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the Northern Hemisphere for both permafrost tem-
peratures and active layer depths. The latter respond 
to seasonal fluctuations in climate while changes of 
the deeper ground temperatures indicate long-term 
trends since shorter-term variations attenuate with 
depth. The deeper the temperatures are measured, 
the further back in time the surface temperature 
conditions they represent.

Permafrost generally warmed across the Northern 
Hemisphere during the past 20 to 25 years of the 
20th century, and into the first few years of the 21st 
century (e.g., Romanovsky et al. 2007; Harris et al. 
2003; Isaksen et al. 2007). Analyses of more recent 
data indicate that warming has generally continued. 
Permafrost temperatures are now up to 2°C warmer 
than they were 20 to 30 years ago although there are 
regional differences (Fig. 2.27). The overall range in 
permafrost temperature has decreased and is now 
about 1°C less than it was about 30 years ago in the po-
lar Northern Hemisphere (Romanovsky et al. 2010b). 
Smaller warming rates are observed at temperatures 
close to 0°C compared to colder permafrost. This is 
especially true for ice-rich permafrost where latent 
heat effects dominate the ground thermal regime at 
temperatures close to 0°C (e.g., Romanovsky et al. 
2010a; Smith et al. 2010), as well as for mountain re-
gions in Europe where large permafrost areas are close 
to melting (PERMOS 2010; Haeberli et al. 2010; Isak-
sen et al. 2011). In European mountain permafrost, 
some 10-year records show a general warming trend 
(Isaksen et al. 2007; Haeberli et al. 2011) and perma-
frost temperature anomalies associated with extreme 
warm years (2003, 2009) have also been observed (Fig. 
2.28; PERMOS 2010; Phillips et al. 2009; Zenklusen 
Mutter et al. 2010; Harris et al. 2003). However, trends 
are more pronounced in Scandinavia than in Central 
Europe, where only small changes or even cooling 
trends (Zenklusen Mutter et al. 2010) can be observed 
because of the strong influence of the snow cover and 
temperature ranges subject to latent heat effects. In 
the higher altitudes of Asia, ground temperatures have 
increased up to 0.5°C decade-1 since the early 1990s, 
accompanied by a general increase in active layer 
thickness (e.g., Zhao et al. 2010; Fig. 2.29). Although 

the observed trends in permafrost tem-
peratures are consistent with changes in 
air temperatures, other factors such as 
snow cover, soil properties (including 
ice and moisture content), and vegeta-
tion are important factors determining 
the magnitude of the changes in the 
ground thermal regime (e.g., Haeberli 

et al. 2010; Romanovsky et al. 2010b).

8) Groundwater and terrestrial water storage—
M. Rodell, D. P. Chambers, and J. S. Famiglietti

Most people think of groundwater as a resource, 
but it is also a useful indicator of climate variability 
and human impacts on the environment. Groundwa-
ter storage varies slowly relative to other non-frozen 
components of the water cycle, encapsulating long 
period variations and trends in surface meteorology. 
On seasonal to interannual timescales, groundwater 
is as dynamic as soil moisture (Rodell and Famiglietti 
2001; Alley et al. 2002), and it has been shown that 
groundwater storage changes have contributed to sea-
level variations (Milly et al. 2003; Wada et al. 2010).

Groundwater monitoring well measurements 
are too sporadic and poorly assembled outside of 
the United States and a few other nations to permit 
direct global assessment of groundwater variability. 
However, observational estimates of terrestrial water 
storage (TWS) variations from the GRACE satel-
lites (see Sidebar 2.2) largely represent groundwater 
storage variations on an interannual basis, save for 
high latitude/altitude (dominated by snow and ice) 
and wet tropical (surface water) regions (Rodell and 
Famiglietti 2001).

Plate 2.1i maps changes in mean annual TWS 
from 2009 to 2010, based on GRACE, ref lecting 
hydroclimatic conditions in 2010. Severe droughts 
impacted Russia and the Amazon, and drier-than-
normal weather also affected the Indochinese pen-
insula, parts of central and southern Africa, and 
western Australia. Groundwater depletion continued 
in northern India (Rodell et al. 2009; Tiwari et al. 
2009), while heavy rains in California helped to re-
plenish aquifers that have been depleted by drought 
and withdrawals for irrigation, though they are still 
below normal levels (Famiglietti et al. 2011). Droughts 
in northern Argentina and western China similarly 
abated. Wet weather raised aquifer levels broadly 
across Western Europe. Rains in eastern Australia 
caused flooding to the north and helped to mitigate 
a decade-long drought in the south. Significant re-
ductions in TWS seen in the coast of Alaska and the 

Fig. 2.29. Temporal trends in active layer depths along the Qinghai-
Tibet Railway. [Modified from source: Zhao et al. (2010).]
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Patagonian Andes represent ongoing glacier melt, not 
groundwater depletion.

Figures 2.33 and 2.34 plot time series of zonal 
mean and global GRACE derived non-seasonal TWS 
anomalies (deviation from the mean of each month 
of the year) excluding Greenland and Antarctica. The 
two figures show that terrestrial water storage in 2010 
was the lowest since 2003, though it recovered in the 
second half of the year. The drought in the Amazon 
was largely responsible, but an excess of water in 2009 
seems to have buffered that drought to some extent 
(Fig. 2.33). The drying trend in the 25°S–55°S zone is 

a combination of Patagonian glacier melt and drought 
in parts of Australia.

9) Soil moisture—R. de Jeu, W. Dorigo, W. Wagner, and 
Y. Liu

In 2010, significant progress was made in con-
solidating globally available soil moisture datasets 
from a large number of ground-based stations and 
satellite platforms. Such harmonized datasets are 
essential for studying climate-related variability. 
Regarding the in situ component, the International 

Soil Moisture Network (ISMN; Dorigo et 
al. 2011) was established as the successor 
of the renowned Global Soil Moisture Data 
Bank (Robock et al. 2000), which has been 
extensively used for climate studies. The 
ISMN offers a centralized system where 
historic and current in situ soil moisture 
measurements from around the world are 
collected, harmonized, and made available 
to users (see Table 2.1).

Satellite-based soil moisture estimates 
have significantly improved in recent 
years to the point where now several 
continental-to-global scale soil moisture 
products are available (e.g., Wagner et al. 
2003; Njoku et al. 2003; Owe et al. 2008). 

These products represent moisture conditions in 
the top few centimeters and depend on observation 
wavelength and soil wetness (Schmugge 1985; Kuria 
et al. 2007). Due to different observation wavelengths 
and retrieval methods, the quality of these products 
varies. Scipal et al. (2008) and Dorigo et al. (2010), 
using a statistical method called triple collocation, 
quantified satellite-based soil moisture errors in the 
order of 0.01 m3 m-3–0.04 m3 m-3 for the regions with 
a (semi) transparent vegetation cover, and > 0.04 m3 

m-3 for the more densely vegetated regions. Several 
studies have revealed that satellite-based products 

are highly correlated with in situ measurements 
(R between 0.6 and 0.8) with root mean square 
errors (RMSE) ranging between 0.03 m3 m-3 for 
semi arid regions (e.g., Africa and Australia) to 
0.1 m3 m-3 in France (Gruhier et al. 2010; Draper 
et al. 2009; Rüdiger et al. 2009). 

Satellite-based soil moisture products can 
provide reliable estimates over sparse to mod-
erately vegetated regions. Current satellites are 
not yet able to monitor soil moisture variations 
over densely vegetated regions (e.g., tropical 
rainforests) because the signals received by satel-
lites are severely disturbed by vegetation. Over 

regions with snow cover and frozen soils, satellite-
based microwave instruments cannot provide reliable 
estimates either. 

The historical microwave satellites have been 
used to compile a consistent 20-year record of global 
soil moisture (Liu et al. 2009, 2011; Su et al. 2010). 
Satellite-based soil moisture products from both 
passive and active instruments were collected and 
harmonized in one system, covering a period since 
January 1991, with a spatial resolution of 0.25° and a 
daily time step. 

Fig. 2.33. GRACE measurements of terrestrial water storage 
anomalies in cm equivalent height of water by latitude. The 
anomalies are relative to a base period of 2003–07. Gray areas 
indicate regions where data are unavailable.

Fig. 2.34. Global average terrestrial water storage anomalies 
in cm equivalent height of water calculated using a 2003–07 
base period.
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The monthly dynamics in global soil moisture are 
strongly driven by monsoonal circulations. During 
the winter phase of the monsoon, there is a low-level 
flow of dry, cool air from the cold continent to the 
warmer ocean, and precipitation over land is generally 
reduced. During the summer phase, there is a strong 
flow of atmospheric moisture from the cooler ocean 
to the warmer land, where the upward motion of the 
heated air produces the heavy rains of the monsoon 
season (Hastenrath 1985). These patterns are clearly 
visible in the soil moisture climatology (Fig. 2.35, left 
column). Over the Indian Peninsula, low soil moisture 
values between 0 m3 m-3 and 0.2 m3 m-3 are observed 
during February–April and high values between 0.2 
m3 m-3 and 0.4 m3 m-3 are observed during August–

October. Over northern Australia, 
dry conditions are seen during 
June–August while wet conditions 
are seen during February–April. 
In Africa, the equatorial region 
near the Intertropical Conver-
gence Zone is the wettest portion 
of the continent. Annually, the 
rain belt across the continent 
marches northward into Sub-
Saharan Africa by August, then 
moves back southward into south-
central Africa by March, resulting 
in wet soil moisture patterns in 
Sub-Saharan Africa in August 
and in south-central Africa in 
February–April.

 A series of climatic events 
had a strong impact on the global 
distribution of precipitation and 
temperature in 2010, and these 
are reflected in the soil moisture 
anomalies (Fig. 2.35, right col-
umn). In February, both a wet 
(west) and dry (east) anomaly 
was detected over continental 
Australia. In April, south-central 
Africa was extremely wet due to 
excessive rainfall. In June, the first 
signs of the long, dry anomaly 
were detected over Russia and 
Kazakhstan. The anomaly lasted 
until the end of the summer. The 
hottest summer in Russia on 
record dried out a large area and 
led to several hundred wildfires 
in response (see Sidebar 7.8 for 

further details about this heat wave). In August, a 
wet anomaly was reflected over Pakistan, caused by 
extreme wet conditions and the additional flooding 
events (see section 7g3). The strong 2010 soil moisture 
anomalies from July onwards appear related to the 
oceanic phenomenon La Niña. 

10) Lake levels—C. Birkett and J-F. Cretaux
Lake level as a climatic index was highlighted 

for the first time last year (Birkett 2010). Because 
lake volumes respond to changes in precipitation 
integrated over their catchment basins, they are 
indirect indicators of climatic change. The response 
can be seen in open lakes and reservoirs but is par-
ticularly marked for closed lakes, i.e., those having 

Fig. 2.35. Monthly soil moisture climatology (1991–2010) (left) and 2010 
soil moisture anomaly (right) as derived from both passive and active 
microwave satellite sensors.
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