UC Berkeley
 UC Berkeley Previously Published Works

Title

Erratum: An Analysis of Solid-State Electrodeposition-Induced Metal Plastic Flow and Predictions of Stress States in Solid Ionic Conductor Defects [J. Electrochem. Soc., 167, 020534 (2020)]

Permalink

https://escholarship.org/uc/item/596706k6

Journal

Journal of The Electrochemical Society, 167(8)

ISSN

0013-4651

Authors

Barroso-Luque, Luis
Tu, Qingsong
Ceder, Gerbrand

Publication Date

2020-01-05

DOI

10.1149/1945-7111/ab904d

Peer reviewed

Erratum: An Analysis of Solid-State Electrodeposition-Induced Metal Plastic Flow and Predictions of Stress States in Solid Ionic Conductor Defects [J. Electrochem. Soc., 167, 020534 (2020)]
 Luis Barroso-Luque, ${ }^{1}$ Qingsong Tu, ${ }^{1}$ and Gerbrand Ceder ${ }^{1,2}$
 ${ }^{1}$ Department of Materials Science and Engineering University of California Berkeley, CA, United States of America
 ${ }^{2}$ Materials Sciences Division Lawrence Berkeley National Laboratory Berkeley, CA, United States of America

Abstract

© 2020 The Electrochemical Society ("ECS"). Published on behalf of ECS by IOP Publishing Limited. [DOI: 10.1149/1945-7111/ ab904d] Published May 13, 2020.

1. Equation 4 in the text and in Table I has two wrong minus signs in the publication. It should read,

$$
\begin{equation*}
\sigma_{e}=\frac{E \nu}{(1+\nu)(1-2 \nu)} \operatorname{tr}\left(\epsilon_{e}\right) \mathbb{I}+\frac{E}{1+\nu} \epsilon_{e} \tag{1}
\end{equation*}
$$

This term is eventually neglected as described in the publication and thus does not affect the subsequent analysis and results.
2. Equation 9 in the text and in Table I , is missing a factor of 2 and should involve the strain rate tensor $\dot{\epsilon}_{p}$. It is correctly stated as
follows,

$$
\begin{equation*}
-\nabla P+2 \nabla \cdot \eta \dot{\epsilon}_{p}=0 . \tag{2}
\end{equation*}
$$

This mistype does not affect our results since the factor of 2 is correctly accounted for in our simplification of the above equation (Eq. 17). We reproduce Eq. 17 for reference,

$$
\begin{equation*}
-\nabla P+\eta \nabla^{2} \dot{\boldsymbol{u}}=0 \tag{3}
\end{equation*}
$$

