell [1, 2] was designed by a partnership 
of Sony, Toshiba, and IBM (STI) to be the heart 
of Sony’s forthcoming PlayStation3 gaming 
system.  Cell takes a radical departure from 
conventional multiprocessor or multi-core 
architectures.  Instead of using identical 
cooperating commodity processors, it uses a 
conventional high performance PowerPC core that 
controls eight simple SIMD cores, called 
synergistic processing elements (SPEs), where 
each SPE contains a synergistic processing unit 
(SPU) and a local memory. An overview of Cell 
is provided in Figure 1.  

Unlike a typical coprocessor, each SPE 
has its own local memory from which it fetches 
code and reads and writes data.  The PowerPC 
core, in addition to virtual to physical address 
translation, is responsible for the management of 
the contents of each SPE’s 256KB of non-cache 
coherent local store.  Thus to load and run a 
program on an SPE, the PowerPC core initiates 
the direct memory access (DMA) of SPE program 
and data from DRAM to the local store. Once the 
DMAs complete, the PowerPC core starts the 
SPE.  For predictable data access patterns the 
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local store approach is highly advantageous as it 
can be very efficiently utilized through explicit 
software-controlled scheduling. Improved 
bandwidth utilization through deep pipelining of 
memory requests requires less power, and has a 
faster access time than a large cache due in part to 
its lower complexity.  If however, the data access 
pattern lacks predictability, then the advantages of 
software managed memory are lost.   
 
 
 
 
 
 
 
 
 
Figure 1 – Overview of the Cell processor.  Eight SPEs, one PowerPC 
core, one memory controller, and two I/O controllers are connected via 
four rings.  Each ring is 128b wide and runs at half the core frequency.  
Each SPE has its own local memory from which it runs programs. 

 
Access to external memory is handled via 

a 25.6GB/s XDR memory controller.  The 
PowerPC core, the eight SPEs, the DRAM 
controller, and I/O controllers are all connected 
via 4 data rings, collectively known as the EIB.  
The ring interface within each unit allows 8 
bytes/cycle to be read or written.  Simultaneous 
transfers on the same ring are possible.  All 
transfers are orchestrated by the PowerPC core. 

Each SPE includes four single precision 
(SP) 6-cycle pipelined FMA datapaths and one 
double precision (DP) half-pumped (one SIMD 
instruction every other cycle) 9-cycle pipelined 
FMA datapath with 4 cycles of overhead for data 
movement [20].  Cell has a 7 cycle in-order 
execution pipeline and forwarding network [1].  
IBM appears to have solved the problem of 
inserting a 13 (9+4) cycle DP pipeline into a 7 
stage in-order machine by choosing the minimum 
effort/performance/power solution of simply 
stalling for 6 cycles after issuing a DP instruction.  
The SPU’s DP throughput [29] of one DP 
instruction every 7 (1 issue + 6 stall) cycles 
coincides perfectly with this reasoning. 

Thus for computationally intense 
algorithms like dense matrix multiply (GEMM), 
we expect SP implementations to run near peak 
whereas DP versions would drop to 

approximately one fourteenth the peak SP flop 
rate[21].  Similarly, for bandwidth intensive 
applications such as sparse matrix vector 
multiplication (SpMV) we expect SP versions to 
be between 1.5x and 4x as fast as DP, depending 
on density and uniformity.  

With respect to the memory subsystem, all 
loads and stores issued from the SPE can only 
access the SPE’s local memory. The limited scope 
of loads and stores allows one to view the SPE as 
having a two-level register file.  The first level is a 
128 x 128b single cycle register file, where the 
second is a 16K x 128b six cycle register file.  
Data must be moved into the first level before it 
can be operated on by instructions. 

The Cell processor depends on explicit 
DMA operations to move data from main memory 
to the local store of the SPE. Whereas scalar 
processors have byte, word, half and doubleword 
loads, the SPEs have selectable length DMAs that 
run in parallel (via DMA engines) with the SIMD 
code.  Thus an SPE has the capability of 
mitigating memory latency overhead via double-
buffered DMA loads and stores.  At the SPE level, 
most algorithms are programmed much the same 
way as they are on traditional architectures.  The 
SPE’s DMAs are simply a condensed version of a 
stream of scalar loads.  In fact, they are much like 
a traditional unit stride vector load – the major 
difference being that they do not suffer the 
performance issues associated with a hardware 
encoded vector length. We exploit these 
similarities to existing HPC platforms to select 
programming models that are both familiar and 
tractable for scientific application developers. 
 
4. Programming Models 
 Moving from a hardware managed 
memory hierarchy to one controlled explicitly by 
the application significantly complicates the 
programming model. Our goal is to select the 
programming paradigm that offers the simplest 
possible expression of an algorithm while being 
capable of fully utilizing the hardware resources 
of the Cell processor.  

The candidate programming models for 
Cell can be divided into three categories: 
independent SPEs, data pipelined, and lock step 
data parallel.  Heterogeneous programming of 
heterogeneous elements is atypical of applications 

SPE 
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in the scientific community so the independent 
SPE model was not pursued vigorously. Data 
pipelining, where large blocks of data are 
streamed from one SPE to the next, may be 
suitable for certain classes of algorithms and will 
be the focus of future investigation. The data-
parallel programming model is well established in 
the computational sciences and offers the simplest 
and most direct method of decomposing the 
problem, and thus is the focus of our 
investigation. 

Data-parallel programming is quite similar 
to loop-level parallelization afforded by OpenMP 
or the vector-like multistreaming on the Cray X1 
and the Hitachi SR-8000.  Although this 
decomposition offers the simplest programming 
model, the restrictions on program structure and 
the fine-grained synchronization mean that it may 
not be the fastest or the most efficient approach 
and thus slight variations were employed. 
 
5. Simulation Methodology 

In this paper, performance estimation is 
broken into two steps commensurate with the two 
phase double buffered computational model.  This 
provides a high level understanding of the 
performance limitations of the Cell processor on 
various algorithms.  Once we gain access to a 
cycle accurate simulator and/or Cell hardware, we 
will verify our results and gain understanding of 
the processor features that limit performance.  

In the first step, pencil and paper 
calculations were performed to estimate the 
computational and memory requirements for the 
kernels of the four benchmarks. The kernels were 
segmented into code-snippets that operate only on 
data present in the local store of the SPE. The 
performance estimation was further refined by 
hand-coding SPE assembly instructions for the 
code snippets and calculating the execution times 
for those snippets – taking into account the 
latency of each operation, and the operand 
alignment requirements given the 
SIMD/quadword nature of the SPE execution 
pipeline. The execution times for these snippets 
are parameters for the execution component of the 
performance estimator. 

In the second step, we construct a model 
that tabulates the time required for DMA loads 
and stores of the operands required by the code 

snippets.  The model must accurately reflect the 
constraints imposed by resource conflicts in the 
memory subsystem. For instance, a sequence of 
DMAs issued to multiple SPEs must be serialized, 
as there is only a single DRAM controller. The 
model also presumes a fixed DMA initiation 
latency of 1000 cycles based on existing design 
documents available regarding the Cell 
implementation. The model also presumes either a 
snooping or a broadcast mechanism was 
implemented in the EIB either in hardware or via 
software emulation. 

The number of SPEs, the local store size 
and the bandwidths are encoded directly into the 
model as constants.  External control is provided 
for parameters such as the DMA initiation 
latency.   

Our simulation framework is essentially a 
memory trace simulator – the difference being the 
complexity of the concurrent memory and 
computation operations that it must simulate.  
Instead of explicitly simulating computation using 
a cycle-accurate model of the functional units, we 
simulate the flow of data through the machine, 
and annotate the flow with execution time. 
Therefore, our simulation is more sophisticated 
than a typical memory-trace simulator; however, 
although it should accurately model execution 
time, it does not actually perform the 
computation.  

 
 CELL X1(MSP) Opteron Itanium2 
 SPE Chip    

Architecture SIMD multi-core 
SIMD 

multi-chip 
Vector 

Super 
Scalar 

VLIW 

Frequency 3.2GHz 3.2GHz 800MHz 2.2GHz 900MHz 
DRAM BW - 25.6GB/s 34GB/s 6.4GB/s 6.4GB/s 

GFlop/s(single) 25.6 204.8 25.6 8.8 3.6 
GFlop/s(double) 1.83 14.63 12.8 4.4 3.6 

Local Store 256KB  2MB - - - 
L2 Cache - 512KB 2MB 1MB 256KB 
L3 Cache - - - - 1.5MB 

Power 3W [1] ~40W 100W 89W 130W 

 
Table 1 - Architectural overview of STI Cell [21], Cray X1 MSP, AMD 
Opteron, and Intel Itanium2.  Total Cell power and peak GFlop/s are 
based on the active SPEs/idle PowerPC programming model. 

 
Algorithms that employed double-

buffering were broken into a number of phases in 
which communication for the current objects and 
computation for the previous objects can take 
place simultaneously.  Of course, for each phase, 
it was necessary to convert cycles into actual time 
and FLOP rates.  For simplicity we chose to 
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model a 3.2GHz, 8 SPE version of Cell with 
25.6GB/s of memory bandwidth. This version of 
Cell is likely to be used in the first release of the 
Sony PlayStation3 [19].  The lower frequency had 
the simplifying benefit that both the EIB and 
DRAM controller could deliver two SP words per 
cycle.  The maximum flop rate of such a machine 
would be 204.8GFlop/s, with a computational 
intensity of 32 FLOPs/word.  It is unlikely that 
any version of Cell would have less memory 
bandwidth or run at a lower frequency.   

For comparison, we examine performance 
on several leading processor designs: the vector 
Cray X1 MSP, superscalar AMD Opteron 248 and 
VLIW Intel Itanium2.  The key architectural 
characteristics are detailed in Table 1. 
 
5.1 Cell+ Architectural Exploration 

In order to explore the limitations of Cell’s 
DP issue bandwidth, we propose an alternate 
design with a longer forwarding network.  In this 
hypothetical implementation, called Cell+, each 
SPE would still have the single DP datapath, but 
would be able to dispatch one DP SIMD 
instruction every other cycle instead of one every 
7 cycles.  The Cell+ design would achieve 3.5x 
the DP throughput of the Cell (51.2 GFlop/s) by 
fully utilizing the existing DP datapath; however, 
it would maintain the same SP throughput, 
frequency, bandwidth, and power as the Cell. 
Based on our experience designing the VIRAM 
vector processor-in-memory chip [14], we believe 
the Cell+ design modifications are modest. The 
Cell+ design would require a tiny increase in 
transistor count, while having a potentially 
significant impact on DP application performance. 

 
6. Dense Matrix-Matrix Multiply 

We begin by examining the performance 
of dense matrix-matrix multiplication, or GEMM. 
This kernel is characterized by high 
computational intensity and regular memory 
access patterns, making it a extremely well suited 
for the Cell architecture. We explored two storage 
formats:  column major and block data layout [7] 
(BDL).  BDL is a two-stage addressing scheme 
(block row/column, element sub row/column) 
detailed in appendix A.   

 
 

6.1 Algorithm Considerations 
For GEMM, we adopt what is in essence 

an outer loop parallelization approach.  Each 
matrix is broken into 8n x n Cell “cache” blocks, 
which in turn are split into eight n x n SPE 
“cache” blocks.  Technically they aren’t cache 
blocks as the SPEs have no caches, but for clarity 
we will continue to use the terminology.  For the 
column layout, the matrix will be accessed via a 
number of short DMAs equal to the dimension of 
the cache block – e.g. 64 DMAs of length 64.  
BDL, on the other hand, will require a single long 
DMA of length 16KB.  

Since the local store is only 256KB, and 
must contain both the program and stack, program 
data in the local store is limited to about 56K 
words. The cache blocks, when double buffered, 
require 6n2 words of local store (one from each 
matrix) – thus making 962 the maximum square 
cache block in SP.  Additionally, in column 
layout, there is added pressure on the maximum 
cache block size for large matrices, as each 
column within a cache block will be on a different 
page resulting in TLB misses.  The minimum size 
of a cache block is determined by the FLOPs to 
word ratio of the processor.  In the middle, there 
is a cache block “sweet spot” that delivers peak 
performance.   

The loop order was therefore chosen to 
minimize the average number of pages touched 
per phase for a column major storage format.  The 
BDL approach, as TLB misses are of little 
concern, allows us to structure the loop order such 
that memory bandwidth is minimized.   

A possible alternate approach is to adapt 
Cannon’s algorithm [6] for parallel machines.  
Although this strategy could reduce the DRAM 
bandwidth requirements by transferring blocks via 
the EIB, for a column major layout, it could 
significantly increase the number of pages 
touched.  This will be the subject of future work.   

Note that for small matrix sizes, it is most 
likely advantageous to choose a model that 
minimizes the number of DMAs.  One such 
solution would be to broadcast a copy of the first 
matrix to all SPEs.   

 
6.2 Single Precision GEMM Results 

Cell GEMM performance for large 
matrices is presented in Table 2 (comprehensive 
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SGEMM results for various matrix and cache 
block sizes are available in Appendix B).  
SGEMM simulation data show that 322 blocks do 
not achieve sufficient computational intensity to 
fully utilize the processor.  The choice of loop 
order and the resulting increase in memory traffic 
prevents column major 642 blocks from achieving 
a large fraction of peak (over 90%) for large 
matrices. Only 962 block sizes provide enough 
computational intensity to overcome the 
additional block loads and stores, and thus 
achieving near-peak performance - over 
200GFlop/s.  For BDL, however, 642 blocks 
effectively achieve peak performance. Whereas 
we assume a 1000 cycle DMA startup latency in 
our simulations, if the DMA latency were only 
100 cycles, then the 642 column major 
performance would reach parity with BDL.  

At 3.2GHz, each SPE requires about 3W 
[1].  Thus with a nearly idle PPC and L2, Cell 
achieves over 200GFlop/s for approximately 40W 
of power – nearly 5GFlop/s/Watt.  Clearly for 
well-suited applications, Cell is extremely power 
efficient. 
 
6.3 Double Precision GEMM Results 

A similar set of strategies and simulations 
were performed for the DGEMM.  Cache blocks 
are now limited to 642 due to the limited size of 
local store.  However, unlike SGEMM, this block 
size does not limit performance.  Although the 
time to load a DP 642 block is twice that of the SP 
version, the time required to compute on a 642 DP 
block is about 14x as long as the SP counterpart 
(due to the limitations of the DP issue logic). Thus 
it is far easier for DP to reach its peak 
performance. – a mere 14.6 GFlop/s.  However, 
when using our proposed Cell+ hardware variant, 
DGEMM performance jumps to an impressive 51 
GFlop/s. 

 
6.4 Performance Comparison 

Table 2 shows a performance comparison 
of GEMM between Cell and the set of modern 
processors evaluated in our study.  Note the 
impressive performance characteristics of the Cell 
processors, achieving 57x, 27x, and 12.5x speed 
up for SGEMM compared with the Itanium2, 
Opteron, and X1 respectively.  For DGEMM, the 
default Cell processor is 4.2x, 3.7x, and 1.3x 

faster than the Itanium2, Opteron, and X1.  In 
terms of power, the Cell performance is even 
more impressive, achieving nearly 200x the 
efficiency of the Itanium2 for SGEMM!    

Our Cell+ exploration architecture is 
capable, for large cache blocks, of fully exploiting 
the DP pipeline and achieving over 50 GFLOP/s.  
However, for smaller blocks (e.g. 322) 
performance will drop to under 35 GFLOP/s.  In 
DP, the Cell+ architecture would be nearly 15 
times faster than the Itanium2 and nearly 50 times 
more power efficient.  Additionally, traditional 
micros (Itanium2, Opteron, etc) in multi-core 
configurations would require either enormous 
power saving innovations or dramatic reductions 
in performance, and thus would show even poorer 
performance/power compared with the Cell 
technology.  Compared to the X1, Cell+ would be 
3 times faster and 11 times more power efficient.    

The primary focus for matrix 
multiplication on Cell should be the choice of data 
storage to minimize the number of DMAs and 
TLB misses while maximizing computational 
intensity.  The decoupling of main memory data 
access from the computational kernel guarantees 
constant memory access latency since there will 
be no cache misses, and all TLB accesses are 
resolved in the communication phase.   

Matrix multiplication is perhaps the best 
benchmark to demonstrate Cell’s computational 
capabilities, as it achieves high performance by 
buffering large blocks on chip before computing 
on them 
 

Double Precision (GFlop/s) Single Precision (GFlop/s) 
Cell+ Cell X1 AMD64 IA64 Cell X1 AMD64 IA64 
51.1 14.6 11.2 3.9 3.5 204.7 16.4 7.5 3.6 

 
Table 2 - GEMM performance (in GFlop/s) for large square matrices 
on Cell, X1, Opteron, and the Itanium2. Only the best performing 
numbers are shown.  Cell demonstrates an impressive performance 
advantage with less than half the power of the other micros. 
.   

7. Sparse Matrix Vector Multiply 
 At first glance, SpMV would seem to be 
the worst application to run on Cell since the 
SPEs have neither caches nor word gather/scatter 
support.  Furthermore, SpMV has O(1) 
computational intensity.  However, these 
considerations are perhaps less important than the 
low functional unit and local store latency (<2ns), 
the task parallelism afforded by the SPEs, the 
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eight independent load store units, and ability to 
stream nonzeros via DMAs.   

Two storage formats are presented in this 
paper:  Compressed Sparse Row (CSR) and 
Blocked Compressed Sparse Row (BCSR) (see 
Appendix C for details of these storage formats).  
Only square BCSR was explored, and only 2x2 
BCSR numbers will be presented here.  Future 
Cell SpMV work will examine the entire BCSR 
space.  Because of the quadword nature of the 
SPEs, all rows within a CSR cache block are 
padded to a multiple of 4.  This greatly simplifies 
the programming model at the expense of 
increasing memory traffic.  Note that this is very 
different than 1x4 BCSR.     

 
7.1 Algorithmic Considerations 

Without an accurate performance model of 
the MFC “get list” command, one must resort to 
cache blocking to provide a reasonable estimate 
for performance.  Once again, to be clear, the term 
cache blocking, when applied to Cell, implies that 
blocks of data, in this case the vectors, will be 
loaded in the SPEs’ local stores.  For simplicity 
all benchmarks were run using square cache 
blocks.  The data structure required to store the 
entire matrix is a 2D array of cache blocks, where 
each block stores its nonzeros and row pointers as 
if it were an entire matrix.  This can result in more 
row pointer data being loaded and substantial 
overhead.  We chose not to buffer the source and 
destination vector cache blocks as this would 
require more local store resources (or more 
precisely, result in a smaller block size).  These 
tradeoffs will be examined in future work.  
Collectively the blocks are chosen to be no larger 
than ~36K words in SP (half that in DP).   

The inner loop of CSR SpMV either 
requires significant software pipelining, hefty 
loop unrolling, or an approach algorithmically 
analogous to a segmented scan [30].  As there are 
no conditional stores in the SPU assembly 
language, we chose to partially implement a 
segmented scan, where the gather operations are 
decoupled from the dot products.  This decoupled 
gather operation can be unrolled and software 
pipelined, thereby being performed in close to 
three cycles per element (the ISA is not 
particularly gather friendly). It is important to 
note that since the local store is not a write back 

cache, it is possible to overwrite its contents 
without fear of either consuming DRAM 
bandwidth or corrupting the actual arrays.   Future 
work will examine a full segmented scan via a 
software version of the conditional store. 
 As the nonzeros are stored contiguously in 
arrays, it is straightforward to stream them in via 
DMA.   Here, unlike the source and destination 
vectors, it is essential to double buffer in order to 
maximize the SPEs computational throughput 
(remember the source and destination vectors are 
not double buffered).  Using buffers of 16KB for 
SP, allows for 2K values and 2K indices for CSR, 
and 1K tiles for 2x2 BCSR. Note that for each 
phase – the loading nonzeros and indices – there 
is the omnipresent 1000 cycle DMA latency 
overhead in addition to the startup and finalize 
penalties (as in tradition pipelining). 

To partition the work among the SPEs, we 
implemented a cooperative blocking model. By 
forcing all SPEs to work on the same block, it is 
possible to broadcast the blocked source vector 
and row pointers to minimize memory traffic.  
One approach, referred to as PrivateY,  is to 
divide work among SPEs within a block by 
distributing the nonzeros as evenly as possible. 
This strategy necessitates that each SPE contains a 
private copy of the destination vector, and 
requires an inter-SPE reduction at the end of each 
blocked row. The alternate method, referred to as 
PartitionedY, partitions the destination vector 
evenly among the SPEs.  By reducing the size of 
the destination vector within each SPE, one can 
double the size of the source vector “cached” 
within the local store.  However there is no longer 
any guarantee that the SPEs’ computations will 
remain balanced, causing the execution time of 
the entire cache block to be limited by the most 
heavily loaded SPE.  Thus for load balanced 
blocks, the PartitionedY approach is generally 
advantageous; however, for matrices exhibiting 
irregular (uneven) nonzero patterns, we expect 
higher performance using PrivateY. 
 Note that there is a potential performance 
benefit by writing a kernel specifically optimized 
for symmetric matrices.  For these types of 
matrices, the number of operations can effectively 
double relative to the memory traffic.  However, 
the algorithm must block two cache blocks at a 
time – thus the symmetric matrix kernel divides 
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memory allocated for blocking the vector evenly 
among the two submatrices, and performs a dot 
product and SAXPY for each row in the lower 
triangle. 

 
7.2 Evaluation Matrices 
 In order to effectively evaluate SpMV 
performance, we examine six synthetic matrices, 
as well as ten real matrices used in numerical 
calculations from the Bebop SPARSITY suite 
[3,5]  (four unsymmetric and six symmetric).  
Table 3 presents an overview of the evaluated 
matrices.  
 

 Name N NNZ Comments 
- 7pt_32 32K 227K 3D 7pt stencil on a 323 grid 
- Random 32K 512K Totally random matrix 

- 
Random 

(symmetric) 
32K 256K 

Random Symmetric matrix – 
Total of 512K nonzeros 

- 7pt_64 256K 1.8M 3D 7pt stencil on a 643 grid 
- Random 256K 4M Totally random matrix 

- 
Random 

(symmetric) 
256K 2M 

Random Symmetric matrix – 
Total of 4M nonzeros 

15 Vavasis 40K 1.6M 2D PDE Problem 
17 FEM 22K 1M Fluid Mechanics Problem 
18 Memory 17K 125K Memory Circuit from Motorola 

36 CFD 75K 325K 
Navier-Stokes, viscous flow, fully 
coupled 

06 FEM Crystal 14K 490K 
FEM Crystal free vibration stiffness 
matrix 

09 3D Pressure 45K 1.6M 3D pressure Tube 
25 Portfolio 74K 335K Financial Portfolio - 512 Scenarios 
27 NASA 36K 180K PWT NASA Matrix with diagonal 
28 Vibroacoustic 12K 177K Flexible box, structure only 
40 Linear Prog. 31K 1M AAT 

 
Table 3 – Suite of matrices used to evaluate SpMV performance.  
Matrix numbers as defined in the SPARSITY suite are shown in the 
first column. 

 
7.3 Single Precision SpMV Results 

Single and double precision SpMV results 
for the SPARSITY matrices are show in Tables 4 
and 5.  Surprisingly, given Cell’s inherent SpMV 
limitations, the SPARSITY unsymmetric matrices 
average nearly 4GFlop/s, while the symmetric 
matrices average just over 6Gflop/s.  
Unfortunately, many of these matrices are so 
small that they utilize only a fraction of the 
default cache block size.  Detailed results showing 
single precision SpMV performance on the Cell 
for our suite of matrices are shown in Appendix 
D.   

Since it is clear that for this algorithm 
performance is almost entirely limited by the 
memory bandwidth, it is not possible for most 
unsymmetric matrices to attain the 6.4GFlop/s 
peak CSR performance, due to the substantial 

cache blocking and DMA overhead.  As one 
might expect, large matrices with high densities 
show closer to peak performance, since the 
blocking overheads can be effectively amortized.  
Similarly, larger blocks yield higher performance 
for large matrices.   

Unlike the synthetic matrices, the real 
matrices, which contain dense sub-blocks, can 
exploit BCSR without unnecessarily wasting 
memory bandwidth on zeros.  As memory traffic 
is key, storing BCSR blocks in a compressed 
format (the zeros are neither stored nor loaded) 
would allow for significantly higher performance 
if there is sufficient support within the ISA to 
either decompress these blocks on the fly, or 
compute on compressed blocks.  This is an area of 
future research. 

Overall results show that the PrivateY 
approach is generally a superior partitioning 
strategy compared with PartitionedY. In most 
cases, the matrices are sufficiently unbalanced 
that the uniform partitioning of the nonzeros 
coupled with a reduction requires less time than 
the performing a load imbalanced calculation.  

Since the local store size is fixed, blocks in 
the symmetric kernels are in effect half the size of 
the space allocated.  When using the PartionedY 
approach, the symmetric kernel is extremely 
unbalanced for blocks along the diagonal.  Thus, 
for matrices approximately the size of a single 
block, the imbalance between SPEs can severely 
impair the performance – even if the matrix is 
uniform. In fact, symmetric optimizations show 
only about 50% performance improvement when 
running the unsymmetric kernel on the symmetric 
matrices.   

Once again DMA latency plays a 
relatively small role in this algorithm.  In fact, 
reducing the DMA latency by a factor of ten 
results in only a 5% increase in performance.  
This is actually a good result.  It means than the 
memory bandwidth is highly utilized and the 
majority of bus cycles are used for transferring 
data rather than stalls. 
 On the whole, clock frequency also plays a 
small part in the overall performance.  Increasing 
the clock frequency by a factor of 2 (to 6.4GHz) 
provides only a 1% increase in performance on 
the SPARSITY unsymmetric matrix suite.  
Similarly, cutting the frequency in half (to 
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1.6GHz) results in only a 20% decrease in 
performance. Simply put, for the common case, 
more time is used in transferring nonzeros and the 
vectors rather than computing on them.   
 
7.4 Double Precision SpMV Results 
 Results from our performance estimator 
show that single precision SPMV is almost twice 
as fast as double precision, even though the 
nonzero memory traffic only increases by 50%.  
This discrepancy is due to the reduction in the 
number of values contained in a cache block, 
where twice as many blocked rows are present.  
For example, when using 16K2 SP cache blocks 
on a 128K2 matrix, the 512KB source vector must 
be loaded 8 times.  However, in DP, the cache 
blocks are only 8K2 – causing the 1MB source 
vector to be loaded 16 times, and thus resulting in 
a much higher volume of memory traffic.  Future 
work will investigate caching mega blocks across 
SPEs to reduce total memory traffic. 
 Additionally, note that the extreme drop in 
floating point throughput (14x) between SP and 
DP, has relatively little impact on performance.  
This can also be seen in the difference between 
Cell and Cell+, where a 3.5x improvement in DP 
peak performance results in only a 5% speedup 
for SpMV. 

 
 Double (GFlop/s) Single (GFlop/s) 

Matrix  Cell+ Cell AMD64 IA64 Cell IA64 
Vavasis 3.17 3.06 0.44 0.51 6.06 0.52 

FEM 3.44 3.39 0.42 0.54 5.14 0.63 
CFD 1.52 1.44 0.28 0.25 2.33 0.15 

Average 2.71 2.63 0.38 0.43 4.51 0.43 
 

Table 4 - SpMV performance (in GFlop/s) of Cell, Opteron and 
Itanium2 using single and double precision on the SPARSITY 
unsymmetric matrix suite.  Even in double precision, Cell is about six 
times faster (with only four times the memory bandwidth). 

 
 Double (GFlop/s) Single (GFlop/s) 

Matrix  Cell+ Cell AMD64 IA64 Cell IA64 
FEM  6.79 6.32 0.93 0.74 12.37 1.21 

3D Tube 6.48 6.06 0.86 0.72 11.66 1.24 
Portfolio 1.83 1.60 0.37 0.23 3.26 0.19 
NASA 1.92 1.66 0.42 0.27 3.17 0.22 
Vibro 3.90 3.47 0.57 0.31 7.08 0.41 

LP 5.17 4.87 0.47 0.33 8.54 0.66 
Average 4.35 4.00 0.60 0.43 7.68 0.66 

 
Table 5 - SpMV performance (in GFlop/s) of Cell, Opteron and 
Itanium2 using single and double precision on the SPARSITY 
symmetric matrix suite.  Cell is more than 9 times faster (with only 
four times the memory bandwidth).   

 
 
 

7.5 Performance Comparison 
Tables 4 and 5 compare Cell’s estimated 

performance for SpMV with results from the 
Itanium2 and Opteron using the SPARSITY suite, 
a highly tuned sparse matrix numerical library. 
Considering that the Itanium2 and Opteron each 
have a 6.4GB/s bus compared to the Cell’s 
25.6GB/s DRAM bandwidth – one may expect 
that a memory bound application such as SpMV 
would perform only four times better on the Cell. 
Nonetheless, on average, Cell is more than 6x 
faster in DP and 10x faster in SP.  This is because 
in order to achieve maximum performance, the 
Itanium2 must rely on the BCSR storage format, 
and thus waste memory bandwidth loading 
unnecessary zeros. However, the Cell’s high 
FLOP to byte ratio ensures that the regularity of 
BCSR is unnecessary allowing it to avoid loading 
many of the superfluous zeros.  For example, in 
matrix #17, Cell uses more than 50% of its 
bandwidth loading just the DP nonzero values, 
while the Itanium2 utilizes only 33% of its 
bandwidth.  The rest of Itanium2’s bandwidth is 
used for zeros and meta data. It should be noted 
that where simulations on Cell involve a cold start 
to the local store, the Itanium2’s have the 
additional advantage of a warm cache. 

Cell’s use of on-chip memory as a buffer 
is advantageous in both power and area compared 
with a traditional cache.  In fact, Cell is nearly 20 
times more power efficient than the Itanium2 and 
15 times more efficient than the Opteron for 
SpMV.  For a memory bound application such as 
this, multicore commodity processors will see 
little performance improvement unless they also 
scale memory bandwidth.     

Comparing results with an X1 MSP, 
previously published work showed that a highly 
optimized permutation implementation (CSRP), 
achieves only 1 GFlop/s on a DP 7pt stencil 
matrix, while the standard CSR approach achieves 
less that 0.01 GFlop/s. On a similar matrix, Cell is 
able to achieve about 1.3GFlop/s.  Thus, the Cell 
is nearly 50% faster, even though the X1 has 50% 
more memory bandwidth.  The final paper version 
will contain the full set of SpMV results for both 
the Opteron and X1.   

An alternate approach to cache blocking is 
to employ the MFC’s “get list” command.  This 
would allow for a gather operation either from 
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main memory, or from all local stores – thus 
potentially eliminating the inefficiencies of the 
current cache blocking approach, and perhaps 
yielding higher overall results. Unfortunately, no 
accurate performance information is currently 
available for small granularities (word/double).  
Therefore, unlike cache blocking where large 
granularities can be used to amortize latency, it is 
not yet possible to accurately create a SpMV 
performance model for this approach.  Future 
work will explore this approach as hardware, 
simulators, or detailed performance 
documentation become publicly available. 
 
8. Stencil Computations 

Stencil-based computations on regular 
grids are at the core of a wide range of important 
scientific applications.  In these applications, each 
point in a multidimensional grid is updated with 
contributions from a subset of its neighbors.  The 
numerical operations are then used to build 
solvers that range from simple Jacobi iterations to 
complex multigrid and block structured adaptive 
methods. 

In this work we examine two flavors of 
stencil computations derived from the numerical 
kernels of the Chombo[24] and Cactus[25] 
toolkits. Chombo is a framework for computing 
solutions of partial differential equations (PDEs) 
using finite difference methods on adaptively 
refined meshes.  Here we examine a stencil 
computation based on Chombo’s demo 
application, heattut, which solves a simple heat 
equation without adaptivity. Cactus is modular 
open source framework for computational 
science, successfully used in many areas of 
astrophysics.  Our work examines the stencil 
kernel of the Cactus demo, WaveToy, which 
solves a 3D hyperbolic PDE by finite 
differencing.  The heattut and WaveToy equations 
are shown in Figure 2.  

Notice that both kernels solve 7 point 
stencils in 3D for each point.  However, the 
heattut equation only utilizes values from the 
current time step, while WaveToy requires values 
from the current state as well as the previous state.  
Additionally, WaveToy has a higher 
computational intensity, and can more readily 
exploit the FMA pipeline. 

 

Xnext[i,j,k,t+1] = 
X[i-1,j,k,t] + X[i+1,j,k,t] +  
X[i,j-1,k,t] + X[i,j+1,k,t] +  
X[i,j,k-1,t] + X[i,j,k+1,t] + 

 αX[i,j,k,t] 
 
X[i,j,k,t+1] =  

dt2/dx2(X[i-1,j,k,t]+X[i+1,j,k,t])+  
dt2/dy2(X[i,j-1,k,t]+X[i,j+1,k,t])+  
dt2/dz2(X[i,j,k-1,t]+X[i,j,k+1,t])+ 
αX[i,j,k,t] - X[i,j,k,t-1] 

 
Figure 2 - Stencil kernels used in evaluation. Top: Chombo heattut 
equation requires only the current time step.  Bottom: CACTUS 
WaveToy equation requires both the current and previous time steps. 

 
8.1 Algorithmic considerations 
 The algorithm used on Cell is virtually 
identical to that used on traditional architectures 
except that the ISA forces main memory loads 
and stores to be explicit, rather than caused by 
cache misses and evictions.  The basic algorithmic 
approach to update the 3D cubic data array is to 
sweep across the domain, updating one plane at a 
time.  Since a stencil requires both the next and 
previous plane, a minimum of 4 planes must be 
present in the local stores: (z-1,t), (z,t), (z+1,t), 
and (z,t+1).  Additionally, bus utilization can be 
maximized by double buffering the previous 
output plane (z-1,t+1) with the next input plane 
(z+2,t) 
 In order to parallelize across SPEs, each 
plane of the 3D domain is partitioned into eight 
overlapping blocks.  Due to the finite size of the 
local store memory, a straightforward stencil 
calculation is limited to planes of 2562 elements 
plus ghost regions.  Thus each SPE updates the 
core 256x32 points from a 258x34 slab (as slabs 
also contain ghost regions too).   
 To improve performance of stencil 
computations on cache-based architectures, 
previous research has shown multiple time steps 
can be combined to increase performance. [26, 27, 
28].  This concept of time skewing can also be 
effectively leveraged in our Cell implementation.  
By keeping multiple planes from multiple time 
steps in the SPE simultaneously, it is possible to 
double or triple the number of stencils performed 
with almost no increase in memory traffic; thus 
increasing computational intensity and improving 
overall performance. Figure 3 details a flow 
diagram for the heat equation, showing both the 
simple and time skewed implementations. 

Note that the neighbor communication 
required by stencils is not well suited for the 
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aligned quadword load requirements of the SPU 
ISA – i.e. unaligned loads must be emulated with 
permute instructions.  In fact, for SP stencils with 
extensive unrolling, after memory bandwidth, the 
permute datapath is the limiting factor in 
performance - not the FPU.  This lack of support 
for unaligned accesses highlights a potential 
bottleneck of the Cell architecture; however we 
can partially obviate this problem for the stencil 
kernel via data padding. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8.2 Stencil Kernel Results 

The performance estimation for the heattut 
and WaveToy stencil kernels is shown in Table 6 - 
detailed results are available in Appendix E.  
Results show that as the number of time steps 
increases, a corresponding decrease in the grid 
size is required due to the limited memory 
footprint of the local store. In SP, the heat 
equation on the Cell is effectively 
computationally bound with two steps of time 
skewing, resulting in over 41GFlop/s.  More 
specifically, the permute unit becomes fully 
utilized as discussed in Section 8.1. In DP, 
however, the heat equation is truly 
computationally bound for only a single time step, 
achieving 8.2 GFlop/s.  Analysis also shows that 
in the Cell+ approach, the heat equation is 
memory bound when using a single time step 
attaining 10.6 GFlop/s; for time skewing, 
performance of Cell+ DP jumps to over 21 
GFlops/s. 
   We believe the temporal recurrence in the 
CACTUS WaveToy example will allow more time 
skewing in single precision at the expense of far 
more complicated code, and will be the subject of 
future investigation. 

 
 Double Precision (GFlop/s) Single Precision (GFlop/s) 

 Cell+ 
(2) Cell+ Cell AMD64 IA64 Cell 

(2) Cell AMD64 IA64 

Heat 21.1 10.6 8.2 0.53 1.20 41.9 21.2 1.14 1.55 
WaveToy 16.7 11.1 10.8 0.68 1.53 33.4 22.3 1.58 2.03 

 
Table 6 - Performance for the heat equation and WaveToy stencils on 
Cell, Opteron, and Itanium2. Opteron and Itanium experiments use 
1283 and 2563 grids.  Cell uses the largest grid that would fit within the 
local store (similar sized, but varied with time skewing).  The (2) 
versions denote a time skewed version where 2 time steps are 
computed. 

 
8.3 Performance Comparison 
 Table 6 presents a performance 
comparison of the stencil computations across our 
evaluated set of leading processors. (The final 
paper version will contain X1 results.)  Note that 
stencil performance has been optimized for the 
cache-based platforms as described in [22] 

In single precision, for this memory bound 
computation, even without time skewing, Cell 
achieves and 11x and 14x speedup compared with 
the Itanium2 and Opteron respectively. Recall that 
the Cell has only four times the memory 
bandwidth of both of these platforms – indicating 
that Cell’s potential to perform this class of 
computations in a much more efficient manner is 
due to the advantages of software controlled 
memory for algorithms exhibiting predictable 
memory accesses.  Additionally, unlike the 
Opteron and Itanium2, simple time skewing has 
the potential to significantly increase performance 
in either SP (either version of Cell) or in DP on 
the Cell+ variant.   

Finally, recall that in Section 7 we 
examined Cell SpMV performance using 7-point 
stencil matrices. We can now compare those 
results with the structured grid approach presented 
here, as the numerical computations is equivalent 
in both cases. Results show that for two time step 
calculations, the single precision structured grid 
approach achieves a 15x advantage compared 
with the sparse matrix method. This impressive 
speedup is attained through the regularity of 
memory accesses, reduction of memory traffic 
(constants are encoded in the equation rather than 
the matrix), and the ability to time skew 
(increased computational intensity).  For double 
precision, the stencil algorithm advantage is 
diminished to approximately 6x, due mainly to the 
lack of time skewing 
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Figure 3 - Flow Diagram for Heat equation flow diagram.  Left: 
Queues implemented within each SPE perform only one time 
step.  Right: Time skewing version requires an additional circular 
queue to hold intermediate results. 
 



 

 13 

 
9. Fast Fourier Transforms 

The FFT presents us with an interesting 
challenge: its computational intensity is much less 
than matrix-matrix multiplication and standard 
algorithms require a non-trivial amount of data 
movement.  Extensive work has been performed 
on optimizing this kernel for both vector [31] and 
cache-based [23] machines. In addition, 
implementations for varying precisions appear in 
many embedded devices using both general and 
special purpose hardware. In this Section we 
evaluate the implementation of a standard FFT 
algorithm on the Cell processor. 

 
9.1 Methods 

We examine both the 1D FFT 
cooperatively executed across the SPEs, and a 2D 
FFT whose 1D FFTs are each run on a single 
SPE.  In all cases the data appears in a single 
array of complex numbers.  Internally (within the 
local stores) the data is unpacked into separate 
arrays, and a table lookup is used for the roots of 
unity so that no runtime computation of roots is 
required.  As such, our results include the time 
needed to load this table. Additionally, all results 
are presented to the FFT algorithm and returned in 
natural order (i.e. a bit reversal was required to 
unwind the permutation process in all cases).  
Note that these requirements have the potential to 
severely impact performance. 

For simplicity we evaluated a naive FFT 
algorithm (no double buffering and with barriers 
around computational segments) for the single 1D 
FFT.  The data blocks are distributed cyclically to 
SPEs, 3 stages of local work are performed, the 
data is transposed (basically the reverse of the 
cyclic allocation), and then 9 to 13 stages of local 
computation is performed (depending on the FFT 
size).  At that point the indices of the data on chip 
are bit-reversed to unwind the permutation 
process and the naturally ordered result copied 
back into main memory. Once again, we presume 
a large DMA initiation overhead of 1000 cycles.  
However, a Cell implementation where the DMA 
initiation overhead is smaller, would allow the 
possibility of  much larger FFT calculations 
(including out of core FFTs) using smaller block 
transfers, with little or no slowdown using double 
buffering to hide the DMA latency. 

Before exploring the 2D FFT, we briefly 
discuss simultaneous FFTs.  For sufficiently small 
FFTs (<4K points in SP) it is possible to both 
double buffer and round robin allocate a large 
number of independent FFTs to the 8 SPEs.  
Although there is lower computational intensity, 
the sheer parallelism, and double buffering allow 
for extremely high performance (up to 
76GFlop/s). 

Simultaneous FFTs form the core of the 
2D FFT.  In order to ensure long DMAs, and thus 
validate our assumptions on effective memory 
bandwidth, we adopted an approach that requires 
two full element transposes.  First, N 1D N-point 
FFTs are performed for the rows storing the data 
back to DRAM.  Second, the data stored in 
DRAM is transposed (columns become rows) and 
stored back to DRAM. Third the 1D FFTs are 
performed on the columns, whose elements are 
now sequential (because of the transpose).  
Finally a second transpose is applied to the data to 
return it to its original layout.  Instead of 
performing an N point bit reversal for every FFT, 
entire transformed rows (not the elements of the 
rows) are stored in bit-reversed order (in effect, 
bit reversing the elements of the columns).  After 
the first transpose, a decimation in frequency FFT 
is applied to the columns.  The columns are stored 
back in bit-reversed order - in doing so, the row 
elements are bit reversed.  With a final transpose, 
the data is stored back to memory in natural order 
and layout in less time. 
 
9.2 Single Precision FFT Performance 

Table 7 presents performance results for 
the Cell 1D and 2D FFT.  For the 1D case, more 
than half of the total time is spent just loading and 
storing points and roots of unity from DRAM.  If 
completely memory bound, peak performance is 
approximately 3.2GHz * 5NlogN/3N cycles ~ 
2.7logN GFlop/s.  This means performance is 
limited to 64GFlop/s for a 4K point SP FFT 
regardless of CPU frequency.  A clear area for 
future exploration is hiding computation within 
the communication and the minimization of the 
overhead involved with the loading of the roots of 
unity.  Unfortunately the two full element 
transposes, used in the 2D FFT to guarantee long 
sequential accesses, consume nearly 50% of the 
time.  Thus, although simultaneous FFTs achieve 
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76GFlop/s, the 2D FFT reaches only 46GFlop/s – 
an impressive figure nonetheless.  Without the bit 
reversal approach, the performance would have 
further dropped to about 40GFlop/s. 
 
9.3 Double Precision FFT Performance 

When DP is employed, the balance 
between memory and computation is changed by 
a factor of 7.  This pushes a slightly memory 
bound application strongly into the 
computationally bound domain.  The SP 
simultaneous FFT is 10 times faster than the DP 
version. On the upside, the transposes required in 
the 2D FFT are now less than 20% of the total 
time, compared with 50% for the SP case.  Cell+ 
finds a middle ground between the 4x reduction in 
computational throughput and the 2x increase in 
memory traffic – increasing performance by 
almost 2.5x compared with the Cell for all 
problem sizes.  
 
9.4 Performance Comparison 

The peak Cell FFT performance is 
compared to a number of other processors in the 
Table 7.  These results are conservative given the 
naïve 1D FFT implementation we used on Cell 
whereas the other systems in the comparison used 
highly tuned FFTW [23] or vendor-tuned FFT 
implementations [18]. Nonetheless, in DP, Cell is 
8x faster than the Itanium2, and Cell+ could be as 
much as 20x faster than the Itanium2 on a large 
2D FFT. Cell+ more than doubles the DP FFT 
performance of Cell for all problem sizes. Cell 
performance is nearly at parity with the X1; 
however, we believe much headroom remains for 
more sophisticated Cell FFT implementations. 

 
  Double Precision (GFlop/s) Single Precision (GFlop/s) 
 N Cell+ Cell X1 AMD64 IA64 Cell AMD64 IA64 
 4K 12.6 5.6 2.6 2.1 2.7 29.9 3.8 2.8 

1D 16K 14.2 6.1 5.8 1.6 2.2 37.4 2.6 2.7 
 64K - - 8.8 1.2 1.5 41.8 1.9 2.4 
 1K2 15.9 6.6 - 1.1 0.8 35.9 1.5 1.6 

2D 2K2 16.5 6.7 - - - 40.5 - - 
 4K2 - - - - - 44.9 - - 

 
Table 7 – Performance of 1D and 2D FFT on Cell, X1, Opteron, and 
Itanium2.  For large FFTs, Cell is more than 10 times faster in SP than 
its competitors.  Note: the Opteron used here is a 2GHz model. 

 
Note that FFT performance on Cell 

performance improves as the number of points 
increases, so long as the points fit within the local 
store. In comparison, the performance on cache-

based machines typically reach peak at a problem 
size that is far smaller than the on-chip cache-size, 
and then drop precipitously once the associativity 
of the cache is exhausted and cache lines start 
getting evicted due to aliasing.  The evictions are 
unavoidable on cache-based architectures given 
the power-of-two problem sizes required by the 
FFT algorithm, but such evictions will not occur 
on Cell’s software-managed local store. 
Furthermore, we believe that even for problems 
that are larger than local store, 1D FFTs will 
continue to scale much better on Cell than typical 
cache-based processors with set-associative 
caches since local store provides the same benefits 
as a fully associative cache.  The FFT 
performance clearly underscores the advantages 
of software-controlled three-level memory 
architecture over conventional cache-based 
architectures.  
 
10. Conclusions 

The high performance computing 
community is exploring alternative architectural 
approaches to address the performance and power 
limitations of conventional processor designs. The 
Cell processor offers an innovative architectural 
approach that will be produced in large enough 
volumes to be cost-competitive with commodity 
CPUs. This work presents the first quantitative 
study Cell’s performance on scientific kernels and 
directly compares its performance to tuned 
kernels running on leading superscalar (Opteron), 
VLIW (Itanium2), and vector (X1) architectures.  
Since neither Cell hardware nor cycle-accurate 
simulators are currently publicly available at this 
time, we develop an analytic framework to predict 
Cell performance on dense and sparse matrix 
operations, stencil computations, and 1D and 2D 
FFTs. While peak Cell DP throughput, required 
by most scientific applications, is far lower than 
SP, it still outperforms conventional processors on 
many kernels. Overall results demonstrate the 
tremendous potential of the Cell architecture for 
scientific computations in terms of both raw DP 
and SP performance and power efficiency.  

Furthermore, we propose Cell+, a modest 
architectural variant to the Cell architecture 
designed to improve DP behavior. Results show 
that, aside from SpMV, the Cell+ significantly 
outperforms Cell for all of our evaluated kernels. 
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It is clear that if Cell is ever to play a leading role 
in scientific computing, DP must be promoted to a 
first class citizen within Cell.  
 Analysis shows that Cell’s three level 
memory architecture, which completely decouples 
main memory load/store from computation, 
provides several advantages over mainstream 
cache-based architectures.  First, kernel 
performance can be extremely predictable as the 
average load time from local store is also the 
worst case.  Second, long block transfers can 
achieve a much higher percentage of memory 
bandwidth than individual loads in much the same 
way a hardware stream prefetch engine, once 
engaged, can fully consume memory bandwidth.  
Finally, for predictable memory access patterns, 
communication and computation can be 
effectively overlapped.  Increasing the size of the 
local store or reducing the DMA startup overhead 
on future Cell implementations may further 
enhance the scheduling efficiency in order to 
better overlap the communication and 
computation. 
 There are also disadvantages to this 
architecture.  For example, SpMV, with its 
unpredictable access patterns and low 
computational intensity achieves a dismally low 
percentage of Cell’s peak performance.  Even 
memory bandwidth may be wasted since SpMV is 
constrained to use cache blocking to remove the 
unpredictable accesses to the source vector.  The 
ability, however, to perform a decoupled gather, 
to stream nonzeros, and Cell’s low functional unit 
latency, tends to hide this deficiency.  
Additionally, we see Stencil computations as an 
example of an algorithm with performance that is 
heavily influenced by the performance of the 
permute pipeline.  Here, the lack of support for an 
unaligned load instruction is a more important 
performance bottleneck than either the SP 
execution rate or the memory bandwidth 
 For dense matrix operations, it is essential 
to maximize computational intensity and thereby 
fully utilize the local store.  However, if not done 
properly, the resulting TLB misses adversely 
affect performance. For example, in the GEMM 
kernel we observe that the BDL data storage 
format, either created on the fly or before hand, 
can ensure that TLB misses remain a small issue 
even as on-chip memories increase in size.   

Table 8 compares the advantage in DP of 
Cell and Cell+ in terms of performance and power 
efficiency for our suite of evaluated kernels and 
architectural platforms.  (All missing performance 
data will appear in the final version.) Observe that 
the Cell+ approach greatly increases the already 
impressive performance characteristics of Cell – 
recall that both the Cell and Cell+ have just one 
DP floating-point unit, but the Cell+ can utilize it 
more effectively through modest enhancements to 
the execution pipeline. 

It is important to consider these 
performance differences in the context of 
imminently prevalent multi-core commodity 
processors. The first generation of this technology 
will instantiate at most two cores per chip, and 
thus will deliver less than twice the performance 
of today’s existing architectures. This factor of 2x 
is trivial compared with Cell+’s potential of 10–
20x improvement, and does nothing if not widens 
the existing power efficiency gap.     

 
 Cell+ Speedup over: Cell+ power efficiency over: 
 X1 AMD64 IA64 X1 AMD64 IA64 

GEMM 4.5x 13x 15x 11x 29x 49x 
SpMV - 7.1x 6.3x - 16x 20x 
Stencil - 40x 17.5x - 89x 57x 
1D FFT 2.4x 8.9x 6.5x 6x 20x 21x 
2D FFT - 14x 20x - 31x 65x 

 
 Cell Speedup over: Cell power efficiency over: 
 X1 AMD64 IA64 X1 AMD64 IA64 

GEMM 1.3x 3.7x 4.2x 3.3x 8.2x 14x 
SpMV - 6.9x 6.1x - 15x 20x 
Stencil - 15.5x 6.8x - 34x 22x 
1D FFT 1.05x 3.8x 2.8x 2.6x 8.5x 9.1x 
2D FFT - 6x 8.2x - 13x 27x 

 
Table 8 - Double precision speedup and increase in power efficiency of 
(Top) Cell+ and (Bottom) Cell, relative to the X1, Opteron, and 
Itanium2 for our evaluated suite of scientific kernels.  Results show an 
impressive improvement in performance and power efficiency. 

 
11. Future Work 
 A key component missing in this work is 
cycle-accurate simulation of the Cell architecture.  
We expect to work on validating the prediction 
models presented in this paper using a suite of 
high level Cell architectural simulators that are 
due to be released by IBM Research late this year.  
We will report those results in this paper if the 
software release proceeds as scheduled and NDA 
restrictions abate.  The simulation results will also 
be checked against runs on Cell-based hardware 
when it becomes available. 
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 In terms of potential algorithmic 
improvements, we believe GEMM performs 
extremely well and there is little room for 
additional gains.  SpMV on the other hand, has 
many research opportunities from data storage 
formats, to cache blocking alternatives, to the 
MFC “get list” command.  The FFT has perhaps 
the most room for improvement.  The addition of 
double buffering, and reduction in memory traffic 
should help improve the peak performance for 1D 
FFTs, and alternative strategies to simple 
transposes are a necessity for more efficient 2D 
FFT versions.  Table 9 presents the potential for 
further performance speedup for our scientific 
kernels on the Cell platform, based on our 
algorithmic analysis.    
 

 Potential further speedup on Cell 
GEMM ~0x (for N3 approaches) 
SpMV ~1.5x 
Stencil ~0x 
1D FFT 2.25x (single), 1.75x(cell+/double) 
2D FFT 2x (single), 1.75x(cell+/double) 

 
Table 9 – Potential for further speedup on Cell based on algorithmic 
analysis.   

 
 While peak Cell DP performance is 
impressive relative to its commodity peers, Cell 
will not reach its true potential for scientific 
computing until an SPE implementation that 
includes at least one fully utilizable pipelined DP 
floating point unit becomes available, as proposed 
in our Cell+ implementation. Until then, studies 
of Cell can provide insights into enhancements 
that may prove useful for mainstream desktop 
processors as well as Cell variants that include 
other HPC-oriented features. 
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APPENDIX 
 

A. GEMM Storage Formats 
For GEMM, two storage formats were 

explored.  The default is a column major format 
for all three matrices.  The second format, block 
data layout, or BDL, organizes matrix sub-blocks 
into contiguous blocks of memory [7].  This can 
be particularly advantageous as it not only 
minimizes the number of DMAs required, but also 
minimizes the number of pages touched when 
loading a sub-block.  Although a matrix might not 
be stored in BDL, it can quickly be converted on 
the fly.  Figure A.1 shows a matrix stored in the 
two formats.   

 
 
 
 
 
 
 
 
 

 
B. SGEMM Detailed Results 

Figure B.1 shows SGEMM performance 
for various matrix dimensions, cache block sizes, 
and storage formats.  Small cache blocks lack the 
computational intensity to keep the processor 
computationally bound.   
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Figure B.1 - SGEMM on Cell.  Even with the minimum overhead of BDL, 
the lack of computational intensity prevents 322 cache blocks from 
attaining 60% of peak.  The inefficiency of column major layout prevents it 
from reaching peak performance without very large cache blocks.   

 
C. SpMV Storage Formats 

For SpMV, three storage formats were 
examined:  compressed sparse row (CSR), 
compressed sparse column (CSC), and blocked 
compressed sparse row (BCSR).  CSR collects the 
nonzeros from one row at a time and appends 

three arrays:  the values, the corresponding 
columns for the values, and the locations in the 
first two arrays where the row starts.  BCSR 
behaves in much the same way as CSR.  The 
difference is that CSR operates on what are in 
effect 1x1 blocks, and BCSR operates on   r x c 
blocks.  Thus the values array is grouped into r*c 
segments which include zeros.  CSC is organized 
around columns rather than rows. 

All three storage formats provide regular 
access patterns to the nonzeros.  However, CSR 
and CSC force a very irregular access pattern to 
the source and destination vectors respectively.  
For SIMD sized granularities BCSR provides 
regular access within a block, but requires 
irregular accesses outside.  BCSR also has the 
pitfall that zeros are both loaded and computed 
on.  Only the 2x2 BCSR data will be shown as the 
4x4 blocks showed poor performance.  Figure C.1 
provides an example matrix and the 
corresponding data structures used in CSR and 
BCSR.   
 
 
 
 
 
 
 
 
 
 
Figure C.1 - A 4x4 matrix with columns numbered from 0 to 3 is shown 
stored in 1x1 BCSR (CSR), and 2x2 BCSR.  CSC would look similar to 
CSR except that it is organized along columns rather than rows. 

 
 
 A CSR/BCSR pseudocode overview can 
be illustrative.  In CSR, Y[r], values[i], and 
X[columns[i]] are all scalars.  In BCSR, Y[r], and 
X[columns[i]] now are segments of the vectors, 
and the values[i] are blocks.  The X[columns[i]] 
statement is referred to as a gather operation.  
CSR performs a dot product for each row.   
 
 for all rows r 
   for all elements i in row r 
     Y[r] = Y[r] + values[i]*X[columns[i]] 

 

1 2 3 
4 5 

6 
7 

CSR 
Values = {1,2,3,4,5,6,7} 
Columns = {0,2,3,1,3,2,3} 
RowStart = {0,3,5,6,7} 
 
BCSR (2x2) 
Values = {1,0,0,4,  2,3,0,5,  6,0,0,7} 
Columns = {0,          2,            2        } 
RowStart = {0,8,12} 
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Figure A.1 - Left: column major layout.    Right: BDL.  Within each n 
x n block, values are stored in column major order 
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For completeness, the following is pseudo code 
for CSC. 
 
 for all columns c 
   for all elements i in column c 
     Y[rows[i]] = Y[rows[i]] + values[i]*X[c] 

 
CSC performs a SAXPY for each column.  

The write to Y is a scatter operation.  Thus there 
is a dependency from the gather to the scatter, and 
there is a potential dependency from the scatter 
for one column to the gather on the next. 
 
D. Detailed Single Precision SpMV Results 

Cell SpMV performance is detailed in 
figures D.1 & D.2.  For each matrix a number of 
storage and partitioning strategies were employed.  
BCSR does well on real world matrices, dense 
matrices achieve higher performance, and 
unbalanced matrices perform poorly in the 
PartitionedY strategy. 
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Figure D.1 - Top: SP SpMV using synthetic matrices – clear benefits from 
density and uniformity.  Bottom: using SPARSITY unsymmetric matrices 
– PrivateY shows superior performance due to unbalance.   
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Figure D.2 - SP SpMV using SPARSITY symmetric matrices – Significant 
performance boost from minimization of nonzero traffic.  Each of the cache 
blocks is half as big.  Imbalance in PartitionedY strategy can generate 
serious performance degradation.   

 
E. Detailed Stencil Results 
 The performance estimates for the heattut 
and WaveToy stencil kernels on the Cell is 
detailed in Figure E.1.  Note that as the number of 
time steps increases, a corresponding decrease in 
the grid size is required due to the limited memory 
footprint of the local store.  Observe that in SP, 
the heat equation is effectively computationally 
bound when time skewing with two time steps.  
More specifically, the permute unit becomes fully 
utilized as discussed in Section 6.1. In DP, 
however, the heat equation is truly 
computationally bound for only a single time step. 
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Figure E.1 - Performance in GFlop/s for the two stencils examined.  For 
each, up to 3 time steps (time skewing) were taken.  On Cell, DP is 
computationally bound with only a single time step.  The Cell+ analysis 
showed that the heat equation is memory bound with a one time step, but 
time skewing will improve performance. 
  
 
 
 




