UC Berkeley

UC Berkeley Previously Published Works

Title

Erratum: An Analysis of Solid-State Electrodeposition-Induced Metal Plastic Flow and Predictions of Stress States in Solid Ionic Conductor Defects [J. Electrochem. Soc., 167, 020534 (2020)]

Permalink

https://escholarship.org/uc/item/596706k6

Journal

Journal of The Electrochemical Society, 167(8)

ISSN

0013-4651

Authors

Barroso-Luque, Luis Tu, Qingsong Ceder, Gerbrand

Publication Date

2020-01-05

DOI

10.1149/1945-7111/ab904d

Peer reviewed

Erratum: An Analysis of Solid-State Electrodeposition-Induced Metal Plastic Flow and Predictions of Stress States in Solid Ionic Conductor Defects [J. Electrochem. Soc., 167, 020534 (2020)]

Luis Barroso-Luque, Oingsong Tu, and Gerbrand Ceder^{1,2}

¹Department of Materials Science and Engineering University of California Berkeley, CA, United States of America ²Materials Sciences Division Lawrence Berkeley National Laboratory Berkeley, CA, United States of America

© 2020 The Electrochemical Society ("ECS"). Published on behalf of ECS by IOP Publishing Limited. [DOI: 10.1149/1945-7111/ ab904d] Published May 13, 2020.

1. Equation 4 in the text and in Table I has two wrong minus signs in the publication. It should read,

$$\sigma_{\!e} = \frac{E\nu}{(1+\nu)(1-2\nu)} {\rm tr}(\epsilon_e) \mathbb{I} + \frac{E}{1+\nu} \epsilon_e \qquad [1]$$
 This term is eventually neglected as described in the publication and

thus does not affect the subsequent analysis and results.

Equation 9 in the text and in Table I, is missing a factor of 2 and should involve the strain rate tensor $\dot{\epsilon}_p$. It is correctly stated as follows.

$$-\nabla P + 2\nabla \cdot \eta \dot{\boldsymbol{\epsilon}}_p = 0.$$
 [2]

This mistype does not affect our results since the factor of 2 is correctly accounted for in our simplification of the above equation (Eq. 17). We reproduce Eq. 17 for reference,

$$-\nabla P + \eta \nabla^2 \dot{\boldsymbol{u}} = 0 \tag{3}$$