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Abstract

We present a novel method for deep image saliency prediction
that leverages a cognitive model of visual attention as an induc-
tive bias. This is in stark contrast to recent purely data-driven
models that have achieved performance improvements mainly
by increased model capacity, resulting in high computational
costs and the need for large scale, domain specific training data.
We demonstrate that by leveraging a cognitive model of visual
attention, our method achieves competitive performance to the
state-of-the-art across several natural image datasets while only
requiring a fraction of the parameters. Furthermore, we set
the new state of the art for saliency prediction on information
visualizations, demonstrating the effectiveness of our approach
for cross-domain generalization.We further provide large-scale
cognitively plausible synthetic gaze data on corresponding im-
ages in the full MSCOCO and FigureQA datasets, which we
used for pre-training. These results are highly promising and
underline the significant potential of bridging between first-
principle cognitive and data-driven models for computer vision
tasks, potentially also beyond saliency prediction, and even
visual attention.

Keywords: neural networks, computational models of cog-
nition, computer vision, saliency prediction, human visual
attention

Introduction
Predicting human visual attention on natural images has
been widely studied in computer vision (e.g., saliency pre-
diction) (Borji, 2019; Borji & Itti, 2012). While early works
have proposed models that were closely inspired by the human
visual system (Frintrop, Werner, & Martin Garcia, 2015; Itti,
Koch, & Niebur, 1998), latest models rely on deep neural
networks trained on large-scale natural image datasets (Jia &
Bruce, 2020; Linardos, Kümmerer, Press, & Bethge, 2021;
Lou, Lin, Marshall, Saupe, & Liu, 2022). These models con-
sist of up to 84 million parameters (Jia & Bruce, 2020) or
make use of vision transformers (Lou et al., 2022) or several
separate backbone networks to improve performance (Linar-
dos et al., 2021). In addition to the computational burden
introduced by these models due to their high complexity, they
also require ground truth gaze information for training that has
to be collected using eye trackers in a costly and cumbersome
process (Judd, Durand, & Torralba, 2012a). The requirement
for real gaze data can be partly alleviated by simulating gaze
using mouse clicks as a proxy (Jiang, Huang, Duan, & Zhao,
2015; Kim et al., 2017). However, mouse click data still has
to be collected from a large number of users, not necessarily
reflects gaze well, and is currently only available at scale for

natural images. For example, in the growing area of saliency
prediction on information visualizations (Matzen, Haass, Di-
vis, Wang, & Wilson, 2017), only few datasets were published
so far (Borkin et al., 2015; Shin, Chung, Hong, & Elmqvist,
2022; Wang, Koch, Bâce, Weiskopf, & Bulling, 2022).

It is widely agreed that eye movements are contingent
on unobservable (i.e. covert) attention shifts, which are in
turn controlled by underlying cognitive processes (Salvucci,
2001). In parallel line of work, researchers have therefore
developed cognitive models of human attention allocation on
images (Kieras & Meyer, 1994; Nyamsuren & Taatgen, 2013a;
Salvucci, 2000). Instead of learning patterns within train-
ing data by maximizing prediction performance, these first
principle-models are rule-based and aim to reproduce basic,
domain-independent human attentive processes as faithfully as
possible. For example, the Eye Movements and Movement of
Attention (EMMA) model (Salvucci, 2000) relies on the cog-
nitive architecture ACT-R (J. R. Anderson & Lebiere, 2014)
to predict shifts of overt visual attention and synthesize spatio-
temporal eye movements from these shifts. As such, cognitive
models of human visual attention hold two main promises
for the human saliency prediction field. First, they have the
potential to alleviate the need for ever-increasing training data
and model sizes in image saliency prediction. Second, due to
their general nature, they may be beneficial for target domains
where only little human gaze data is available. Despite this
potential, no attempt to integrate cognitive models of visual
attention into deep image saliency prediction models has been
made so far.

We propose the first method that integrates a cognitive at-
tention model into the training process of a neural saliency
model. Our method consists of three steps: (1) generating
synthetic gaze data for both natural images and information vi-
sualizations datasets using the EMMA model, (2) pre-training
computationally light-weight saliency models on the synthetic
saliency maps, and (3) finetuning the pre-trained models on the
target saliency benchmark datasets. The results show that our
approach achieves competitive performance to several state-
of-the-art saliency models (Fosco et al., 2020; Jia & Bruce,
2020) on three benchmark natural image datasets, while only
requiring a fraction of the model parameter. We additionally
show consistent improvements in cross-domain evaluations on
information visualizations – a target domain for which only
little training data are available, outperforming the previous
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Figure 1. Our pipeline for pre-training saliency prediction
models with synthetic gaze data generated by the EMMA cog-
nitive model. EMMA’s control flow consists of four processes
that run in parallel: cognition that leads to attention shifts,
vision that encodes objects, eye movement preparation and
eye movement execution. We find the best parameters for
EMMA by using ground truth gaze data from SALICON and
MASSVIS datasets. Then we use EMMA to generate synthetic
gaze data on datasets which do not provide it, i.e. MSCOCO
and FigureQA. Neural saliency models are then trained on the
resulting MSCOCO-EMMA and FigureQA-EMMA datasets.

state of the art on MASSVIS (Borkin et al., 2015).
Our contributions are threefold. First, for the first time we

integrate a cognitive model of visual attention into the training
process of a neural saliency model. Second, we conduct exten-
sive evaluations showing that our method achieves competitive
results to the SOTA for saliency prediction on natural images
with a significantly smaller model size (only around one-third
of the parameters). Furthermore, our method sets the new
state of the art on saliency prediction on information visual-
izations, indicating its effectiveness in cross-domain scenarios.
Third, we release a large-scale dataset consisting of 130k high-
quality simulated gaze data obtained using the EMMA model
on MSCOCO.

Related work
Cognitive models of visual attention
Models of human attentive processes have a long history in
cognitive science (Feigenbaum, 1959). These models are
commonly used to model visual search on stimuli like chess
boards (Simon & Feigenbaum, 1964), or colour features and
shapes (Kieras & Meyer, 1994) but are rarely evaluated on
natural images (Cutsuridis, 2009). One of the most popular
architectures for modelling human cognition is ACT-R (B. An-
derson, 2014; J. R. Anderson & Lebiere, 2014). Motivated
by the fact that attention shifts only indirectly correspond
to observable eye movements, Salvucci (2001) proposed the
EMMA model (Salvucci, 2000) that linked eye movement
generation with the cognition of unobservable visual atten-
tion shifts within ACT-R: While ACT-R served as a cognitive
processor producing attention shifts, EMMA generated corre-
sponding spatio-temporal eye movements. EMMA is a well-
established model and has been extensively studied for a range
of visual search tasks on both images and text (Kotseruba &
Tsotsos, 2020; Nyamsuren & Taatgen, 2013b; Salvucci, 2001).

EMMA has also triggered several further works on human
reasoning modelling (Bubb, 2021; Nyamsuren & Taatgen,
2014), theory of mind (J. R. Anderson et al., 2004), and text
saliency modelling (Sood, Tannert, Müller, & Bulling, 2020).

We leverage EMMA in the training procedure of neural
saliency models. EMMA allows us to generate saliency maps
on large-scale image datasets that do not offer ground truth
human gaze information.

Saliency prediction
While early work on predicting 2D human saliency maps on
natural images has focused on bottom-up combination of ba-
sic image features (Itti & Koch, 2000; Itti et al., 1998), latest
methods use neural networks trained on large datasets with
human-generated saliency ground truth. These models consist
of a large number of parameters. For example, EML-NET (Jia
& Bruce, 2020) has more than 84 million parameters while
SimpleNet (Reddy, Jain, Yarlagadda, & Gandhi, 2020) relies
on a PNASNet-5 backbone with 86 million parameters (Liu
et al., 2018). To achieve further performance improvements,
recent work has resorted to building increasingly complex
models that, e.g., combine multiple backbone networks (Linar-
dos et al., 2021) or introduce vision transformers into the
model architecture (Lou et al., 2022). Two notable exceptions
with a modest model size are MSI-NET (24.9M parameters)
(Kroner, Senden, Driessens, & Goebel, 2020) and the Multi-
Duration Saliency Excited Model (MD-SEM) (30.9M parame-
ters) (Fosco et al., 2020).

While most prior work has focused on natural im-
ages (Droste, Jiao, & Noble, 2020; Fosco et al., 2020; Kro-
ner et al., 2020), saliency prediction is also important for
other types of visual stimuli, such as graphical user inter-
faces (Xu, Sugano, & Bulling, 2016) or information visu-
alizations (Matzen et al., 2017). Information visualizations
often contain empty areas and a mix of text and graphical ele-
ments, causing models trained on natural images to perform
poorly (Polatsek, Waldner, Viola, Kapec, & Benesova, 2018).
The field of saliency prediction on information visualizations
is new, with only few datasets and limited ground truth gaze
information available (Matzen et al., 2017; Wang, Bâce, &
Bulling, 2023). The largest dataset, MASSVIS, only has 393
information visualizations (Borkin et al., 2015).

Rather than increasing model complexity even further or
requiring even larger human saliency datasets, we propose a
fundamentally different approach: By leveraging a cognitive
model of attention, we can synthesize any number of training
samples for arbitrary visual stimuli, including information
visualizations. In contrast to manipulating the stimuli them-
selves with human gaze ground truth to augment the training
set (Che et al., 2019), our approach allows to synthesize gaze
on arbitrary images for which no human gaze is available at
all. Using our approach, we achieve competitive performance
to the state of the art for saliency prediction on natural im-
ages while requiring significantly less parameters. In addition,
our approach allows for effective adaptation to other image
domains, such as information visualizations shown here.
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Figure 2. Synthetic gaze maps generated by EMMA and cor-
responding human ground truth gaze maps on sample images
from the SALICON and MASSVIS datasets.

Method
At the core of our approach is the idea to use a cognitive
model to generate synthetic gaze data on datasets for which
human ground truth gaze data is not available. Subsequently,
any neural saliency prediction model can be trained on this
augmented datasets. To use EMMA for synthetic gaze data
generation on images, a modification was made to take objects
and their locations as input. The Faster R-CNN object detector
was used to obtain object bounding boxes and class labels.
The first bounding box was selected randomly, then EMMA
chose the next fixation location based on its visual attention
and eye movement modules, which model fixations, fixation
durations, and re-fixations. Since EMMA has parameters that
need to be optimized to the application domain, we made use
of auxiliary datasets for which saliency ground truth maps
exists (in our case SALICON [21] and MASSVIS [8]). Once
optimized, EMMA was used to generate synthetic gaze data
for MSCOCO and FigureQA. The synthetic gaze datasets were
then used to pre-train neural saliency prediction models1. An
overview of this approach is shown in Figure 1.

EMMA with ACT-R
EMMA assumes that eye movements are triggered by atten-
tion shifts and consists of two ACT-R components: The visual
attention module models how humans process, encode, and
shift attention between visual targets while the eye movement
module describes how humans move their eyes to new targets.
When an attention shift is triggered, EMMA produces syn-
thetic gaze data based on the time Tenc to encode an object, the
time to prepare and execute the eye movement (Tprep and Texec)
and the locations of the objects. The time to encode object i
is given by Tenc = −K log( fi)ekdi , where fi is the frequency
of the object being encoded, normalized between 0 and 1, K
and k are scaling constants, and di is the eccentricity of the
object, measured in units of visual angle between the current
eye position and the object that the focus should be shifted
on. It is calculated by di = arctan(∥Fc −Fn∥2/dv), where dv
is the viewing distance to screen, Fc and Fn the current and
next object locations. When the visual attention is shifted
from one object to another, a saccade is produced to switch

gaze to the new object. The landing point of the saccade is
sampled from a Gaussian distribution around the new object
location Fn. The eye movement consists in two stages: prepa-
ration and execution. Preparation takes place together with
object encoding and the saccade is executed after preparation
is finished. The preparation time Tprep is a parameter set to
135 ms, and the execution time Texec is set to 70+2di ms. If a
new visual attention shift arrives during saccade preparation,
the eye movement is cancelled. This no longer applies during
execution.

The attention shifts that EMMA uses are generated by the
ACT-R model by means of a free-viewing visual search mod-
ule. Starting from a random object in the visual scene, the
module shifts attention to the object with the least Euclidean
distance to the current attention point. After looking at all the
objects in the visual scene, the process is terminated.

Generating saliency maps with EMMA
Being a top-down attention cognitive model, EMMA does not
have a pixel-level understanding of the image and relies solely
on object bounding boxes and corresponding label annota-
tions. To produce such annotations, we make use of the Faster-
RCNN (P. Anderson et al., 2018) object detector. EMMA
outputs a sequence of fixation locations and corresponding
durations. To construct saliency maps from this sequence, we
place a Gaussian kernel at each fixation location and weight it
with the corresponding duration.

Estimating EMMA parameters
The optimal parameters for EMMA are found by using an
auxiliary dataset with ground truth saliency data in the tar-
get domain (natural images or information visualizations).
The synthetic saliency maps are generated for different sets
of EMMA parameters and compared with the ground truth
saliency maps using Earth Mover’s Distance (EMD). The pa-
rameter set with the smallest EMD is selected as the optimal
set for the target domain. For natural images, the optimal
parameters are estimated using the SALICON dataset and for
information visualizations the MASSVIS.Figure 2 shows a
comparison between EMMA-generated and human gaze data.

Training saliency models with EMMA
We leveraged EMMA with optimized parameters to synthesize
cognitively plausible saliency maps for large datasets, across
two different domains, which do not include human ground
truth. As a result, we created two new large-scale datasets,
MSCOCO-EMMA and FigureQA-EMMA, containing syn-
thetic saliency maps for all images in MSCOCO and Fig-
ureQA, respectively. We then used these augmented datasets
to train and evaluate performance gains in two lightweight
saliency prediction models, MSI-NET and MD-SEM. Al-
though both models have approximately one third of the param-
eters compared to the SOTA model, our approach allows them
to achieve competitive results on the SALICON validation set.

1Code, datasets, our pretrained models and additional supporting
material can be found at perceptualui.org/publications/sood23_cogsci
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Table 1
Saliency prediction performance for MSI-NET and MD-SEM
on the SALICON validation set, with and without pre-training
on synthetic data from EMMA and finetuning (FT) on target
dataset. Best results are in bold, second best underlined.

Method AUC ↑ CC ↑ KL ↓ NSS ↑ SIM ↑
MSI-NET 0.855 0.840 0.265 1.784 0.740
MSI-NETEMMA 0.866 0.886 0.198 1.891 0.776
MD-SEM 0.858 0.843 0.268 1.818 0.732
Ours 0.865 0.894 0.193 1.891 0.780

Subsequently, pre-trained MD-SEM on MSCOCO-EMMA
synthetic data and evaluated its performance compared to
SOTA models on three well established saliency benchmark
datasets. For cross-domain performance on information visual-
izations, we pre-trained MD-SEM both on MSCOCO-EMMA
and FigureQA-EMMA. Further training details are provided
in supporting material1.

Datasets and experiments
We evaluated our approach both on saliency prediction bench-
mark datasets containing natural images (Borji & Itti, 2015;
Jiang et al., 2015; Judd, 2009) and information visualiza-
tions (Borkin et al., 2015). In the following, we provide a
brief description of the datasets, implementation, and training
settings. We measure the quality of EMMA-generated data and
saliency prediction performance using five metrics commonly
used in the literature (Kummerer, Wallis, & Bethge, 2018):
Kullback-Leibler divergence (KL), Pearson’s Correlation Co-
efficient (CC), Similarity Metric (SIM), Normalized Scanpath
Saliency (NSS), and Area under ROC Curve (AUC)2.

MSCOCO-EMMA and FigureQA-EMMA
As mentioned in Sec.Method, we leveraged EMMA to produce
synthetic gaze data for MSCOCO and FigureQA. The results
are MSCOCO-EMMA and FigureQA-EMMA, consisting of
130k and 100k images, scanpaths and saliency maps, respec-
tively. Details about the optimal parameters used for EMMA
are shown in supporting details1. To validate the quality of
the synthetic data, we compared EMMA-generated gaze data
and randomly sampled locations on SALICON and MASSVIS
datasets respectively (see supporting material for further de-
tails1). EMMA outperforms by a large margin in reproducing
human attention allocation on images both on SALICON (CC:
0.432 vs. 0.167; KL: 1.624 vs. 2.068; SIM: 0.457 vs. 0.332)
and MASSVIS (CC: 0.400 vs. 0.096; KL: 0.641 vs. 1.703;
SIM: 0.568 vs. 0.307). 3

Saliency benchmark datasets
SALICON (Jiang et al., 2015) contains 10k training, 5k val-
idation, and 5k testing images. In contrast to other widely
used attention datasets, it includes mouse clicks as a proxy to
human visual attention. In line with previous work, we used
SALICON both for pre-training and evaluation (Jia & Bruce,

2020; Kroner et al., 2020). MIT300 (Judd, Durand, & Torralba,
2012b), MIT1003 (Judd, 2009) and CAT2000 (Borji & Itti,
2015) are popular datasets for evaluating saliency prediction
models. MIT300 contains 300 images with eye-tracking data
from 39 observers. MIT1003 contains 1,003 natural scene
images with real eye-tracking data of 15 observers. CAT2000
consists of 2,000 images of 20 categories – such as indoor,
outdoor, and cartoons – including 100 images each. Each
image comes with eye tracking data of 12 observers. To eval-
uate our approach on information visualizations, we made
use of MASSVIS (Borkin et al., 2015), the currently largest
visualization dataset. It provides eye-tracking data recorded
during a memorability task on 393 visualizations.

Natural images. We pre-trained our models on the
MSCOCO-EMMA data generated with the best set of EMMA
parameters found via parameter search on SALICON (see
supporting materials for further details1). Subsequently, we
finetuned the pre-trained models using the same procedure
employed in previous work (Jia & Bruce, 2020; Kroner et al.,
2020) (see supporting material for further details1). After eval-
uating the models on the SALICON validation set, we choose
the best model to continue finetuning on the CAT2000 dataset
and further on the MIT1003 dataset, following the splits
and training procedure employed in previous work (Cornia,
Baraldi, Serra, & Cucchiara, 2018; Linardos et al., 2021)(see
supporting materials for further details1).

Information visualizations. When training our method
for information visualizations, we started from the best model
trained on natural images (with SALICON finetuning) and fur-
ther finetuned it on information visualizations (see supporting
details1). Since there are currently no large-scale human atten-
tion datasets in information visualizations, we used EMMA
to synthesize gaze data for approximately 100k visualizations
from FigureQA. We identified the best parameters for EMMA
by using a parameter search on MASSVIS. After pre-training
on FigureQA-EMMA we finetuned our model on ground truth
MASSVIS data, as described in Section Method. Further
training details are discussed in supporting details1.

Results and Discussion

We evaluated our hybrid saliency prediction method on estab-
lished saliency benchmark datasets containing natural images
and on information visualizations to evaluate cross-domain
generalizability. When selecting approaches for comparison
amongst the large number of existing saliency prediction meth-
ods, we focused on those approaches that showed competitive
performance across the three common benchmarks (test sets)
SALICON, MIT300, and CAT2000.

2Additionally, for SALICON, we report Information Gain (IG)
and shuffled AUC (sAUC), as they are returned by the SALICON
evaluation server

3MSCOCO-EMMA and FigureQA-EMMA are publicly available.
Access, full metrics and additional details about these datasets are
provided in supporting material1
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Table 2
Prediction performance on the SALICON test set. Best results are highlighted in bold, second best underlined, and third best in
italic. Params indicates the number of parameters.

Method sAUC ↑ AUC ↑ CC ↑ IG ↑ KL ↓ NSS ↑ SIM ↑ Params
DeepGaze IIE (Linardos et al., 2021) 0.767 0.869 0.872 0.766 0.285 1.996 0.733 104.5M
TranSalNet (Lou et al., 2022) 0.747 0.868 0.907 0.788 0.373 2.014 0.803 72.5M
EML-NET (Jia & Bruce, 2020) 0.746 0.866 0.886 0.736 0.520 2.050 0.780 84.7M
MSI-NET (Kroner et al., 2020) 0.736 0.865 0.889 0.793 0.307 1.931 0.784 24.9M
SAM-RESNET (Cornia et al., 2018) 0.741 0.865 0.899 0.538 0.610 1.990 0.793 70.1M

MD-SEM (Fosco et al., 2020) 0.746 0.864 0.868 0.660 0.568 2.058 0.774 30.9M
Ours 0.736 0.866 0.899 0.812 0.272 1.931 0.791 30.9M

Image Ground Truth MD-SEM Ours

Figure 3. A visualization of example images from the SALI-
CON val set with the corresponding human ground truth maps,
and predictions from MD-SEM and Our approach.

Performance on saliency benchmark datasets

We evaluated our approach on improvement for light-weight
models with cognitive pretraining on the SALICON valida-
tion set (Table 1). For both MD-SEM (30.9M parameters)
and MSI-NET (24.9M parameters), our method consistently
improves across all metrics. These experiments showcase for
the first time that models with lower capacity benefit greatly
when initially pretrained with synthetic data generated from
the EMMA cognitive model. In general, MD-SEM performed
better than MSI-NET. This holds true without EMMA pre-
training (3 out of 5 metrics), and with EMMA pretraining
(3 out of 5 metrics, and one tie). As a result, we based all
further ablation studies and state-of-the-art comparisons on
our combination of MD-SEM and EMMA. In addition, we
investigated the effect of EMMA pre-training on larger models,
namely EML-NET with different backbones. We did not find
consistent improvements, suggesting that pre-training with a
cognitive model specifically helps lower capacity models.4.

Comparison against SOTA models. Table 2 shows results
on the SALICON test set. Our method achieves best results on
IG (0.812) and KL (0.272). It also achieves performance com-
parable to SOTA on AUC (0.866 vs. 0.869 for DeepGazeIIE),
CC (0.899 vs. 0.907 for TransSalNet), and SIM (0.791 vs.
0.803 for TransSalNet). Importantly, we improve over vanilla
MD-SEM (without pre-training on MSCOCO-EMMA) in 5 of
7 metrics, with especially large margins for IG (0.812 to 0.660)
and KL (0.272 to 0.568). Thus, pre-training with MSCOCO-
EMMA helps MD-SEM (30.9M parameters) to close the gap

to- and even outperform approaches with more than twice
the number of parameters, e.g. DeepGaze IIE (104.5M) or
EML-NET (84.7M). We show qualitative results in Fig. 3.

Table 3 shows results on the MIT300 test set5. Our approach
outperforms vanilla MD-SEM on all metrics and achieves the
third highest score for all metrics except NSS. DeepGaze IIE
remains the dominant model in terms of performance. On the
other hand, it is the largest model, with over 100M parameters.
Our approach still achieved comparable results on AUC, NSS,
CC and SIM with 30.9M parameters. Compared to EML-
NET (72.5M parameters), we obtain higher scores in sAUC,
CC, KL and SIM and competitive in AUC.

Table 4 compares the performance of different models on
CAT2000 test. We outperform the previous state of the art
(DeepGaze IIE) on three metrics (AUC, NSS, and SIM) and
is competitive on sAUC and CC7. These results demonstrate
the effectiveness of leveraging EMMA to pre-train saliency
prediction models.

Cross-Domain Performance
As a domain-independent model of gaze behavior, EMMA
holds promise to alleviate the need for costly large-scale data
collection in the respective target domain. We evaluate the
benefits of our approach in the domain of information visual-
izations for which only little human gaze data is available. In
Table 5 we show results of our method compared to the previ-
ous SOTA (Matzen et al., 2017) 8 and to different ablations on
MASSVIS 9. Our approach clearly outperforms the previous
state of the art on 4 out of 5 metrics. Our approach consistently
improves over ablated versions. Omitting the pre-training with
EMMA-generated data on FigureQA decreases performance

4We provide detailed results on these additional experiments in
supporting material1

5As Fosco et al. (2020) did not report MD-SEM results on the
MIT300 test set, we trained the model ourselves and sent predictions
from the best model on MIT1003 validation set to the test server6

7If we consider results reported in previous works but not in the
leaderboard, we obtain third best results on sAUC, KL, and NSS and
second best result on AUC.

8Code available at http://www.cs.sandia.gov/~atwilso/
get_dvs.html

9MASSVIS is currently the largest available dataset of human
saliency on information visualizations
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Table 3
Performance on the MIT300 test set. Best results are highlighted in bold, second best underlined, and third best in italic. Params
indicates the number of parameters.

Method sAUC ↑ AUC ↑ CC ↑ KL ↓ NSS ↑ SIM ↑ Params
DeepGaze IIE (Linardos et al., 2021) 0.7942 0.8829 0.8242 0.3474 2.5265 0.6993 104.5M
TranSalNet (Lou et al., 2022) 0.7467 0.8734 0.8070 1.0141 2.4134 0.6895 72.5M
EML-NET (Jia & Bruce, 2020) 0.7469 0.8762 0.7893 0.8439 2.4876 0.6756 84.7M
MSI-NET (Kroner et al., 2020) 0.7787 0.8738 0.7790 0.4232 2.3053 0.6704 24.9M
SAM-RESNET (Cornia et al., 2018) 0.7396 0.8526 0.6897 1.1710 2.0628 0.6122 70.1M
MD-SEM (Fosco et al., 2020) 0.7483 0.8646 0.738 0.6962 2.1339 0.6445 30.9M
Ours 0.7490 0.8748 0.7997 0.6741 2.3518 0.6879 30.9M

Table 4
Prediction performance on the CAT2000 test set. Best results are highlighted in bold, second best underlined, and third best in
italic. Params indicates the number of parameters.

Method sAUC ↑ AUC ↑ CC ↑ KL ↓ NSS ↑ SIM ↑ Params
DeepGaze IIE (Linardos et al., 2021) 0.6498 0.8640 0.7564 0.5137 1.9619 0.6392 104.5M
EML-NET (Jia & Bruce, 2020) 0.58 0.78 0.87 0.95 2.38 0.74 84.7M
MSI-NET (Kroner et al., 2020) 0.59 0.82 0.87 0.36 2.30 0.75 24.9M
SAM-RESNET (Cornia et al., 2018) 0.58 0.88 0.89 —- 2.38 0.77 70.1M
MD-SEM (Fosco et al., 2020) 0.6141 0.8535 0.6388 0.7924 1.7907 0.5895 30.9M
Ours 0.6046 0.8687 0.7351 0.6384 2.0657 0.6411 30.9M

Table 5
Prediction performance on the MASSVIS test set for the previous SOTA (DVS), MD-SEM, and different ablations of our approach.
no FigureQA-EMMA indicates no pre-training with EMMA-generated data on Figure QA; no FT indicates no finetuning on
MASSVIS. Best results are highlighted in bold. Results for our method (Ours) are significant with p < .001 from all other
methods, and p < .05 on CC and SIM from Ours (no FigureQA-EMMA).

Methods AUC ↑ CC ↑ KL ↓ NSS ↑ SIM ↑
DVS (Matzen et al., 2017) 0.738 0.563 0.480 0.996 0.603
MD-SEM (Fosco et al., 2020) 0.728 0.727 0.097 0.913 0.786
Ours (no FigureQA-EMMA, no FT) 0.679 0.580 0.300 0.717 0.677
Ours (no FT) 0.710 0.588 0.237 0.872 0.698
Ours (no FigureQA-EMMA) 0.734 0.774 0.072 0.940 0.805
Ours 0.743 0.790 0.061 0.986 0.811

significantly in all metrics. However, a certain amount of
ground truth target domain data is crucial, as indicated by the
even worse performance when not finetuning on MASSVIS.
Finally, neither finetuning on MASSVIS nor pre-training with
FigureQA-EMMA reaches lower performance. These ablation
results document the importance of domain-specific training
data generated with EMMA cognitive model. Qualitative
results are shown in supporting material1.

Conclusion
We presented a novel hybrid saliency prediction method that
leverages a cognitive model of visual attention. In stark con-
trast to prior methods that obtained improved results by in-
creasing the model’s complexity and capacity, our approach
shows superior or competitive performance across several
datasets using the lightweight MD-SEM saliency prediction
architecture. Evaluations on both natural images and infor-

mation visualizations datasets demonstrated the potential for
our method in both single- and cross-domain settings. Further-
more, we provide augmented versions of the full MSCOCO
and FigureQA datasets with cognitively plausible synthetic
saliency data. These results underline the significant poten-
tial for bridging between cognitive and data-driven models,
potentially also beyond simulated visual human attention.
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