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Abstract.

The theoretical formulation of biological kinetic reactions in isotopic ap-
plications often assume first-order or Michaelis-Menten-Monod kinetics un-
der the quasi-steady-state assumption to simplify the system kinetics. How-
ever, isotopic effects have the same order of magnitude as the potential er-
ror introduced by these simplifications. Both formulations lead to a constant
fractionation factor which may yield incorrect estimations of the isotopic ef-
fect and a misleading interpretation of the isotopic signature of a reaction.
We have analyzed the isotopic signature of denitrification in biogeochemi-
cal soil systems by Menyailo and Hungate [2006], where high *N,O enrich-
ment during NoO production and inverse isotope fractionation during N,O
consumption could not be explained with first-order kinetics and the Rayleigh
equation, or with the quasi-steady-state Michaelis-Menten-Monod kinetics.
When the quasi-steady-state assumption was relaxed, transient Michaelis-
Menten-Monod kinetics accurately reproduced the observations and aided
in interpretation of experimental isotopic signatures. These results may im-
ply a substantial revision in using the Rayleigh equation for interpretation
of isotopic signatures and in modeling biological kinetic isotope fractiona-
tion with first-order kinetics or quasi-steady-state Michaelis-Menten-Monod

kinetics.
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1. Introduction

Isotope techniques have been used in a number of studies to characterize point- and
ecosystem-scale sources and sinks of tracers such as gaseous NO, N,O, and CO, and
aqueous NH; , NO; , and NO3 [e.g., Mosier, 1998; Vitousek et al., 1997; Perez et al., 2006].
Analysis of the isotopic signature of N compounds in ecological systems has traditionally
been based on the Rayleigh (distillation) equation, which relates the transient isotope
composition of substrate and product to a fractionation factor o under the assumption
that the reactions are first order [Mariotti et al., 1981]. This assumption is often not
satisfied in soil systems as the largest part of soil nutrient cycling, driven by micro-
organisms via enzymatic reactions, has been more generally observed to follow Michaelis-
Menten kinetics with the biomass following Monod kinetics. The magnitude of potential
errors introduced by inappropriate application of first-order kinetics calls into question the
assumptions invoked in point-scale modeling and interpretation of isotopic measurements
that use the Rayleigh equation.

Recent experiments presented in Menyailo and Hungate [2006] and Toyoda et al. [2005]
showed interesting results of the N isotope composition of nitrous oxide, §'°N,O, mea-
sured during denitrification in sampled soil systems. Focusing on Menyailo and Hungate
results, §1°N values derived with the Rayleigh equation underestimated the observed high
isotope enrichment during NoO production, while an inverse fractionation (preference for
heavy isotopes) was observed during N,O consumption and could not be predicted by the
Rayleigh equation. To improve the understanding of these observations in terms of chem-

ical kinetics the Michaelis-Menten-Monod kinetics can be invoked. However, it is not suf-
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ficient to describe isotopic effects with the classic Michaelis-Menten-Monod kinetics. The
approach to simplify the Michaelis-Menten-Monod kinetics employs the quasi-steady-state
assumption during complexation of substrate and enzyme. By using this assumption in a
competitive complexation system where the competing compounds are isotopologues, the
fractionation factor becomes invariant [e.g., Hunkeler and Aravena, 2000] and, therefore,
cannot explain the inverse fractionation observed during N,O consumption.

We propose here the following hypothesis: biological kinetic isotope fractionation in
competitive complexation reactions follows transient Michaelis-Menten-Monod kinetics
and the resulting fractionation factor « is not invariant but depends on substrate and com-
plex isotopic compositions. The transient assumption, which replaces the quasi-steady-
state assumption, does not yield a simplified analytic form for substrates, complexes,
products and microbial concentrations. However, it allows for a variable a and provides
an explanation of the experimental observations of Menyailo and Hungate [2006].

The aim of this work is to develop the mathematics to describe microbially-mediated iso-
topic reactions and to test whether the hypothesis of transient Michaelis-Menten-Monod
kinetics can aid in interpreting the isotopic signatures in biogeochemical systems. To
this end, we compared modeling results using first-order kinetics and the correspond-
ing Rayleigh approximation equation, and Michaelis-Menten-Monod kinetics under both
quasi-steady-state and transient assumptions. The components’ concentrations, isotopic
compositions, and fractionation factors presented here were computed with each model
and compared with the experimental observations of Menyailo and Hungate.

The approach presented here for the first time allows predictions of isotopic effects

that would not otherwise be detectable using first-order kinetics and quasi-steady-state
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Michaelis-Menten-Monod kinetics and has wider implications for the description of the
kinetics of competitive isotopologues kinetics in enzymatic reactions in general. Further-
more, solving the transient Michaelis-Menten-Monod kinetics does not add complexity
to the governing equations and has comparable costs to solving the quasi-steady-state

kinetics.

2. Theory

In this section we review the fundamentals of first-order kinetics and quasi-steady-
state Michaelis-Menten-Monod kinetics previously used to describe isotope fractionation.
We then show how transient Michaelis-Menten-Monod kinetics overcome several limi-
tations imposed to substrate, complex, and enzyme concentrations by first-order and

quasi-steady-state kinetics.

2.1. First-order kinetic isotope fractionation and the Rayleigh equation

First-order (FO) kinetics have found a wide application, especially in the last two
decades, in environmental disciplines related to nutrient biogeochemical cycling in soils.
The principle of FO kinetics in isotope modeling is based on the uncoupled kinetic reac-
tions

k K

S— P, S'= P (1)

which describe simultaneous transformation of the isotopologue substrates S and S’ into
the corresponding products P and P’ at rates k and &’. Under the hypothesis that the
system is closed, i.e., S(t) + P(t) = Sp and S'(t) + P'(t) = S}, where Sy and S| are the

initial substrate concentrations, the first-order kinetics describing the rates of change of
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S, S, P and P’ are

ds  dp s’ apr
e S V) 2
dt dt 5 @ dt 5 @)

with analytical solutions

S(t) = See ™™, S'(t) = Spe ™, (3)
P(t) = So(1—e™™), P'(t)=SH(1—e). (4)
Equations. (2) can be used to define the instantaneous isotope product composition
R;p =dP’'/dP, and the accumulated isotope composition Rp = P'/P and Rg = S’/S for

the product and substrate, respectively. The isotope compositions R;p and Rg are used

to define the isotope fractionation factor o [Mariotti et al., 1981]

Rip dP S
= = —_— 5
“T Ry AP /s (5)
which becomes
dP’
/——k/k—const (6)

upon substitution of Eqgs. (2). Integration of Eq. (6) for dP’ = —dS’ and dP = —dS

yields the Rayleigh equation describing Rg(t) over time [Mariotti et al., 1981]

Rg(t) ~ RS’Of(t>a71, (7)

where Rg is the initial substrate isotope composition, and f(¢) = S(t)/So is the fraction
of remaining substrate. Because the system is closed (i.e., So = S(t) + P(t)), the isotope

composition of accumulated, Rp, and instantaneous, R;p, products can be written as

L s
=S0N )

Rip(t +dt) = aRgs(t). (9)

Rp(t) ~ R570
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It is common to describe the isotope composition relative to a standard, R4, as 0 =

(R/Rstq — 1)1000. Therefore, Egs. (7), (8), and (9) become [Mariotti et al., 1981]

ds(t) =~ dg0 + eIn[f(2)], (10a)
- f(t) In[f]

dp(t) =~ ds0 — 61_—f(t), (10b)

dip(t + dt) ~ ds(t) + ¢, (10c)

with € = (a — 1)1000 the enrichment factor [Mariotti et al., 1981]. Equations (2) and the
Rayleigh approximations in Eqgs. (10) have been used to interpret the isotopic signature
in several biochemical reactions. The advantages in using FO kinetics lie in the model
simplicity and the ability to derive exact solutions for S(t), S'(¢), P(t), P'(t) and «, and
approximate analytic solutions for the § values as in Eqgs. (10). However, FO kinetics
and the Rayleigh equations are limited in isotope applications to biochemistry because
substrate consumption is normally associated with microbial biomass dynamics and spe-
cific enzymes that compete for the substrates (i.e., the reactions are coupled) to form the

products.

2.2. Quasi steady state Michaelis-Menten-Monod kinetic isotope fractionation

A richer description with respect to first-order kinetics was achieved by the 1913’s
Michaelis-Menten model [Laidler, 1955] where the substrate, S, was assumed to attach to
an enzyme, I/, to form a complex, C'. In that work, the complex was assumed to be in
fast equilibrium with S and F and to dissociate yielding the product, P, and releasing
free, unchanged enzyme. Within our purpose of modeling isotopic effects, this approach

leads to the two coupled reactions for S and S’
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kl kll /
StE=C%P+E S+E=C %P +E (11)
k2 kb

where k; and k] are the rate constants corresponding to the isotopologue reactions.

In these reactions all stoichiometric coefficients have been taken equal to 1 while the
concentrations of S, S’, C, C’, P, and P’ have units of mass per gram of soil. For example,
using the N nitrogen atom as the tracer of the denitrification reaction that produces NoO
from NOj, S, C, and P are expressed in [mg N kgs’o}l]. Identically, for the isotopologue
reaction that produces >'NNO from »NOj; and *NO;, S’, €', and P’ are also expressed
in [mg N kgs_o}l]. The isotopologue reaction that consumes >’ NO3 and "»NO3 and produces
IN'SNO is not included in reactions of Eq. (11) due to its scarsity. The same approach
is used for the reaction that produces Ny from N5O.

The two reactions can be conveniently described by choosing the concentrations
S, 8", C,C" as independent variables. Assuming that the system is closed to mass transfer,

the following mass conservation laws can be written

So = S(t) + C(t) + P(t), (12a)
S) = S'(t) + C'(t) + P'(#), (12b)
Ey=E(t) + C(t) + C'(t). (12¢)

where Sy, Sj, and E, are the initial substrate and enzyme concentrations. The mass
balance for the substrate S has been simplified under the assumption that the transfer of
light isotopes from the substrate S towards the heavy product P’ does not appreciably
affect the concentration of S. For example, the rate of consumption of *NOj substrate
is 1/2 the rate of production of *'N'NOQ; because the isotopic ratio *’N*NO/N,0 is in

the order of magnitude of 1072, the consumption of N from “NO; to form N!NO is
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in the order of 5- 1073 of the concentration of 1*NO; . Equation (12c) establishes that the
two substrates S and S’ compete to bound to the enzyme to form the complexes C' and
(", and is responsible for the coupling of the two reactions in Eq. (11).

In the approach presented here the enzyme concentration is assumed to be linearly

proportional by a factor z to the biomass concentration B as
E(t) = zB(t). (13)

Because B is assumed to increase in response to the release of P and P’ over time according
to the Monod model [Monod, 1949], Eq. (13) implies that the enzyme is synthesized at
the same rate as biomass growth and deteriorates at the same rate as microbial cells die.
This approach, though simplifying the enzyme dynamics, improves the original Michelis-
Menten formulation by which £ was considered constant and not linked to any microbial
biomass dynamics.

Using the mass conservation laws in Egs. (12), the kinetic equations for each component

in the system of Eq. (11), including the biomass, can be written as follows
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dsS

B = RSE+ kG, (14a)
e (14b)
% = k1 SE — (ko + k3)C, (14c)
dd_(;:/ = k\S'E — (ky + k})C', (14d)
% _ _g - % = ksC, (14e)
dci' _ _ddi' - dd_? e (14f)
:
%:z%_%_i—i, (14g)

where Eq. (14h) is the Monod equation describing microbial biomass dynamics with Y the
yield coefficient expressing the biomass gain per unit of released product and ( expressing
the biomass death rate [Monod, 1949].

A simplified expression for this system of eight ordinary differential equations in eight
unknowns can be obtained assuming that complexation of C' and C’ is very fast at the
early stage of the reactions, and that, afterwards, their concentrations do not change
appreciably in time. This assumption, known as Haldane-Briggs, is commonly referred to
as quasi steady state [Haldane, 1930; Laidler, 1955], and implies that C' and C” are small
and that

dC ac”

—~0 ~ (. 15
dt ’ dt (15)

Substituting Eqgs. (15) into Egs. (14e), (14f), and (14g), the quasi-steady-state assump-

tion also implies
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as  dp 45" 4P dE  dB
a - A A - A @ - Car

(16)

Introducing Egs. (12) into Egs. (14c) and (14d) under the quasi-steady-state assumption,

the kinetic equations for C' and C’ become

% = ]ﬁS(ZB —C - C,) — (l{fz + k?3)0 ~ 0, (17&)
dc’ Q! l / / !
G =M (B —C = C) = (R + k)T =0, (17b)

and can be solved for C' and C' to yield

N zBS O~ 2BS’
S+ KA1+ S8/K') S+ K'(14+ S/K)’

C (18)

with K = (ky + k3)/k; and K’ = (k) + k3) /K] the Michaelis-Menten parameters (or half-
saturation concentrations) [Haldane, 1930]. In the classic approach to solve the Michaelis-
Menten kinetics with the Haldane-Briggs’ quasi-steady-state assumption, the total enzyme
concentration (free plus bound in the complexes) F; = constant appears in place of the
transient product zB in the numerators of Eq. (18) of our approach. Introducing the
approximate solutions for C' and C’ of Eq. (18) into Egs. (14e), (14f), and (14h), and

using Eqgs. (16), we obtain

il_]; =Ry K(ZleS’/K’)’ (19a)
/ !

% kg + Kzfﬁi S/K)’ (19Db)

% = _ili_];’ (19¢)

ddSt, = _dd_}:’ (19d)

= e ESY 2D — BB, (19¢)

& ST RA+S/K) TS+ K1+ S/K)
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which are normally known as the Michaelis-Menten kinetics with biomass dynamics
following Monod kinetics. From here on we will call this approach with the acronym
QSS-MMM kinetics to highlight that the Michaelis-Menten-Monod kinetics are solved
under the assumption of quasi steady state.

Introducing dP and dP’ of Egs. (19a) and (19b) into Eq. (5) for the fractionation

factor o we obtain

dP’/g Uk SHK(A+S/K) kK
dP’ S ~ ks S+ K'(1+S/K) kK’

= constant (20)

In this case, however, Egs. (19a) and (19b) cannot be integrated analytically so no
approximation for the §°N can be derived as was done for the Rayleigh approximation
equations.

The approximate solutions of Egs. (19) to the system of differential equations in
Egs. (14), achieved using the Haldane-Briggs’ quasi-steady-state assumption, imply that
CK ~ SE and C"K' ~ S'E over the entire reaction course. The circumstances under
which these conditions are valid are that C' and C” have to be small and time invariant
(Egs. (15)). For C and C’ to be small the conditions C' < S and ¢’ <« S’ have to be
satisfied. Consequently, the K and K’ values have to be large numbers on the same order
of magnitude as S and S’ (i.e., S ~ K and S’ ~ K'), while the free enzyme concen-
tration £ has to be a small number on the same order of magnitude as C' and C’ (i.e.,
E ~ C ~ (C"). While these conditions may be encountered in common enzymatic reac-
tions, the boundaries of validity in isotopic applications become more restrictive. If the ’
refers to rare isotopologues with natural abundance (i.e., S > S', C > C’ and K ~ K')

and if S ~ K ~ K’, then it must be S’ <« K’. This relation poses a first limitation to
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the quasi-steady-state assumption which requires S’ ~ K’. In addition, if £ ~ C, then it
must be F > (' whereas EF ~ (" is expected for assuming quasi steady state. This second
condition that applies to F/,C, and C” strongly limits the quasi-steady-state assumption
because in our modeling development we have assumed that the enzyme concentration
is not constant but varies with biomass concentration. In instances where the biomass
concentration increases, and in so doing the free enzyme concentration increases too, the
system may depart from the condition £ ~ C ~ C’ (i.e., E > C > ("), worsening
the degree of applicability of quasi steady state. Conversely, in instances where the free

enzyme concentration decreases, the system may meet only one of the conditions £ ~ C

or £~ (C".

2.3. Transient kinetic isotope fractionation

Regardless of the fact that isotopic effects measured in natural-abundance biochemical
reactions are normally very small (i.e., a ~ 1), the isotopic effects modeled with either
first-order kinetics or quasi-steady-state Michaelis-Menten-Monod kinetics have as out-
come a constant isotopic effect. This constancy implies that, for stable isotopologues,
biochemical reactions always produce depleted products while enriching the remaining
substrates owing to the preference of enzyme systems to use lighter isotopologue sub-
strates. In the case of first-order kinetics and quasi-steady-state Michaelis-Menten-Monod
kinetics this is a straightforward conclusion from Egs. (6) and (20), as the substrate is
directly transformed into a product (i.e., dP = —dS and dP’ = —dS’) or, equivalently,
the complexation rate is null (i.e., dC = dC’" = 0). If, however, the quasi-steady-state
Haldane-Briggs hypothesis is not used to solve the Michaelis-Menten-Monod kinetics (i.e.,

dC # 0 and dC” # 0), a different conclusion is reached. The isotoplogue substrates S
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and S’, while competing to bond to the enzyme without conditions imposed on the con-
centrations discussed above, will form reversible complexes that will either accumulate,
decompose back to substrates, or release products. Along each of these pathways, the
isotopic fractionation changes the isotope composition of the total substrate S(t) + S'(t),
complex C(t) + C'(t), and product P(t) + P'(t) over time. This fractionation sequence
is further fed by the feedback introduced by the concentration of free enzyme, which is
synthesized by microbes that grow at the rate at which the products are released (i.e., pro-
portional to k3 and k%) and affects the rate at which the substrates bind in the complexes
(i.e., proportional to k; and k}). The quasi-steady-state assumption applied to C' and C’
is invoked to achieve a simplified expression of these kinetics but does not allow quanti-
tative treatment of these effects, which, although small in absolute terms, have the same
order of magnitude (one part per thousand) as the fractionation factor. It is therefore
meaningful to challenge the quasi-steady-state assumption and question whether doing so
could bring to light nonlinear effects during transient complexation in microbially-induced
isotope fractionation modelled with Michaelis-Menten-Monod kinetics.

By relaxing the quasi-steady-state assumption in Eq. (15), the system kinetics in Eqgs.
(14) cannot be re-written in a simplified form as Egs. (19). We name the full set of
differential equations in Egs. (14) with the acronym TR-MMM to underline that it is
solved for the transient kinetics.

An expression for « can be derived by combining Eqgs. (14e) and (14f) as follows

oty = /5045 +dC S ]CTS ks Re()

. (21)
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This expression for a shows that in the most general case of biological kinetic isotope
fractionation, the isotopic effect may change with the substrate concentrations S and
S’ and complex concentrations C' and C’, and can be re-written in terms of isotope
compositions R¢ and Rg. Equation (21), derived without imposing conditions on complex
dynamics, generalizes the fractionation factor derived for quasi-steady-state Michaelis-
Menten-Monod kinetics in Eq. (19). Because Eqgs. (14e) and (14f) do not have an
analytic solution, the Rayleigh approximation equations cannot be derived as for the case

of quasi-steady-state Michaelis-Menten-Monod kinetics (Section 2.2).

3. Results

3.1. Experimental data

The experimental data used in this work were collected in incubated soils taken from
under larch trees during denitrification, i.e., along the reaction NO; — NyO — Ny,
and previously published in Menyailo and Hungate [2006]. The values of §'°N,O were
measured during N,O production from NOj using NyO-reductase acetylene inhibition
le.g., Groffman et al., 2006] and, separately, during N,O consumption into Np. The
available data from Menyailo and Hungate [2006] are the NoO concentrations over time
during both N,O production and consumption, and the §N,O values over time and as
a function of the substrate concentration, the latter being estimated from the product
concentration in the test of NyO production. The data sets of NoO and 6'°N,O over time
(see Figures 1 and 3) were used to test our hypothesis by using the three models described
in Section 2: (i) first-order (FO) kinetics and the corresponding Rayleigh approximation
equations; (i) the quasi-steady-state Michaelis-Menten-Monod kinetics (QSS-MMM), and

(#4i) transient Michaelis-Menten-Monod kinetics (TR-MMM).
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3.2. Model calibration

Calibration of the three models was carried out with measured N,O concentration and
with the §'°’N,O as a function of time in both production and consumption tests. All
modeling predictions presented here were computed by numerically solving the kinetics of
each system component with an explicit finite difference technique. The optimal param-
eter values were calculated using the software package PEST (Parameter ESTimation,
Papadopulos & Associates Inc., www.sspa.com/pest) by minimization of the difference
between experimental and simulated values. For each model, several calibrations were
run starting from different initial values of the parameters to assure that the optimal sets
were unique. The enzyme yield coefficient, z = 0.01, was arbitrary chosen knowing that
the ratio £/ B is small, while the microbial death rate, /3, and the yield coefficient, Y, were
iteratively computed in this multiple calibration process and were held identical in the
QSS-MMM and TR-MMM kinetics assuming that the denitrifier bacteria were the same
in both N,O production and consumption tests. Similarly, all initial conditions were kept
identical in the three models (Table 1). Calibration of the rate constants k; and k] of the
QSS-MMM and TR-MMM models was carried out under the constraints k; < k;. These
constraints were taken under the hypothesis that all reactions pathways involving the rare
(heavier) isotopologues (S, C’, and P’) required a slightly higher amount of energy with
respect to the reactions involving the abundant (lighter) isotopologues, as discussed in

Section 4.

3.3. Parameters analysis
It is interesting to note from Table 1 that k£ and &’ values for FO kinetics have the same

order of magnitude in the two tests of N;O production and consumption (107¢ s7). This
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pattern also occurs for k3 and k% in the QSS-MMM and TR-MMM kinetics, which had the
same order of magnitude during N,O production and consumption (10~* s™!). The most
important feature was the persistent pattern found for the Michaelis-Menten parameters
K and K’ in the QSS-MMM kinetics, whose values were approximately 70 and 150 mg
kg;ﬁl for NyO production and consumption, respectively, and in the TR-MMM kinetics
(ie., K and K’ markeed with star in Table 1), whose values were about 100 mg kg_ 1 for
both NoO production and consumption tests. These values were also close to values of
~ 100 mg kg, reported in Li et al. [1992]. This feature anticipates that the QSS-MMM
and TR-MMM kinetics were coherent with each other, and were nearly equivalent in terms

of reaction rates and enzyme-substrate affinity.

3.4. N,0 production

During N,O production, predictions of NyO concentration using FO kinetics, Egs. (2),
deviated from the measurements and underestimated 6'°N,O from time ¢ > 20 h and
as a function of consumed substrate (1 — f) (solid gray line in Figure 1). Use of the
Rayleigh approximation in Eq. (10b) to predict §'°N,O as a function of (1 — f) with
the parameters reported in Table 1 resulted in a better fit as compared to the results
shown in Menyailo and Hungate [2006] (dot-dashed gray line and dot-dashed black line,
respectively, in Figure 1c¢).

Predictions using the Micaelis-Menten-Monod kinetics, Eqs. (19) and Egs. (14),
matched the NyO concentration and the §'°N,O values over time with higher accuracy
than FO kinetics. QSS-MMM and TR-MMM kinetics were also nearly equivalent in that
the modeled curves were almost overlapping in all panels of Figure 1. The rates of change

dC and dC’ suggest that complexation played a role in this reaction (Figure 1a). However,
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the complex concentrations were smaller than those of the substrates for the largest part
of the measurement (i.e., C' < S and C’" < 5'); this explained why the approximation in-
troduced by the quasi-steady-state assumption did not substantially affect the capability
of QSS-MMM kinetics to replicate the NoO production observations.

An inspection of the fractionation factor o shows that FO and QSS-MMM kinetics
yielded steady isotopic effects (i.e., @ ~ 0.983 and a ~ 0.979, respectively), while TR-
MMM kinetics led to a slightly non-steady isotopic effect with « increasing and decreasing
just below o =~ 0.981 (Figure 2).

Though underestimating the measured data points in Figure 1¢, the three models tested
here gave better predictions of §'°N,O as a function of the fraction of consumed substrate
than the Rayleigh approximation proposed in Menyailo and Hungate [2006]. To explain
this mismatch, Menyailo and Hungate invoked (7) an incorrect estimation of the remaining
substrate concentration f (because of immobilization or, for any reason, substrate not
fully available to denitrifiers) or (i) a decline in isotopic enrichment as the substrate
became limiting. The fact that Michaelis-Menten-Monod kinetics accurately predicted
N,O concentration and §*N,O over time (Figure la and b) shows that hypothesis (i)
was true to the extent to which the measured §'°N,O values departed from the curves
obtained with our models in Figure 1c. This distance, measured along the x-coordinate,
is an estimate of the error in the measurement of the fraction of consumed substrate
(1 — f) as hypothesized in (i) by Menyailo and Hungate [2006]. Furthermore, hypothesis
(71) was also relatively correct in that a decline in isotopic enrichment corresponded to an
increased fractionation factor, the behavior that was reproduced by TR-MMM kinetics in

the first 40 h of the simulation (Figure 2).
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3.5. N3O consumption

We repeated analogous simulations for the experiment of NoO consumption. Also in
this case, Michaelis-Menten-Monod kinetics reproduced the substrate NoO concentration
and 6®N,O over time and as a function of f more accurately than FO kinetics and the
Rayleigh approximation equations (Figure 3a, b and c¢). However, differently from FO and
QSS-MMM kinetics, TR-MMM kinetics could replicate the initially high NoO enrichment
in ®N in the first 80 hours of observations, and the later inverse isotopic effect that
depleted the N,O substrate (Figures 3b and c).

To explain the inverse isotopic effect (i.e., preference for the heavier isotopologue),
Menyailo and Hungate invoked the presence of another enzyme system that became ac-
tive late in the incubation. If this hypothesis is taken as true along with the first-order
kinetics assumption which assumes that a < 1, then one mechanism possibly contribut-
ing to inverse fractionation would have implied production of depleted NyO (no *N,0)
from some substrate. Because the decrease is AdPNyO~ 10%o, the decrease in substrate
isotopic composition is ARg =N,0/A"N,0~ 0.0233, with Ry = 2.305 - 1072, This
implies a A™N,O0=~ 40'%N,0. Because the ®?N,O concentration from time ¢t = 80 h was
always smaller than 15 mg N-N,O kg;)}l and never lower than 3 mg N-N,O kgs_o}1 (not
shown), we infer that the increase in bulk NoO concentration associated with this pro-
posed additional enzyme system should have been in the range 100-600 mg N-N,O kg;)}l
higher than the one observed in Figure 3a, while the experiments did not show such an
increase. Excluding therefore any concurrent mechanism of NoO production, the anal-
ysis of the fractionation factor (Figure 4) showed more clearly that TR-MMM kinetics

could replicate inverse isotopic effects owing to a increasing from less than 0.99 to more
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than 1.01, with a crossover to values larger than 1 occurring at time ¢ ~ 80 h (Fig-
ure 4). Conversely, FO and QSS-MMM kinetics always yielded constant «, with values
a ~ 0.998. Because the fractionation factor in transient kinetics is a@ = (k3/k3)(Rc/Rs),
with k% < k3 from our calibration (see Table 1), inverse fractionation occurred when
Rs/Rc < k4y/ks < 1. These conditions occurred because of how the heavy isotopologue
kinetics governed the rates of change of Rg and Rq ratios over time. These dynamics
are as important for determining « as the fact that the complex concentrations C' and
C’, though small compared to S and S’, changed over time with a rate that could not be

neglected, as discussed in Section 3.7.

3.6. Monte Carlo sensitivity analysis of TR-MMM kinetics

To characterize the sensitivity of the TR-MMM kinetics to its parameters, we per-
formed a Monte Carlo analysis for NoO production and consumption. We applied three
independent normally-distributed probability density functions to the rate constant k.
with averages obtained from calibration (Table 1) and standard deviation equal to 5%o of
each k] parameter, and limited to +3 times the standard deviation (600 replicates were
sufficient to achieve steady distributions).

N,O concentrations did not show appreciable impact from these distributions (data not
shown). Conversely, 6'°N values were more sensitive, with a maximum standard deviation
of approximately +5%0 and +18%¢ during N,O production and consumption, respectively
(thin lines in Figure 5a). The standard deviation of the modeled §**N,O values varied in
time. Yet, while it was nearly constant at ~ +2%0 around the average 6*°N,O during N,O
production, it increased monotonically over time during NoO consumption. This behavior

was not observed in the standard deviation of the « values (Figure 5b), which was nearly
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steady at approximately +5%0 around the average « values in both NyO production and
consumption tests (Figure 5b). An analogous Monte Carlo analysis performed on the
FO kinetics resulted in approximately £4%o maximum standard deviation in the §*N,O
values during N,O production and consumption, and less than +2% in the « values (data
not shown).

A similar Monte Carlo sensitivity analysis was performed for the two microbial biomass
parameters z, 3, and Y which were described by three independent normally-distributed
probability density functions with averages obtained from calibration (Table 1) and stan-
dard deviation equal to £1% of each parameter. The standard deviation of the modeled
dN,0 values computed with the TR-MMM kinetics was less than 1%o during N,O pro-
duction and reached a maximum of approximately +4%o during NoO consumption (Figure
5¢). Also in this case, the standard deviation in the §'°N values was progressively amplified
over time during N,O consumption. The standard deviation in the modeled fractionation
factor was negligible during N,O production and reached a maximum of approximately
+10%o0 during N,O consumption (Figure 5d).

In this analysis we tested also the sensitivity to the initial isotopic compositions. In
both experiments of NoO production and consumption we noted that any increase or
decrease in initial substrate isotopic composition was conservatively transferred to the

product (data not shown).

3.7. Relative isotopic composition of complex and products in TR-MMM

kinetics

An analysis of the time evolution of the complex and product isotopic composition was

carried out by computing the ratios Rc = C’/C and Rp = P’/ P relative to the substrate,
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Rs = 5’/S. During N5O production, the product relative isotopic composition, Rp/Rg,
experienced an initial enrichment, and a more important depletion afterwards (Figure
6a). These dynamics were accompanied by an enrichment of the complex relative isotopic
composition, Rc/Rg, between 30 and 40 hours. Over all, the isotopic composition of
complex and product N,O remained smaller than 1, that is, depleted with respect to the
substrate isotopic composition. Further, the complex relative composition, Rc/Rg, in the
fractionation factor o of Eq. (21) never became larger than k3/kj, meaning that a was
always smaller than 1.

During N5O consumption (Figure 6b), the complex relative isotopic composition R¢/Rg
increased to values larger than 1 almost immediately after the reaction started, and re-
mained larger than 1 during the entire reaction course. The product relative isotopic
composition, Rp/Rg, remained smaller than one for the entire experiment (Figure 6b).
Inverse fractionation observed in Figure 3b is mainly characterized by a depletion in N,O
substrate and Ny product isotopic composition, and by an overall enrichment of the com-
plex isotopic composition. Inverse fractionation occurred when the complex relative iso-
topic composition passed above the solid line that represents the ratio k3/k% and sets the

threshold above which « becomes larger that 1 (Figure 6b).

3.8. Net and relative rates of change of substrate, complex, and products in

TR-MMM Kkinetics
The net rates of change of substrate, complex, and product concentrations in the NoO

production and consumption experiments showed common features, with S and P charac-
terized by an initial increase and a subsequent decrease (in absolute terms), while C' was

initially accumulated in the system, and then consumed to extinction (data not shown).
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Similar trends were found for the heavy isotopologues S’, C’, and P’ in both N,O produc-
tion and consumption experiments (data not shown). The rates of changes of the light
isotopologues (dS, dS, and d P) were approximately 40 to 50 times higher relative to those
of the heavy isotopologues (dS’, dS’, and dP’) during N5O production and consumption
(Figure 7a and b). Regardless of the specific test, the relative rates of change of the sub-
strates (dS/dS’) and products (dP/dP’) were always very similar. The relative rates of
change of the complexes (dC/dC") underwent a singularity when C' and C” started being

consumed, i.e., dC'/dC” jumped from —oco to 400 when dC’/dt crossed zero.

3.9. Phase space analysis

The microbial biomass dynamics drives the kinetic reactions and isotope fractionation,
and is subject to a feedback linking the rate of change of S and S’ to the rate of production
of P and P’ through the production of the enzyme FE that forms the complexes C' and C’.
In the tests of NoO production and consumption, the correlation between the microbial
biomass and complex concentrations B and C' normalized to their maxima were nearly
always positive, with C increasing and decreasing with B, and a phase lag in the N,O
production experiment slightly larger than in the NyO consumption (i.e., the solid ring is
wider than the dash-dotted one, Figure 8a).

Conversely, the correlation between the normalized biomass concentration and the
§°NoO values showed very different patterns in the two tests (Figure 8b). These dif-
ferences were due to the fact that §'°N,O always increased during N,O production, while
during N5O consumption it increased first, and decreased next. It is interesting to note
that during NoO consumption (dashed-dot line), the maximum 65N value occurred nearly

in concomitance with the maximum complex and biomass concentrations (Figure 8b). Af-



X-24 F. MAGGI AND W.J. RILEY: BIOLOGICAL KINETIC ISOTOPE FRACTIONATION

ter this point, §'°N,O decreased due to an inversion of isotopic effect (o > 1) (Figure

8¢).

4. Discussion

The results presented here highlighted three important aspects.

First, as compared to first-order reactions, improved predictions of substrate and
product concentrations during N,O production and consumption were achieved using
Michaelis-Menten reactions coupled with Monod kinetics for the microbial biomass dy-
namics and the enzyme concentration. More importantly, this modeling framework was, in
general, highly accurate in describing high enrichment in ¢ values during N,O production
and inverse fractionation during NoO consumption without invoking additional processes
that were not monitored in the experiments, and without introducing the constraints as-
sociated with the quasi-steady-state assumption. We do not exclude that other processes
may partly have contributed to the observed isotopic effects. Among them, as suggested
also in Menyailo and Hungate [2006], high enrichment during NoO production and inverse
fractionation during NoO consumption could be ascribed to reactions occurring along the
chain NO; — NO; — NO — N,O [Knowles, 1982, nitrifier denitrification which may not
be inhibited by CyH, application [Menyailo and Hungate, 2006], and N-site isotopomer-
specific fractionation, [Toyoda et al., 2005]. However, we do not have measurements of
these processes to assess their possible contributions; further experimental investigation
would benefit our, and other, mathematical models.

Second, in contrast to the quasi-steady-state assumption, the transient assumption in
Michaelis-Menten-Monod kinetics improved our ability to predict non-steady isotopic ef-

fects. With this assumption the fractionation factor a varied over the reaction, and was



F. MAGGI AND W.J. RILEY: BIOLOGICAL KINETIC ISOTOPE FRACTIONATION X-25

not limited to values smaller than 1. This variability was linked to a changing isotopic
composition of the complex and substrate over time, with the former playing a fundamen-
tal role in how rare isotopologues moved along the reaction pathway. It is important to
note that inverse fractionation in biochemical reactions does not necessarily imply pref-
erence for (i.e., higher consumption rate of) lighter, abundant isotopologues over heavier,
rare isotopologues. The relative rates of changes of the system components (Figure 7), and
the reaction rate constants k; and & (Table 1), show that lighter isotopologues are always
consumed more rapidly than heavier isotopologues. The reason why inverse fractionation
may occur is related to the possibility for the heavy isotopologues to accumulate in the
complex because its kinetics are not strictly described by equilibrium or steady-state ki-
netics. This added degree of freedom in biochemical reactions is possible only under the
assumption of transient kinetics, by means of which the rate of complexation becomes
non negligible. The transient hypothesis in solving the Michaelis-Menten-Monod kinetics
has the advantage of generalizing the quasi-steady-state assumption without introducing
approximations and constraints to the concentrations of the system components. We note
that numerically solving the transient Michaelis-Menten-Monod kinetics for all compo-
nents (i.e., heavy and light isotopologues, enzyme, and biomass) has comparable costs to
solving the quasi-steady-state kinetics.

Third, a particular attention has to be payed to the thermodynamic description of the
reaction rate constants k; and k;. The rate constants obtained in our calibration were
constrained to satisfy the conditions k; > k. Satisfaction of these conditions was taken

on the basis of the hypothesis that the rate of a reaction, k, is exponentially dependent on
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the energy barrier, F,, that the reactants have to surpass to release the product according

to the Arrhenius’s law [Atkins, 1998]

k= Ae~Be/BT (22)

where A is a frequency factor with the unit that depends on the order of the reaction, T’
is the absolute temperature, and R = 8.31 J K~ mol™! is the constant for ideal gases.
To follow the Arrhenius’ law, the energy barrier E! linked to isotopically heavy reactants
would be higher than the energy barrier F, of isotopically light reactants owing to stronger
atomic bonds in S’ as compared to S. The constraint & > £’ implied therefore £, < E.
Using the Arrhenius description of first-order reaction rates with the parameters of Table
1 for FO kinetics, and assuming that isotopic effects only relate to the energy barrier (i.e.,
the frequency factors are A’ = A), the ratio k'/k = eFa=Fa)/RT ghowed that the amount
of surplus energy that heavy isotopologues substrates require to react in the FO kinetics
approach, (E! — E,), was 42.05 and 6.86 J mol™! for N,O production and consumption,
respectively. Because in the FO kinetics the ratio &’/k also equals the fractionation factor
a of Eq. (6), we obtain that the isotopic effect is constant and equal to the exponent of
the difference in energy barrier between heavy and light isotopologues as

KA

a = —€

kA

—(Ey—EJ)/RT _ —(E,—Ea)/RT

e

under the assumption that A’ = A. When the same approach was applied to the ratio of
first-order rate constants k% /ks of the QSS-MMM kinetics, with A’ = A, we obtained that
(E! — E,) was 211.9 and 37.5 J mol~! for N,O production and consumption, respectively.

In this instance the fractionation factor of Eq. (20),
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KK, _ KAlef(ngEa)/RT _ 56

o =—=-— —(Ea—FEa)/RT
K'ks K'A K’ ’

is proportional to the ratio K /K’ and to the exponent of the difference in energy barrier
between heavy and light isotopologues. For the TR-MMM kinetics, the ratio k% /ks implied
that (E/, — E,) was 40.68 and 268.61 J mol™! for NyO production and consumption,

respectively. The fractionation factor of Eq. (21)

o = Rc(t) k_g _ Rc(t)ile—(E{l—Ea)/RT _
Rs(t) ks Rs(t) A
_ Rc(t)e—(E;—Ea)/RT
Rs(t) ’

showed that, for A’ = A, the isotopic effect is proportional to an energy component that
is constant in time (i.e., the exponential term) and to a time-changing ratio Ro(t)/Rs(t).

Regardless of the accuracy in predicting the concentrations and isotopic compositions
of all system components, the energy term (E! — E,) computed for NoO production was
variable between approximately 50 and 210 J mol™!. In the test of NoO consumption,
instead, (E/ — E,) ranged between approximately 7 and 270 J mol™!'. Although the
variability found for (E! — E,) appears large, the activation energy (here coinciding with
the Gibbs free energy) is about three orders of magnitude larger for NyO production from
NO; (-390 kJ mol™*) and for NoO consumption into Ny (-170 kJ mol™!) [Sprent, 1987;
Wrage et al., 2001]. It is interesting to note that the high difference in energy barrier found
for NyO consumption with the TR-MMM kinetics (& 268 J mol™!), which implies that the
N, product is depleted in °N at a higher rate, does not necessarily imply that the N,O
substrate composition is enriched in *N. Because the quasi-steady state assumption is not

used in the solution of the TR-MMM kinetics, both substrate and product can become
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depleted at the expenses of the complex, which would be enriched. This nonlinear effect,
expressed by the ratio Rq(t)/Rs(t), depends on how the kinetics of each pathway in a
competitive complexation reaction like those of Eq. (11) interact with each other.

If the isotopic effect in the above analysis is assumed to exclusively depend on the
difference in activation energy (E, —E,) (i.e., the frequency factors A’ = A), the transition
state theory developed by Eyring allows us to take into account the isotopic effects related
to A and A’ [Eyring, 1935a, b]. The frequency factors for reactions in solution as in Eq.

(11) can be written as [Connors, 1990]

_ KpT Fc e KT Fo
h FgFy’  h FygFg

(24)

where K is Boltzmann’s constant, h is Planck’s constant, and F; are the partition func-
tions describing the energy associated with each degree of freedom (i.e., translation, ro-
tation, and vibration) of each component. Because the partition functions are computed
upon first-principles and depend on the molecular masses of the components, the effect of
A'JA = FoFs/FoFs on « s fully predictable. Bigeleisen and Wolfsberg [1958] predicted
in this way the isotopic effects of several stable isotopes involved in unimolecular reactions.
The calculation of isotopic effects for bimolecular reactions of multiatomic molecules such
as in NoO production and consumption reactions investigated here are more difficult to
assess. There are two aspects that prevents us from computing A’/A. In the specific case
of N,O production from NOj, the three reduction steps NO; — NO; — NO — N,O,
each associated with one specific enzyme (i.e., nitrate reductase, nitrite reductase and
nitric oxide reductase), are aggregated and simplified into one single reduction reaction

operated by one enzyme that combines the functioning of the three enzymes. This simpli-
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fication, however, does not invalidate the model proposed here which implicitly assumes
that the enzyme concentration, F, is the sum of the concentration of the three enzymes,
while the three reactions are implicitly assumed to occur simultaneously and with the
same rates. In the case of NoO — N, reduction only one reaction is involved and it is
catalyzed by the nitrous oxide reductase enzyme. While the NyO consumption reaction
could be the right candidate to assess the effect of A’/A from the partition functions, the
complicated network of long-chained proteins of the enzyme structure [Rosenzwieg, 2000]
makes particularly difficult to determine the translational, rotational, and vibrational en-
ergies required to calculate Fg, F, and Fo. The second aspect that prevent us from
computing the effect of A’/A on the isotopic effect is related to the fundamentals of the
derivation of the Michaelis-Menten and Eyring equations. Both equations are essentially
equilibrium theories by virtue of the equilibrium that is assumed to link the complex
and reactant concentrations. The equilibrium assumption implies that the rate of pro-
duction of P is much slower than the time scale required by the reactants to form the
complex and that any variation in reactant concentrations is instantaneously transferred
to the complex concentration, which increases or decreases concordantly. The Haldane-
Briggs’ quasi-steady-state assumption, instead, states that the complex concentration is
time invariant. Because it does not imply equilibrium between complex and reactants,
the concentrations of the complex does not change in response to a change in reactant
concentration. The theory of rate processes that Eyring proposed to describe the rate of
chemical reactions leading to the partition functions may therefore not be accurate, or
conceptually correct, in a system which is at steady state as compared to a system which

is at equilibrium. The Eyring equation has not been proven yet to hold valid under the
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Haldane-Briggs’ assumption. The correct application of the Eyring equation in the case of
transient Michaelis-Menten kinetics is a fortiori more arguable than for the quasi-steady-
state Michaelis-Menten kinetics. Although the Eyring equation cannot be rigorously used
in this instance, it is likely that isotopic effects will depend not only on the difference
in energy barrier (E! — E,) but also on the ratio between the frequency factors A’/A
and, consequently, on the corresponding partition functions. The crucial point to this
end is therefore that of deriving a form of the Eyring equation for quasi-steady-state and
transient complex concentration, and determine whether the expressions for the frequency
factors A and A’ maintain the current form of Egs. (24) or require rewriting. We conclude
that, currently, a thermodynamic analysis of the k; and k. values based on the activation
energy introduced with Arrhenius’ law is mathematically consistent with the chemistry
of the processes, while an interpretation using the Eyring equation is not appropriate at
the present state of development.

Finally, the results described in Section 3 and summarized here for point-scale modeling
can have important consequences for interpreting isotopic signatures at small scales such
as in laboratory investigations. Future applications of isotope movement throughout the
large-scale ecosystem may also benefit from the modeling approach described here, which
may become important to determine soil nutrient cycling, turnover rates, accumulation,

escape pathways, and global spatial distributions.

5. Conclusions
Our understanding of isotopic fractionation is limited even in simple biogeochemical
systems. In this paper, we have shown that: (i) transient Michaelis-Menten-Monod kinet-

ics in competitive complexation was superior to quasi-steady-state and first-order kinetics
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when predicting concentrations and isotopic compositions over time, and that (ii) tran-
sient Michaelis-Menten-Monod kinetics explained observed non-steady isotopic effects.
The higher accuracy of the method was linked to the transient assumption by which the
fractionation factor becomes variable with the isotopic compositions of complex and sub-
strate over time. The approach presented here in describing the competitive consumption
of isotopologue substrates may imply a substantial revision in using first-order kinetics and
the Rayleigh equation as well as the quasi-steady-state Michaelis-Menten-Monod kinetics

for interpretation of isotopic signatures.

Acknowledgments.

The authors thank Christof Meile and Bruce Hungate for their comments and sugges-
tions on the first development of the models. This work was supported by Laboratory
Directed Research and Development (LDRD) funding from Berkeley Lab, provided by the
Director, Office of Science, of the U.S. Department of Energy under contract DE-AC02-

05CH11231.

References

Atkins P.W., (1998), Physical Chemistry, 6th ed., Freeman, Oxford University Press, pp
999.

Connors K.A., (1990), Chemical kinetics: The study of reaction rates in solution, Wiley-
VCH, pp. 480.

Bigeleisen J. and M. Wolfsberg (1958), Theoretical and experimental aspects of isotope

effects in chemical kinetics, Adv. Chem. Phys. 1, 15-76.



X -32 F. MAGGI AND W.J. RILEY: BIOLOGICAL KINETIC ISOTOPE FRACTIONATION

Conrad R. (1996), Soil Microorganisms as controllers of atmospheric trace gases (H2, CO,
CH4, OCS, N,0O and NO), Microbiological Reviews Dec., 609-640.

Dixon M. and E.C. Webb, (1958), Enzymes, Academic Press, Inc., New York, pp 782.

Eyring H., (1935), The activated complex and the absolute rate of chemical reactions,
Chemical Reviews 17(1), 65-77.

Eyring H., (1935), The activated complex in chemical reactions, Journal of Chemical
Physics 3(2), 107-115.

Glasstone S., K.J. Laidler and H Eyring, (1941), The theory of rate processes, McGraw-
Hill, pp. 611.

Groffman P.M., M.A. Altabet, J.K. Bohlke, K. Butterbach-Bahl, M.B. David, M.K. Fire-
stone, A.E. Giblin, T.M. Kana, L.P. Nielsen and M.A. Voytek, (2006), Methods for
measuring denitrification: Diverse approches to a difficult problem, Ecological Applica-
tions 16(6), 2091-2122.

Haldane J.B.S. (1930), Enzymes, London, New York, Longmans, Green, pp 235.

Hunkeler D. and R. Aravena (2000), Evidence of Substantial Carbon Isotope Fractionation
among Substrate, Inorganic Carbon, and Biomass during Aerobic Mineralization of 1,2-
Dichloroethane by Xanthobacter autotrophicus, Applied Environmental Microbiology,
66(11), 4870-4876.

Knowles R. (1982), Denitrification, Microbiological Review, Mar., 43-70.

Laidler K.J. (1955), Theory of the transient phase in kinetics, with special reference to
enzyme systems, Can. J. Chem. 33, 1614-1624.

Laidler K.J.; (1965), Chemical kinetics, McGraw-Hill, pp. 566.



F. MAGGI AND W.J. RILEY: BIOLOGICAL KINETIC ISOTOPE FRACTIONATION X-33

Li C., S. Frolking and T. Frolking, (1992), A model of nitrous oxide evolution from soil
driven by rainfall events: 1. Model structure and sensitivity, J. Geophys. Res. 97, 59-76.

Mariotti A., J.C. Germon, P. Hubert, P. Kaiser, R. Letolle, A. Tardieux, P. Tardieux,
(1981), Experimental determination of nitrogen kinetic isotope fractionation - Some
principles - Illustration for the denitrification and nitrification processes, Plant and Soil
62(3), 413-430.

Menyailo O.V. and B.A. Hungate, (2006), Stable isotope discrimination during soil deni-
trification: Production and consumption of nitrous oxide, Global Biogeochemical Cycles
20(GB3025), doi:10.1029/2005GB002527.

Monod J., (1949), The growth of bacterial cultures, Annu. Rev. Microbial 3, 371-394.

Mosier A.G. (1998), Soil processes and global change, Biol. Fertil. Soils 27, 221-229.

Papadopulos & Associates, Inc., www.sspa.com/pest.

Perez T., Garcia-Montiel D., Trumbore S., Tyler S;, De Camargo P., Moreira M., Piccolo
M. and Cerri C., (2006), Nitrous oxide nitrification and denitrification N enrichment
factors from amazon forest soils, Ecological Applications 16(6), 2153-2167.

Rosenzwieg A., (2000), Nitrous oxide reductase from CuA to CuZ, Nature Structural
Biology 7, 169-171.

Sprent J., (1987), The ecology of the nitrogen cycle, Cambridge University Press, New
York, pp 150.

Toyoda S., Mutobe H., Yamagishi H., Yoshida N. and Tanji Y., (2005), Fractionation of
N,O isotopomers during production by denitrifier, Soil Biology and Biogeochemistry

37, 1535-1545.



)

)

X-34 F. MAGGI AND W.J. RILEY: BIOLOGICAL KINETIC ISOTOPE FRACTIONATION

Vitousek P.M., G. Shearer, and D.H. Kohl, (1989), Foliar 15-N natural abundance in
Hawaiian rainforest: Patterns and possible mechanisms, Oecologia, 78, 383-388.

Vitousek P.M., J.D. Aber, R.W. Howarth, G.E. Linkens, P.A. Matson, D.W. Schindler,
W.H. Schlesinger and D.G. Tilman, (1997), Human alteration of the global nitrogen
cycle: sources and consequences, Ecological Applications 7(3), 737-750.

Wrage N., G.L. Velthof, M.L. van Beusichem and O. Oenema, (2001), Role of nitrifier
denitrification in the production of nitrous oxide, Soil Biology and Biochemistry 33,

1723-1732.



F. MAGGI AND W.J. RILEY: BIOLOGICAL KINETIC ISOTOPE FRACTIONATION

400 ‘ ‘ ‘ ‘ 5 ‘ ‘ ‘ ‘ 5
@ o C) | ©

300

i

-1
soil

O Experiment
O Experiment
== Rayleigh eq.
(M&H2006)
Rayleigh eq.
FO |
= = =QSS-MMM
— TR-MMM
—E, TR-MMM
- - -C, TR-MMM

N—NZO [mg kg
N
o
o

100

-30 T Yhe

‘ > ~30 ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 20 40 60 80 100 0 20 40 60 80 100 0 02 04 06 08 1
Time [h] Time [h] (2-f)

Figure 1. (a) observed and predicted NoO concentration over time during N,O pro-
duction from NOg3’; (b) and (c) observed and predicted N,O product isotope composition
over time and as a function of consumed substrate (1 — f). Experimental data and the
Rayleigh equation represented by the dot-dashed line are redrawn from Menyailo and
Hungate [2006]. Data points in (a) and (b) are averages of multiple replicates and do not
show appreciable variance (see Figure 1A and C in Menyailo and Hungate [2006]), while
data points in (¢) represent two replicates where (1 — f) was estimated from the remaining

substrate (see Figure 2A in Menyailo and Hungate [2006]).
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Figure 2. Fractionation factor, a, computed with first-order (FO) kinetics, quasi-

steady-state Michaelis-Menten-Monod kinetics (QSS-MMM), and transient Michaelis-

Menten-Monod kinetics (TR-MMM) during N,O production.
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Figure 3. (a) observed and predicted N3O concentration over time during N»O con-
sumption into Na, (b) and (c¢) observed and predicted N,O product isotope composition
over time and as a function of remaining substrate f. Experimental data and the Rayleigh
equation represented by the dot-dashed line are redrawn from Menyailo and Hungate
[2006]. Data points in (a) were originally expressed with the unit of [ppm], while here
they are represented with the unit of [mg kgs_o}l], and were computed using a soil mineral
density of 2500 kg m~3, a porosity of 0.4, and soil water saturation of 0.6. Data points in
(a), (b), and (c) are averages of several replicates (see Figure 3A and B in Menyailo and
Hungate [2006]), Data points in (c¢) report the full set of experimental values, including

the last three points of (b) (see Figure 5A in Menyailo and Hungate [2006]).
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Figure 4. Fractionation factor, «, computed with first-order (FO) kinetics, quasi-

steady-state Michaelis-Menten-Monod kinetics (QSS-MMM), and transient Michaelis-

Menten-Monod kinetics (TR-MMM) during NyO consumption.
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Figure 5. (a) and (b) represents the mean (Avg.) and standard deviation (Std.)
of Monte Carlo sensitivity analysis of 6'°N,O and fractionation factor o over time for
imposed variances of £5%o in the k! rates during N,O production and consumption. (c)
and (d) represent the mean and standard deviation of Monte Carlo sensitivity analysis of
d'N,0 and fractionation factor o over time for imposed variances of +1% in the microbial
biomass parameters z and 3 during NoO production and consumption. Modeling results
were obtained with the transient Michaelis-Menten-Monod kinetics (TR-MMM), and were

compared with experimental data redrawn from Menyailo and Hungate [2006].
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Figure 6. (a) and (b) isotopic composition of complex, R¢, and product, Rp, relative

to the composition of the substrate, Rg, computed with the TR-MMM kinetics for N,O

production and consumption, respectively.
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Figure 7. (a) and (b) representations of the relative rates of change of substrates,

dS/dS’, complexes, dC/dC’, and products, dP/dP’, for the two experiments of N,O
production and consumption, respectively, computed with the TR-MMM kinetics. The
symbols S and S’, and P and P’ stay for *NO; and ®NOj, and for *N,O and *N,O

in panel (a), and for *N,O and *N,O, and N, and N, in panel (b), respectively.
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Figure 8. (a) representation of the normalized complex concentration C' as a function of
the normalized microbial biomass concentration B. (b) representation of the isotopic com-
position 6'°N,O as a function of the normalized complex concentration C'. (c) representa-
tion of the fractionation factor, o as a function of the normalized complex concentration

C.
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Table 1. Summary of parameters used in (a) first-order kinetics (FO), (b) quasi-steady-state Monod kinetics
(QSS-MMM), and (c) transient Monod kinetics (TR-MMM) in the two tests of NoO production and consumption.
The parameters bracketed in the first column were calibrated while all others were obtained from the experiments.
The value of z was assigned arbitrarily. The biomass parameters z and 3, and the initial concentrations Sp,
Co, Py, and By, and isotopic compositions Rs0, Rc,0, and Rpo were identically applied to each model, were
the reference isotope composition, Rgq = 2.305 - 102 was used. The parameters K and K’ within *-* in the
TR-MMM Kkinetics were not calibrated but calculated a posteriori as K* = (k2 + k3)/k1 and K'* = (k}, + k4) /K|
for comparison with K and K’ of the QSS-MMM kinetics. The values of the parameters k; and k; are expressed
with a precision of four digits owing to the model sensitivity to these values (Section 3.6).

N2O production N2O consumption
FO  QSS-MMM TR-MMM FO  QSS-MMM TR-MMM

71 1076 8.0757 - - 3.3397 - -
71 1076 7.9375 - - 3.3303 - -
[mg kg;o%l s™1] .106 - - 2.0713 - - 1.7806
[mg kg ;s '] 1076 - - 2.0369 - - 1.5947
s -10—6 - - 1.6604 - - 3.4703
[s71] 1076 - - 1.5381 - - 1.4936
[s71] 1074 - 1.8831 2.0846 - 1.4949 1.4488
[s71] 1074 - 1.7262 2.0284 - 1.4720 1.2818
[mg ke__})] - 76.81 *101.44* - 150.48 *100.85*
[mg kg__;|] - 71.90 *100.33* - 148.59 *89.74*
[mg mg™1] - 0.01 0.01 - 0.01 0.01
[mg mg~1] - 95.631 95.63 - 95.63 95.63
[s71] 1074 - 1.1635 1.1635 - 1.1635 1.1635
[mg kg;%l] 380 380 380 1500 1500 1500
[mg kg;)il - 10-10 10—10 - 10—10 10—10
[mg kgsfoil] 10~10 10710 10~10 10—10 10—10 10~10
[mg kg__ ;] - 300 300 - 350 350
[-]-10—2 2.305 2.305 2.305 2.459 2.459 2.459
[-]-10—2 - 2.305 2.305 - 2.459 2.459
[-]-10—2 2.24 2.24 2.24 2.459 2.459 2.459






