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Comprehensive modeling of a whole cell requires an integration of
vast amounts of information on various aspects of the cell and its
parts. To divide and conquer this task, we introduce Bayesian
metamodeling, a general approach to modeling complex systems
by integrating a collection of heterogeneous input models. Each
input model can in principle be based on any type of data and can
describe a different aspect of the modeled system using any
mathematical representation, scale, and level of granularity. These
input models are 1) converted to a standardized statistical repre-
sentation relying on probabilistic graphical models, 2) coupled by
modeling their mutual relations with the physical world, and 3)
finally harmonized with respect to each other. To illustrate
Bayesian metamodeling, we provide a proof-of-principle metamo-
del of glucose-stimulated insulin secretion by human pancreatic
β-cells. The input models include a coarse-grained spatiotemporal
simulation of insulin vesicle trafficking, docking, and exocytosis; a
molecular network model of glucose-stimulated insulin secretion
signaling; a network model of insulin metabolism; a structural
model of glucagon-like peptide-1 receptor activation; a linear
model of a pancreatic cell population; and ordinary differential
equations for systemic postprandial insulin response. Metamodel-
ing benefits from decentralized computing, while often producing
a more accurate, precise, and complete model that contextualizes
input models as well as resolves conflicting information. We antic-
ipate Bayesian metamodeling will facilitate collaborative science
by providing a framework for sharing expertise, resources, data,
and models, as exemplified by the Pancreatic β-Cell Consortium.

integrative modeling | whole-cell modeling | pancreatic β-cell | multiscale
modeling | Bayesian metamodeling

Cells are the basic structural and functional units of life (1).
Different aspects of the cell have been studied extensively,

including experimentally, computationally, and theoretically. As
is the case for any model, a cell model is expected to provide
more information about the cell than any of the input informa-
tion used for its construction. In particular, the model should
rationalize known facts and make testable predictions. We con-
sider a desired cell model and its construction by discussing a
progression from an impractical atomic model, an impractical
integrative model, actual current models, and finally culminating
in the modeling approach proposed here.

Modeling of the Cell
Impractical Physical Modeling of the Cell. Hypothetically, a most
precise model of the physical cell structure specifies trajectories
for each of its atoms over its life span. Such a model could in

principle be obtained from molecular dynamics simulations (2,
3). In practice, however, computing accurate trajectories for
∼1014 atoms over days or longer is limited by inaccurate mo-
lecular mechanics force fields and slow computers with insuffi-
cient memory, as well as lack of sufficient knowledge about the
starting state and environment. Moreover, even if such a model
could be computed, it still would not abstract all cellular prop-
erties of interest, such as molecular signaling networks.

Recalcitrant Integrative Modeling of the Cell. To attempt to address
these challenges, we could adopt an integrative approach. Inte-
grative modeling is defined as modeling that uses multiple types
of information about the modeled system, be it from different
experiments or prior models (4, 5). It is motivated by the
resulting increase in accuracy, precision, and completeness of a
model. Integrative modeling is particularly effective for modeling
complex biological systems, for which no single experimental or
theoretical approach can provide all needed information. For
example, structures of large macromolecular assemblies recalcitrant
to traditional structural biology methods have been determined by
integrative structure determination (6). Integrative modeling of the
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cell could rely on a multiscale representation and multimodal ex-
perimental data, in addition to the first principle of physics (4). In
practice, however, even integrative modeling of all aspects of the
entire cell is not feasible at this time, due to insufficient data and
computing power as well as limitations of existing integrative
modeling methods.

Current Models of Aspects of the Cell. Although an accurate, pre-
cise, and complete model of the cell cannot yet be computed, it is
possible to model some aspects of the cell or its parts with useful
accuracy and precision (5). Most of these models rely on a single
type of representation of the cell, such as spatiotemporal (7),
ordinary differential equation (ODE) (8), and flux balance
analysis representations (9). In addition to whole-cell models,
there are a myriad of models of different parts of the cell, too
numerous to review here. These models may provide a useful
starting point for whole-cell modeling due to their encoding of
expertise, data, and computing used to produce them. However,
no general approach yet exists for combining different kinds of
models, although steps in this direction have been made
(Discussion) (10–14).

Bayesian Metamodeling of the Cell. Here we propose a divide-
and-conquer modeling approach that integrates input models
of varied representations into a metamodel. Metamodeling can
be seen as a special case of integrative modeling in which the
focus is on integrating prior models instead of data (4). The large
problem of computing an integrative model of the cell is broken
into a number of smaller modeling problems corresponding to
computing models of some aspects of some parts of the cell.
Each such input model may be informed by different subsets of
available data, relying on its distinct model representation at any
scale and level of granularity. Metamodeling then proceeds by
assembling and harmonizing the input models into a complete
map of the cell. Here the input models are harmonized through a
Bayesian statistical model of their relations with each other and/
or the physical world. This Bayesian approach enables us to
update our beliefs in the distribution of model variables (in-
cluding best single-value estimates and their uncertainties), given
information provided by all input models. By shifting the focus
from data integration to model integration, Bayesian metamod-
eling facilitates the sharing of data, computational resources, ex-
pertise in diverse fields, and already existing models of the cell and
its parts.

Proof of Principle: Prototype Metamodel of Glucose-Stimulated
Insulin Secretion. The Pancreatic β-Cell Consortium (https://
pbcconsortium.org/) brought together research groups in biol-
ogy, chemistry, physics, mathematics, computer science, and the
digital arts (15). The consortium provides a nurturing environ-
ment for developing methods for whole-cell modeling. For de-
veloping the method of metamodeling, we narrowed our focus
on glucose-stimulated insulin secretion (GSIS) (16), one of the
key functions of the β-cell (Fig. 1). Insulin secretion encompasses
many of the complexities of the whole cell, including aspects that
are best described using different types of models at different
scales, thus providing a useful testing ground for Bayesian
metamodeling of the cell.

Results
Definitions. We are using a number of common terms that may
have different definitions in different fields. Thus, we begin by
defining our usage here. We are working in the Bayesian
framework that estimates a model based on data and prior in-
formation (17). Thus, a model is the joint posterior probability
density function (PDF) over the model variables. We distinguish
among three kinds of model variables. First, free parameters
(i.e., degrees of freedom) are quantities that are fit to input

information (e.g., the coefficients of a polynomial model and
atomic coordinates of a protein structure model). Second, in-
dependent variables (i.e., regressors, features, or inputs) are
quantities whose values are supplied when evaluating a model
(e.g., the abscissa of a polynomial model). Third, dependent
variables (i.e., response variables, regressands, outcomes, labels,
predictions, or outputs) are quantities whose values are com-
puted when evaluating a model (e.g., the ordinate of a polyno-
mial model). As an aside, fixed parameters (i.e., constants or
hyperparameters) are quantities whose values are defined and
fixed (e.g., stereochemistry parameters in protein structure
modeling). Systematic error of a model (variable) is the mean
difference between the model (variable) and the ground truth.
Random error of a model (variable) is the spread (e.g., SD,
SEM, and entropy) of the model (variable). While the ground
truth is never known, systematic error can still be approximated
by the difference between the model and an independent ref-
erence that represents the ground truth as closely as possible (a
gold standard). Accuracy and precision (uncertainty) are equiv-
alent to systematic error and random error, respectively, except
they increase as their counterparts decrease. Ideally, accuracy is
approximated by precision. Metamodeling couples and harmonizes
all input models by updating the PDFs of their free parameters.

The Input Models. Information for GSIS metamodeling is pro-
vided by eight input models (Fig. 1, Table 1, and SI Appendix,
Supplementary Text 1). The models have been selected to cover
a diverse range of representations, spatiotemporal scales, and
data. They include a coarse-grained spatiotemporal simulation of
insulin vesicle exocytosis, a molecular network model of GSIS
signaling, a network model of insulin metabolism, an atomic
structural model of glucagon-like peptide-1 receptor (GLP1R)
activation, a linear model of the pancreatic cell population, ODEs
for systemic postprandial insulin response, synthetic data on glu-
cose intake (glucose intake data model), and synthetic data on
GLP1 and GLP1 analog levels (GLP1 data model).

Bayesian Metamodeling Workflow. Given the input models,
Bayesian metamodeling proceeds through three steps (Fig. 2): 1)
conversion of the input models into surrogate probabilistic
models, 2) coupling of these surrogate models through subsets of
statistically related variables, and 3) backpropagation to update
the original input models by computing the PDFs of free pa-
rameters for each input model in the context of all other input
models. Thus, the output from metamodeling includes the joint
PDF over all surrogate and reference variables (step 2) as well as
the updated input models (step 3). We now describe each step in
turn, both in general terms and by one or more examples.

Step 1: Conversion of Input Models into Surrogate Probabilistic
Models. A surrogate model is an approximation of a more com-
plex input model whose primary purpose is to facilitate relating
variables across multiple input models (18). In the first step of
metamodeling, we create a surrogate model for each input
model by converting it into a corresponding probabilistic model.
Formally, a surrogate model specifies a PDF over some input
model variables and any additional variables deemed necessary.
This PDF encodes model uncertainty and statistical dependen-
cies among its variables. Model uncertainty arises from insuffi-
cient information, imperfect modeling, and/or stochasticity of
the system. Statistical dependencies are exemplified by the de-
pendency between the values of independent and dependent
variables, the effect of free parameter values on such depen-
dency, and spurious correlations due to confounding factors or
coincidence.
In principle, a surrogate model could be obtained by any ap-

proach for modeling statistical distributions, such as probabilistic
graphical models (PGMs) (19) and various deep generative
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models (20). For the current proof of concept, we used Bayesian
networks (BNs), which are a well-studied class of PGMs (19).
BNs are often used for representing PDFs over many variables
using a directed graph (network), with nodes and edges repre-
senting variables and conditional statistical dependencies, re-
spectively. They are supported by efficient methods for Bayesian
inference, parameter fitting, and learning of network topology
from data. Finally, BNs include dynamic Bayesian networks
(DBNs) that generalize both hidden Markov models and Kalman
filters, allowing us to model dynamic processes (19), such as
vesicle exocytosis. In a nutshell, for a given input model, we
tabulate dependent variables as a function of free parameters
and independent variables, followed by manually constructing
and parametrizing a surrogate PGM that approximates this table.

Examples. We constructed a surrogate model for the vesicle
exocytosis model (Figs. 1 and 2, green). Insulin vesicle exocytosis
is described by spatiotemporal trajectories of insulin granules
undergoing trafficking, docking, and exocytosis within a pan-
creatic β-cell over 200 ms, following glucose stimulation (SI
Appendix, Supplementary Text 1.3 and Movie S1) (21). A sim-
plified cell representation incorporates the cell membrane, nu-
cleus, hundreds of insulin vesicles, and thousands of glucose
molecules. The trajectories of these components are computed
using Brownian dynamics simulations restrained by various ex-
perimental data, including soft X-ray tomograms of the cell. The
free parameters include parameters of the data-driven potential
function and diffusion constants. The independent variables are
the coordinates of the starting configuration. The dependent
variables are millions of cell frames in a trajectory, each speci-
fying coordinates of thousands of components. For practical rea-
sons, the proof-of-principle surrogate model abstracts the billions
of variables describing a trajectory by sampling it at a fraction of

frames and including only a subset of variables for each sampled
frame. Uncertainty in the values of the surrogate model variables
reflects uncertainty in the corresponding input model.
As a second example, we constructed a surrogate model for

the postprandial response model (22) (Figs. 1 and 2, purple, and
SI Appendix, Supplementary Text 1.1). Insulin and glucose fluxes
through different body systems in the hours following a meal are
described by ODEs. The variables of the postprandial response
surrogate model include free parameters of the model ODEs
(i.e., coefficients in ODEs) in either healthy or type 2 diabetic
subjects; independent variables corresponding to the change in
plasma glucose levels due to digestion; and dependent variables
indicating predicted glucose and insulin plasma levels over time
(G and I), glucose-dependent insulin secretion (Y), and total
insulin secretion (S). While the ODEs are deterministic, their
free parameter values are uncertain: they were obtained by fit-
ting noisy and sparse measurements of insulin and glucose
levels (22), and they do not account for variability in insulin
response as a function of hidden (unseen) variables, such as an
individual, time of day, and meal composition other than glu-
cose. To reflect the uncertainty in the free parameters, we speci-
fied a prior distribution over each parameter value. In addition, we
used a DBN to describe the change in insulin and glucose levels
over time, given these parameters and glucose intake during a
meal. Last, we introduce a Boolean variable T2D, indicating a
diabetic or healthy subject. Thus, the surrogate model now ac-
counts for both the large uncertainty in the model parameters and
the statistical dependencies among the model variables over time
(Fig. 2).

Step 2: Coupling Surrogate Models. Surrogate models enable us to
couple multiple input models through subsets of statistically re-
lated variables. Their coupling requires some shared reference

Fig. 1. Metamodeling of GSIS. Eight input models,
including two data models, describe different as-
pects of GSIS (Table 1). They are represented by small
circles with different background colors. These input
models are integrated into a single metamodel of
GSIS, indicated by a large gray circle in the center.
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variables (i.e., coupling variables). Suitable coupling variables
can often be found with the aid of a high-resolution represen-
tation of the physical world (e.g., atomic coordinates in space
and time) or some function of these variables (e.g., coarse-
grained coordinates over particles or time). These latent (hid-
den) variables serve only to formally relate variables from dif-
ferent surrogate models; their values do not need to be known.
To couple variables from two or more surrogate models, we
describe their relations with the coupling variables, as follows.
First, we identify subsets of potentially related variables from
multiple surrogate models, as currently determined by an expert
based on prior knowledge. Second, for each such subset of sur-
rogate variables, we define corresponding coupling variables.
Finally, we devise conditional PDFs (couplers) on each subset of
surrogate and coupling variables. We aim to couple as many
surrogate models with each other as possible, culminating in a
joint PDF over all surrogate models. Importantly, there is gen-
erally not one correct choice for the coupling step. Instead,
coupling is an external modeling choice and a model in and of
itself, just like the input and surrogate models (MC in Fig. 2).
Automated methods for performing this step are conceivable
(Discussion). In addition to priors corresponding to input mod-
els, we also use data likelihoods when convenient to define
couplers (e.g., GI data model; Fig. 2).

Example. Four of the eight surrogate models in the metamodel
include variables referring to rates of insulin secretion, although
in different contexts and spatiotemporal scales. The postprandial
response (PR) and pancreas (Pa) surrogate models include a
variable referring to the total secretion rate from pancreas to
plasma (SRP and SPapa, respectively; Fig. 2). The pancreas (Pa),
vesicle exocytosis (VE), and GSIS signaling (Sg) models include
a variable referring to the secretion rate from a single β-cell (SPacell,
SEV , and SgS, respectively). To relate these variables, we introduce
two coupling variables: the true insulin secretion rate from
pancreas to the portal vein averaged over population and time
(SCpa) and the true (but unknown) secretion rate from a primary
pancreatic β-cell to the extracellular matrix averaged over pop-
ulation of cells (SCcell). Finally, we impose conditional PDFs on
subsets of these surrogate and coupling variables, relying on the
pancreas model as a straightforward bridge between different
scales. At the plasma level, SPR in the pancreas response model is
conditionally dependent on the coupling variable SCpa, which is in
turn conditionally dependent on SPapa in the pancreas model. At
the cell level, SPacell is conditionally dependent on SCcell, which is in
turn conditionally dependent on SVE and SSg. Thus, four surro-
gate models, each describing different scales and aspects of in-
sulin secretion, are coupled. This example provides a blueprint

Table 1. The input models for GSIS metamodeling

Model
(abbreviation) Representation Description

Scale (spatial,
temporal)

Granularity
(spatial,
temporal)

Experimental data and prior
information

Ref. and
sections

Postprandial
response
(PR)

ODEs Model of systemic postprandial
change in plasma insulin and
glucose levels after a meal

Body, 103 s Organ, 101 s* Insulin, glucose measurements (22) 1.1†

Pancreas (Pa) Linear
equations

Model of insulin secretion by the
entire population of β-cells in
the pancreas

Organ, N/A Cell, N/A Microscopic examination and
morphometric measurements
for quantifying islets in a
pancreas (87); electrical
tomography and
morphometric analysis for
quantifying β-cells in an islet
(88)

1.2†

Vesicle
exocytosis
(VE)

Spatiotemporal Coarse-grained Brownian
dynamics simulation of insulin
granule trafficking, docking,
and exocytosis

Cell, 10−1 s Molecule/
granule, 10−8 s

Soft X-ray tomography (21) 1.3†

GSIS signaling
(Sg)

Network
/linear ODEs

Model of signaling pathway of
GSIS

Cell, 102 s Molecule, N/A KEGG pathways (89); fluorescence
imaging and Förster-resonance
energy transfer microscopy
(FRET) (90–93)

1.4†

Insulin
metabolism
(Mb)

Network Model of cellular metabolic
pathways up-regulation or
down-regulation under
different treatment conditions

Cell, 102 s Molecular
concentration,

N/A

Proteomic/metabolomic screens,
KEGG pathways (89)

1.5†

Virtual
screening of
GLP1R (VS)

Spatial List of GLP1R ligands ranked by
their estimated activation of
GLP1R, based on structure-
based virtual screening of a
library of GLP1 analogs

Macromolecule, N/
A

Atom, N/A Virtual screening assay (94) based
on structure-based modeling
and X-ray crystallography

1.6†

Glucose intake
data (GI)

Time series Rate of glucose intake after a
meal

Body, 103 s Organ, 101 s Synthetic data derived from the
glucose rate of appearance
from the postprandial response
model

1.7†

GLP1 data (GL) Synthetic data GLP1R activation at different
agonist levels

Macromolecule, <s Atom, N/A Synthetic data 1.8†

*The model is continuous but trained over data obtained at 1-min resolution, with the precision on the order of seconds.
†The model was computed here, based on prior publications, as described in SI Appendix, Supplementary Text 1, sections as marked. Ref., reference.
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for how more complex models of variation among cells and in-
dividuals can also be included. For example, reference variables
may describe secretion rates for different individual cells within a
single islet or different cell lines.

Step 3: Harmonize Input Models by Backpropagation of Updated
Variable PDFs. In the last step, information in the coupled sur-
rogate models is propagated back to the original input models.
This update is achieved by first updating surrogate models (Fig.
2). A surrogate model PDF can be updated by either marginal-
izing out or conditioning on each variable in all other surrogate
models. In fact, a PDF spanned by any combination of variables
from any surrogate models can be computed by marginalizing
out and/or conditioning on the other surrogate variables. Finally,
we update each input model by relying on a mapping between the
surrogate and input model variables. Alternative backpropagation
schemes can be performed in parallel (e.g., conditioning on dif-
ferent values of some variable). Other backpropagation schemes
may be explored in the future (Discussion).

Examples. The postprandial response model includes an input
parameter for basal plasma glucose level, GPR

b (Fig. 2) (22). Its
surrogate model includes a corresponding variable that is dis-
tributed normally (mean value of 5.1 ± 1 and 9.2 ± 1 mM for
healthy and diabetic individuals, respectively), thus describing its

prior uncertainty. Following the coupling step, we obtain a joint
PDF spanned by variables in all surrogate models, including GPR

b .
To update a GPR

b estimate for the postprandial response surro-
gate model, we compute its marginal PDF from this joint PDF,
conditioned on the variable indicating a healthy or diabetic in-
dividual. The Gb parameter in the original postprandial response
model is then replaced with the mean estimate of GPR

b in the
surrogate model. This process is repeated for other free pa-
rameters of the postprandial response model individually or
jointly. Either way, as a result, the updated postprandial response
model reflects information from all other input models, via the
coupling of insulin secretion rates in different surrogate models
performed in step 2.
Another example is provided by the vesicle exocytosis model,

which specifies positions of thousands of cellular components
over millions of Brownian dynamics trajectory frames (step 1).
As discussed above, the surrogate model has significantly fewer
variables. Nonetheless, the PDF of the surrogate model itself
encodes the statistical relations among key free parameters and
other variables of the input model (example in step 1). Thus,
useful information can be extracted directly from the PDF of the
harmonized surrogate model. For example, an updated estimate
of vesicle trafficking rate in the vesicle exocytosis model kVEt as a
function of insulin secretion rate over time in the postprandial

Fig. 2. From input models to coupled surrogate models in a metamodel of GSIS. Nodes indicate variables, and directed edges indicate probabilistic relations
between a parent and child variable in a BN; a child variable is conditionally independent of any of its nondescendants, given the values of its parent variables
(19). Each model and its variables are indicated by a specific color. Reference variables are in red, data variables are in gray, fixed parameters in the input
models are encircled in white dashed lines, free parameters are encircled in black dashed lines, independent variables are encircled in continuous line, and
dependent variables are not encircled. Gray edges are defined by the input models, whereas red edges are defined by the couplers. Self-loops indicate
dependency on the value of the same variable in a previous time slice. Annotated variables and edges indicate examples discussed in the text.
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response model SPR can be computed directly from the marginal
PDF of kVEt , conditioned on SPR (Fig. 2, backpropagation step).
In addition, estimates of the corresponding free parameter kt and
other free parameters of the original input model are updated by
backpropagation from the harmonized surrogate model, fol-
lowed by recomputing spatiotemporal trajectories of vesicle
exocytosis using these parameters, now harmonized based on all
other input models.

A Proof-of-Concept Bayesian Metamodel of GSIS. By applying con-
version, coupling, and backpropagation (Fig. 2), we divided and
conquered the task of modeling GSIS, thus decentralizing re-
quired computing and expertise. We now discuss how Bayesian
metamodeling produces a more complete description of GSIS
than the original input models, contextualizes them, increases
their accuracy and precision, and resolves conflicting information
in the input models. Several simplifying assumptions in the input,
surrogate, and coupling models are deemed acceptable at the
present time because the current purpose is to illustrate meta-
modeling rather than advance knowledge about GSIS.

Completeness and Contextualization. Completeness of a model is
the degree to which the model describes all relevant aspects of
the modeled system, given the questions asked. By construction,
Bayesian metamodeling provides a more complete description of
GSIS than any of the input models on their own. It also con-
textualizes the different input models by relating previously
uncoupled variables (from different input models) to each other.
As a consequence, Bayesian metamodeling can be used to assess
the effect of different models on one another and augment each
model with information in other models to which it was oblivious
prior to metamodeling.

Examples. Incretins, such as the GLP1 peptide (23), are hormones
secreted from the endocrine pancreas that regulate plasma glu-
cose levels (24). In the presence of glucose stimulus, GLP1 in-
creases insulin secretion by activating GLP1R, the cognate
receptor of GLP1 on pancreatic β-cells. Indeed, GLP1R agonists
are commonly used to treat type 2 diabetes (23), although clinical
significance of this activation in β-cells versus other tissues is yet to
be determined (25). The postprandial model (22) does not include
any information on GLP1, GLP1R, nor their effect on systemic
insulin response after a meal (Fig. 2 and SI Appendix, Supple-
mentary Text 1.1). In contrast, this information is included in the
GSIS signaling model, which describes how GLP1 activates
GLP1R, insulin biosynthesis, and secretion pathways downstream
of GLP1R, within a single β-cell (Fig. 2 and SI Appendix, Sup-
plementary Text 1.4). In the metamodel, variables from both
models are coupled (Fig. 2). This coupling enables us to reesti-
mate the free parameters of the postprandial model for different
choices of extracellular concentrations of GLP1 (Fig. 3B). Con-
sequently, the updated postprandial model successfully recapitu-
lates the incretin effect (i.e., the empirically observed effect of
elevated GLP1 concentrations on postprandial insulin and glucose
levels) (23); in other words, the postprandial model was contex-
tualized by the model of GSIS signaling.
A second example is provided by the GLP1R model, which is

an atomic spatial model of GLP1R activation by GLP1 analogs
(Table 1). In the GSIS metamodel, this input model augments
both the postprandial and the GSIS signaling network models
with binding affinities of various GLP1 analogs for GLP1R, as
predicted by virtual ligand screening (Fig. 3A and Table 1). The
GLP1R model thus facilitates predicting the effect of GLP1
analogs on insulin secretion at the systemic and cellular levels (Fig.
3C). These predictions recapitulate the clinical observations of the
effect of GLP1 analogs on postprandial insulin and glucose levels
(Fig. 3D). This example also illustrates the modularity of

metamodeling: additional input models can be incorporated into
an existing metamodel, iteratively increasing its completeness.

Effect of Metamodeling on Accuracy and Precision. A useful model
needs to be sufficiently accurate and precise, given the questions
asked. Metamodeling aims to increase the accuracy (decrease
the systematic error) of variable estimates as much as possible,
given the accuracy and precision of the input models.
Accuracy and precision of metamodeling can be benchmarked

in two ways, as is the case for any modeling method. First, a
metamodel can be validated retrospectively by comparison against
an independently determined reference (e.g., the validation of the
GSIS metamodel by experiment in Fig. 3D). Second, the accuracy
of metamodeling can be assessed with a synthetic benchmark. In
such a benchmark, true values of free parameters for the various
input models are defined, followed by enumerating the input
models and the corresponding output metamodels for combinations
of input free parameter values. We can then systematically assess
the impact of metamodeling on the accuracy and precision simply
by comparing the output joint PDFs in the corresponding meta-
models with the true values of the free parameters. Consistently
with the broad definition above, systematic error of a variable is
defined specifically as the difference between the mean of its output
PDF and the true value, indicated by err, and precision (random
error) is defined as the SD of its output PDF, indicated by σ.

Example. In a synthetic benchmark, we assess the impact of
metamodeling on the systematic and random errors of free pa-
rameters GPR

b in the postprandial model and kVEt in the vesicle
exocytosis model. GPR

b corresponds to the basal glucose level in
plasma, and kVEt corresponds to the effective rate of vesicle
trafficking toward the cellular periphery. Prior uncertainties in
their values (e.g., due to variation among individuals and over
time) are reflected in their input PDFs; for example, the PDF for
GPR

b of healthy individuals is a Gaussian distribution with the
mean of 5.1 mM and the SD of 1.0 mM (SI Appendix, Table S1).
In the metamodel of GSIS, GPR

b and kVEt are coupled indirectly
via reference variables (Fig. 2). As a result of metamodeling, the
systematic and random errors of both variables may in principle
either increase, decrease, or remain constant, depending on the
magnitude and directionality of the errors in the prior estimates
of GPR

b and kVEt (Fig. 4 and SI Appendix, Fig. S14). To illustrate
this general point, we compute actual changes in the systematic
and random errors of GPR

b and kVEt produced by GSIS meta-
modeling (output accuracy and precision), as a function of the
accuracy and precision of GPR

b and kVEt in the input models (input
accuracy and precision).
We first discuss the output accuracy (systematic error) as a

function of the input accuracy. A coupling coefficient of a vari-
able with respect to another variable is defined as the sensitivity
of systematic error in its output PDF to systematic error in the
input PDF of the other variable (slope in Fig. 4A and SI Ap-
pendix, Fig. S14A). As expected, the magnitude of the coupling
coefficients of kVEt with respect to GPR

b and GPR
b with respect to

kVEt is relatively high (0.84 m/s per mM and 0.25 mM per 1.00 m/s,
respectively). Indeed, slower trafficking of insulin granules may
lower insulin secretion rate in dysfunctional β-cells (26), poten-
tially explaining elevated basal glucose levels in the plasma of
diabetic individuals. Thus, metamodeling correctly couples two
variables that were not coupled before metamodeling (because
they occurred in separate input models). The coupling coeffi-
cient of kVEt with respect to GPR

b is positive because these two
variables are positively correlated in the metamodel. Thus, when
GPR

b is overestimated and kVEt is underestimated in their input
models, or vice versa, these two estimation errors are likely to
diminish each other in metamodeling (Fig. 4C, gray diagonal).

6 of 12 | PNAS Raveh et al.
https://doi.org/10.1073/pnas.2104559118 Bayesian metamodeling of complex biological systems across varying representations

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2104559118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2104559118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2104559118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2104559118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2104559118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2104559118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2104559118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2104559118/-/DCSupplemental
https://doi.org/10.1073/pnas.2104559118


Conversely, when both are either underestimated or over-
estimated, metamodeling likely decreases their accuracy (Fig. 4B,
red and blue regions). Nonetheless, in analogy with the law of
large numbers (27), we expect that the larger the number of input
models, the more likely the random errors in the input models
cancel out, in turn leading to more accurate estimates in the
metamodel. We assume that for a sufficiently large set of at least
partially independent models, systematic errors will not be cor-
related and will thus average out.
Next, we discuss the output precision as a function of input

precision. When the random error of GPR
b in the input model

(input σ) increases, the random error of kVEt in the output met-
amodel (output σ) also increases (Fig. 4C). Thus, input models
with lower random error contribute to lower random error of
variables from other models. In other words, metamodeling
correctly weighs the uncertainties of the different input models
and updates output precisions accordingly. In contrast, when the
input random error of kVEt increases, the output random error of
GPR

b still increases but significantly more slowly (SI Appendix, Fig.
S14). An explanation is that GPR

b is stabilized through its coupling
to variables from multiple models (e.g., the GSIS signaling

B normal type 2 diabetic

C

D

A Postprandial response

plasma glucose, insulin
normal, type 2 diabetic

Virtual screening

agonists

Ca2+

ADP

ATP cAMP

GSIS signaling

GLP1

Pancreas
CGcellGpl,

C

GLP1RCScell
CSpa

C

Fig. 3. Contextualization of input models by meta-
modeling is illustrated by the effect of GLP1 and
incretins on GLP1R. (A) Coupling among four input
models is indicated schematically. Gray arrows indi-
cate the flow of information between the models,
via the coupling variables in red. Time courses of
postprandial glucose (orange shades) and insulin
(green shades) plasma levels are shown for normal
(Left) and type 2 diabetic subjects (Right). (B) Meta-
modeled time courses are shown for three glucagon-
like peptide 1 (GLP1) concentrations in the GLP1 data
model: basal, medium (+), and high (++). The shaded
areas indicate SD in the posterior PDFs. (C) Meta-
modeled time courses are shown for postprandial
response with and without a GLP1R agonist in the
virtual screening model, using analog M2 in the vir-
tual screening library (94). (D) Experimental time
courses are shown for postprandial response with
and without a GLP1R agonist, exenatide (synthetic
Exendin-4) (25).
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model and pancreas model) and is thus less sensitive to random
errors in coupled variables from a single input model. This ob-
servation illustrates one potential benefit of weighing informa-
tion from multiple models via metamodeling.

Conflicting Models. Changes in variable estimates after meta-
modeling can be used to identify conflicts between a variable in
one input model and other input models. After metamodeling, a
variable PDF may change significantly relative to its precision
(Fig. 4 D–G). Thus, conflict between the variable and other input
models is quantified by the overlap between variable PDFs be-
fore and after metamodeling (Fig. 4D) (28). When the systematic
error of GPR

b in the input postprandial model is low (point E in
Fig. 4D), it is consistent with the value of kVEt in the input vesicle
exocytosis model; consequently, the overlap between its input
and output PDFs is high (Fig. 4E). Even when the input sys-
tematic error of GPR

b is high, but its input random error (σ) is also
high (point F in Fig. 4D), the overlap between the input and
output PDFs for kVEt remains relatively large, indicating con-
flicting information that is tolerable given the high prior uncer-
tainty in GPR

b (Fig. 4F). In contrast, when the input systematic
error of kVEt is high and its input random error is low (point G in
Fig. 4D), the overlap between the input and output PDFs forGPR

b
becomes smaller, indicating conflicting information that is not
tolerable given prior uncertainty in GPR

b (Fig. 4G). Thus, toler-
ability of conflicting information in different input models is
identified by comparing the overlap among PDFs before and
after metamodeling. Moreover, variables leading to untolerable
conflicts can be prioritized for experimental follow-up to refine
the input models and thus resolve the conflicts. For instance,
given a conflict between GPR

b and kVEt , an improved measurement
of GPR

b could result in a refined postprandial model with higher
accuracy and precision, removing the conflict (arrow from point
G in Fig. 4D). Last, as with accuracy, introduction of additional
models to the metamodel can also resolve such conflicts by
providing an additional source of information about conflicting
variables.

Discussion
Summary. Here we developed Bayesian metamodeling, a divide-
and-conquer approach to modeling complex systems, such as the
cell. Metamodeling is not meant to replace other modeling
methods, including cell modeling methods. Instead, it is meant to
integrate, refine, and harmonize all other relevant models. Next,
we discuss 1) combining different models, 2) the relationship of
metamodeling with other whole-cell modeling approaches and
integrative modeling, 3) the advantages of metamodeling, 4) ma-
jor limitations of metamodeling and how they might be addressed,
and 5) the application of metamodeling to cell modeling by the
Pancreatic β-Cell Consortium.

Combining Multiple Models. Combining multiple models using the
same representation (i.e., same type of model and same modeled
system) is performed relatively often with the goal of increasing
the accuracy, precision, and/or completeness of the combined
model. For example, different protein structure models can be
averaged into a hopefully more accurate and precise average
model (29), multiple types of classification models can be com-
bined to obtain a more accurate classification model (30), mul-
tiple cellular networks increase the coverage of the cell (9), and
docking of multiple subunit structures results into a model of the
complex (31). Likewise, multiple models of different types can
also be combined to get a model that describes a larger system
more comprehensively. For example, the 2013 Nobel prize in
chemistry was awarded to M. Karplus, M. Levitt, and A. Warshel
for harmonizing quantum mechanics and molecular mechanics,
thus providing an early example of coupling and multiscaling at
atomic resolution (2, 3), and different types of models are com-
bined for weather prediction (32). In an early example of multiscale
modeling of GSIS, first crystallographic structures of insulin and
glucagon gave rise to more holistic, functional depictions of sig-
naling and storage in insulin granules (33). Cell mapping in par-
ticular has also been addressed by combining models of different
representations. A groundbreaking method propagates a complete
cell model from an initial time point by using output from some
models as input for other models at the next time point on the
trajectory, with different models being coupled via metabolites

Fig. 4. Effect of metamodeling on model accuracy
(systematic error) and precision (random error). (A)
Statistical dependency of the output systematic error
(err) of the variable kVE

t in the vesicle exocytosis
model on the input systematic error of the variable
GPR

b in the postprandial response model. The cou-
pling coefficient corresponds to the slope of the line.
(B) The output systematic error of kVE

t given different
input systematic errors of kVE

t and GPR
b . (C) Statistical

dependency of the output random error (σ) of kVE
t on

the input random error of GPR
b . (D) The overlap be-

tween input and output kVE
t , as a function of input

systematic error (x axis) and random error (y axis) of
GPR

b . Conflicting models correspond to the red areas.
(E–G) The input and output PDFs of kVE

t corresponding
to points E, F, and G in D, respectively. Arrow in D
indicates the direction of resolving conflict by im-
proving the accuracy in input GPR

b . All output values are
at t = 100 min.
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(10, 12). In a second example, stochastic reaction diffusion master
equation models of chemical reaction networks, describing the
formation of splicing machinery, were combined with a spatial
model of the HeLa cell to study the influence of spatial organiza-
tion on splicing, based on data from cryoelectron tomography, mass
spectrometry, fluorescence microscopy/live-cell imaging, and
-omics (11). However, to the best of our knowledge, a general
approach to combining heterogeneous input models of any type or
scale into a unified model does not yet exist.
Here we formalized the model integration problem in general

terms and described one practical approximate solution, termed
Bayesian metamodeling. The solution depends on the universality
of representing the statistical uncertainties and dependencies
among the variables spanning any model or dataset. As a result,
any model or dataset can in principle be input for metamodeling.

Relationship to Other Cell Modeling Approaches. Most generally,
any modeling can be seen as sampling of instances of a model of
a certain type, using some sampling scheme guided by some
scoring function informed by input experimental data and/or
prior models. For example, in addition to the above-mentioned
approaches, a variety of methods have been used to model var-
ious aspects of the cell, based on a variety of data (34–36). Deep-
learning approaches were applied to learn cell phenotypes from
their genotypes, using a network that mirrors the structural and
functional hierarchy of a cell (37), based on genomics and pro-
teomics data (38). Manual curation was used to construct a re-
pository of genome-scale metabolic models (9), based on various
genomics, proteomics, and metabolomics data. A stochastic simu-
lation algorithm was combined with flux balance analysis to model
stochastic dynamics of metabolism in Mycoplasma pneumoniae,
based on metabolic and proteomic data (39). More generally,
several modeling platforms were developed for spatiotemporal
simulations of reactions, mass transport, and other processes in the
entire cell (40–44). Packing algorithms were used to assemble
macromolecules in a complete HIV-1 virus particle and Myco-
plasma mycoides cell at 10 to 100 nm resolution (45), based on data
from structural biology and systems biology. Atomistic molecular
dynamics and coarse-grained Brownian dynamics simulations were
used to model crowded cytoplasmic environments, resulting in
trajectories of millions of particles over microseconds for sections
of Mycoplasma genitalium (46) and Escherichia coli (7). Satisfaction
of spatial restraints resulted in architectures of genomes in various
types of cells, based on genome-wide mapping of chromatin in-
teractions (47). Similarly, spatial restraints were satisfied to create a
snapshot of a synaptic bouton at atomic resolution based on data
from quantitative immunoblotting, mass spectrometry, electron
microscopy, and superresolution fluorescence imaging (48). A
number of methods rely on image processing or machine learning
from images. For example, three-dimensional (3D) reconstruction
and segmentation were used to create a model of mouse pancreatic
β-cell ultrastructures using data from serial section electron to-
mography (49); convolutional neural networks were applied to
compute fluorescent 3D cellular maps from 3D label-free
transmitted-light live-cell images or 2D electron microscopy im-
ages (50); image processing and machine learning techniques were
used to compute subcellular sarcomeric organization states in
cardiomyocytes based on data from single-cell RNA sequencing
and quantitative imaging of gene expression, transcript localiza-
tion, and cellular organization (51); and finally, a pipeline for
multiplexing different imaging modalities was used to map
protein–ultrastructure relationships from cryogenic superresolution
fluorescence microscopy and focused ion beam–milling scanning
electron microscopy (52). Thus, most cell mapping approaches are
limited in the types of cell representation and reliance on limited
types of data and/or prior models. In contrast, metamodeling can in
principle use any set of representations that can be informed by any
available data and prior models.

Relationship to Integrative Modeling. As mentioned in Bayesian
Metamodeling of the Cell, metamodeling is a special case of in-
tegrative modeling. In addition to integrative structure modeling
(4), other variants of integrative modeling include integrative
pathway mapping (53); modeling of spatial organization of ge-
nomes (54); integration of imaging and -omics data (55); studying
of splicing codes based on multiple sources of data (56); integra-
tion of single cell transcriptomic, epigenetic data, and protein
counts (57); integration of multimodal neuroimaging data (58);
and general machine learning techniques for dealing with multi-
modal data (20). Bayesian metamodeling is in fact a decentralized
form of integrative modeling in which the focus is shifted from
integrating data to integrating prior models. In addition to using
data to compute input models, data can also be used as an input
model itself, as exemplified by the GI data and GLP1 data models
(Fig. 2, Table 1, and SI Appendix, Supplementary Text 1.7 and
1.8); in other words, data can be incorporated directly via data
likelihoods in the joint PDF during the coupling stage. Thus, an
integrative modeling problem can also be formulated as a meta-
modeling problem, benefitting from the advantages of its divide-
and-conquer strategy.

Advantages of Metamodeling. We outline here a number of ad-
vantages of metamodeling over more centralized approaches to
data integration: First, metamodeling is highly modular and
benefits from heterogeneity of representations. Different aspects
of the cell and its functions are modeled by different methods,
informed by different data, and represented with different vari-
ables at varying levels of granularity (Figs. 1 and 2). Second,
metamodeling facilitates multiscaling. This advantage arises from
modularity that also allows combining models at different scales.
Third, metamodeling is computationally efficient. The large task
of computing a model of the cell is distributed among smaller
parallel computations required to compute individual input
models. Fourth, metamodeling is collaborative. It allows autono-
mous contributions by different research groups with expertise
spanning diverse scientific disciplines, thus maximizing flexibility,
scalability, and efficiency among collaborating experimentalists
and modelers. Fifth, metamodeling is statistically objective. This
objectivity derives from the use of Bayesian formalism for mod-
eling the relations among different system parts. Sixth, meta-
modeling increases model completeness. A metamodel provides a
maximally complete view of all cellular aspects, given the available
input models (Figs. 3 and 4). Seventh, metamodeling can couple
previously independently modeled cellular aspects. This advantage
results from harmonizing different input models with respect to
each other, thus providing more context for each input model
(Fig. 3). Eighth, metamodeling often improves accuracy and pre-
cision. This improvement is achieved by updating model variables
and their uncertainties by considering information from multiple
input models, thus often improving the final estimates (Fig. 4 A–
C). Finally, metamodeling helps with resolving conflicts among
input models. If different input models contain contradictory in-
formation, metamodeling highlights these inconsistencies and thus
helps identify new experiments that may resolve them (Fig. 4D).
Next, we discuss a few of these advantages in more detail.

Modularity. Bayesian metamodeling can in principle use any type
of an input model, including deterministic or stochastic, static or
dynamic, and spatial or nonspatial. The only requirement is that
an input model is specified quantitatively. Importantly, meta-
modeling does not require the data used to construct each
model. Therefore, input for metamodeling can be obtained rel-
atively easily from independent research groups that do not nec-
essarily collaborate or share expertise. Moreover, a metamodel
can be updated iteratively with additional models, utilizing new
datasets, technologies, and modeling techniques as they emerge.
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Thus, metamodeling enables a plug-and-play approach to building
complex models from simpler models.
To illustrate the benefits of this modularity, we now discuss

practical examples of upgrading the current GSIS model to
better account for variation across 1) multiple cells of the same
type and 2) different types of the cell. Each one of these varia-
tions can be modeled either by improving an existing input
model or by adding a new input model, without changing other
input models, as follows. First, variation across multiple cells of
the same type could be modeled by replacing the current linear
pancreas model with a more elaborate model that accounts for
electrical synchronization in networks of β-cells (59) and data on
the role of leader β-cells in these networks (60); such a model
could be coupled to insulin vesicle exocytosis and/or GSIS sig-
naling models, each parametrized to reflect cell variation. Thus,
metamodeling may provide an effective path to investigate the
source of cell heterogeneity in glucose responsiveness, an open
question of great biological interest (61). Second, variation across
cell types could be accounted for by including a separate input
model for each type of the cell [e.g., primary β-cells and insulin-
secreting model cell lines, such as INS-1 and INS-1E tumor cells
(62, 63)]. During the coupling stage, the weight of variables from
each input model should reflect the confidence in it. For instance,
data from model cell lines are often considered significantly less
informative about primary cells than the data from the primary cells
themselves (64). Indeed, variables from the insulin metabolism
model, which was informed by experiments in INS-1E cells, are only
weakly coupled to variables from other models (SI Appendix, Tables
S10 and S11). Other variations, such as those among different in-
dividuals, can in principle also be addressed similarly.

Multiscaling. Metamodeling can couple different input models
despite significant differences in their scales. In fact, even the
current GSIS metamodel covers the scales from atomic and
femtoseconds of molecular dynamics simulations to the whole
body and hours of the postprandial response model (Table 1).
Thus, multiscaling is another advantage of modularity. This
coupling is achieved by imposing statistical correlations among
variables on different scales. Thus, metamodeling may bypass the
need to compute the propagation of signals across scales ex-
plicitly, which typically necessitates specialized model represen-
tations and algorithms (65). For example, the pancreas model
provides a simple description of the expected statistical relation
between secretion of insulin at the cell and systemic levels, thus
helping to couple the postprandial response and GSIS signaling
models. Likewise, the GLP1R model at atomic scale is coupled
to all other models via the GSIS signaling model at cellular scale
by imposing expected statistical correlation between receptor
activation by a small molecule agonist and activation of GSIS
signaling in the cell. This coupling allows us to use the GSIS
metamodel to correctly predict the effect of incretins and other
small molecule ligands on systemic insulin response (Fig. 3).

Facilitating Community Collaboration. Due to its modularity, met-
amodeling is expected to provide a community tool for contrib-
uting to whole-cell modeling, as exemplified by its use within the
Pancreatic β-Cell Consortium (15). We developed tutorials
serving as onboarding material to allow others to contribute their
input models (SI Appendix, Supplementary Text). In the future,
we will also create a website to serve as a graphical user interface
and develop methods for automated conversion of input models
into surrogate models. This functionality will provide nonexperts
in computational modeling with an opportunity to contribute
and improve their individual models. At its core, metamodeling
is rooted in collaboration and appreciation for the details of
disparate data, methods, and models, which cannot be achieved
by any individual scientist, research group, or institution. To
further support the collaboration, the Pancreatic β-Cell Consortium

is creating cyberinfrastructure for archiving and disseminating ex-
perimental data and models that will be integrated with meta-
modeling. Thus, each time an input model, surrogate model, and/or
a coupler is provided or upgraded, the metamodel and input
models can be updated automatically.
Many of the most important questions in biology are centered

around issues of data integration and at the intersection of multiple
fields. Thus, the development of methods and tools that build
bridges between siloed research is essential. An existing example is
the Protein Data Bank (PDB) of known protein structures, which in
many ways nucleated the structural biology community (66). In-
deed, the latest effort of the PDB to support integrative structures
based on varied data from multiple methods (67) is narrowing the
gap between the PDB and the whole-cell mapping. Other key
community resources provide for standardization, archival, and
dissemination of models, thus facilitating explicit and implicit col-
laboration among a diverse set of researchers (9, 13, 68–70).

Limitations of Metamodeling. While Bayesian metamodeling can
in principle be used to couple any set of input models, it is not
always clear that they can be coupled usefully. Next, we identify a
number of limitations of the current implementation of meta-
modeling and outline how they might be addressed.
First, to incorporate complex input models more accurately,

alternative approaches for converting these models into a unified
surrogate probabilistic representation should be explored (step 1).
While nonlinear models can be approximated by DBNs (Fig. 3),
other methods for learning complex PDFs spanned by a large
number of interdependent variables include a nonlinear imple-
mentation of PGMs (http://github.com/tanmoy7989/bayesian_
metamodeling_tutorial). In addition, deep-learning approaches,
such as variational autoencoders, generative adversarial net-
works, and temporal variants, might also be useful, although they
generally require a large amount of training data, and they are not
always easily interpretable (20). Nonetheless, deep neural networks
have already been shown to provide practical solutions for repre-
senting low-dimensional surrogate models for complex physical
systems (71). Finally, nonprobabilistic approaches, such as integer
programming (72), might also be explored.
Second, only a limited set of coupling schemes have been used

so far, based on imposing statistical dependencies via PGMs
(step 2). While PGMs and other probabilistic approaches (e.g.,
generative deep learning models) provide a relatively general
solution for coupling models of any type, some types of models
may be coupled more efficiently and/or accurately by other types
of couplers. For example, the coupling of ligand and receptor
structural models in molecular docking can be achieved natu-
rally, accurately, and efficiently via minimizing the free energy of
the complex (73). Thus, future work should explore additional
types of couplers for common types of models. As a special case,
couplers for input models at different spatiotemporal scales
should be improved. Multiscale integration is currently per-
formed ad hoc, based on prior knowledge about expected cor-
relations across scales. Standardized schemes and automated
methods for integrating models across scales should be devel-
oped, including more efficient representations for multiscale
PDFs. As discussed above, at the very least, metamodeling fa-
cilitates a formal integration by imposition of statistical corre-
lations across scales in cases where explicit physically inspired
coupling is not yet possible.
Third, to maximize modeling accuracy and precision, meta-

modeling should be guided by formal optimality criteria (loss or
fitness functions) for 1) ranking surrogate models, 2) reference
variables used to couple the surrogate models, 3) the couplers
themselves, and 4) the backpropagation scheme. For example,
good surrogate models should recapitulate statistical depen-
dencies in the input models, and good couplers may be required
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to recapitulate experimental data on statistical dependencies
among input models.
Fourth, the metamodeling process should be entirely auto-

mated, in part benefiting from the optimality criteria above. Such
automation will require sampling in the space of alternative
metamodels to choose an optimal metamodel, for example, by
sampling the free parameters and topologies of surrogate models
and couplers (19). Automation will also be facilitated by devel-
oping tools that streamline interactions with nonexperts in
modeling (Facilitating Community Collaboration).
Fifth, we should develop methods to validate a metamodel.

Although the uncertainty of a metamodel is already quantified
by its PDF, additional assessment may be useful. A relatively
general approach to model assessment has been developed for
integrative structure modeling, quantifying the degree of sam-
pling exhaustiveness, the match between the model and the data
used to construct the model, the match between the model and
the data not used to construct the model, and model uncertainty
(74). In metamodeling, additional opportunities for assessment
include identifying conflicts between input models and assessing
error propagation (Fig. 4). For example, while our results indi-
cate that random or uncorrelated systematic errors in different
models are likely to be averaged out through their coupling, such
coupling may also lead to amplification of error in one input
model as it propagates across models. Methods for detecting and
minimizing such errors should be developed, possibly by bor-
rowing from methods for stabilization of dynamic systems (75).
Finally, our primary purpose here was to illustrate metamod-

eling rather than advance our understanding of GSIS biology.
Thus, our current metamodeling relies on a small set of relatively
simple input models and numerous simplifying assumptions, some
of which are summarized in SI Appendix. While even this simpli-
fied metamodel has been validated by data not used in its con-
struction (Fig. 4), we have not yet obtained any new insights into
GSIS. Future implementations of metamodeling should be tested
using a larger number of input models of higher complexity.

Future Application to Whole-Cell Modeling.Together with the entire
Pancreatic β-Cell Consortium (15), we are working to enrich the
current GSIS metamodel with additional input models based on
diverse types of data to create a more accurate, precise, and
complete model of the pancreatic β-cell. These additional input

models cover key aspects of GSIS biology in health and disease,
including glucose sensing (76, 77); insulin vesicle biosynthesis,
trafficking, docking, and exocytosis (78); recycling of misfolded
proteins by proteasomes and autophages (79); membrane
phospholipid biosynthesis at mitochondria-associated endoplas-
mic reticulum membranes (80); regulation of intracellular cal-
cium flux from ER to mitochondria (81); global spatiotemporal
dynamics of islet insulin secretion (82); pulsatile insulin secretion
(83); interaction with hepatocytes (84); phosphoproteome map
(85); and spatial genome organization (86). The upgraded met-
amodel is expected to be useful for designing more effective
future experiments, discovering biological mechanisms, and
generating hypotheses, which will in turn enhance the model
itself. We also anticipate metamodeling of β-cells by the Pan-
creatic β-Cell Consortium will serve as a template for modeling
other types of cells and, indeed, other complex systems.

Methods
The software, input files, and example output files for the present work are
available at http://github.com/salilab/metamodeling. The metamodel was
implemented using the BNET package in MATLAB by Kevin Murphy, http://
github.com/bayesnet/bnt (commit 21dfdfa) with minor modifications of the
DBN module (https://github.com/salilab/metamodeling/tree/master/bnt_master);
the PGMs in the tutorial (http://github.com/tanmoy7989/bayesian_metamodeling_
tutorial) were implemented in the Python package PyMC3 (version 3.8) (http://
github.com/pymc-devs/pymc3/releases/tag/v3.8). For an outline of the approach,
see Results; for details, see SI Appendix.

Data Availability. Computer files and data have been deposited in GitHub
(http://github.com/salilab/metamodeling).
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63. M. Orečná et al., Different secretory response of pancreatic islets and insulin secreting
cell lines INS-1 and INS-1E to osmotic stimuli. Physiol. Res. 57, 935–945 (2008).

64. M. Skelin, M. Rupnik, A. Cencic, Pancreatic beta cell lines and their applications in
diabetes mellitus research. ALTEX 27, 105–113 (2010).

65. P. Yang, “Multi-grid method” in Encyclopedia of Tribology, Q. J. Wang, Y.-W. Chung,
Eds. (Springer, 2013), pp. 2333–2339.

66. H. M. Berman, The Protein Data Bank: A historical perspective. Acta Crystallogr. A 64,
88–95 (2008).

67. S. K. Burley et al., PDB-Dev: A prototype system for depositing integrative/hybrid
structural models. Structure 25, 1317–1318 (2017).

68. M. Hucka et al., Evolving a lingua franca and associated software infrastructure for
computational systems biology: The Systems Biology Markup Language (SBML)
project. Syst. Biol. (Stevenage) 1, 41–53 (2004).

69. D. Waltemath et al., Toward community standards and software for whole-cell
modeling. IEEE Trans. Biomed. Eng. 63, 2007–2014 (2016).

70. J. R. Karr, J. C. Sanghvi, D. N. Macklin, A. Arora, M. W. Covert, WholeCellKB: Model
organism databases for comprehensive whole-cell models. Nucleic Acids Res. 41,
D787–D792 (2013).

71. R. K. Tripathy, I. Bilionis, U. Q. Deep, Learning deep neural network surrogate models for
high dimensional uncertainty quantification. J. Comput. Phys. 375, 565–588 (2018).

72. A. Cozad, N. V. Sahinidis, D. C. Miller, Learning surrogate models for simulation-based
optimization. AIChE J. 60, 2211–2227 (2014).

73. S. F. Sousa, P. A. Fernandes, M. J. Ramos, Protein-ligand docking: Current status and
future challenges. Proteins 65, 15–26 (2006).

74. H. M. Berman et al., Federating structural models and data: Outcomes from a
workshop on archiving integrative structures. Structure 27, 1745–1759 (2019).

75. C. I. Byrnes, A. Isidori, New results and examples in nonlinear feedback stabilization.
Syst. Control Lett. 12, 437–442 (1989).

76. M. S. German, Glucose sensing in pancreatic islet beta cells: The key role of glucokinase
and the glycolytic intermediates. Proc. Natl. Acad. Sci. U.S.A. 90, 1781–1785 (1993).

77. P. E. MacDonald, J. W. Joseph, P. Rorsman, Glucose-sensing mechanisms in pancreatic
β-cells. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 2211–2225 (2005).

78. N. R. Gandasi et al., Glucose-dependent granule docking limits insulin secretion and is
decreased in human type 2 diabetes. Cell Metab. 27, 470–478.e4 (2018).

79. S. Costes, Targeting protein misfolding to protect pancreatic beta-cells in type 2 di-
abetes. Curr. Opin. Pharmacol. 43, 104–110 (2018).

80. O. Moltedo, P. Remondelli, G. Amodio, The mitochondria-endoplasmic reticulum
contacts and their critical role in aging and age-associated diseases. Front. Cell Dev.
Biol. 7, 172 (2019).

81. M. Giacomello, L. Pellegrini, The coming of age of the mitochondria-ER contact: A
matter of thickness. Cell Death Differ. 23, 1417–1427 (2016).

82. Z. Wang et al., Live cell imaging of glucose-induced metabolic coupling of β and α cell
metabolism in health and type 2 diabetes. Commun. Biol. 4, 594 (2021).

83. R. Bertram, L. S. Satin, A. S. Sherman, Closing in on the mechanisms of pulsatile insulin
secretion. Diabetes 67, 351–359 (2018).

84. A. V. Matveyenko et al., Pulsatile portal vein insulin delivery enhances hepatic insulin
action and signaling. Diabetes 61, 2269–2279 (2012).

85. F. Sacco et al., Glucose-regulated and drug-perturbed phosphoproteome reveals
molecular mechanisms controlling insulin secretion. Nat. Commun. 7, 13250 (2016).

86. H. Tjong et al., Population-based 3D genome structure analysis reveals driving forces
in spatial genome organization. Proc. Natl. Acad. Sci. U.S.A. 113, E1663–E1672 (2016).

87. C. Ionescu-Tirgoviste et al., A 3D map of the islet routes throughout the healthy
human pancreas. Sci. Rep. 5, 14634 (2015).

88. A. Pisania et al., Quantitative analysis of cell composition and purity of human pan-
creatic islet preparations. Lab. Invest. 90, 1661–1675 (2010).

89. M. Kanehisa, S. Goto, KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids
Res. 28, 27–30 (2000).

90. L. E. Fridlyand, N. Tamarina, L. H. Philipson, Bursting and calcium oscillations in
pancreatic beta-cells: Specific pacemakers for specific mechanisms. Am. J. Physiol.
Endocrinol. Metab. 299, E517–E532 (2010).

91. L. E. Fridlyand, N. Tamarina, L. H. Philipson, Modeling of Ca2+ flux in pancreatic beta-
cells: Role of the plasma membrane and intracellular stores. Am. J. Physiol. Endo-
crinol. Metab. 285, E138–E154 (2003).

92. L. E. Fridlyand, L. Ma, L. H. Philipson, Adenine nucleotide regulation in pancreatic
beta-cells: Modeling of ATP/ADP-Ca2+ interactions. Am. J. Physiol. Endocrinol. Metab.
289, E839–E848 (2005).

93. Q. Ni et al., Signaling diversity of PKA achieved via a Ca2+-cAMP-PKA oscillatory cir-
cuit. Nat. Chem. Biol. 7, 34–40 (2011).

94. T. Redij, R. Chaudhari, Z. Li, X. Hua, Z. Li, Structural modeling and in silico screening of
potential small-molecule allosteric agonists of a glucagon-like peptide 1 receptor.
ACS Omega 4, 961–970 (2019).

12 of 12 | PNAS Raveh et al.
https://doi.org/10.1073/pnas.2104559118 Bayesian metamodeling of complex biological systems across varying representations

https://doi.org/10.1101/2020.05.22.110577
https://doi.org/10.1101/2020.05.22.110577
https://doi.org/10.1101/2020.05.26.081083
https://doi.org/10.1073/pnas.2104559118



