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Learning Relational Concepts through  
Unitary versus Compositional Representations 

Daniel Corral (daniel.corral@colorado.edu) & Matt Jones (mcj @colorado.edu) 
Department of Psychology and Neuroscience, University Colorado Boulder,  

Boulder, CO 80309 USA 
 
 

Abstract 
Current theories of relational learning on structure mapping 
emphasize the importance of compositional representations, 
based on the concept’s components and the relations among 
them. We consider the possibility that relational concepts can 
also be represented unitarily, whereby the concept is a 
property of the stimulus as a whole.  The distinction between 
compositional and unitary representations of relational 
concepts is a natural consequence of structure-mapping 
theory, but its psychological implications have not been 
explored. We report two experiments in which we examine 
how encouraging subjects to represent relational concepts 
compositionally versus unitarily affects learning on 
classification- and inference-based category learning tasks. 
Our findings show that unitary representations lead to better 
learning than compositional representations, especially for the 
inference task. We conclude that unitary representations incur 
less cognitive load than structural alignment of compositional 
representations, and thus may be the default for everyday 
relational reasoning. 

Keywords: Relational Learning; Relational Structure; 
Concept Representation; Category Learning; Inference. 

Introduction 
On a daily basis, people encounter many complex concepts 
that are defined by a relational structure – the specific 
pattern in which two or more objects are bound together by 
interconnected relations (Corral & Jones, 2014). For 
instance, consider a simple scenario in which a dog chases a 
cat. In this example, the dog and the cat share a specific 
relationship with one another, such that it is the dog that fills 
the role of the chaser and the cat fills the role of being 
chased (chase(dog, cat)). Critically, this structure is 
different from a scenario in which a cat chases a dog 
(chase(cat, dog)). These types of concepts differ from those 
that are defined by features, which can be identified by the 
presence of a given set of attributes (Estes, 1986). For 
example, a bird might be identified by the presence of 
certain prototypical features, such as {feathers, beak, wings 
…}. Although feature-based representations can provide 
extensive knowledge about a given scenario, they do not 
convey structural information (Markman, 1999). Thus, a 
feature-based representation does not allow one to readily 
distinguish a simple scenario in which a dog chases a cat 
from an instance in which a cat chases a dog (Markman & 
Gentner, 2000), as both would be represented as an 
unstructured set: {dog, cat, chase}. 

The ability to recognize and reason about structured 
concepts has been posited to be one of the cornerstones of 
human cognition (Penn, Holyoak, & Povinelli, 2008). 
According to structure-mapping theory, the dominant theory 

of relational learning, structured concepts are acquired via 
structure mapping, wherein the elements of two analogous 
scenarios are put into alignment in a way that preserves their 
common roles. For example, in the hypothetical scenarios 
described below, the dog in the first scenario maps to the cat 
in the second scenario because both fill the role of the 
chaser. Alignment of two scenarios highlights their common 
structure and facilitates abstraction of new relational 
concepts (Gentner, 1983; Hummel & Holyoak, 2003).  

Importantly, structure-mapping theory1 makes the implicit 
assumption that a relational concept can be represented in 
two fundamentally different ways: (1) as a system of 
relations, with meaning derived both from the identities of 
those relations and from how they are interconnected by 
shared role-fillers (Corral & Jones, 2014); or (2) as a 
primitive, atomic relation that is explicitly represented. We 
refer to these as compositional and unitary representations. 
Although this logical distinction has been noted (Gentner, 
1983), its potential psychological implications have largely 
been neglected. 

To elaborate further, the first of these representational 
assumptions is premised on the idea that representations are 
constructed from two basic types of building blocks: objects 
and relations. The second assumption is based on the idea 
that a relation operates on a set of n objects, that is, for 
every ordered set of n objects, the relation returns a truth-
value indicating whether the objects satisfy the relation. 
Equivalently, for every ordered set of n objects (o1…,on) for 
which the relation holds, there is an explicit token of that 
relation: R(o1…,on). We refer to any relation of this sort as a 
unitary relation. 

In recent work, Corral, Kurtz, and Jones (under revision) 
raise the possibility that subjects might indeed represent 
some relational concepts unitarily, such that the concept is a 
component or a property of the stimulus as a whole. This 
type of representation would lack explicit structure and 
could be recognized directly in a stimulus, similarly to a 
feature. This idea is perhaps best exemplified in language 
comprehension, where people appear to seamlessly 
understand a multitude of rich relational concepts, without 
explicitly representing their substructure. For example, 
consider the concept of investigation. An investigation 
consists of an agent, a given question, the approach the 
agent takes to answering that question, and the specific 

                                                             
1 It is important to note that there are numerous domains within 

cognitive science that formalize representation in various ways.  In 
the present paper, we work within the framework of structure-
mapping theory. 
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pattern of interconnections among these components. 
Nevertheless, people can likely recognize this concept 
without explicitly representing its structure. Likewise, a t-
test involves a complex structure of mathematical elements 
and relations (as many hapless introductory statistics 
students will attest), but for experienced scientists it is easily 
conceived of as a unitary event—one can hear the sentence 
“I ran a t-test” and immediately comprehend its meaning 
without needing to invoke the concept’s substructure. 

The literature on structure-mapping theory has focused on 
compositional representations, through its emphasis on the 
alignment process. Furthermore, it has been proposed that 
people must use compositional representations in order to 
learn relational concepts (Markman & Gentner, 2000). 
Compositional representations are computationally 
expensive (Forbus, Gentner, & Law, 1995) and can place a 
high strain on working memory (Kintsch & Bowles, 2002). 
They are also unnecessary for learning feature-based 
concepts (Markman, 1999), which can be recognized 
(without regard to structure) by attending to a stimulus’ 
defining attributes (e.g., Nosofsky, 1986). Similarly, 
relational concepts that are represented unitarily can be 
explicitly recognized as a global attribute of the given 
scenario, and thus can be learned in an unstructured manner. 
Such representations allow for computationally efficient 
processing (Forbus et al., 1995), and based on principles of 
cognitive economy, it follows that people should avoid 
compositional representations and structural alignment 
whenever a unitary representation and setwise (feature-
style) comparisons are adequate. 

Evidence from related literatures suggests that people in 
fact do not use compositional representations as much as 
might be expected based on structure-mapping theory. One 
prediction that follows from compositional representations 
is that people should be able to report the structural 
elements of the relational concepts they are familiar with. 
However, despite subjects reporting high confidence in their 
comprehension of various types of common relational 
systems (e.g., how helicopters fly), they are often mostly 
unaware of their structural elements (Keil, 2003; Rozenblit 
& Keil, 2002). Another prediction from compositional 
representations is that, because relational structure must be 
explicitly represented (Kintsch & Bowles, 2002), it should 
take longer to comprehend and recognize structured 
information than information that is not structured. 
However, various studies have found no differences in the 
time it takes subjects to comprehend structured (metaphors) 
and non-structured statements (e.g., “the ball is blue”) 
(Glucksberg, Gildea, Bookin, 1982). Related work has 
shown that subjects can often understand metaphors 
automatically, with minimal explicit processing 
(Glucksberg, 2003). Taken together, these findings suggest 
that many relational concepts may not typically be 
represented compositionally. 

Due to the representational flexibility that humans possess 
(Chalmers, French, Hofstadter, 1992), it seems plausible 
that relational concepts can be represented both unitarily 

and compositionally. For instance, a person might represent 
a concept such as investigation based on a global attribute 
(e.g., an inspection), but can also likely represent its 
relational substructure when necessary (explicitly 
representing the agent, question, line of inquiry, and their 
interrelations). This idea leads to the question of which type 
of representation people use by default when learning a 
relational concept. The main hypothesis of the present paper 
is that, because unitary representations should allow for 
more efficient processing, subjects will use such 
representations when they are available. We test this 
prediction by giving subjects relational category learning 
tasks and encouraging them to represent the stimuli either 
compositionally or unitarily. If people typically learn 
relational concepts from structural alignment, then 
encouraging subjects to use compositional representations 
should aid learning. However, if people instead learn more 
efficiently with unitary representations, than the opposite 
outcome should be expected.  

Half the subjects in our experiments were given a 
classification task, in which they were shown a series of 
stimuli and asked to make categorization judgments. 
Unitary representations seem especially well-suited for such 
a task, because they should enable subjects to directly 
recognize the diagnostic property in a stimulus, just as with 
feature-based categories. The other subjects were given an 
inference task, in which they were asked on each trial to 
determine a missing property of a stimulus that was 
presented together with its category label. Research with 
feature-based categories has shown that classification and 
inference learning tend to yield different category 
representations, with inference tasks encouraging learning 
of internal category structure, such as correlations among 
features (Markman & Ross, 2003; Yamauchi & Markman, 
2000). This finding suggests that compositional 
representations should be particularly well-suited for 
inference learning with relational categories, as such 
representations highlight the internal structure of stimuli. 
The inference conditions of our experiments thus provide a 
more stringent test of our hypothesis that people can learn 
relational concepts better through unitary representations.  

Experiment 1 
Experiment 1 examines how providing unitary and 
compositional descriptions of relational concepts affects 
learning on classification and inference tasks (description 
and task type both manipulated between subjects). Subjects 
were provided either a unitary or compositional hint at the 
start of learning and again after every third error, in order to 
assess whether each type of hint can improve learning. 
Control groups who were given no hints were also included 
in order to assess baseline performance in both tasks. 

The stimuli used in this study were taken from Corral, et 
al. (under revision), which were adopted and modeled after 
those used by Rehder and Ross (2001). A stimulus consisted 
of three sentences, each of which describes a different 
component of a machine that works to remove waste 
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material: (1) the location of where the machine operates, (2) 
the waste material the machine removes, and (3) the 
instrument the machine uses.  

Stimuli were sampled from two categories: coherent and 
incoherent. Each category consisted of 18 exemplars. The 
categories were determined by how a machine’s 
components were related to one another. For exemplars 
from the coherent category, the machine’s instrument is 
suited for collecting the waste material that the machine 
works to remove, which can be found in the location where 
the machine operates. Consider the following example: 
“Operates on the seafloor, works to remove lost fishing nets, 
and has a hook.” This exemplar is coherent because of the 
secondary relations among the machine’s component parts 
(presumed to be known by subjects), such that lost fishing 
nets can be found on the seafloor and a hook can be used to 
retrieve lost fishing nets. In contrast, exemplars from the 
incoherent category do not satisfy either of these second-
order relations (i.e., the machine’s tool cannot be used to 
collect the machine’s target waste material and that material 
cannot be found where the machine operates). Non-Morkels 
were thus made to be as incoherent as possible so as to 
maximally differentiate the categories and better facilitate 
learning of the task. Figure 1 illustrates the abstract 
relational structure of the two categories. 

Half of the subjects completed an A/¬A classification 
task (in which each stimulus was to be categorized as either 
a category member or a nonmember), and the other half 
completed an inference task. On each trial, the subject was 
presented a single stimulus and asked to make an inference 
or classification judgment (depending on the condition). 
After the response, the subject was shown whether the 
response was correct along with the correct answer.  

 

 
 
Figure 1. Illustration of the relational structure for items in 
the coherent and incoherent categories in Experiment 1. The 
structures differ in that coherent items satisfy the relations 
indicated by diagonal lines: the machine’s implement can 
remove the target, and the target is found in the machine’s 
location. Recreated from Corral et al. (under revision).  

Method 
Two hundred eighteen undergraduates from the University 
of Colorado Boulder participated for course credit in an 
introductory psychology course. Subjects were randomly 

assigned to six conditions. Type of hint (compositional vs. 
unitary vs. control) was crossed with task type 
(classification vs. inference). 

Subjects were told that they would be shown short 
descriptions of various types of cleaning machines, some of 
which were made by the Morkel Company (coherent 
category) and some were not (incoherent category). Subjects 
were provided a positive example of a Morkel (randomly 
selected) and told that all Morkels share a certain 
commonality and it was their job to figure out what it was.  

Subjects in the unitary condition were shown the 
following hint: “On each trial try to think about how "well 
suited" the machine is for performing its task. Keep in mind 
that consumers say machines from Morkels are built 
"intuitively" in a way that makes sense.” This hint was 
intended to shift subjects’ attention toward finding a global 
attribute of the stimulus and away from the explicit 
relationships among its components. Using this hint, it is 
possible for subjects to learn how to distinguish the 
categories without explicit knowledge of their relational 
structure. This hint can therefore be said to encourage 
subjects to represent each stimulus unitarily.  

Subjects in the compositional condition where shown the 
following hint: “On each trial try to think about the specific 
manner in which the machine's 1st property relates to its 2nd 
and 3rd properties, as well as how its 2nd property relates to 
its 3rd property.” This hint was intended to focus subjects’ 
attention on the relationships among the component parts of 
the stimulus, and thus to encourage them to represent the 
stimulus compositionally.  

Subjects were presented the appropriate hint during the 
initial task instructions, after the first trial, during rest 
breaks, and following every third error the subject 
committed (on a blank screen after corrective feedback was 
shown). Subjects were asked to read the hint carefully and 
press the spacebar when they were ready to continue. 
Subjects in the control group were not shown a hint and 
were instead asked to continue to try their best; this 
reminder was presented on every third error the subject 
committed and on rest breaks. 

Each subject completed 72 trials. The order in which the 
items were presented was randomized for all subjects. In 
each block of 18 trials, all 18 stimuli appeared in a random 
order. After each block, subjects were given a self-paced 
rest break and were shown the proportion of correct 
responses they answered correctly over those trials, along 
with the number of trials they had completed and the 
number that remained. 

On each trial in the classification condition, a single, 
complete stimulus was presented and the subject was asked 
to type “A” if the machine was a Morkel or “L” if it was 
not. On each trial in the inference condition, the category 
label for a stimulus was shown (Morkel or non-Morkel) 
directly above an incomplete stimulus consisting of two of 
its three components (i.e., sentences). Below the stimulus 
were two response options, one of which was the missing 
component and the other was a lure. The component the 
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subject was asked to infer (i.e., implement, target material, 
or location) was randomly selected on each trial. Subjects 
were asked to select which was the missing component by 
typing “A” if the correct choice was the top option or “L” if 
it was the bottom option. The order in which the two options 
were presented was randomized on every trial. For items 
that were Morkels, the correct response was the option that 
shared secondary relations with the given stimulus 
components. The lure did not share secondary relations with 
either of the stimulus components. For items that were non-
Morkels, the correct response was the component that did 
not share any secondary relations with either of the stimulus 
components. The accompanying lure shared at least one 
secondary relation with one of the stimulus components. 
Figure 2 shows an example trial from the inference 
condition. 
 

 
 
Figure 2. Example of a stimulus display from the coherent 
category (Morkels) from the inference task in Experiment 1.  

Results & Discussion 
Figure 3 shows average learning curves for subjects in each 
group. An ANOVA was conducted to examine differences 
in performance among groups. The analysis showed a main 
effect of hint, F(2, 212) = 42.14, p  < .0001, MSE = .014, 
and an interaction, F(1, 212) = 8.90, p  = .0002, MSE = 
.014, indicating that the main effect of hint depends on the 
type of task that subjects completed. On the classification 
task, control subjects (M = .61, SE  = .017) were 
outperformed by subjects in the compositional (M = .775, 
SE = .014; p < .0001) and unitary groups (M = .83, SE = 
.016; p < .0001). In the inference condition, only subjects 
who received a unitary hint (M = .716, SE = .012) 
performed better than control subjects (M = .585, SE = .012; 
p < .0001), as no differences were observed between 
subjects who were presented a compositional hint (M = 
.587, SE = .011) and subjects in the control group. 

Planned t-tests were conducted to compare the unitary and 
compositional groups, separately for each task. On the 
classification task, subjects in the unitary condition (M = 
.83, SE = .014) outperformed subjects in the compositional 
condition (M = .775, SE = .014), t(71) = 1.85, p = .068, d = 
.45. This same pattern was observed in the inference 
condition (unitary M = .716, SE = .012; compositional M = 
.587, SE = .012), t(67) = 5.28, p < .0001, d = 1.29. An 

additional 2 (unitary vs. compositional) × 2 (classification 
vs. inference) ANOVA was conducted, which excluded 
control subjects. This analysis revealed an interaction, F(1, 
138) = 4.01, p = .047, MSE = .013, indicating that the 
unitary advantage was stronger in the inference task than in 
the classification task. 

Taken together, the findings presented here suggest that 
unitary and compositional representations can both be used 
to acquire relational concepts. However, subjects who were 
encouraged to represent the stimuli unitarily showed more 
robust learning than subjects who were encouraged to 
represent the stimuli compositionally, especially in the 
inference task. These findings thus provide support for our 
main hypothesis that, when both types of representations are 
available, subjects learn better with unitary than with 
compositional representations. 

 

 
Figure 3. Average learning curves and standard errors 
across blocks of nine trials for each condition in Experiment 
1. 

Experiment 2 
Experiment 2 builds on the findings from Experiment 1 and 
examines how category learning is affected when subjects 
represent a relational concept one way (either unitarily or 
compositionally) and are subsequently made aware of an 
alternative representation. Experiment 2 used the stimuli 
from Experiment 1, and all subjects performed the 
classification task. All subjects were either provided a 
unitary or compositional hint prior to the start of learning. 
For half of the subjects, the hint was changed after the 18th 
trial (i.e., the unitary hint was replaced with the 
compositional one and vice versa). For the other half of 
subjects, the hint they were shown remained the same 
throughout the study. These latter conditions were identical 
to the unitary and compositional classification conditions in 
Experiment 1.  

Method 
One hundred fifty-seven subjects were randomly assigned 

to four conditions: unitary/switch (N = 40), 
compositional/switch (N = 39), unitary/no-switch (N = 39), 
and compositional/no-switch (N = 39). After the 18th trial 
(i.e., in the first rest break), the screen was cleared and 
subjects in the switch conditions were shown a prompt that 
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notified them that Morkels could be represented differently 
from the initial hint and were shown the other hint. 
Following the 19th trial, this hint was presented once more 
and subjects were reminded to use it to try to figure out 
what constitutes a Morkel. Subjects in the switch conditions 
were shown this hint for the remainder of the study (i.e., on 
rest breaks and following every 3rd error), whereas no-
switch subjects continued to see the hint they had seen at the 
beginning. The rest of the procedure was identical to that of 
Experiment 1. 

Results & Discussion 
Figure 4 shows average learning curves for subjects in each 
condition. A t-test showed that subjects in the unitary/no-
switch condition (M = .79, SE = .017) outperformed subjects 
in the compositional/no-switch condition (M = .716, SE = 
.017), t(76) = 2.23, p = .03, d = .50. This finding directly 
replicates the results from the classification condition in 
Experiment 1, which showed a unitary learning advantage. 

 

 
Figure 3. Average learning curves and standard errors 
across blocks of nine trials for each condition in Experiment 
2. 
 

In addition to this analysis, a series of planned 
comparisons were conducted to examine differences among 
groups from the point at which subjects were introduced to 
the other hint (trials 19-72). The first analysis showed that 
subjects in the compositional/switch condition (M = .82, SE 
= .017) outperformed subjects in the compositional/no-
switch condition (M = .743, SE = .017), t(76) = 2.26, p = 
.027, d = .51. Additionally, subjects in the unitary/switch 
condition (M = .802, SE = .018) marginally outperformed 
subjects in the compositional/no-switch condition, t(77) = 
1.77, p = .08, d = .45. However, no differences in 
performance were observed among any of the three groups 
that were presented a unitary hint at some point in the study. 
Thus, it seems that as long as a unitary hint is presented, 
regardless of whether it is the only hint that is shown or if it 
is presented before or after a compositional hint, subjects 
are able to benefit from it. Taken together, these findings 
support the conclusion from Experiment 1 and suggest that 
subjects indeed learn better when they rely on unitary 
representations. 

General Discussion 
We report two experiments that test how encouraging 
subjects to represent relational stimuli unitarily or 
compositionally affects concept learning. The findings from 
Experiment 1 showed that both types of hints can aid 
learning on a classification task, but only the unitary hint 
was a useful learning aid on the inference task. These 
findings provide support for the idea that subjects can 
indeed use both types of representations to understand and 
learn relational concepts, but that unitary representations are 
as or more effective than compositional ones. This latter 
conclusion challenges the emphasis on compositional 
representations at the core of most research on analogical 
reasoning.  

Experiment 2 used only a classification task and was able 
to replicate the findings from the classification condition in 
Experiment 1, as subjects who received only a unitary hint 
outperformed subjects who received only a compositional 
hint. Furthermore, the results from this study showed that 
subjects who received a unitary hint at any point in the 
study (with a compositional hint coming before, after, or not 
at all) outperformed subjects who did not receive a unitary 
hint at all. No differences in performance were found among 
subjects in the groups who received a unitary hint. These 
results lend more support to the dominance of unitary 
representations, in that subjects will abandon or ignore 
suggestions for compositional representations if they have 
discovered a unitary one. 

One surprising finding from Experiment 1 was that the 
unitary advantage was stronger for the inference task than 
for classification. The effect size for the inference task was 
actually quite dramatic (Cohen’s d of 1.29). We had 
predicted that, if anything, the interaction would go in the 
opposite direction, given that inference tasks encourage 
learning the relationships among a concept’s components 
(Markman & Ross, 2003; Yamauchi & Markman, 2000). 
One speculative possibility is that inference learning 
encourages a top-down approach, in that subjects must 
reason from the category label to the stimulus, whereas 
classification encourages a bottom-up approach of reasoning 
from the stimulus to the category label. Likewise, a unitary 
representation is top-down in that it embodies a global 
property of a stimulus that can be used to deduce its internal 
structure, whereas a compositional representation is bottom-
up in that the local structure is explicitly represented and the 
global property emerges only implicitly from the relational 
system. Under this view, there might be a congruency effect 
between the stimulus representation and the processes 
involved in carrying out the task. In particular, a unitary 
representation might be more congruent with an inference 
task, because it facilitates conceiving of a concept by a 
single attribute that can then be used to infer missing parts 
of a stimulus. 

These speculations aside, the main conclusion of the 
present studies is that, although relational concepts are 
defined by the interconnections among their component 
parts, subjects seem to learn these concepts better when they 
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can be represented unitarily, which might facilitate a global 
understanding that is easier to discover and use than an 
explicitly structured one. Furthermore, although 
compositional-based instruction can help subjects classify a 
given concept, it might not be optimal for inference-based 
reasoning. 

These findings seem particularly applicable to education 
and instruction, as they might provide insight into how 
different types of descriptions for a given relational concept 
can affect students’ representations, as well as how such 
representations affect learning. Indeed, students are often 
required to learn various types of structured concepts, and 
must often engage in both classification and inference. For 
instance, in mathematics, students must recognize various 
instantiations of a given problem type, a process that relies 
on classification, and must also make inferences about how 
to apply a given solution. These findings thus hold the 
potential to improve how relational concepts are taught in 
the classroom. 

Furthermore, the present findings have theoretical 
implications for relational concept learning and 
representation, and have the potential to affect current 
theories of analogical reasoning and learning. In particular, 
research within the theoretical framework of structure 
mapping (Doumas, Hummel, & Sandhofer, 2008; Hummel 
& Holyoak, 2003) has placed a heavy emphasis on 
alignment processes operating on compositional 
representations, but our findings suggest that subjects more 
naturally represent such concepts unitarily, and that such 
representations produce a greater and more robust benefit to 
learning. During comparison of two scenarios, if the critical 
information can be represented unitarily, then there is no 
need for structural alignment, because the two can be 
recognized through the same sort of processing that is 
possible with feature-based representations, that is, flat 
(setwise) comparison to identify which properties they have 
in common. To be clear, this proposal is not intended to 
argue against the idea that structural alignment of 
compositional representations plays a prominent role in the 
more impressive feats of human reasoning (e.g., creativity 
or scientific discovery), but rather to point out that in more 
mundane cases, simpler processes and representations may 
be involved. Nevertheless, further work is necessary to 
better understand which conditions facilitate unitary and 
compositional representations. 

Lastly, we note one potential shortcoming of the present 
studies. Although subjects were encouraged to represent the 
stimuli unitarily or compositionally, we cannot know for 
certain whether subjects adopted either of these 
representations. This issue has historically plagued 
researchers in this domain of study and highlights the need 
for improved assessment on concept representation. We 
welcome suggestions in helping us to address this challenge. 
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