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ABSTRACT OF THE THESIS 

 

Investigating the Behavior of Nanophotonic Structures using Explainable Convolutional 

Neural Network 

 

by 

 

Ju-Ming Tsai 

 

Master of Science in Materials Science and Engineering 

University of California, Los Angeles, 2020 

Professor Aaswath Pattabhi Raman, Chair 

 

 Reaching the true potential of nanophotonic devices requires the broadband control of 

spectral and angular selectivity in the absorption and emission of electromagnetic waves. To 

this end, previously investigated design methods for nanophotonic structures and have 

encompassed both conventional forward and inverse optimization approaches as well as 

nascent machine learning (ML) strategies. While far more computationally efficient than 

optimization processes, ML-based methods that are capable of generating complex 
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nanophotonic structures are still  ‘black boxes’ that lack explanations for their predictions. In 

that regard, we demonstrate that well-established deep learning architectures such as 

convolutional neural networks (CNN), which are highly proficient at forward design, can be 

explained to derive unique design insights by extracting the underlying physical relationships 

learned by network. To illustrate this capability, we trained a CNN model with 10,000 images 

of selective mid-infrared thermal emitters and their corresponding absorption spectra. The 

trained CNN predicted the spectra of new and unknown designs with over 95% accuracy. After 

training the CNN, we applied the Shapley Additive Explanations (SHAP) algorithm to the 

model to determine features that made positive or negative contributions towards specific 

spectral points, thereby informing which features to create or eliminate in order to meet a target 

spectrum. Using this strategy, we show that a starting electromagnetic metasurface design can 

be selectively manipulated to create target spectral properties. Our results reveal that the 

physical relationships between structure and spectra can be obtained, and new designs can be 

achieved, by exposing the valuable information hidden within a neural network.  
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Chapter 1                      

Introduction 

 

Photonic devices play an important role in many areas of our daily life and it has enabled 

a wide range of transformative technologies such as such as photonic integrated circuits for 

ultra-high speed optical communication1, 2, 3 and metasurfaces that precisely control the 

propagation of electromagnetic waves (e.g. waveguides, directional output couplers, and 

thermal emitters)4, 5, 6. How the electromagnetic wave interacts with the materials at each 

different specific wavelength enables the different applications for the nanophotonic devices. 

Different interactions such as scattered, refracted, filtered between light and the photonic 

device can be achieved by using metallic and dielectric 2D nanostructures and 3D 

nanoarchitectures. Even some fascinating new interactions occur that are impossible with 

natural materials and in conventional geometries. The control over light has enabled a variety 

of applications, including optical computing, medical technologies and many other novel 

applications7. 
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Figure 1. Photonic device applications (A) 2D photonic crystal waveguide coupled to resonant cavities serves 

as a wavelength division multiplexer. (B) Metal-insulator-metal surface plasmon polariton waveguide strongly 

confines light and shrinks the wavelength. (C) Plasmonic dimer nanoantenna coupled to an optical emitter creates 

directional emission of light. (D) Metasurface composed of chiral antennas offers selectivity to circularly 

polarized light. (E) Metasurface composed of graded plasmonic or dielectric antenna geometries enables 

wavelength-dependent control over the reflection and refraction of the optical wave front7. 

Figure 1 shows some well-established applications for the photonic usage. Among one of 

them is the metal-insulator-metal (MIM) surface plasmon polariton (SPP) waveguide. The size 

and density of optical devices employing conventional dielectric optical waveguide and 

photonic crystals will in principle be limited by the diffraction limit of light, where the smallest 

diameter of the beam propagating in dielectric is of the order of 𝜆"/𝑛8, 9. The MIM structure 

serves as the plasmonic waveguide to squeeze the SPP field into the dielectric core and the 

wavelength along the direction of propagation can be shortened significantly10. MIM-SPPs can 

therefore be guided in waveguides with very small transverse dimensions11 and allow the 

realization of nanocavities with extremely small mode volumes12, 13.  

The finite-difference time-domain (FDTD) method is a powerful computational technique 
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which is widely used to calculate the optical properties of nanostructures14, 15, 16. The major 

advantage of the FDTD method compared to other methods is its ability to provide a full 

spectrum in a single simulation by propagating a short pulse in the time-domain17. Thus to 

describe realistic materials, the frequency dependent dielectric functions of the constituent 

materials need to be modeled in an analytical form, then transformed into the time-domain. 

However, forward design is limited by trial and error guided by domain knowledge and 

human intuition. It is also strongly limited to the degree of the insight to the problem. To get a 

nontrivial design that may be overseen by human intuition, a deterministic optimization 

algorithm is needed to search for the possible solution. The inverse design solves problem by 

optimizing the design parameters with certain constraint. It is a computational algorithm that 

enables automatically design optimal structure consisting of dielectric or metal materials in the 

system18. 

In optical device optimization, various optimization methods have been used, such as 

genetic algorithm, or topology optimization. The topology optimization method was originally 

developed for structural optimization problems, but has recently been extended to some other 

design problems19. For example, broadband photonic crystal waveguide20 or even 3D 

nanophotonic devices structure21 can be optimized. However, these optimization algorithms 

usually optimize for some specific metrics, and they rarely directly achieve the most suitable 

structure parameters for a complete transmission spectrum in a wide wavelength range22. 
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In recent years, machine-learning based method has shown the power on the exploration 

and optimization of complex problems. For example, the quantum many-body problem could 

be solved by utilizing ANNs23. Moreover, the light scattering of multilayer nanoparticles with 

different thicknesses can be simulated with a trained ANNs24. ANNs could solve the spectrum 

prediction and inverse design problems more quickly than the numerical simulation method24,  

25. 

However, among all the machine learning methods which have been utilized on the 

photonic material problems, the complex physical relationship between input parameters and 

output optical responses have kept a mystery. In this thesis, we tried to open the ‘black box’ of 

the machine learning method by implementing an external explanation model and acquired 

more insight of the machine learning model for the inverse design problem. 
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Chapter 2                   

Background 

 

 Nanophotonic devices have many applications in different fields. There is tremendous 

potential for further advancements in these applications, but they are critically limited by 

existing design processes. 

To address the problems of designing nanophotonic device, people have come up with 

several different design methods for it. For example, the most common approach to photonic 

device design is via numerical simulations based on physical laws (e.g., Maxwell’s Equations) 

to optimally design nanophotonic structures with specific, target functionality. This design 

technique, also known as “forward design”26. 

2.1 Electromagnetic Simulation 

Fundamental problem for the simulation of the photonic devices is solving the Maxwell’s 

equations in both time and space simultaneously. 

∇ ∙ 𝐄 = 	 *
+,

 ––––––––––––– (2.1) 

∇ ∙ 𝐇 = 	0 ––––––––––––– (2.2) 

∇ × 𝐄 = 	−𝜇 2𝐇
23

 –––––––––– (2.3) 



 6 

∇ × 𝐇 = 		𝐉	 + 	𝜀 2𝐄
23

 –––––––––– (2.4)27 

Where E is the electric field vector, H is the magnetic field vector, 𝜇 is the magnetic 

permeability, 𝜀 is the electric permittivity, J is the current density. 

The Maxwell’s equations is composed of four different partial equation that describes 

different relationship between electric field, magnetic field, charge density and current density 

in the system. Despite the great linear and first-order mathematical properties of the equations, 

the analytical form of the solutions for the Maxwell’s equations does not exist. The numerical 

method can only be applied to approximate distribution of fields in time and space in the system. 

The Finite-difference Time-domain (FDTD) method has been widely used as a forward 

simulation method to solve the electromagnetic wave propagation numerically28. FDTD 

simulation was first invented by K. S. Yee et al and it discretizes the Maxwell equation in space 

domains using Yee’s discretization cells29. The Maxwell’s curl equations are then calculated in 

isotropic, linear, non-dispersive media. The approximation of the simulation eventually 

matches the continuous equation as the grid and the time steps is fine enough. 

The FDTD uses the central difference approximation to the Maxwell’s equations. It solves 

the equation and update the result of both the electric and magnetic fields at each time step and 

discretized space point in the defined system using leapfrog method. Moreover, while 

analyzing the electromagnetic response from the material structure, an absorbing boundary 

condition or perfectly matched layer, which suppress redundant reflection, needs to be applied 
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if the boundary is unbounded. 

 

2.1.1 Discretized Cell in Cartesian Coordination System 

In 3D cartesian coordination system, the total system can be divided into cubic or 

rectangular cells with ∆x, ∆y, ∆z in length, as shown in figure 2. 

 
Figure 2. Relative placement of electric field and magnetic fields components in the cell. 

The electric field components are placed at the center of the slides of the cells: Ex 

components are placed at the midpoints of sides aligned in the x direction, Ey  

components are placed at the midpoints of sides aligned in the y direction, Ez components 

are placed at the midpoints of sides aligned in the x direction. The magnetic field 

components are placed at the center of the faces of the cells and components are normal 

to the faces. Hx is placed at the center on y-z planes, Hy are placed at the center on x-z 

planes, Hz are placed at the center on x-y planes. 

2.1.2 Leapfrog Method 

Leapfrog method is used for updating the electric and magnetic fields in each cells 
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for every time step in FDTD simulation. The electric field components are calculated at 

time steps n∆t, where n is an integer and ∆t is the time increment. On the other hand, the 

magnetic field components are computed at half integer time steps 7𝑛 + 8
9
:∆𝑡. 

Time-update equations for electric field components Ex, Ey, Ez are derived from 

Ampere’s law as Eq. (2.4), and the magnetic field components Hx, Hy, Hz are derived from 

Faraday’s law, as shown in Eq. (2.3). 

∇ ×𝑯>?@A = 𝜀 2𝑬
CD@A

23
+ 𝑱𝒏?

𝟏
𝟐 = 	𝜀 2𝑬

CD@A

23
+ 𝝈𝑬𝒏?

𝟏
𝟐  –––– (2.5) 

Where	𝜎  is the electric conductivity. Eq. (2.5) shows how the magnetic field 

components are computed at time step (𝑛 − 8
9
)∆t. 𝜀 2𝑬

23
 is the displacement induced by 

the electric field vector. Moreover, it is showing that the conduction current with time 

variation of electric field induces magnetic field in right-hand curl direction. 

∇ ×𝑯>?@A = 𝜀 2𝑬
CD@A

23
+ 𝜎𝑬𝒏?

𝟏
𝟐 ≈ 𝜀 𝑬

C?𝑬CD@

∆3
+ 𝜎	 𝑬

CR𝑬CD@

9
 –––– (2.6) 

Approximating 𝑬𝒏?
𝟏
𝟐 term by using its average value 𝑬

CR𝑬CD@

9
, we can get Eq. (2.6). 

If we rearrange the term in Eq. (2.6), the update equation for the electric field vector at the 

time step number n 𝑬𝒏 can be obtained from a time-step previous value 𝑬𝒏?𝟏 and the 

half time-step previous magnetic field curl value ∇ ×𝑯>?@A, as shown below: 

𝑬𝒏 = S
8?T∆UAV
8RT∆UAV

W𝑬𝒏?𝟏 + S
∆U
V

8RT∆𝒕AV
W ∇ × 𝑯>?@A –––– (2.7) 

The update equation 𝑬𝒙𝒏	 at location (i+1/2, j, k) (shown in figure 3) can be calculated 

from equation (2.7) and is expressed as follow in Eq. (2.8). 
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Figure 3. Electric field component in the x direction 𝑬𝒙𝒏 at a location (i + 1/2, j, k) and the circulating magnetic 

field components closest to it. 

 𝑬𝒙𝒏 	7𝑖 +
8
9
, 𝑗, 𝑘: = 	

8?
T7^_@A,`,a:∆U

AV7^_@A,`,a	:

8R
T7^_@A,`,a:∆U

AV7^_@A,`,a	:

𝑬𝒙𝒏?𝟏 7𝑖 +
8
9
, 𝑗, 𝑘: +	

∆U
V7^_@A,`,a	:

8R
T7^_@A,`,a:∆U

AV7^_@A,`,a	:

b
2𝑯𝒛

𝒏D𝟏𝟐7𝒊R𝟏𝟐,𝒋,𝒌:

2g
−

2𝑯𝒚
𝒏D𝟏𝟐7𝒊R𝟏𝟐,𝒋,𝒌:

2i
j 

  =	
8?

T7^_@A,`,a:∆U

AV7^_@A,`,a	:

8R
T7^_@A,`,a:∆U

AV7^_@A,`,a	:

𝑬𝒙𝒏?𝟏 7𝑖 +
8
9
, 𝑗, 𝑘: +	

∆U
V7^_@A,`,a	:

8R
T7^_@A,`,a:∆U

AV7^_@A,`,a	:

8
∆i∆g

k𝑯𝒛
𝒏?𝟏𝟐 7𝑖 + 8

9
, 𝑗 + 8

9
, 𝑘: ∆𝑧 −

																									𝑯𝒛
𝒏?𝟏𝟐 7𝑖 + 8

9
, 𝑗 − 8

9
, 𝑘: ∆𝑧 −𝑯𝒚

𝒏?𝟏𝟐 7𝑖 + 8
9
, 𝑗, 𝑘 + 8

9
: ∆𝑦 +	𝑯𝒚

𝒏?𝟏𝟐 7𝑖 + 8
9
, 𝑗, 𝑘 − 8

9
: ∆𝑦n  

(2.8) 

The spatial derivative terms are approximated by the central finite differences 

𝑯𝒛
𝒏D𝟏𝟐7oR@A,pR

@
A,q:?𝑯𝒛

𝒏D𝟏𝟐7oR@A,p?
@
A,q:

∆g
 and 

𝑯𝒚
𝒏D𝟏𝟐7oR@A,p,qR

@
A:R	𝑯𝒚

𝒏D𝟏𝟐7oR@A,p,q?
@
A:

∆i
. 𝑬𝒚𝒏 and 𝑬𝒛𝒏 terms are 

derived and updated in the same manner as follow: 

𝑬𝒚𝒏 	7𝑖, 𝑗 +
8
9
, 𝑘: =

8?
T7^,`_@A,a:∆U

AV7^,`_@A,a:

8R
T7^,`_@A,a:∆U

AV7^,`_@A,a:

𝑬𝒚𝒏?𝟏 7𝑖, 𝑗 +
8
9
, 𝑘: +	

∆U
V7^,`_@A,a:

8R
T7^,`_@A,a:∆U

AV7^,`_@A,a:

8
∆i∆r

k𝑯𝒙
𝒏?𝟏𝟐 7𝑖, 𝑗 + 8

9
, 𝑘 + 8

9
: ∆𝑥 −

𝑯𝒙
𝒏?𝟏𝟐 7𝑖, 𝑗 + 8

9
, 𝑘 − 8

9
: ∆𝑥 −𝑯𝒛

𝒏?𝟏𝟐 7𝑖 + 8
9
, 𝑗 + 8

9
, 𝑘: ∆𝑧 +	𝑯𝒛

𝒏?𝟏𝟐 7𝑖 − 8
9
, 𝑗 + 8

9
, 𝑘: ∆𝑦n 

𝑬𝒛𝒏 	7𝑖, 𝑗, 𝑘 +
8
9
: =	

8?
T7^,`,a_@A:∆U

AV7^,`,a_@A	:

8R
T7^,`,a_@A:∆U

AV7^,`,a_@A	:

𝑬𝒛𝒏?𝟏 7𝑖, 𝑗, 𝑘 +
8
9
: +	

∆U
V7^,`,a_@A	:

8R
T7^,`,a_@A:∆U

AV7^,`,a_@A	:

8
∆r∆g

k𝑯𝒚
𝒏?𝟏𝟐 7𝑖 + 8

9
, 𝑗, 𝑘 + 8

9
: ∆𝒚 −

𝑯𝒚
𝒏?𝟏𝟐 7𝑖 − 8

9
, 𝑗, 𝑘 + 8

9
: ∆𝑦 − 𝑯𝒙

𝒏?𝟏𝟐 7𝑖, 𝑗 + 8
9
, 𝑘 + 8

9
: ∆𝑥 +	𝑯𝒙

𝒏?𝟏𝟐 7𝑖, 𝑗 − 8
9
, 𝑘 + 8

9
: ∆𝑥n 

  (2.9) 
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For Faraday’s law, it states the time variation of magnetic field induces the electric 

field in the negative direction of right hand curl. The equation is given as follow. 

∇ × 𝑬𝒏 = 	−𝜇 2𝑯
𝒏

23
 –––– (2.10) 

If the time variation term is approximated by the central finite difference, it can be 

showed as follow: 

𝜇 2𝑯
𝒏

23
≈ 𝜇 𝑯

𝒏_𝟏𝟐?𝑯𝒏D
𝟏
𝟐

∆3
≈ −∇ × 𝑬𝒏	–––– (2.11) 

𝑯𝒏R𝟏𝟐 = 	𝑯𝒏?𝟏𝟐 − ∆𝒕
t
∇ × 𝑬𝒏 –––– (2.12) 

We rearrange Eq. (2.11) and get Eq. (2.12). The update equation for the magnetic 

field at time step n+1/2 is obtained from one-step previous value 𝑯𝒏?𝟏𝟐 and half-step 

previous electric field curl value ∇ × 𝑬𝒏. 

From Eq. (2.12), the update equation for 𝑯𝒙
𝒏R𝟏𝟐 at a location (i, j + 1/2, k + 1/2) (see 

Figure 4), for example, is expressed as follows: 

 

Figure 4. Magnetic field component in the x direction 𝑯𝒙
𝒏R𝟏𝟐 at a location (i, j + 1/2, k + 1/2) and the circulating 

electric field components closest to it. 
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 𝑯𝒙
𝒏R𝟏𝟐 	7𝑖, 𝑗 + 8

9
, 𝑘 + 8

9
: =	𝑯𝒙

𝒏?𝟏𝟐 7𝑖, 𝑗 + 8
9
, 𝑘 + 8

9
: −	 ∆3

t(o,pR@A,qR
@
A)
k
2𝑬𝒛𝒏7o,pR

@
A,qR

@
A:

2g
−

2𝑬𝒚𝒏7o,pR
@
A,qR

@
A:

2i
n 

=	𝑯𝒙
𝒏?𝟏𝟐 7𝑖, 𝑗 + 8

9
, 𝑘 + 8

9
: −	 ∆3

t7o,pR@A,qR
@
A:

8
∆g∆i

v𝑬𝒛𝒏 7𝑖, 𝑗 + 1, 𝑘 +
8
9
: ∆𝑧 − 𝑬𝒛𝒏 7𝑖, 𝑗, 𝑘 +

8
9
: ∆𝑧 − 𝑬𝒚𝒏 7𝑖, 𝑗 +

8
9
, 𝑘 + 1:∆𝑦 +	𝑬𝒚𝒏 7𝑖, 𝑗 +

8
9
, 𝑘: ∆𝑦x  

–––– (2.13) 

In Eq. (2.13), spatial derivatives are approximated by the central finite differences. 

𝑯𝒚
𝒏R𝟏𝟐 and 𝑯𝒛

𝒏R𝟏𝟐 are updated in the same manner. 

𝑯𝒚
𝒏R𝟏𝟐 	7𝑖 + 8

9
, 𝑗, 𝑘 + 8

9
: =	𝑯𝒚

𝒏?𝟏𝟐 7𝑖 + 8
9
, 𝑗, 𝑘 + 8

9
: −	 ∆3

t7oR@A,p,qR
@
A:

8
∆i∆r

v𝑬𝒙𝒏 7𝑖 +
8
9
, 𝑗, 𝑘 + 1:∆𝑥 −

𝑬𝒙𝒏 7𝑖 +
8
9
, 𝑗, 𝑘: ∆𝑥 − 𝑬𝒛𝒏 7𝑖 + 1, 𝑗, 𝑘 +

8
9
: ∆𝑧 +	𝑬𝒛𝒏 7𝑖, 𝑗, 𝑘 +

8
9
: ∆𝑧x  

𝑯𝒛
𝒏R𝟏𝟐 	7𝑖 + 8

9
, 𝑗 + 8

9
, 𝑘: = 	𝑯𝒙

𝒏?𝟏𝟐 7𝑖 + 8
9
, 𝑗 + 8

9
, 𝑘: −	 ∆3

t7oR@A,pR
@
A,q:

8
∆r∆g

v𝑬𝒚𝒏 7𝑖 + 1, 𝑗 +
8
9
, 𝑘: ∆𝑦 +

	𝑬𝒚𝒏 7𝑖, 𝑗 +
8
9
, 𝑘: ∆𝑦 − 𝑬𝒙𝒏 7𝑖 +

8
9
, 𝑗 + 1, 𝑘: ∆𝑥 − 𝑬𝒙𝒏 7𝑖 +

8
9
, 𝑗, 𝑘: ∆𝑥x  

(2.14) 

The transient electric and magnetic fields inside the defined system space can be 

simulated by updating 𝑬𝒙𝒏  , 𝑬𝒚𝒏  , 𝑬𝒛𝒏  , 𝑯𝒙
𝒏R𝟏𝟐 , 𝑯𝒚

𝒏R𝟏𝟐 , and 𝑯𝒛
𝒏R𝟏𝟐  at ever point in the 

discretized cell. For the FDTD solution to be stable, the time increment Δt needs to be set 

to fulfill the Courant stability condition (Courant et al. 1928), given as follows: 

∆𝑡 ≤ 8

z{7 @∆|:
A
R7 @∆}:

A
R7 @∆~:

A	 –––– (2.13) 

Where c is the light speed. 
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2.1.3 Perfectly Matched Layer (PML)  

One inconvenience in the FDTD simulation is that the Maxwell’s equations have to 

be solved in a discretized domain space which the size is needed to be restrained. 

Nevertheless, the boundless theoretical space can be solved if the special boundary 

condition is applied to absorb the outgoing of the electromagnetic wave30. With the use of 

the perfectly matched layer (PML), the reflection factor of a plane wave striking a vacuum-

layer interface is null at any frequency and incident angle. The general frame of PML is 

illustrated in figure 5. It is a widely used technique after invented and has addressed one 

of the big problem in the FDTD simulation. 

 
Figure 5. The PML technique30 

Forward design is well established in many fields, but their solution space is restricted by 

human intuition, and requires computationally expensive trial-and-error process to obtain 

target results. As the complexity of such devices rise, so has the doubt that a library of 

traditional ‘templates structures’ and intuition will be able to meet the demand for high 

performance and highly tailored functionality31. To address the limitations of forward design, 
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“inverse design” methods were developed, in which a nanophotonic device structure can be 

generated through specification of a predefined target31. 

2.2 Inverse Design 

Among various inverse design methodologies such as topology32,33,34 and adjoint-based 

optimization35,36 have been utilized to design complex structures which selectively interact 

with light on the nanometer-scale. 

2.2.1 Topology Optimization 

The topology optimization was developed for the mechanical and structural problem 

originally37 and is a highly important weight optimization tool in industry for machine 

parts, cars and airplanes35. In inverse design method for nanophotonic devices, topology 

optimization can produce optimized geometry without any constraint on the geometric 

space for the design. The idea in topology optimization is discretizing the entire domain 

volume into pixels, each being a design variable that represents the material property. The 

total number of variables can thus be very large for a complex design task, and the 

structures are not restricted to any certain class of geometries26. 

An iterative topology optimization is based on repeated finite element analyses 

followed by gradient computation and updates by the deterministic mathematical 

optimization procedure. It first contains the numerical modeling, for example a numerical 

integration algorithm in time domain with defined boundary condition. It is followed by 
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the design parametrization, which the design is parametrized locally that the material 

properties at every spatial point is a design variable to be optimized. This facilitates the 

basic feature of the topology optimization which is the unlimited feature freedom in the 

domain volume. The iterative optimization process is then conducted by using different 

mathematical techniques. 

 
Figure 6. Parametrization of the topology design problem.35 

 

Figure 6 is an example of topology optimization inverse design with a PHC Z-bend38. 
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Figure 7. A photonic crystal waveguide Z-bend showing exceptional transmission. Panels in zigzag order: 

Schematic of optimization, simulated wave propagation, SEM image of the fabricated Z-bend, and comparison of 

bend losses between optimized (thick grey/red for measurement/ simulation) and unoptimized (thin black) 

structures.38 

 

The sharp bend in a waveguide is notorious for causing significant bending loss and 

its poor transmission. In conventional optimization methods, the problem can only be 

solved by adjusting the hole size and the lattice distribution in the whole bending area if 

the method is not free from the geometric constraints. Topology optimization is shown to 

have a higher efficiency and lower holes to be adjusted during the optimization. 

2.2.2 Adjoint-based Optimization 

In recent years, some significant results have been made in designing nanophotonic 

devices by using adjoint-based optimization which allows the gradient of an objective 
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function to be computed with respect to an arbitrarily large number of degrees of freedom 

using only two simulations39. The adjoint variable method and the gradient optimization 

concept, however, are general and can be implemented with other simulation methods, 

such as the harmonic balance method40, 41 for nonlinear circuit and laser simulations42. 

One example for the inverse design for electromagnetic design is by using adjoint 

method to calculate the shape derivatives at all points in domain space43. The method 

enables the process to compute only two electromagnetic simulations per iteration. In 

figure 8, the gradient of Figure-of-Merit can be computed with single simulation by 

following equation.  

∆���
∆+�

= 𝑅𝑒��𝜀"∆𝑉𝐺�������(𝑥, 𝑥")𝐸���(𝑥")������������ ∙ 𝐸���(𝑥)� ≡ 𝑅𝑒[𝐸��p(𝑥) ∙ 𝐸���(𝑥)] – (2.14) 

Where 𝐸���(𝑥) is the value of the electric field at a given point before any change 

and 𝐸��p(𝑥) is the new adjoint electric field. 𝐸��p(𝑥) is defined as follow: 

𝐸��p(𝑥) = �𝜀"∆𝑉𝐺�������(𝑥, 𝑥")𝐸���(𝑥")������������ – (2.15) 

which is the electrical field induced at x from an electric dipole at 𝑥" driven with 

amplitude 𝜀"∆𝑉𝐸���(𝑥")����������� , as illustrated in figure 8. 
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Figure 8. Adjoint method schematic: two simulations are needed for every iteration; the direct and the adjoint 

simulation. Sources for each simulation are drawn in red.43 

 

Given the formula above, only one forward simulation which is used to calculate the 

Figure-of-Merit in all optimization schemes, and one adjoint simulation is needed to 

calculate the shape derivative over the entire design region, for arbitrarily degrees of 

freedom. As the gradient of the Figure-of-Merit is obtained, the change in geometry can 

be introduced proportional to the gradient. After iterations, this can lead to the optimum 

of the design. 

 

Inverse design algorithms allow for the discovery of unintuitive and intricate structures, 

but can exhibit nonexistent or unstable results44. Furthermore, these methods are constrained 

by long runtimes, and can potentially miss globally optimal designs26,31. Additionally, the 

aforementioned optimization methods do not attempt to explain the underlying relationship 
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between the physical structure and its spectral response. As a result, the physical insights of 

nanophotonic device behavior remain a mystery with inverse design. 

 

2.3 Introduction to Machine Learning Method 

In recent years, machine learning (ML) techniques have emerged as promising strategies 

for the inverse design of nanoscale metamaterials, which overcome some of the shortcomings 

of previous inverse design paradigms. For example, tandem neural networks have been used 

to design multilayer thin films based on target transmission spectra45. For spatially-complex 

geometries, Generative Adversarial Networks (GANs) were developed to produce images of 

novel structures, given an input of desired spectral properties. GANs were used to design 

diffractive metagratings46, sub-wavelength antenna47, and two-dimensional metamaterials48 

with minimal computational time and cost. It has been demonstrated that a GAN is capable of 

generating devices with highly tailored spectral properties, even when the complexity of the 

device far exceeds the scope of human intuition. 

The basic idea of the machine learning is given the dataset with input and output, make 

the machine to map the underlying relationship that cannot be easily understood by human 

beings between the input and output by optimizing the desired loss function. How the machine 

is ‘learning’ the relationship is by using the ‘weight’ of every neuron. The most basic model 

for machine learning problem is called: Multilayer Perceptron. It is composed of the input layer, 
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multilayer with arbitrary numbers of neurons in each layer, and followed by the output layer. 

Figure 9 is showing the structure of the multilayer perceptron schematically. In this example, 

there are three input features, two hidden layers with 5 and 4 neurons each layer and two output 

predictions. 

 
Figure 9. A multilayer perceptron with two hidden layers.49 

Consider the network given in figure 9, how the node is calculated is by the following 

formula: 

y = φ(∑ 𝑤o𝑥o + 𝑏>
o�8 ) = 	𝜑(𝑤�𝑥 + 𝑏) – (2.16) 

Where w denotes the vector of weights, x is the vector of input (output from previous 

layer), b is the vector of bias and phi is the activation function. 

There are several kinds of activation functions for the neural network, for example 
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sigmoid function, tanh function and also Rectified Liner Unit (ReLU) function has been widely 

used in neural network. After the output values have been computed from all the weights and 

bias in each node, it will be used in the loss function to calculate the ‘total loss’ for this node 

setup. Based on the loss function, the model will update their weights biases from the ‘back 

propagation’ rule. One training iteration is ended after the parameters are updated. 

The multilayer perceptron has been applied in many different fields of study such as 

materials properties prediction, environmental carbon dioxide emission or even for biology 

purposes50, 51. However, this kind of machine learning model is not suitable for more complex 

materials design if “image recognition” technique is needed. 

 

2.4 Convolutional Neural Network (CNN) 

 In the case of image recognition problem, the network will be fed with size-normalized 

images. There are problems with using traditional network on this kind of problem52. First, 

images are large with several hundreds of variables (pixels). A fully-connected layer would 

already have hundreds of neurons in the first layer, and thousands of weights in the whole 

network. However, the main deficiency for the unstructured nets is they have no built-in 

invariance with respect to translations or local distortions of the inputs. 

 In a CNN, some degree of shift, scale, and distortion invariance are allowed due to the 

architectural ideas: local receptive fields, shared weights, and spatial subsampling. Also, the 
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problem of a oversizing network is solved because of the shared weight properties. 

 
Figure 10. Architecture for a convolutional neural network (LeNet-5)52. 

 A basic architecture of a CNN is showed in figure 10. There are three main kinds of layer 

inside the convolutional neural network: convolutional layers, pooling layers, fully connected 

layers53.  

2.4.1 Convolutional Layers 

Convolutional layers work as feature extractors and they learn the feature 

representation of the images. Each neuron in the layers has a receptive field and the inputs 

are convolved with a learned weight to attain a new feature map. The convolved results 

are sent to a non-linear activation function afterward. Different feature maps in the same 

convolutional layers have the different weights so that several features can be captured at 

the same location. A formal notation of the output feature Yk can be showed as: 

𝑌q = 𝑓(𝑤q ∗ 𝑥) – (3.2) 

Where the input images is x, the weights of convolutional filter related to kth is 𝑤q; 

the multiplication sign refers to 2D convolution operator, and f( ∙) is the non-linear 

activation function. 
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2.4.2 Pooling Layers 

The purpose of pooling layers is to decrease the spatial resolution of the feature maps 

to reach the spatial invariance to input distortion. There are two common pooling layers: 

average pooling and max pooling. Average pooling layer process the input values in the 

small neighbor by averaging them and pass the value to the next layer, whereas the max 

pooling layer takes the maximum value within the receptive field and pass it to the next 

layer. The examples for two pooling layer are showed in figure 11. 

 
Figure 11. Average and Max pooling. 

2.4.3 Fully Connected Layer 

After processed by several layers of convolution and pooling layers, abstract feature 

representations are extracted into a stack of information. The followed up fully connected 

layers interpret these representations and it serves as the function of high-level reasoning 

53. Depends on the machine learning problem, different activation function can be used on 
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the fully connected layer. In our case, we are using regression layer. 
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Chapter 3                 

Convolutional-Neural-Network-Based 

Forward Design 

 

3.1 Introduction 

Convolutional Neural Networks (CNNs) are deep neural networks widely used for image 

analysis and classification54. We show that CNNs can be effectively used for forward design 

and, by explaining design features that are critical to the CNN’s predictions, we can further our 

understanding of what the CNN has learned. With this newfound understanding, physical 

relationships can be extracted, and the same CNNs can be used to strategically transform 

designs and achieve new targets. As presented in figure 12a, our approach uses the Deep 

SHapley Additive exPlanations (SHAP) framework, which combines the DeepLIFT and SHAP 

methods55, to explain a CNN’s predictions by calculating ‘contribution’ values for each feature 

in the input image. We then leveraged these explanations to identify changes to the original 

structure that would produce a new target output spectrum. With the Deep SHAP explainer, we 

can obtain a heatmap plot for each wavelength, where the red pixels represent positive 

contributions towards the model’s prediction, and the blue pixels represent negative 
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contributions. By utilizing explanations at specific wavelengths, we can make informed design 

decisions on how to obtain absorption peaks at desired resonance wavelengths. 

 

 

Figure 12. Utilizing a CNN’s explanations for information extraction and design transformation.  

(a) Schematic of the explanation and optimization approach to elucidating the underlying physics learned by a 

CNN. A CNN is trained on nanophotonic metal-insulator-metal structures and their corresponding absorption 

spectra in the mid-infrared regime. The relationships between structural features and absorption peaks are exposed 

with the SHAP algorithm, then used to construct new designs with new target resonant wavelengths. (b) The 

process of converting 3D device models into 2D representations for the training data set. 

 

3.2 Training Data Generation 

 To train a CNN for the forward design of nanophotonic structures, we performed finite-

difference time domain (FDTD) simulations of metal-insulator-metal metamaterials in 

Lumerical, operating at mid-infrared wavelengths, to generate images of 10,000 unique devices 

and their corresponding absorption spectra. Figure 12b illustrates the process of creating 

training data for the CNN. Full three-dimensional models of the mid-infrared resonators were 
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built in Lumerical, as shown in figure 13, and their dimensions were progressively adjusted for 

design variation. The models were then converted into two-dimensional images, and each of 

the 10,000 images were associated with an 800-point vector of absorption values (ranging from 

0 to 1) across fixed wavelengths (4 µm to 12 µm). The simulated devices, previously 

demonstrated in literature to possess selective thermal emissivity over a large bandwidthta56, 

consist of a 100 nm gold bottom layer, a 200 nm Al2O3 dielectric middle layer, and a 100 nm 

gold resonator top layer with various dimensions (within a 3.2 µm ✕ 3.2µm unit cell). Periodic 

boundary conditions were applied along the x- and y-planes. Each image was resized to 40 ✕ 

40 pixels and converted to grey-scale for ease of training. 

 
Figure 13. Simulation setup of Lumerical. 

 

3.3  Training of CNN 

 After generating the training data, we trained multiple CNN architectures, with 10% of 
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the training dataset used for validation, to determine the optimum hyperparameters. Table 1 

presents each of the trained models along with their validation root-mean-square error (RMSE) 

and training time. Model 1 served as the starting point, which consisted of three convolutional 

layer-stacks, each proceeding with a batch normalization layer, rectified linear unit (ReLU) 

activation layer, and average pooling layer (except the final stack). Each convolutional layer 

used 3 ✕ 3 filters, numbering in 8, 16, and 32 in each subsequent layer. The pooling layer used 

2 ✕ 2 windows with a stride of 2. By testing incremental changes to the model (Model 2-8), 

we determined that a four-stack architecture with leaky ReLU layers trained with the adaptive 

moment estimation (Adam) algorithm yielded the lowest error (Model 9). 

The CNN was implemented using TensorFlow and Keras, and trained on one Intel Core 

i5-8600T CPU for 300 epochs. In addition to the model information presented in Table 1, the 

CNN was trained with a learning rate of 0.001, beta1 of 0.9, beta2 of 0.999, and test dataset of 

10%. The DeepExplainer module from the SHAP Python library was used to explain the 

predictions of the CNN. Image analysis and conversion was performed in Python. 

 

Model 1 Model 2 Model 3 

Layers Param. Options Layers Param. Options Layers Param. Options 

conv2d 

ReLU 

avgPool 
conv2d 

ReLU 

avgPool 

3x3,8 

 

2x2, 2 

3x3,16 

 

2x2, 2 

sgdm 

256 
minibatch 

100 epochs  

conv2d 

ReLU 

avgPool 
conv2d 

ReLU 

avgPool 

3x3,16 

 

2x2, 2 

3x3,32 

 

2x2, 2 

sgdm 

256 
minibatch 

100 epochs 
  

conv2d 

leakyReLU 

avgPool 
conv2d 

leakyReLU 

avgPool 

3x3,16 

 

2x2, 2 

3x3,32 

 

2x2, 2 

sgdm 

256 
minibatch 

100 epochs  



 28 

conv2d 

ReLU 

3x3,32  conv2d 

ReLU 

3x3,64  conv2d 

leakyReLU 

3x3,64 

RMSE 0.15313 RMSE 0.10648 RMSE 0.11762 

Time 63 min Time 167 min Time 218 min 

Model 4 Model 5 Model 6 

Layers Param. Options Layers Param. Options Layers Param. Options 

conv2d 

ReLU 

avgPool 
conv2d 

ReLU 

avgPool 
conv2d 

ReLU 

avgPool 
conv2d 

ReLU 

avgPool 
conv2d 

ReLU 

3x3,8 

 

2x2, 2 

3x3,16 

 

2x2, 2 

3x3,32 

 

2x2, 2 

3x3,64 

 

2x2, 2 

3x3,128  

sgdm 

256 
minibatch 

100 epochs 
 

  

conv2d 

ReLU 

avgPool 
conv2d 

ReLU 

avgPool 
conv2d 

ReLU 

3x3,8 

 

2x2, 2 

3x3,16 

 

2x2, 2 

3x3,32 

adam 

256 
minibatch 

100 epochs  

conv2d 

ReLU 

maxPool 
conv2d 

ReLU 

maxPool 
conv2d 

ReLU 

3x3,8 

 

2x2, 2 

3x3,16 

 

2x2, 2 

3x3,32  

sgdm 

256 
minibatch 

100 epochs 
 

  

RMSE 0.13289 RMSE 0.11497 RMSE 0.16737 

Time 87 min Time 77 min Time 58 min 

Model 7 Model 8 Model 9 

Layers Param. Options Layers Param. Options Layers Param. Options 

conv2d 

ReLU 

avgPool 
conv2d 

ReLU 

avgPool 
conv2d 

ReLU 

3x3,8 

 

2x2, 2 

3x3,16 

 

2x2, 2 

3x3,32 

sgdm 

256 
minibatch 

300 epochs  

conv2d 

ReLU 

avgPool 
conv2d 

ReLU 

avgPool 
conv2d 

ReLU 

3x3,8 

 

2x2, 2 

3x3,16 

 

2x2, 2 

3x3,32  

sgdm 

128 
minibatch 

100 epochs  

conv2d 

leakyReLU 

avgPool 
conv2d 

leakyReLU 

avgPool 
conv2d 

leakyReLU 

avgPool 

3x3,16 

 

2x2, 2 

3x3,32 

 

2x2, 2 

3x3,64 

 

2x2, 2 

adam 

128 
minibatch 

300 epochs  
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conv2d 

leakyReLU 

3x3,128 

RMSE 0.097562 RMSE 0.14086 RMSE 0.07709 

Time 229 min Time 42 min Time 340 min 

Table 1 CNN hyperparameter optimization. Table of trained CNN architectures and corresponding RMSE 

values. 

 

 Figure 14 illustrates the predictions of the CNN when six new and unknown images were 

used as inputs. On average, each prediction was generated in 0.270 ± 0.043 seconds (n = 10), 

while each simulation took approximately 15 minutes. FDTD simulations were performed on 

the new images, after converting them into the top layer of the metal-insulator-metal structure. 

The simulated absorption spectra were then compared to the CNN predictions, as shown in 

figure 14, where the CNN predictions exhibit a high degree of accuracy in comparison to their 

corresponding ground truths. Although there are minor perturbations at the regions of the 

spectra which approach 0 absorption, the wavelength and amplitude of the predicted resonance 

peaks are aligned with the simulated peaks (with over 95% accuracy). The results here 

demonstrate that the CNN can successfully perform forward design-based tasks with high 

accuracy and with orders of magnitude faster than conventional numerical simulation. 
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Figure 14. Simulating nanophotonic material response with CNNs. CNN-predicted absorption spectra vs. 

ground truth simulations of six new nanophotonic structures (shown in the inset images). 
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Chapter 4                       

Inverse Design by Shapley Additive 

Explanation (SHAP) 

 

4.1  Introduction 

Despite recent interest in ML-based inverse design, ML-based forward design remains 

largely unexplored. ML-based forward design offers the same advantages as the inverse design 

counterpart, and can similarly calculate light-matter interactions with orders of magnitude less 

computation complexity and time than numerical simulations. However, regardless of the ML-

design direction, the internal decision models built by neural networks are not well-understood; 

their contents are widely regarded as a ‘black box’57,58, and thus alike traditional inverse 

optimization methods. This ‘black box’ challenge emerges from the fact that neural networks, 

and supervised ML algorithms in general, ‘learn’ by optimizing hundreds of thousands to 

millions of internal variables (e.g. weights and biases) that fit the training data59. Consequently, 

it is challenging to explain why a neural network makes one prediction over another. This lack 

of explainability is a key limitation in both traditional inverse design and ML-based methods. 
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To this end, we aim to uncover what a neural network has learned regarding the underlying 

physical principles which govern specific nanophotonic structures and their properties.  

In this work, we leverage recent advances in explainable ML to demonstrate that the data-

driven relationships learned by a neural network can be revealed to derive physical insights 

between material structure and optical response. We present a forward design and explanation 

methodology for nanophotonic devices which combines convolutional neural networks (CNNs) 

and explainability algorithms, to design nanophotonic structures that can meet a target 

spectrum, while elucidating the underlying physics of design features that contribute to specific 

electromagnetic behavior. The presented strategy demystifies some of the relationships that 

enable accurate deep-learning model predictions, while unveiling the potential limits of the 

model itself.  

 

4.2  CNN Explainability with Shapley Additive Explainations 

The high accuracy of the CNN’s predictions indicate that the network has, to some extent, 

learned the physical relationships between the class of nanophotonic structures we explored 

and its absorption spectra. Normally, this information is embedded within thousands of internal 

weights and parameters. To draw useful conclusions and design principles from the network’s 

internal model, we utilized SHAP. This empirical method calculates a ‘SHAP value’ for each 

pixel that represents how important that pixel is to the CNN’s overall prediction. With the 
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SHAP values, we can explain a nanophotonic device feature’s contribution to various resonant 

wavelengths. SHAP values are calculated through the following equation: 

∅o(𝑓, 𝑥) = ∑ ¢i£¢!��?¢i£¢?8�!
�!

[𝑓r(𝑧¥) − 𝑓r(𝑧′\𝑖)]i¥⊆r¥  – (4.1) 

Where ∅o is the SHAP value, 𝑥¥ are simplified inputs that mapped binary values into 

the original input space (x), M is the number of simplified input features, 𝑧¥ is a subset of 

non-zero indices in 𝑥¥, 𝑓r(𝑧¥) is a model trained with the feature present, and 𝑓r(𝑧¥\𝑖) is a 

model trained with the feature withheld55. The SHAP model captures the effect of withholding 

a feature, then iterates the computation across all possible subsets (𝑧′ ⊆ 𝑥′).  

We validated this approach by comparing the SHAP explanations against a standard 

antenna-based analytical relationship between the length of resonant arms in the metal-

dielectric-metal metamaterials we developed and the resonant wavelengths:  

λ = (2n«¬¬) L+C – (4.2) 

Here, λ is the resonant wavelength, n«¬¬ is the effective index of the transverse electric (TE) 

mode, L is the length of the resonator, and C is a correction phase term60,61,62. To explain this 

relationship explicitly, we performed SHAP explanations on the CNN model trained on 10,000 

images. As shown in figure 15a, SHAP explanation heatmaps were captured at 6.0, 6.4, 6.8, 

7.2, 7.6, 8.0, 8.4, and 8.8 µm with single-reference backgrounds (described in the Methods 

section), while the base image possessed a Lorentzian peak absorption at 5.2 µm and arm 

lengths of 1.4 µm. These explanations reveal the features, or lack thereof, that the CNN deems 
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critical towards achieving resonance at the designated wavelengths. Specifically, as the 

resonant wavelength increases, the explanations show regions of blue (negative contributions) 

which gradually migrate from the center of the image to the edges, indicating that starting from 

the base image, the antenna arm lengths must become longer in order to achieve resonance at 

larger wavelengths. Inversely, Fig. 15b shows that for a base image with longer initial antenna 

arm lengths (2.9 µm), the antenna arms must become shorter in order to achieve resonance at 

smaller wavelengths. This behavior is evident from the regions of blue pixels converging 

towards the center of the image as the resonant wavelength decreases. Both cross-arm tests 

suggest that the CNN has deduced the relationship between antenna length and resonant 

wavelength defined in Eqn. (4.2). With SHAP, we were able to analytically confirm this 

deduction and infer the CNN’s decision process for a class of nanophotonic structures. 
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Figure 15. SHAP explanation heatmaps. SHAP explanations for a (a) ‘short-arm’ cross (1.4 µm lengths) at 

increasing resonant wavelengths and a (b) ‘long-arm’ cross (2.9 µm lengths) at decreasing resonant wavelengths, 

revealing the CNN learned that the cross-arms must increase to achieve resonance at longer wavelengths and vice 

versa.  

However, we observe varying degrees of red and blue pixels throughout the explanation 

heatmaps. For example, on the 8.8 µm explanation with the 5.2 µm base image, there are 

higher-intensity blue pixels on the top and left arms of the cross, indicating that the CNN 

weighs each arm differently in determining the resonant wavelength, when in reality, all of the 

arms are equally important to achieving resonance at the designated wavelength. In addition, 

the magnitude of the blue pixels are greater towards the edges of the structure, while the 

remaining areas have red pixels scattered throughout. Both results can be attributed to the filters 

developed by the CNN during training, which dictates the features that contribute the least or 
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the most to a resonant wavelength. CNNs extract information from images by applying a 

hierarchy of filters to the input image63. The filters are optimized such that the error is 

minimized when comparing the CNN’s output to the target output. CNNs have a tendency to 

develop edge detection filters, since non-edge patterns (e.g., a patch of black pixels) do not 

typically provide sufficient information to differentiate discrete objects54. Therefore, our CNN 

was tasked with creating the minimum set of filters that captures the most important features 

and distinctions (i.e., the cross-arm edges) required to correlate the images to their respective 

absorption spectra. Naturally, this determines the range of the CNN’s feature recognition 

capabilities and the extent of which it can generalize (or accurately predict new and unknown 

images), which may be limited to an unknown degree. However, we can address the model 

uncertainty by using the SHAP explanations to observe the most prominent sections of the 

structure contributing to resonance as well as the sections that were disregarded; two pieces of 

information that provide insight on what the CNN did and did not learn, respectively. Thus, in 

addition to uncovering the predominant physical relationships learned by the CNN, the 

presented CNN-explanation approach is also effective at determining the limitations and risks 

associated with a trained ML model by enabling users to further understand how the CNN 

behaves. 
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4.3  Using SHAP Explanations for Targeted Design 

Transformation 

 To confirm the physical relationship learned by the CNN, and to assess the possibility of 

using the SHAP explanations for designing nanophotonic devices with targeted functionalities, 

we used the SHAP value heatmaps from the previous section to transform the base image such 

that it met the previously identified resonance wavelengths. These transformed designs were 

then compared with the corresponding FDTD simulated background images (as shown in 

figure 16a) to ensure that the CNN learned the relationship between cross-arm length and 

resonance wavelength. Transformation was performed by converting all the blue pixels (and 

the first 1% of pixels greater than 0 to account for noise), in the images shown in figure 15a, 

to black pixels on the base image. Figure 16b and 16c show the spectra of the transformed 

structures and the original FDTD simulated structures, respectively. On figure 16d, the 

resonant wavelengths at peak absorption and antenna arm lengths of both sets of structures are 

plotted (with linear fits of R=0.998). Here, the FDTD structures possess an n«¬¬ of 1.13 and C 

of 2.21. Similarly, the transformed structures display an n«¬¬ of 1.15 and C of 2.10, yielding 

an n«¬¬ error of 1.8% and a C error of 4.9%. The comparison between the SHAP-generated 

and the FDTD simulated structures demonstrates that the information extracted by the CNN 

aligns strongly with the physical relationship established in Eqn. (4.2), and that the extracted 

data can be effectively utilized to make reasonably accurate targeted design transformations.  
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Figure 16. Inverse design with a forward-trained CNN and SHAP. (a) Images of the inverse designed 

structures and FDTD simulated structures. The absorption spectra for the corresponding (b) inverse-designed and 

(c) simulated structures. Image colors correspond to the plot colors. (d) Comparison of the physical relationship 

between antenna arm length and resonant wavelength for the two sets of structures. The antenna arm lengths in 

the inverse designed structures exhibited resonant wavelengths with an nefferror of 1.8% and a C error of 4.9%, 

in comparison to the ground truths (linear fit of plots shown with R2=0.998). 
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4.4  Deriving Physical Insights by Explaining Complex 

Spectral Patterns 

 To demonstrate the applicability of our explanation and design transformation method to 

increasingly complex structures and target spectra, we performed additional tests on the same 

CNN. Figure 17 presents a series of test cases, where explanations of a dual absorption peak 

structure (L-shaped) and a single-peak structure (I-shaped) were captured at the peak 

wavelengths of each structure (marked in figure 17a). The SHAP explanation heatmaps at the 

designated wavelengths are shown in figure 17b, where the I-shaped image was used as the 

background for the L-shaped image and vice versa. The complete distribution of SHAP values 

from each heatmap are plotted and quantified in figure 17c and 17d for the I-shaped resonator 

and L-shaped resonator, respectively. The inset bar graphs present the average SHAP values 

across each explanation. From these plots, we observe that at the peak/target wavelengths of 

the background image, the explanation of the base image at those wavelengths (indicated by 

the red-dashed boxes in figure 17b) yield higher-magnitude and more negative SHAP values 

(blue pixels) than the explanations at non-peak wavelengths. Thus, the results here reveal that 

the CNN learned the relationship between the two structures. Specifically, the inclusion of the 

horizontal-bar on the I-shaped structure renders two absorption peaks at 5.5 µm and 8.2 µm 

while the removal of the bar on the L-shaped structure renders a single peak at 6.3 µm.  
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Figure 17. Explanations of a dual-peak structure and a single-peak structure at various wavelengths. (a) 

Absorption spectra of a single-peak I-shaped resonator and a dual-peak L-shaped resonator. Red circles indicate 

the resonant wavelengths. (b) SHAP explanations of the resonators at the previously identified resonant 

wavelengths. Red dashed boxes indicate the explanations for obtaining new target resonant wavelengths of the 

opposing shape. Distribution of SHAP values across the explanation pixel-maps for the (c) I-shaped resonator and 

the (d) L-shaped resonator. Inset bar graphs represent the average SHAP values of each explanation, where the 

negative SHAP values (blue pixels) are dominant on all target explanations.  

 

Moreover, the explanations are able to inform different areas of the structure which 

contribute to different resonances. For example, for the dual-peak L-shaped structure, the 

explanation at each peak (5.5 µm and 8.2 µm) illustrates different red-pixel dominant regions 

(features contributing to resonance at these wavelengths). This phenomenon bears resemblance 

to the fact that the electric field concentrations in these structures are not uniform at different 

resonant wavelengths (shown in figure 18). Similar to the electric field of the L-shaped 
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structure at 8.2 µm, SHAP informs us that roughly the entire horizontal-arm length evenly 

contributes to resonance, while at 5.2 µm, the center of the arm contributes to an unevenly 

distributed electric field pattern that is responsible for resonance. However, the precise 

connections between the SHAP explanations and the electric fields are unclear and requires 

further investigation. 

 
Figure 18. Electric field simulations of MIM resonators at various resonant wavelengths. The electric field 

profile of (a) an L-shaped resonator and (b) an I-shaped resonator at 5.5 µm, 6.3  µm, and 8.2 µm. 

 

Following the analysis of the SHAP explanations for the dual and single-peak structures, 

we performed the same design transformation study from the previous section to assess its 

applicability to complex, multi-peak transformations. In figure 19a, the L-shaped device was 

transformed by utilizing the explanation generated at 6.3 µm, then all of the blue pixels to the 
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opposite state on the original image. The resulting structure exhibited a single absorption peak 

of approximately 0.9 at 5.4 µm. Using the same approach, we attempted the reverse scenario 

of generating a dual-peak structure from a single-peak structure (figure 19b). We leveraged the 

explanation from one of the dual-peak wavelengths (as either wavelength provided no 

noticeable difference) and applied it to the design transformation process. The transformed 

structure possessed an absorption peak of approximately 0.6 at 4.8 µm and 0.48 at 6.9 µm. 

 Through our design transformation studies, we demonstrate that complex spectral targets 

can be met by converting the pixels identified by the SHAP heatmaps. In the first case, by 

focusing the image conversion process on the explanations of a single target wavelength, we 

converted a dual-peak structure into a single-peak structure. In the second case, the single-peak 

structure was converted into a dual-peak structure by using the SHAP values of two target 

wavelengths. However, the resonant wavelengths of the transformed structures deviate from 

the target wavelengths by approximately 8.9% (relative to the evaluated wavelength range), 

indicating that there are limitations associated with the precision of the presented design 

transformation approach. Such limitations may be attributed to one of the most prominent 

shortcomings of SHAP: its inability to account for feature dependence64, 65, which may have 

inhibited the identification of key structural features required for resonance. Despite the 

discrepancy between the target and resulting resonant wavelengths, the general patterns 

identified by the transformed designed structures still offer significant insights into the critical 



 43 

features which contribute to resonance; a crucial element which was unobtainable in previous 

ML studies pertaining to nanophotonic devices. 

 

 

Figure 19: Targeted design transformation for complex spectral responses. Transformation of a (a) dual-peak 

structure to a single-peak structure and a (b) single-peak structure to a dual-peak structure by utilizing the SHAP 

values at targeted resonant wavelengths for image conversion. 
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Chapter 5                    

Conclusion and Future Work 

Artificial neural networks can predict the optical and thermal properties of nanophotonic 

structures with astounding precision. However, neural networks are traditionally classified as 

‘black boxes’; the contents of which are esoteric or even incomprehensible. Thus, the general 

understanding of the physical relationships learned by the ML model are severely limited. To 

address this shortcoming, we present a visual, scalable, and universal approach to unraveling 

the mysteries hidden within a ML model trained on the electromagnetic response of infrared 

metamaterials. The presented method leverages an explanation algorithm (Shapley Additive 

Explanations, or SHAP) to rank the contributions of individual features on an image towards 

each of the network’s predictions. To demonstrate model explainability, first, we trained a CNN 

on 10,000 images of nanophotonic structures and their absorption spectra. The trained CNN 

predicted the spectra of new and unknown structures with over 95% accuracy, and orders of 

magnitude faster (~0.3 seconds) than conventional simulation (~15 minutes). Then, by 

generating SHAP explanations at designated wavelengths, we determined the structural 

components (or lack thereof) of a base design which contributed positively or negatively 

towards resonant behavior at these wavelengths. We further demonstrated that by examining 

the SHAP explanations, both qualitative and quantitative relationships between structure and 
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spectra can be obtained (i.e., resonator arm length vs resonant wavelength), and that the 

explanations themselves can be used to make targeted design transformations. Additionally, 

the explanations also revealed what the CNN did not learn, thus exposing potential limitations 

and risks associated with the trained model. As a result, the presented explanation and design 

transformation method shows that the patterns and principles encoded within the ML model 

can be extracted to derive valuable insights into nanophotonic devices physics, thereby 

enabling potentially new discoveries in the understanding of electromagnetic wave-matter 

interactions and other extendable applications. Future studies will encompass alternative 

explanation techniques and the explanation of additional device-property relationships. 
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