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The Potential of the Cell Processor for Scientific @mputing

Samuel Williams, John Shalf, Leonid Oliker, Parry HusbaBti®aib Kamil, Katherine Yelick
Lawrence Berkeley National Laboratory
1 Cyclotron Road
Berkeley CA, 94720
{SWWilliams, JShalf, LOliker, PJRHusbands, SAKamil, Kéktk}@Ibl.gov

The slowing pace of commodity microprocessogrow, the HPC community is looking for
performance improvements combined with everalternative architectures that provide high
increasing chip power demands has become @krformance on scientific applications, yet have a
utmost concern to computational scientists. As healthy market outside the scientific community.
result, the high performance computingin this work, we examine the potential of the
community is examining alternative architecturegorthcoming STI Cell processor as a building
that address the limitations of modern cacheblock for future high-end computing systems, by
based designs. In this work, we examine théwvestigating performance across several key
potential of the using the forthcoming STI Cellscientific computing kernels: dense matrix
processor as a building block for future high-endnultiply, sparse matrix vector multiply, stencil
computing systems. Our work contains severatomputations on regular grids, as well as 1D and
novel contributions. We are the first to presen2D FFTs.
quantitative Cell performance data on scientific Cell is a high-performance implementation
kernels and show direct comparisons againsif software-controlled memory hierarchy in
leading superscalar (AMD Opteron), VLIW (Intel conjunction with the considerable floating point
Itanium2), and vector (Cray X1) architecturesresources that are required for demanding
Since neither Cell hardware nor cycle-accurateumerical algorithms. Despite its radical
simulators are currently publicly available, wedeparture from mainstream/commodity processor
develop both analytical models and simulators taesign, Cell is particularly compelling because it
predict kernel performance. Our work alsowill be produced at such high volumes that it will
explores the complexity of mapping severabe cost-competitive with commodity CPUs. The
important scientific algorithms onto the Cell’s current implementation of Cell is most often noted
unique architecture. Additionally, we proposefor its extremely high performance single-
modest microarchitectural modifications thatprecision (SP) arithmetic, which is widely
could significantly increase the efficiency ofconsidered insufficient for the majority of
double-precision calculations.  Overall resultsscientific applications.  Although Cell's peak
demonstrate the tremendous potential of the Cedlouble precision performance is still impressive
architecture for scientific computations in termsrelative to its commodity peers
of both raw performance and power efficiency. (~14.6GFLOP/s@3.2GHz), we explore how
modest hardware changes could significantly

Keywords improve performance for computationally

Cell, GEMM, SpMV, sparse matrix, FFT, Stencil, intensive DP applications.

three level memory This paper presents several novel results.
We present quantitative performance data for

1. Introduction scientific kernels that compares Cell performance

Over the last decade the HPC communityo leading superscalar (AMD Opteron), VLIW
has moved towards machines built on commodityintel Itanium2), and vector (Cray X1)
microprocessors as a strategy for tracking tharchitectures. We believe this is the first
tremendous growth in processor performance ipublished analysis of its kind. Since neither Cell
that market. As this pace slows, and the powdrardware nor cycle-accurate simulators are
requirements of these processors continues tarrently publicly available, we develop both
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analytical models and simulators to predict kernetnemories [13, 14], and three level memory
performance. Our work also explores thearchitectures [11, 12]. Until recently, few of these
complexity of mapping several importantarchitectural concepts made it into mainstream
scientific algorithms onto the Cell's unique processor designs, but the increasingly stringent
architecture in order to leverage the large numbgyower/performance requirements for embedded
of available functional units and softwaresystems have resulted in a number of recent
controlled memory architecture. Additionally, weimplementations that have adopted these
propose modest microarchitectural modificationsoncepts. Chips like the Sony Emotion Engine [8,
that could increase the efficiency of double9, 10] and Intel's MXP5800 both achieved high
precision arithmetic calculations, and demonstratperformance at low power by adopting the three
significant performance improvements comparedregisters, local memory, external DRAM) level
with the current Cell implementation. memory architecture. More recently, the STI Cell
Overall results demonstrate theprocessor has adopted a similar approach where
tremendous potential of the Cell architecture fodata movement between these three address
scientific computations in terms of both rawspaces is explicitly controlled by the application.
performance and power efficiency. We alsoThis more aggressive approach to memory
conclude that Cell's heterogeneous multi-cora@rchitecture was adopted to meet the demanding
implementation is inherently better suited to thecost/performance requirements of Sony's
HPC environment than homogeneous commoditypcoming video game console. However, to date,

multi-cores. an in-depth study to evaluate the potential of
utilizing the Cell architecture in the context of
2. Related Work scientific computations does not appear in the

One of the key Ilimiting factors for literature.
computational performance is off-chip memory
bandwidth. Since increasing the off-chip3. Cell Background
bandwidth is prohibitively expensive, many Cell [1, 2] was designed by a partnership
architects are considering ways of using availablef Sony, Toshiba, and IBM (STI) to be the heart
bandwidth more efficiently. Examples includeof Sony’'s forthcoming PlayStation3 gaming
hardware multithreading or more efficientsystem. Cell takes a radical departure from
alternatives to  conventional cache-basedonventional multiprocessor or multi-core
architectures such as software controlledrchitectures. Instead of using identical
memories. Software-controlled memories carcooperating commodity processors, it uses a
potentially  improve  memory  subsystemconventional high performance PowerPC core that
performance by supporting finely controlledcontrols eight simple SIMD cores, called
prefetching and more efficient cache-utilizationsynergistic processing elements (SPEs), where
policies that take advantage of application-levebéach SPE contains a synergistic processing unit
information — but do so with far less architectura{SPU) and a local memory. An overview of Cell
complexity than conventional cache architecturess provided in Figure 1.
While placing data movement under explicit Unlike a typical coprocessor, each SPE
software control increases the complexity of théas its own local memory from which it fetches
programming model, prior research hascode and reads and writes data. The PowerPC
demonstrated that this approach can be more, in addition to virtual to physical address
effective for hiding memory latencies (including translation, is responsible for the management of
cache misses and TLB misses) — requiring fathe contents of each SPE’s 256KB of non-cache
smaller cache sizes to match the performance obherent local store. Thus to load and run a
conventional cache implementations [12, 13].  program on an SPE, the PowerPC core initiates

Over the last five years, a plethora ofthe direct memory access (DMA) of SPE program
alternatives to  conventional cache-base@dnd data from DRAM to the local store. Once the
architectures have been suggested includinDMAs complete, the PowerPC core starts the
scratchpad memories [15, 16, 17], paged on-chiSPE. For predictable data access patterns the
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local store approach is highly advantageous as approximately one fourteenth the peak SP flop
can be very efficiently utilized through explicit rate[21].  Similarly, for bandwidth intensive
software-controlled scheduling. Improvedapplications such as sparse matrix vector
bandwidth utilization through deep pipelining of multiplication (SpMV) we expect SP versions to
memory requests requires less power, and hasba between 1.5x and 4x as fast as DP, depending
faster access time than a large cache due in partdo density and uniformity.

its lower complexity. If however, the data access With respect to the memory subsystem, all
pattern lacks predictability, then the advantages dbads and stores issued from the SPE can only
software managed memory are lost. access the SPE’s local memory. The limited scope
25.6 GBIs of loads and stores allows one to view the SPE as

having a two-level register file. The first levekis

PPC | memory]| SPE | SPE | SPE | SPE 128 x 128b single cycle register file, where the

S12KB Icontrollell 256KB | 256K | 250KB | 256K second is a 16K x 128b six cycle register file.

v v y__ ¥ v v Data must be moved into the first level before it

4 rings, Sbvtes/ core cycle can be operated on by instructions.

‘; I ‘; ‘; ‘; ‘; The Cell processor depends on explicit

) 70 SPE T SPE | SpE | sPE DMA operations to move data from main memory
256KB | 256KB | 256KB | 256KB to the local store of the SPE. Whereas scalar

Figure 1 — Overview of the Cell processor. Eight/Es, one PowerPC processors have byte, word, half and doubleword
fout rings. Each g 15 1235 wide and runs at ndthe core frequency. 10ads, the SPEs have selectable length DMAs that
Each SPE has its own local memory from which it rua programs. run in parallel (via DMA engines) with the SIMD
_ _code. Thus an SPE has the capability of
Access to external memory is handled Vigyitigating memory latency overhead via double-
a 25.6GB/s XDR memory controller. — Theptared DMA loads and stores. At the SPE level,
PowerPC core, the eight SPEs, the DRAMyqgt aigorithms are programmed much the same
controller, and 1/0O controllers are all connecteq,\,ay as they are on traditional architectures. The
via 4 data rings, collectively known as the EIB.gpg's pMAs are simply a condensed version of a
The ring interface within each unit allows 8 giraam of scalar loads.  In fact, they are much like
bytes/cycle to be read or written. Simultaneous yaqitional unit stride vector load — the major
transfers on the same ring are possible. Allitference being that they do not suffer the
transfers are orchestrated by the PowerPC core. performance issues associated with a hardware
Each SPE includes four single precisiongncoded vector length. We exploit  these
(SP) 6-cycle pipelined FMA datapaths and ongjmijarities to existing HPC platforms to select
double precision (DP) half-pumped (one SIMDprqgramming models that are both familiar and

instruction every other cycle) 9-cycle pipelinedyaciaple for scientific application developers.
FMA datapath with 4 cycles of overhead for data

movement [20]. Cell has a 7 cycle in-ordery Programming Models
execution pipeline and forwarding network [1]. Moving from a hardware managed
IBM appears to have solved the problem ofnemory hierarchy to one controlled explicitly by
inserting a 13 (9+4) cycle DP pipeline into a 7ihe  application significantly complicates ~the
stage in-order machine by choosing the MINIMUMY o 4ramming model. Our goal is to select the
effort/performance/power solution of simply programming paradigm that offers the simplest
stalling for 6 cycles after issuing a DP instructionpossible expression of an algorithm while being
The SPU's DP throughput [29] of one DPcanapie of fully utilizing the hardware resources
instruction every 7 (1 issue + 6 stall) cyclesysine cell processor.
coincides perfectly with this rea_soning. _ The candidate programming models for
_Thus ~ for ~ computationally intense ce|| can be divided into three categories:
algorithms like dense matrix multiply (GEMM), jnqependent SPEs, data pipelined, and lock step
we expect SP implementations to run near pegfaia parallel. Heterogeneous programming of
whereas  DP  versions would drop  ©Opgierggeneous elements is atypical of applications
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in the scientific community so the independensnippets. The model must accurately reflect the
SPE model was not pursued vigorously. Data&onstraints imposed by resource conflicts in the
pipelining, where large blocks of data arememory subsystem. For instance, a sequence of
streamed from one SPE to the next, may bBMAs issued to multiple SPEs must be serialized,
suitable for certain classes of algorithms and wilas there is only a single DRAM controller. The

be the focus of future investigation. The datamodel also presumes a fixed DMA initiation

parallel programming model is well established idatency of 1000 cycles based on existing design
the computational sciences and offers the simpledbcuments available regarding the Cell

and most direct method of decomposing thémplementation. The model also presumes either a
problem, and thus is the focus of oursnooping or a broadcast mechanism was

investigation. implemented in the EIB either in hardware or via
Data-parallel programming is quite similar software emulation.
to loop-level parallelization afforded by OpenMP The number of SPEs, the local store size

or the vector-like multistreaming on the Cray Xland the bandwidths are encoded directly into the
and the Hitachi SR-8000. Although thismodel as constants. External control is provided
decomposition offers the simplest programmindor parameters such as the DMA initiation
model, the restrictions on program structure antatency.
the fine-grained synchronization mean that it may Our simulation framework is essentially a
not be the fastest or the most efficient approacimemory trace simulator — the difference being the
and thus slight variations were employed. complexity of the concurrent memory and
computation operations that it must simulate.
5. Simulation Methodology Instead of explicitly simulating computation using
In this paper, performance estimation isa cycle-accurate model of the functional units, we
broken into two steps commensurate with the twsimulate the flow of data through the machine,
phase double buffered computational model. Thiand annotate the flow with execution time.
provides a high level understanding of theTherefore, our simulation is more sophisticated
performance limitations of the Cell processor orthan a typical memory-trace simulator; however,
various algorithms. Once we gain access to although it should accurately model execution
cycle accurate simulator and/or Cell hardware, wame, it does not actually perform the
will verify our results and gain understanding ofcomputation.
the processor features that limit performance.

In the first step, pencil and paper SPECELLChip X1(MSP) | Opteron [Itanium2
CalCU|atiOnS were performed tq estimate the architecture | SIMD multi-core| multi-chip| Super | VLIW
computational and memory requirements for the SIMD | Vector | Scalar

Frequency |3.2GHz 3.2GHz | 800MHz| 2.2GHZ 900MHgz
kernels of the four benchmarks. The kernels were prav sw . 256GB/s| 34GB/s| 64GBk 6.4GHs
segmented into code-snippets that operate only @fFlop/s(single) | 256 204.8 25.6 8.8 3.6

. GFlop/s(double)| 1.83 14.63 12.8 4.4 3.6

data present in Fhe !ocal store of the S_PE. THE Local Store | 256kB~ 2MB . . .
performance estimation was further refined by L2 Cache - 512kB | 2vMB | 1MB | 256KB
. . . L L3 Cache - - - - 1.5MB
hand-coding SPE assembly instructions for the power aw[] -40w | 100w | sow | 130w

code snippets and calculating the execution times
for those Snippets — taking into account thgable 1 - Architectural overview of STI Cell [21],Cray X1 MSP, AMD
latency of each operation, and the operanglicion ine actve SPEide PowerPC programmingatel,
alignment requirements given the
SIMD/quadword nature of the SPE execution Algorithms  that employed double-
pipeline. The execution times for these snippetsuffering were broken into a number of phases in
are parameters for the execution component of thghich communication for the current objects and
performance estimator. computation for the previous objects can take
In the second step, we construct a modgllace simultaneously. Of course, for each phase,
that tabulates the time required for DMA loadsit was necessary to convert cycles into actual time
and stores of the operands required by the codsmd FLOP rates. For simplicity we chose to
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model a 3.2GHz, 8 SPE version of Cell with6.1 Algorithm Considerations
25.6GB/s of memory bandwidth. This version of For GEMM, we adopt what is in essence
Cell is likely to be used in the first release of thean outer loop parallelization approach. Each
Sony PlayStation3 [19]. The lower frequency hadnatrix is broken into 8n x n Cell “cache” blocks,
the simplifying benefit that both the EIB andwhich in turn are split into eight n x n SPE
DRAM controller could deliver two SP words per“cache” blocks. Technically they aren’t cache
cycle. The maximum flop rate of such a machindlocks as the SPEs have no caches, but for clarity
would be 204.8GFlop/s, with a computationalwe will continue to use the terminology. For the
intensity of 32 FLOPs/word. It is unlikely that column layout, the matrix will be accessed via a
any version of Cell would have less memorynumber of short DMAs equal to the dimension of
bandwidth or run at a lower frequency. the cache block — e.g. 64 DMAs of length 64.
For comparison, we examine performanceBDL, on the other hand, will require a single long
on several leading processor designs: the vect®MA of length 16KB.
Cray X1 MSP, superscalar AMD Opteron 248 and Since the local store is only 256KB, and
VLIW Intel Itanium2. The key architectural must contain both the program and stack, program
characteristics are detailed in Table 1. data in the local store is limited to about 56K
words. The cache blocks, when double buffered,
5.1 Cell+ Architectural Exploration require 6A words of local store (one from each
In order to explore the limitations of Cell's matrix) — thus making $6the maximum square
DP issue bandwidth, we propose an alternateache block in SP. Additionally, in column
design with a longer forwarding network. In thislayout, there is added pressure on the maximum
hypothetical implementation, called Cell+, eachcache block size for large matrices, as each
SPE would still have the single DP datapath, butolumn within a cache block will be on a different
would be able to dispatch one DP SIMDpage resulting in TLB misses. The minimum size
instruction every other cycle instead of one evergf a cache block is determined by the FLOPs to
7 cycles. The Cell+ design would achieve 3.5xvord ratio of the processor. In the middle, there
the DP throughput of the Cell (51.2 GFlop/s) byis a cache block “sweet spot” that delivers peak
fully utilizing the existing DP datapath; however, performance.
it would maintain the same SP throughput, The loop order was therefore chosen to
frequency, bandwidth, and power as the Cellminimize the average number of pages touched
Based on our experience designing the VIRAMper phase for a column major storage format. The
vector processor-in-memory chip [14], we believeBDL approach, as TLB misses are of little
the Cell+ design modifications are modest. Theoncern, allows us to structure the loop order such
Cell+ design would require a tiny increase inthat memory bandwidth is minimized.
transistor count, while having a potentially A possible alternate approach is to adapt
significant impact on DP application performance Cannon’s algorithm [6] for parallel machines.
Although this strategy could reduce the DRAM
6. Dense Matrix-Matrix Multiply bandwidth requirements by transferring blocks via
We begin by examining the performancethe EIB, for a column major layout, it could
of dense matrix-matrix multiplication, or GEMM. significantly increase the number of pages
This kernel is characterized by hightouched. This will be the subject of future work.
computational intensity and regular memory Note that for small matrix sizes, it is most
access patterns, making it a extremely well suitetkely advantageous to choose a model that
for the Cell architecture. We explored two storageninimizes the number of DMAs. One such
formats: column major and block data layout [7]solution would be to broadcast a copy of the first
(BDL). BDL is a two-stage addressing schemeamatrix to all SPEs.
(block row/column, element sub row/column)
detailed in appendix A. 6.2 Single Precision GEMM Results
Cell GEMM performance for large
matrices is presented in Table 2 (comprehensive
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SGEMM results for various matrix and cachefaster than the Itanium2, Opteron, and X1. In
block sizes are available in Appendix B).terms of power, the Cell performance is even
SGEMM simulation data show that%locks do more impressive, achieving nearly 200x the
not achieve sufficient computational intensity toefficiency of the Itanium2 for SGEMM!

fully utilize the processor. The choice of loop Our Cell+ exploration architecture is
order and the resulting increase in memory trafficapable, for large cache blocks, of fully exploiting
prevents column major 8&locks from achieving the DP pipeline and achieving over 50 GFLOP/s.
a large fraction of peak (over 90%) for largeHowever, for smaller blocks (e.g. %2
matrices. Only 95 block sizes provide enough performance will drop to under 35 GFLOP/s. In
computational intensity to overcome theDP, the Cell+ architecture would be nearly 15
additional block loads and stores, and thusimes faster than the Itanium2 and nearly 50 times
achieving near-peak performance - ovemore power efficient. Additionally, traditional
200GFlop/s. For BDL, however, 4blocks micros (Itanium2, Opteron, etc) in multi-core
effectively achieve peak performance. Whereasonfigurations would require either enormous
we assume a 1000 cycle DMA startup latency ipower saving innovations or dramatic reductions
our simulations, if the DMA latency were only in performance, and thus would show even poorer
100 cycles, then the &4 column major performance/power compared with the Cell

performance would reach parity with BDL. technology. Compared to the X1, Cell+ would be
At 3.2GHz, each SPE requires about 3W3 times faster and 11 times more power efficient.
[1]. Thus with a nearly idle PPC and L2, Cell The primary focus for  matrix

achieves over 200GFlop/s for approximately 40Whnultiplication on Cell should be the choice of data
of power — nearly 5GFlop/s/Watt. Clearly forstorage to minimize the number of DMAs and
well-suited applications, Cell is extremely powerTLB misses while maximizing computational

efficient. intensity. The decoupling of main memory data
access from the computational kernel guarantees
6.3 Double Precision GEMM Results constant memory access latency since there will

A similar set of strategies and simulationsbe no cache misses, and all TLB accesses are
were performed for the DGEMM. Cache blocksresolved in the communication phase.
are now limited to 6%due to the limited size of Matrix multiplication is perhaps the best
local store. However, unlike SGEMM, this block benchmark to demonstrate Cell’'s computational
size does not limit performance. Although thecapabilities, as it achieves high performance by
time to load a DP 64block is twice that of the SP buffering large blocks on chip before computing
version, the time required to compute on ABR  on them
block is about 14x as long as the SP counterpart
(due to the limitations of the DP issue logic). Thus | Double Precision (GFlop/s) Single Precision (GFlog)
. . . . Cell+ Cell X1 AMD64 1A64| Cell X1 AMD64 1A64
it is far easier for DP to reach its peak [511 146112 39 35[2047 164 75 _ 36
performance. — a mere 14.6 GFIOp/S' Howeveqjable 2 - GEMM performance (in GFlop/s) for large square matiices
when USing our proposed Cell+ hardware Variantm Cell, X1, Optgron, and the ItaniurEZ. Only tge b?at performing

DGEMM performance jumps to an impressive 5Inumbers are shown. Cell demonstrates an impressiveerformance
GF|Op/S advantage with less than half the power of the otlemicros.

7. Sparse Matrix Vector Multiply

6.4 Performance Comparison At first glance, SpMV would seem to be

Table 2 shows a performance comparisofthe worst application to run on Cell since the
of GEMM between Cell and the set of modernSPEs have neither caches nor word gather/scatter
processors evaluated in our study. Note theupport. Furthermore, SpMV has O(1)
impressive performance characteristics of the Celomputational  intensity. However, these
processors, achieving 57x, 27x, and 12.5x speeasbnsiderations are perhaps less important than the
up for SGEMM compared with the Itanium2, low functional unit and local store latency (<2ns),
Opteron, and X1 respectively. For DGEMM, thethe task parallelism afforded by the SPEs, the
default Cell processor is 4.2x, 3.7x, and 1.3x
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eight independent load store units, and ability teache, it is possible to overwrite its contents
stream nonzeros via DMAs. without fear of either consuming DRAM
Two storage formats are presented in thi®andwidth or corrupting the actual arrays. Future
paper: Compressed Sparse Row (CSR) andork will examine a full segmented scan via a
Blocked Compressed Sparse Row (BCSBe ( software version of the conditional store.
Appendix C for details of these storage formats). As the nonzeros are stored contiguously in
Only square BCSR was explored, and only 2x&rrays, it is straightforward to stream them in via
BCSR numbers will be presented here. FuturBMA. Here, unlike the source and destination
Cell SpMV work will examine the entire BCSR vectors, it is essential to double buffer in order to
space. Because of the quadword nature of thmaximize the SPEs computational throughput
SPEs, all rows within a CSR cache block aréremember the source and destination vectors are
padded to a multiple of 4. This greatly simplifiesnot double buffered). Using buffers of 16KB for
the programming model at the expense 08P, allows for 2K values and 2K indices for CSR,
increasing memory traffic. Note that this is veryand 1K tiles for 2x2 BCSR. Note that for each
different than 1x4 BCSR. phase — the loading nonzeros and indices — there
is the omnipresent 1000 cycle DMA latency
7.1 Algorithmic Considerations overhead in addition to the startup and finalize
Without an accurate performance model openalties (as in tradition pipelining).
the MFC “get list” command, one must resort to To partition the work among the SPEs, we
cache blocking to provide a reasonable estimatenplemented a cooperative blocking model. By
for performance. Once again, to be clear, the terforcing all SPEs to work on the same block, it is
cache blocking, when applied to Cell, implies thapossible to broadcast the blocked source vector
blocks of data, in this case the vectors, will beand row pointers to minimize memory traffic.
loaded in the SPESs’ local stores. For simplicityOne approach, referred to #&sivateY, is to
all benchmarks were run using square cachéivide work among SPEs within a block by
blocks. The data structure required to store thdistributing the nonzeros as evenly as possible.
entire matrix is a 2D array of cache blocks, wher&his strategy necessitates that each SPE contains a
each block stores its nonzeros and row pointers @sivate copy of the destination vector, and
if it were an entire matrix. This can result in morerequires an inter-SPE reduction at the end of each
row pointer data being loaded and substantiddlocked row. The alternate method, referred to as
overhead. We chose not to buffer the source arfébrtitionedY, partitions the destination vector
destination vector cache blocks as this woulévenly among the SPEs. By reducing the size of
require more local store resources (or mor¢he destination vector within each SPE, one can
precisely, result in a smaller block size). Theseouble the size of the source vector “cached”
tradeoffs will be examined in future work. within the local store. However there is no longer
Collectively the blocks are chosen to be no largesiny guarantee that the SPES’ computations will
than ~36K words in SP (half that in DP). remain balanced, causing the execution time of
The inner loop of CSR SpMV either the entire cache block to be limited by the most
requires significant software pipelining, heftyheavily loaded SPE. Thus for load balanced
loop unrolling, or an approach algorithmically blocks, the PartitionedY approach is generally
analogous to a segmented scan [30]. As there amdvantageous; however, for matrices exhibiting
no conditional stores in the SPU assemblyrregular (uneven) nonzero patterns, we expect
language, we chose to partially implement digher performance using PrivateY.
segmented scan, where the gather operations are Note that there is a potential performance
decoupled from the dot products. This decouplebdenefit by writing a kernel specifically optimized
gather operation can be unrolled and softwaror symmetric matrices. For these types of
pipelined, thereby being performed in close tamatrices, the number of operations can effectively
three cycles per element (the ISA is notdouble relative to the memory traffic. However,
particularly gather friendly). It is important to the algorithm must block two cache blocks at a
note that since the local store is not a write backme — thus the symmetric matrix kernel divides
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memory allocated for blocking the vector evenlycache blocking and DMA overhead. As one
among the two submatrices, and performs a dwohight expect, large matrices with high densities
product and SAXPY for each row in the lowershow closer to peak performance, since the

triangle. blocking overheads can be effectively amortized.
Similarly, larger blocks yield higher performance

7.2 Evaluation Matrices for large matrices.
In order to effectively evaluate SpMV Unlike the synthetic matrices, the real

performance, we examine six synthetic matricespatrices, which contain dense sub-blocks, can
as well as ten real matrices used in numericaxploit BCSR without unnecessarily wasting
calculations from the Bebop SPARSITY suitememory bandwidth on zeros. As memory traffic
[3,5] (four unsymmetric and six symmetric).is key, storing BCSR blocks in a compressed
Table 3 presents an overview of the evaluatetbrmat (the zeros are neither stored nor loaded)

matrices. would allow for significantly higher performance
if there is sufficient support within the ISA to
Name N__ NNz Comments_ either decompress these blocks on the fly, or
7pt_32 32K 227K 3D 7pt stencil on a®3ftid ..
Random | 32K 512K Totally random matrix compute on compressed blocks. This is an area of
Random 39K 256K Random Symmetric matrix — future research.
(symmetric) Total of 512K nonzeros h h h .
7ot 64 | 256K 1.8M 3D 7pt stencil on a%gtid Overall results show that the PrivateY
Random | 256K  4M Totally random matrix approach is generally a superior partitioning
Random Random Symmetric matrix — . ..
(symmetric) | 226K 2M 1002l of 4M nonzeros strategy compared with PartitionedY. In most
i&; Vgéiﬂsis 24205 luslM FZID_dF’aE Eroblen; o cases, the matrices are sufficiently unbalanced
ul ecnanics rroblem . . .
18 Memory 17K 125K Memory Circuit from Motorola that the L.IﬂlfOl’m partltlomng _Of the npnzeros
36 CFD 75K 325KNavi<|er;jStokes, viscous flow, fully  coupled with a reduction requires less time than
S ————— the performing a load imbalanced calculation.

06 | FEM Crvstal| 14K 490KFEM Crystal free vibration stiffess g ] e .
ool 3 y 3 ma;rix X Since the local store size is fixed, blocks in
D Pressure 45K  1.6M 3D pressure Tube . . .

25 Portfolio 74K 335K Financial Portfolio - 512 $e&ios the Symmetrlc kernels are in eff_eCt half the SIZE of
37 _bNASA _ 362K 118707KKP;/|VT_EIASbA Matrix wi;: diagonal|  the space allocated. When using the PartionedY
70 | Lo rog ] 3aK  am Ak D1e box stiucturo approach, the symmetric kernel is extremely

unbalanced for blocks along the diagonal. Thus,
for matrices approximately the size of a single

Table 3 — Suite of matrices used to evaluate SpMVepformance.
Matrix numbers as defined in the SPARSITY suite areshown in the

first column. block, the imbalance between SPEs can severely
_ o impair the performance — even if the matrix is
7.3 Single Precision SpMV Results uniform. In fact, symmetric optimizations show

Single and double precision SpMV resultsonly about 50% performance improvement when

for the SPARSITY matrices are show in Tables 4unning the unsymmetric kernel on the symmetric
and 5. Surprisingly, given Cell's inherent SpMV matrices.

limitations, the SPARSITY unsymmetric matrices Once again DMA latency plays a
average nearly 4GFlop/s, while the symmetrigelatively small role in this algorithm. In fact,
matrices ~ average just over  6Gflop/s.reducing the DMA latency by a factor of ten
Unfortunately, many of these matrices are s@esults in only a 5% increase in performance.
small that they utilize only a fraction of the This is actually a good result. It means than the
default cache block size. Detailed results showinghemory bandwidth is highly utilized and the

single precision SpMV performance on the Celmajority of bus cycles are used for transferring
for our suite of matrices are shown in Appendixdata rather than stalls.
D. _ o _ _ On the whole, clock frequency also plays a
Since it is clear that for this algorithm small part in the overall performance. Increasing
performance is almost entirely limited by thethe clock frequency by a factor of 2 (to 6.4GHz)
memory bandwidth, it is not possible for mostprovides only a 1% increase in performance on
unsymmetric matrices to attain the 6.4GFlop/she SPARSITY unsymmetric matrix suite.
peak CSR performance, due to the substanti@imilarly, cutting the frequency in half (to
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1.6GHz) results in only a 20% decrease irv.5 Performance Comparison
performance. Simply put, for the common case, Tables 4 and 5 compare Cell's estimated
more time is used in transferring nonzeros and theerformance for SpMV with results from the
vectors rather than computing on them. Itanium2 and Opteron using the SPARSITY suite,
a highly tuned sparse matrix numerical library.
7.4 Double Precision SpMV Results Considering that the Itanium2 and Opteron each
Results from our performance estimatorhave a 6.4GB/s bus compared to the Cell's
show that single precision SPMV is almost twice25.6GB/s DRAM bandwidth — one may expect
as fast as double precision, even though thihat a memory bound application such as SpMV
nonzero memory traffic only increases by 50%would perform only four times better on the Cell.
This discrepancy is due to the reduction in thélonetheless, on average, Cell is more than 6x
number of values contained in a cache blockiaster in DP and 10x faster in SP. This is because
where twice as many blocked rows are presenin order to achieve maximum performance, the
For example, when using 18KSP cache blocks Itanium2 must rely on the BCSR storage format,
on a 128K matrix, the 512KB source vector mustand thus waste memory bandwidth loading
be loaded 8 times. However, in DP, the cachannecessary zeros. However, the Cell’'s high
blocks are only 8K — causing the 1MB source FLOP to byte ratio ensures that the regularity of
vector to be loaded 16 times, and thus resulting IBCSR is unnecessary allowing it to avoid loading
a much higher volume of memory traffic. Futuremany of the superfluous zeros. For example, in
work will investigate caching mega blocks acrossnatrix #17, Cell uses more than 50% of its
SPEs to reduce total memory traffic. bandwidth loading just the DP nonzero values,
Additionally, note that the extreme drop inwhile the Itanium2 utilizes only 33% of its
floating point throughput (14x) between SP andandwidth. The rest of Itanium2’s bandwidth is
DP, has relatively little impact on performance.used for zeros and meta data. It should be noted
This can also be seen in the difference betwedhat where simulations on Cell involve a cold start
Cell and Cell+, where a 3.5x improvement in DPto the local store, the Itanium2’s have the
peak performance results in only a 5% speedugadditional advantage of a warm cache.

for SpMV. Cell's use of on-chip memory as a buffer
is advantageous in both power and area compared
_ Double (GFlop/s) Single (GFlop/s with a traditional cache. In fact, Cell is nearly 20

Matrix | Cell+ Cell AMD64  1A64 Cell 1A64 . .. .

Vavasis 317 306 044 0511 606 054 times more power efficient than the Itanium2 and
FEM | 344 339 042 054 514 063 15 times more efficient than the Opteron for
CFD 1.52 1.44 0.28 0.25 2.33 0.14 I . h

Average 2.71 263 038  043| 451 044 SpMV. For a memory bound application such as

Ny . f i GFlopls) of Cell © . this, multicore commodity processors will see
Table 4 - SpMV performance (in GFlop/s) o ell, Opteron an . .

Itanium2 using single and double precision on the FBARSITY little performance Im_provement unless they also
gnsymmetric n_1atrix suite. Even in double precisio_n Cell is about six scale memory bandwidth.

times faster (with only four times the memory bandwdth). Comparing results with an X1 MSP,
previously published work showed that a highly

Double (GFlop/s) Single (GFlop/s g - g :

Matrix | Cell+  Cell AMD64 I1A64 | Cell _ 1A64 optimized permutation implementation (CSRP),
FEM 6.79 6.32 0.93 0.74 12.37 1.21 : H
3DTubeg 6.48  6.06 0.86 072 1166  1.24 achlgves pnly 1 GFlop/s on a DP 7pt St(—?‘nCII
Portfoli 1.83 160 037  023| 326 0.1 matrix, while the standard CSR approach achieves
NASA | 1.92 1.66 0.42 0.27 3.17 0.22 i ; ;
Vibro | 390 347 o057  osil 708 041 less that 0.01 GFlop/s. On a similar matrix, Cell is

LP | 517 487 047  033] 854 06 able to achieve about 1.3GFlop/s. Thus, the Cell
Averagel 435 4.00 060  043] 7.68 0.6 is nearly 50% faster, even though the X1 has 50%

Table 5 - SpMV performance (in GFlop/s) of Cell, Opteron and more memory bandwidth. The final paper version
Itanium2 using single and double precision on the FARSITY will contain the full set of SpMV results for both
symmetric matrix suite. Cell is more than 9 timesfaster (with only
four times the memory bandwidth). the Opteron and X1.
An alternate approach to cache blocking is
to employ the MFC’s “get list” command. This

would allow for a gather operation either from
10



. 2 . e . J,kvzt] + X+l ),k t] o+
potentially eliminating the inefficiencies of the Xiyj-1,kt] + X, j+1,k t] +
- X g, k-1,t] + X, ), k+l, t] +

current cache blocking approach, and perhaps axX[i,j,k t]

yielding higher overall results. Unfortunately, no
accurate performance information is currentlydi.j. k. t%

1
: . Z/in(xh-_l,j,k,t]+xu+_1,j,k,t])+
available for small granularities (word/double). dt’/dy’(X[i,j-1, k, t]+X[i, j+1,k t])+
. . dt/dz"(X[i,j, k-1, t]+X[i,j,k+1,t])+
Therefore, unlike cache blocking where large axX[i.j. ki t] - X[i.j. Kk t-1]

granUIa“tleS C:an be used to amortize Iatency’ I II§fgure 2 - Stencil kernels used in evaluationTop: Chombo heattut
not yet pOSSIble to aCCUYate|y create a SpMMquation requires only the current time step. Bottom: CACTUS
performance model for this approach. FuturdvaveToy equationrequires both the current and previous time steps.
work will explore this approach as hardware, lorithmi iderati

simulators, or detailed performance 8- 1 Algorithmic considerations

documentation become publicly available. . The algorithm used on Cell is virtually
identical to that used on traditional architectures

8. Stencil Computations except that the ISA forces main memory loads
' Stencil-based computations on regulatand stores to be explicit, rather than caused by

grids are at the core of a wide range of importarﬁaChe misses and evictions. Th(_a basic algorithmic
scientific applications. In these applications, eacRPProach to update the 3D cubic data array is to
point in a multidimensional grid is updated withSWEeP across the domain, updating one plane at a
contributions from a subset of its neighbors. Th&Me: Since a stencil requires both the next and
numerical operations are then used to buil@'€Vious plane, a minimum of 4 planes must be
solvers that range from simple Jacobi iterations tB'€S€nt in the local stores: (z-1,1), (z,1), (z+11),

complex multigrid and block structured adaptive?d (z,t+1). Additionally, bus utilization can be

methods. maximized by double buffering the previous
In this work we examine two flavors of eutput plane (z-1,t+1) with the next input plane

stencil computations derived from the numerical?+2:0) leli h
kernels of the Chombo[24] and Cactus[25] In order to parallelize across SPEs, eac
toolkits. Chombo is a framework for computingP/2n€ of the 3D domain is partitioned into eight
solutions of partial differential equations (PDEs)°Velapping blocks. Due to the finite size of the

using finite difference methods on adaptively’©c@l store memory, a straightforward stencil
refined meshes. Here we examine a stenchalculation is limited to planes of Z58lements

: : lus ghost regions. Thus each SPE updates the
computation based on Chombo’s demd’ :
application, heattut, which solves a simple heat core 256x32 points from a 258x34 slab (as slabs

equation without adaptivity. Cactus is modular2/SO contain ghost regions t0o).

open source framework for computational To improve performance of = stencil

science, successfully used in many areas &Pmputations on cache-based architectures,
astrophysics. Our work examines the stenciprevious research has shown multiple time steps

kernel of the Cactus demdNaveToy, which can be combined to increase performance. [26, 27,
solves a 3D hyperbolic PDE by finite 28]. This concept ofime skewing can also be

differencing. Theheattut andWaveToy equations effectively leveraged in our Cell implementat_ion.
are shown in Figure 2. By keeping multiple planes from multiple time

Notice that both kernels solve 7 pointStepS in the SPE simultaneously, it is possible to
stencils in 3D for each point. However thedouble or triple the number of stencils performed
heattut equation only utilizes values from the With almost no increase in memory traffic; thus

current time step, whil&VaveToy requires values increasing computational intensity and improving

from the current state as well as the previous staf@verall performance. Figure 3 details a flow

Additionally WaveToy has a  higher lagram for the heat equation, showing both the

computational intensity, and can more readily>imPle and time skewed implementations.
exploit the FMA pipeline. Note that the neighbor communication

required by stencils is not well suited for the
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aligned quadword load requirements of the SPU

ISA — i.e. unaligned loads must be emulated with c 'ﬂoub'e Precision (GFlop/s) Sinﬁ!'e Precision (GFldg)
. . . . + C
permute instructions. In fact, for SP stencils with (2 Cellt Cell AMD64 1A64 ") Cell AMDG4 1A64

extensive unrolling, after memory bandwidth, theWHee}; ié% ﬂ? 18628 0%23 1150;?1 g;g iég ;g
permute datapath is the limiting factor int 2o oe SRS S8 298 S
performance - not the FPU. This lack of Suppor*able 6 - Performance for the heat equation and WaveToy steils on
for unaligned accesses highlights a potentiaiell, Opteron, and ltanium2. Opteron and ltanium experiments use
bottleneck of the Cell architecture: however Wq1283 and 256 grids. Cell uses the largest grid that would fiwithin the

. g . “ocal store (similar sized, but varied with time skwing). The (2)
can partlally obviate this problem for the stencilversions denote a time skewed version where 2 timsteps are

kernel via data padding. computed.
8.3 Performance Comparison

Z+2 Z+2 Table 6 presents a performance
73] 73] comparison of the stencil computations across our
. R Time t+1 . R . evaluated set of leading processors. (The final

*O> *O> N Time 2 paper version will contain X1 results.) Note that
Z1 N [z1 Z1 N [z1 Z-1 stencil performance has been optimized for the

Time | l Time 1 2\ (72 cache-based platforms as described in [22]

e - In _single precisi_on, for t_his memory bound

l computation, even without time skewing, Cell
Figure 3 - Flow Diagram for Heat equation flow diagram. Left: achieves and 11x and 14x speedup Compared with
e g veron romires o madiona vy L€ Itanium2 and Opteron respectively. Recall that

queue to hold intermediate results the Cell has only four times the memory

bandwidth of both of these platforms — indicating
that Cell's potential to perform this class of
computations in a much more efficient manner is

The performance estimation for theattut due to the advantages of software controlled
andWaveToy stencil kernels is shown in Table 6 - tag - .
memory for algorithms exhibiting predictable

iled resul [ ' i . y :
detailed results are available in Appendix Ememory accesses.  Additionally, unlike the

Results show that as the number of time step : : : .
pteron and Itanium2, simple time skewing has

increases, a corresponding decrease in the 9%fe potential to significantly increase performance
size is required due to the limited memory. 'th . Sp 'thgr r'¥1 f Cell per DP
footprint of the local store. In SP, the heat![rl’]leelCe?H vari;er:t er version of Cell) or in on
equation on the Cell is effectively '

computationally bound with two steps of timeexaminlzgacll)é’ll éeﬁil/ tgfftorrlrrw]anigcltjlgirr]\ 77 V(\;(ient
skewing, resulting in over 41GFlop/s. More P P 9 -p

specifically, the permute unit becomes fullyféizﬁi Vm?]t;'ﬁsztr:gﬁj rggn rigoa\lN fggﬁarfeggr?tse%
utilized as discussed in Section 8.1. In DP 9 PP p

however, the heat equation is trulyhere, as the numerical computations is equivalent

computationally bound for only a single time step'n both cases. Resglts show Fh_at for two time step
achieving 8.2 GFlop/s. Analysis also shows th(,ikfalculatlons, the single precision structured grid
in the Cell+ approach, the heat equation iéalpproach achieves a 15x advantggg Comp‘?‘red
memory bound when using a single time ste ith the sparse matrix method. This impressive
attaining 10.6 GFlop/s; for time skewing,SpeedUp is attained throggh the regularity Qf
performance of Cell+ DP jumps to over >1memory accesses, redl_Jctlon of memory traffic
GFlopss. (constant; are encoded in tr_lg equation rather than
he matrix), and the abilty to time skew

We believe the temporal recurrence in th increased computational intensity). For double
CACTUS WaveToy example will allow more time - P : -NSIy). .
recision, the stencil algorithm advantage is

skewing in single precision at the expense of faf. =™ : i
more complicated code, and will be the subject cjl(ﬂxr;fs?ifndetgkir\j\ﬁ%x'mately 6x, due mainly to the

future investigation.

8.2 Stencil Kernel Results
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Before exploring the 2D FFT, we briefly
9. Fast Fourier Transforms discuss simultaneous FFTs. For sufficiently small
The FFT presents us with an interesting=FTs (<4K points in SP) it is possible to both
challenge: its computational intensity is much lesslouble buffer and round robin allocate a large
than matrix-matrix multiplication and standardnumber of independent FFTs to the 8 SPEs.
algorithms require a non-trivial amount of dataAlthough there is lower computational intensity,
movement. Extensive work has been performethe sheer parallelism, and double buffering allow
on optimizing this kernel for both vector [31] andfor extremely high performance (up to
cache-based [23] machines. In addition/6GFlop/s).
implementations for varying precisions appear in Simultaneous FFTs form the core of the
many embedded devices using both general ar®D FFT. In order to ensure long DMAs, and thus
special purpose hardware. In this Section wealidate our assumptions on effective memory
evaluate the implementation of a standard FFDbandwidth, we adopted an approach that requires

algorithm on the Cell processor. two full element transposes. First, N 1D N-point
FFTs are performed for the rows storing the data
9.1 Methods back to DRAM. Second, the data stored in

We examine both the 1D FFT DRAM is transposed (columns become rows) and
cooperatively executed across the SPEs, and a Zibred back to DRAM. Third the 1D FFTs are
FFT whose 1D FFTs are each run on a singlperformed on the columns, whose elements are
SPE. In all cases the data appears in a singl®w sequential (because of the transpose).
array of complex numbers. Internally (within theFinally a second transpose is applied to the data to
local stores) the data is unpacked into separateturn it to its original layout. Instead of
arrays, and a table lookup is used for the roots g@erforming an N point bit reversal for every FFT,
unity so that no runtime computation of roots isentire transformed rows (not the elements of the
required. As such, our results include the timeows) are stored in bit-reversed order (in effect,
needed to load this table. Additionally, all resultsit reversing the elements of the columns). After
are presented to the FFT algorithm and returned ihe first transpose, a decimation in frequency FFT
natural order (i.e. a bit reversal was required tas applied to the columns. The columns are stored
unwind the permutation process in all cases)ack in bit-reversed order - in doing so, the row
Note that these requirements have the potential tlements are bit reversed. With a final transpose,
severely impact performance. the data is stored back to memory in natural order

For simplicity we evaluated a naive FFTand layout in less time.
algorithm (no double buffering and with barriers
around computational segments) for the single 1D.2 Single Precision FFT Performance
FFT. The data blocks are distributed cyclically to Table 7 presents performance results for
SPEs, 3 stages of local work are performed, thine Cell 1D and 2D FFT. For the 1D case, more
data is transposed (basically the reverse of than half of the total time is spent just loading and
cyclic allocation), and then 9 to 13 stages of locastoring points and roots of unity from DRAM. If
computation is performed (depending on the FFEompletely memory bound, peak performance is
size). At that point the indices of the data on chi@gpproximately 3.2GHz * 5NIogN/3N cycles ~
are bit-reversed to unwind the permutatior?.7logN GFlop/s. This means performance is
process and the naturally ordered result copielimited to 64GFlop/s for a 4K point SP FFT
back into main memory. Once again, we presumeegardless of CPU frequency. A clear area for
a large DMA initiation overhead of 1000 cycles.future exploration is hiding computation within
However, a Cell implementation where the DMAthe communication and the minimization of the
initiation overhead is smaller, would allow theoverhead involved with the loading of the roots of
possibility of much larger FFT calculations unity. Unfortunately the two full element
(including out of core FFTs) using smaller blocktransposes, used in the 2D FFT to guarantee long
transfers, with little or no slowdown using doublesequential accesses, consume nearly 50% of the
buffering to hide the DMA latency. time. Thus, although simultaneous FFTs achieve
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76GFlop/s, the 2D FFT reaches only 46GFlop/s based machines typically reach peak at a problem
an impressive figure nonetheless. Without the bgize that is far smaller than the on-chip cache-size,
reversal approach, the performance would havend then drop precipitously once the associativity

further dropped to about 40GFlop/s. of the cache is exhausted and cache lines start
getting evicted due to aliasing. The evictions are
9.3 Double Precision FFT Performance unavoidable on cache-based architectures given

When DP is employed, the balancethe power-of-two problem sizes required by the
between memory and computation is changed biyFT algorithm, but such evictions will not occur
a factor of 7. This pushes a slightly memoryon Cell’'s software-managed local store.
bound application strongly into the Furthermore, we believe that even for problems
computationally bound domain. The SPthat are larger than local store, 1D FFTs will
simultaneous FFT is 10 times faster than the DEBontinue to scale much better on Cell than typical
version. On the upside, the transposes required @gache-based processors with set-associative
the 2D FFT are now less than 20% of the totataches since local store provides the same benefits
time, compared with 50% for the SP case. Cellas a fully associative cache. The FFT
finds a middle ground between the 4x reduction iperformance clearly underscores the advantages
computational throughput and the 2x increase inf software-controlled three-level memory
memory traffic — increasing performance byarchitecture over conventional cache-based
almost 2.5x compared with the Cell for allarchitectures.
problem sizes.

10. Conclusions

9.4 Performance Comparison The high performance computing

The peak Cell FFT performance iscommunity is exploring alternative architectural
compared to a number of other processors in thepproaches to address the performance and power
Table 7. These results are conservative given thienitations of conventional processor designs. The
naive 1D FFT implementation we used on CelCell processor offers an innovative architectural
whereas the other systems in the comparison usa@proach that will be produced in large enough
highly tuned FFTW [23] or vendor-tuned FFT volumes to be cost-competitive with commodity
implementations [18]. Nonetheless, in DP, Cell i<CPUs. This work presents the first quantitative
8x faster than the Itanium2, and Cell+ could be astudy Cell's performance on scientific kernels and
much as 20x faster than the Itanium2 on a largdirectly compares its performance to tuned
2D FFT. Cell+ more than doubles the DP FFTkernels running on leading superscalar (Opteron),
performance of Cell for all problem sizes. CellVLIW (ltanium2), and vector (X1) architectures.
performance is nearly at parity with the X1;Since neither Cell hardware nor cycle-accurate
however, we believe much headroom remains fasimulators are currently publicly available at this
more sophisticated Cell FFT implementations.  time, we develop an analytic framework to predict

Cell performance on dense and sparse matrix

. Ce'ﬁgug'gnpgffism é%i'0$fg4 EE?'G’:,{,%EO” (&g'ﬁ operations, stencil computations, and 1D and 2D
4K| 126 56 26 2.1 271 299 38 28 FFTs. While peak Cell DP throughput, reqUired
1D |16K| 142 6158 16 22| 374 26 27 by most scientific applications, is far lower than

64K| - - 8.8 1.2 1.5 41.8 1.9 2.4 . . .
1<% 159 66 - 11 08| 359 15 16 SP, it still outperforms conventional processors on
2D iﬁj 165 6.7 - - jgg - - many kernels. Overall results demonstrate the

tremendous potential of the Cell architecture for
Table 7 — Performance of 1D and 2D FFT on Cell, X1, Opteronand scientific Computations in terms of both raw DP
Itanium2. For large FFTs, Cell is more than 10 tines faster in SP than . .
its competitors. Note: the Opteron used here is 2GHz model. and SP performance and power emCIenCy'
Furthermore, we propose Cell+, a modest
Note that FFT performance on Cellarchitectural variant to the Cell architecture
performance improves as the number of pointgesigned to improve DP behavior. Results show
increases, so long as the points fit within the locdhat, aside from SpMV, the Cell+ significantly
store. In Comparison, the performance on Cach@utperforms Cell for all of our evaluated kernels.
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It is clear that if Cell is ever to play a leadingdero Table 8 compares the advantage in DP of
in scientific computing, DP must be promoted to &ell and Cell+ in terms of performance and power
first class citizen within Cell. efficiency for our suite of evaluated kernels and
Analysis shows that Cell's three levelarchitectural platforms. (All missing performance
memory architecture, which completely decoupleslata will appear in the final version.) Observe that
main memory load/store from computation,the Cell+ approach greatly increases the already
provides several advantages over mainstreaimpressive performance characteristics of Cell —
cache-based architectures. First, kernelecall that both the Cell and Cell+ have just one
performance can be extremely predictable as tHeP floating-point unit, but the Cell+ can utilize it
average load time from local store is also thenore effectively through modest enhancements to
worst case. Second, long block transfers cathe execution pipeline.
achieve a much higher percentage of memory It is important to consider these
bandwidth than individual loads in much the sam@erformance differences in the context of
way a hardware stream prefetch engine, ondenminently prevalent multi-core commodity
engaged, can fully consume memory bandwidthprocessors. The first generation of this technology
Finally, for predictable memory access patternsyill instantiate at most two cores per chip, and
communication and computation can bethus will deliver less than twice the performance
effectively overlapped. Increasing the size of thef today’s existing architectures. This factor of 2x
local store or reducing the DMA startup overheads trivial compared with Cell+'s potential of 10—
on future Cell implementations may further20x improvement, and does nothing if not widens
enhance the scheduling efficiency in order tdhe existing power efficiency gap.
better overlap the communication and

Computation_ Cell+ Speedup over: Cell+ power efficiency over:
. . X1 AMD64 1A64 X1 AMD64 1A64
There are also disadvantages to Fhl GEMM | 25x  13x 16x | 1ix 2% 29X
architecture.  For example, SpMV, with its| SpmMV | - 7Ax 6.3x - 16x 20x
. Stencil - 40x 17.5x - 89x 57x
unpredictable  access patterns and  1OWipgeT | 24x  8.9x 65x | 6x 20x 21x
computational intensity achieves a dismally low 2DFFT | - 14x 20x - 31x 65x
percentage of _Cell's peak performance. EV€:' Cell Speedup over: Cell power efficiency over:
memory bandwidth may be wasted since SpMV i X1 AVD64 IA64 | X1  AMD64 _ IA64
; ; EMM 1.3x 3.7x 4.2x 3.3x 8.2x 14x
constrained to use cache blocking to remove theg,y, | sox 6 | o Lox 20x
unpredictable accesses to the source vector. Thetenci | - 155x  6.8x - 34x 22x
i 1D FFT | 1.05x 3.8x 2.8x 2.6X 8.5x 9.1x
ability, however, to perform a decoupled gather, ;g1 | ~- - sox | 15 7%

to stream nonzeros, and Cell's low functional unit
H H T Table 8 - Double precision speedup and increase in power effency of
Iater_u_:y, tends to hldc_e this o_Ief|C|enCy- (Top) Cell+ and (Bottom) Cell, relative to the X1, Opteron, and
Addltlonally, we see Stencil Computatlons asS amMmanium?2 for our evaluated suite of scientific kerrels. Results show an
examp|e of an algorithm with performance that ig’mpressiveimprovementin performance and power eitiency.
heavily influenced by the performance of the
y Inue y b rjrl' Future Work
permute pipeline. Here, the lack of support for a A kev component missing in this work is
unaligned load instruction is a more important y P d

performance bottleneck than either the SI5yc|e-accurate simulation of the Cell architecture.
execution rate or the memory bandwidth We expect to work on validating the prediction

For dense matrix operations, it is essenti rlnodels presented in this paper using a suite of

to maximize computational intensity and thereb d:?eh t(')egglrgsgsggcg't?g&rﬂez"gﬂfm;et{'h?; aézr
fully utilize the local store. However, if not done y year.

properly, the resulting TLB misses adverserWe will report those results in this paper if the

e peromance. For oxampe, in he GEMESLIETS P05 POveets o Senedli o 0%
kernel we observe that the BDL data storag ' .

format, either created on the fly or before hand,e checked against runs on Cell-based hardware

: : ) ni m vailable.
can ensure that TLB misses remain a small |ssd’<\—§he t becomes available
even as on-chip memories increase in size.
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APPENDIX
three arrays: the values, the corresponding

A. GEMM Storage Formats

For GEMM, two storage formats were columns for the values, and the locations in the
explored. The default is a column major formafirst two arrays where the row starts. BCSR
for all three matrices. The second format, blockehaves in much the same way as CSR. The
data layout, or BDL, organizes matrix sub-blockdifference is that CSR operates on what are in
into contiguous blocks of memory [7]. This caneffect 1x1 blocks, and BCSR operates on r x c
be particularly advantageous as it not onhblocks. Thus the values array is grouped into r*c
minimizes the number of DMASs required, but alsssegments which include zeros. CSC is organized

minimizes the number of pages touched whearound columns rather than rows.
All three storage formats provide regular

loading a sub-block. Although a matrix might not
be stored in BDL, it can quickly be converted oraccess patterns to the nonzeros. However, CSR

the fly. Figure A.1 shows a matrix stored in theand CSC force a very irregular access pattern to
the source and destination vectors respectively.

For SIMD sized granularities BCSR provides

two formats.
1 n+l
regular access within a block, but requires

1 N+1
e A0 ELL irregular accesses outside. BCSR also has the
Aitele il LAARYRAA, pitfall that zeros are both loaded and computed
L IENEREE on. Only the 2x2 BCSR data will be shown as the
VeV ey HHEEEHE 4x4 blocks showed poor performance. Figure C.1
N YVYVY AL provides an example matrix and the
Figure A.1 - Left: column major layout. Right: BDL. Within each | Correspondlng data structures used in CSR and
x n block, values are stored in column major order BCSR.
B. SGEMM Detailed Results 0123
Figure B.1 shows SGEMM performance |1l 12]3 CSR
. . . . . 4 5 Values ={1,2,3,4,5,6,7}
for various matrix dimensions, cache block sizes, 6 Columns ={0.2.3.1,323}
and storage formats. Small cache blocks lack the 7 RowStart ={0,3,5,6,7}
computational intensity to keep the processor BCSR (2x2)
computationally bound. Values  ={1,004, 2,3,05, 6,0,0,7}
Columns ={0, 2, 2 }
2048 RowStar ={0.8.12}
Figure C.1 - A 4x4 matrix with columns numbered from O to 3 l©®&n
stored in 1x1 BCSR (CSR), and 2x2 BCSR. CSC wadob# similar to

GFLOP/s
N

3 8 B

o~ 3

CSR except that it is organized along columns ratien rows.

51.2

25.6

N=256, N=2048, N=512, N=2048, N=768, N=2304,
A CSR/BCSR pseudocode overview can

32x32  32x32  64x64  64x64  96x96  96x96
Matrix Dimension, Cacheblock Size ; . R
be illustrative. In CSR,Y[r], value$i], and

@ Column Major B BDL N
Figure B.1 - SGEMM on Cell. Even with the minimum overheddB®L, X[ Columns[!]] are all scalars. In BCSR[T'] , and
the lack of computational intensity prevents®3@ache blocks from  X[columng[i]] now are segments of the vectors,
attaining 60% of peak. The inefficiency of colummajor layout prevents it and theval ues[ I] are blocks. Thé([ col umns[ I]]
statement is referred to as a gather operation.

from reaching peak performance without very largehe blocks.
CSR performs a dot product for each row.

C. SpMV Storage Formats

For SpMV, three storage formats were
examined: Compressed Sparse row (CSR)’ fc;z)?gllrzlmésn:entsiinrowr
Y[r] = Y[r] + valuedi]*X[columng]i]]

compressed sparse column (CSC), and blocked
compressed sparse row (BCSR). CSR collects the

nonzeros from one row at a time and appends
17



For completeness, the following is pseudo codt

for CSC.

for all columnsc
for all elementsi in column c

Y[rows[i]] = Y[rows[i]] + valueg[i]*X[c]

CSC performs a SAXPY for each column.
The write to Y is a scatter operation. Thus there

is a dependency from the gather to the scatter, ar

there is a potential dependency from the scatter
for one column to the gather on the next.

D. Detailed Single Precision SpMV Results
Cell SpMV performance is detailed in

12.80
11.20
9.60
8.00
6.40
480
3.20
1.60
0.00
FEM
Crystal

GFLOP/s

I

Pressure Portfolio  NASA
(3D)

Vibro-
acoustic

LP Average
O CSR, PrivateY, 8K/8K B BCSR, PrivateY, 8K/8K
OCSR, PartitionedY, 8K/8K OBCSR, PartitionedY, 8K/8K

B CSR, PartitionedY, 16K/16K EBCSR, PartitionedY, 16K/16K

Figure D.2 - SP SpMV using SPARSITY symmetric matrices — Bigant
performance boost from minimization of nonzeroftcafEach of the cache
blocks is half as big. Imbalance in Partitionedivategy can generate
serious performance degradation.

figures D.1 & D.2. For each matrix a number ofg. Detailed Stencil Results

storage and partitioning strategies were employed.

The performance estimates for theattut

BCSR does well on real world matrices, dens@nd \WaveToy stencil kernels on the Cell is

matrices achieve higher performance,

an@etailed in Figure E.1. Note that as the number of

unbalanced matrices perform poorly in thetime steps increases, a corresponding decrease in

PartitionedY strategy.

8.00

&
©
S

3.20

GFLOP/s

1.60

0.00 +
7pt Stencil
(N=32K)

random
(N=32K)

random
symetric
(N=32K)

7pt Stencil
(N=256K)

random
(N=256K)

random
symetric
(N=256K)

6.40
5.60 T
4.80 -
4.00 -
3.20
240 7
1.60
0.80 7
0.00

GFLOP/s

2D PDE FEM Memory CFD Average

O CSR, PrivateY, 16K B BCSR, PrivateY, 16K
O CSR, PartitionedY, 16K [ BCSR, PartitionedY, 16K
B CSR, PartitionedY, 32K HEBCSR, PartitionedY, 32K

Figure D.1 - Top: SP SpMV using synthetic matrices — cleardfies from
density and uniformity. Bottom: using SPARSITY ymsnetric matrices
— PrivateY shows superior performance due to umicala

the grid size is required due to the limited memory
footprint of the local store. Observe that in SP,
the heat equation is effectively computationally
bound when time skewing with two time steps.
More specifically, the permute unit becomes fully
utilized as discussed in Section 6.1. In DP,
however, the heat equation is truly
computationally bound for only a single time step.

50.0
45.0
40.0
35.0

2 300

S 250

& 200 4
15.0
10.0

501
0.0 1

1step 2 steps

3 steps 1step 2 steps 3 steps

Single Double Double

Cell Cell+

O Heat Equation B WaveToyC Equation

Figure E.1 - Performance in GFlop/s for the two stencils exem. For

each, up to 3 time steps (time skewing) were takédn Cell, DP is

computationally bound with only a single time stephe Cell+ analysis
showed that the heat equation is memory bound avitme time step, but
time skewing will improve performance.
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