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OPEN

ORIGINAL ARTICLE

Duplications in RB1CC1 are associated with schizophrenia;
identification in large European sample sets
F Degenhardt1,2,24, L Priebe1,2,24, S Meier3, L Lennertz4, F Streit3, SH Witt3, A Hofmann1,2, T Becker5,6, R Mössner4, W Maier4,5, I Nenadic7,
H Sauer7, M Mattheisen2,8,9, J Buizer-Voskamp10,11, RA Ophoff10,12,13 GROUP Consortium26, D Rujescu14,15, I Giegling14,15, A Ingason15,
M Wagner4, B Delobel16, J Andrieux17, A Meyer-Lindenberg18, A Heinz19, H Walter19, S Moebus20, A Corvin21 Wellcome Trust Case
Control Consortium 2, International Schizophrenia Consortium25, M Rietschel3, MM Nöthen1,2 and S Cichon1,2,22,23

Schizophrenia (SCZ) is a severe and debilitating neuropsychiatric disorder with an estimated heritability of ~80%. Recently, de novo
mutations, identified by next-generation sequencing (NGS) technology, have been suggested to contribute to the risk of
developing SCZ. Although these studies show an overall excess of de novo mutations among patients compared with controls, it is
not easy to pinpoint specific genes hit by de novo mutations as actually involved in the disease process. Importantly, support for a
specific gene can be provided by the identification of additional alterations in several independent patients. We took advantage
of existing genome-wide single-nucleotide polymorphism data sets to screen for deletions or duplications (copy number
variations, CNVs) in genes previously implicated by NGS studies. Our approach was based on the observation that CNVs constitute
part of the mutational spectrum in many human disease-associated genes. In a discovery step, we investigated whether CNVs in 55
candidate genes, suggested from NGS studies, were more frequent among 1637 patients compared with 1627 controls.
Duplications in RB1CC1 were overrepresented among patients. This finding was followed-up in large, independent European
sample sets. In the combined analysis, totaling 8461 patients and 112 871 controls, duplications in RB1CC1 were found to be
associated with SCZ (P= 1.29 × 10− 5; odds ratio = 8.58). Our study provides evidence for rare duplications in RB1CC1 as a risk factor
for SCZ.

Translational Psychiatry (2013) 3, e326; doi:10.1038/tp.2013.101; published online 26 November 2013
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INTRODUCTION
Schizophrenia (SCZ) is a severe neuropsychiatric disorder char-
acterized by impaired thinking, emotions and behavior. Based on
a meta-analysis of published twin studies, its heritability was
estimated to be ~80%.1 Last year, two studies were published
reporting results from exome-wide next-generation sequencing of
SCZ patients and their parents.2,3 Both studies implicated de novo
mutations as increasing susceptibility to SCZ. Girard et al.2

sequenced the exomes of 14 patients with SCZ and their
parents, whereas Xu et al.3 analyzed the exomes of 53 patients
with SCZ, 22 unaffected individuals and their parents. Girard et al.2

detected a higher frequency of de novo mutations among patients
than expected, identifying a total of 15 de novo mutations in eight
patients. Xu et al.3 identified 40 de novo mutations in 27 patients
and showed that these were likely to affect protein structure and
function. The large number of genes reported to carry de novo
mutations, together with the very low frequency of mutations
among the patients, makes it difficult to implicate specific genes
in disease pathogenesis. Not every gene hit by a de novo mutation
is necessarily involved in the development of SCZ. Therefore,
genetic studies in independent samples are warranted, as
identification of additional alterations in patients will provide
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important support for specific genes. It is logical for these follow-
up studies to include the investigation of copy number variants
(CNVs), as it is known that in many human disease-associated
genes, both deletions and duplications contribute substantially to
the mutational spectrum. Furthermore, CNVs, including deletions
in 1q21.1,4–6 15q11.24,7 and 15q13.3,4–6 and duplications at
7q36.36,8 and 16p11.2,6,8,9 have been implicated as risk factors
for SCZ. In this study, we took advantage of an existing genome-
wide single-nucleotide polymorphism (SNP) array data set to
screen 1637 patients with SCZ or schizoaffective disorder and
1627 controls for the presence of CNVs in genes reported to carry
a de novo mutation. Our top finding was followed-up in additional
6824 patients and 111 244 controls.

MATERIALS AND METHODS
Discovery sample
The study was approved by the ethics committees of all study centers.
Each participant provided written informed consent before inclusion, and
all aspects of the study complied with the Declaration of Helsinki. All
individuals were of German descent according to self-reported ancestry.
A total of 1831 patients were recruited from consecutive admissions to

psychiatric inpatient units. A lifetime ‘best estimate’ diagnosis10 of SCZ or
schizoaffective disorder, according to DSM-IV criteria,11 was assigned on
the basis of a Structured Clinical Interview12 or the OPCRIT,13 medical
records and family history.
In addition, 1643 controls were included; a detailed phenotypic

description of these is provided elsewhere.14

Follow-up samples
Our top finding was followed-up using several independent samples: (i)
3111 patients and 2267 controls from the International Schizophrenia
Consortium;4 (ii) 1564 patients and 6944 controls from the Welcome Trust
Case Control Consortium 2; (iii) 604 patients and 497 controls from Munich,
Germany4,15 (Munich I–III); (iv) 834 Dutch patients and 672 controls;16 and
711 patients and 100 864 population-based controls from deCODE
genetics. Details are provided in Supplementary Table 1.

Genotyping, CNV detection and quality control
Discovery sample. Venous blood samples were drawn and genotyped
using Illumina BeadArrays HumanHap550v3, Human610-Quadv1 and
Human660W-Quad (Illumina, San Diego, CA, USA). Only those markers
shared by all three chips were used for CNV detection.
To avoid technical artifacts in CNV calling, stringent quality control

criteria were applied before computational CNV prediction. BeadArray data
were analyzed with QuantiSNP (version 2.1, http://www.well.ox.ac.
uk/QuantiSNP)17 and PennCNV (version 01 May 2010, http://www.
openbioinformatics.org/penncnv/)18. A detailed description of quality
control measures applied and the CNV detection protocol are provided
in Degenhardt et al.14

Follow-up samples. Information regarding genotyping is provided in
Supplementary Table 1.

Identification of CNVs in genes reported to carry a de novo
mutation
Discovery sample. We analyzed our discovery sample for the presence of
CNVs in 55 genes reported to carry a de novomutation in patients with SCZ
in whole-exome studies2,3 (Supplementary Table 2). The transcription start
and end position of each RefSeq gene was determined according to NCBI
build 36, using the UCSC Genome Browser (http://genome.ucsc.edu/
cgi-bin/hgGateway). In order to be considered for downstream analyses, the
CNV had to fulfill the following criteria: (i) lie within 20 kb up- or downstream
of the boundaries of the longest isoform in a RefSeq gene; (ii) be detected by
both QuantiSNP and PennCNV; (iii) span ⩾10 consecutive SNPs; and (iv) have
a log Bayes Factor (lBF; QuantiSNP) or confidence value (PennCNV) of ⩾10. In
addition, only genes in which at least two patients carried a CNV were taken
forward for further analysis. Data from the X-chromosome were not analyzed.

Follow-up samples. As different CNV detection platforms were used for
the various samples (with unequal spacing of the markers between the
platforms), the CNVs in the follow-up sample were not filtered based on
the number of consecutive SNPs, rather on the size of the genomic region
they spanned. In order to be included in our study, CNVs had to fulfill the
following criteria: (i) be ⩾100 kb in size and (ii) lie within 20 kb up- or
downstream of the boundaries of the longest isoform in a RefSeq gene.

Technical verification of predicted CNVs
All CNVs detected in the discovery sample were visually inspected in Genome-
Studio (v2011.1, http://www.illumina.com/software/genomestudio_software.ilmn).
For CNV verification, we used TaqMan Copy Number Assays (Applied
Biosystem, Foster City, CA, USA). For CNVs in RB1-inducible coiled-coil 1
(RB1CC1), we used three pre-designed assays (Hs02263567_cn,
Hs06225510_cn and Hs06195263_cn) and for CNVs in OR4C46, we used
two pre-designed (Hs04402646_cn and Hs03290371_cn) and one custom-
made assay. Copy numbers were calculated using the ΔΔCt method
implemented in CopyCaller Software (v1.0, http://www.appliedbiosystems.
com/support/software/copycaller/). CNVs in DGCR2 were not subject to
technical verification.

Statistical analyses of CNVs
To test for an association between SCZ and CNVs in the selected candidate
genes, P-values and odds ratios (ORs) were calculated with a two-sided
Fisher's exact test using R version 2.13.1.19 The P-values for CNVs in RB1CC1
in the discovery–follow-up sample were calculated using both the Fisher's
exact test as well as the Cochran–Mantel–Haenszel (CMH) test.

RESULTS
After quality control, intensity data from 1637 patients and 1627
controls from the discovery sample were available, and both
QuantiSNP and PennCNV detected CNVs in seven different genes
(Supplementary Table 3); however, only CNVs in three genes
fulfilled all of our filter criteria and were detected in at least two
patients in the discovery sample. These were: (i) duplications at
chromosome 8q11.23 affecting RB1CC1 (five patients and one
control); (ii) duplications at chromosome 11p11.2 affecting
OR4C46 (five patients and two controls); and (iii) deletions
affecting DGCR2 on chromosome 22q11.2 (two patients).
CNVs spanning RB1CC1 were successfully verified in our

patients. One control carried a duplication in RB1CC1. No DNA
was available from this control to allow technical verification;
however, based on the 100% technical verification rate in the
patients’ samples, the duplication in the control was also
presumed to be genuine. We were not able to unambiguously
verify the duplications in OR4C46 and they were, therefore,
removed from our data set. Deletions spanning DGCR2 were not
technically verified for two reasons: (i) based on their size (>500
SNPs; >2.5 Mb), the predicted CNVs were highly likely to be
genuine; and (ii) the CNVs overlapped ⩾80% with a chromosome
22q11.2 deletion previously reported to be associated with
SCZ.4,6,8,20

Duplications affecting RB1CC1
In the discovery sample, duplications at chromosome 8q11.23
affecting the gene RB1CC1 were detected in five patients (0.3%)
and one control (0.06%) (P-value = 0.218; OR= 4.98; 95% con-
fidence interval (CI): 0.56 – 235.50). The six CNVs in this region had
different putative break points and spanned 12–66 consecutive
SNPs (Figure 1). This CNV was followed-up in additional 6824
patients and 111 244 controls. Among those individuals, duplica-
tions in four additional patients and 13 controls were identified
(P-value = 0.015; OR= 5.02; 95% CI: 1.19–16.25) (Figure 1).
In the combined analysis (discovery + follow-up samples), dupli-

cations in RB1CC1 were significantly associated with SCZ (Fisher’s
exact test: P-value = 1.29 × 10− 5; OR = 8.58; CMH: P-value = 0.058;
OR= 4.86; Table 1). Owing to their large number, the Icelandic
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deCODE controls could potentially lead to a bias. After excluding
them, duplications in RB1CC1 were still associated with SCZ
(Fisher’s exact test: P-value = 0.035; OR= 4.26; CMH: P-value =
0.049; OR= 5.29; Table 1).
The Database of Genomic Variants (beta version April, 2012,

http://dgvbeta.tcag.ca/dgv/app/home?ref = NCBI36/hg18)21 is a
catalog of human genomic structural variation containing CNV
data from 37 healthy control studies. The Copy Number Variation
project at the Children's Hospital of Philadelphia lists CNVs from
2026 healthy children, all genotyped on Illumina BeadArrays
HumanHap550v3 (http://cnv.chop.edu/).22 Neither Database of
Genomic Variants nor Children's Hospital of Philadelphia contained
any duplications affecting RB1CC1.
In addition, we checked the interactive web-based database

DECIPHER (Database of Chromosomal Imbalance and Phenotype
in Humans Using Ensembl Resources; http://decipher.sanger.ac.
uk/about) for CNVs in RB1CC1. This database collects deletions and
duplications identified in patients with developmental disorders
and/or congenital malformations. In DECIPHER, seven individuals
with a duplication and one patient with a deletion affecting
RB1CC1 were listed. In patient 256062, the identified duplication
spanned only RB1CC1 and did not affect any other gene. No
additional CNV was detected in the genome of this patient. The
patient was diagnosed with mild developmental delay. The CNV
was inherited from the mother who was not reported to have a
neuropsychiatric phenotype. The clinician in charge of this patient
provided us with details of a second patient who had a
duplication affecting only RB1CC1 and who is currently not listed
in DECIPHER. This patient had a severe intellectual disability, facial
dysmorphism and cortical gyration anomalies.

Deletions spanning DGCR2
In our discovery data set, we observed two patients with a
deletion in the chromosomal region 22q11.21, spanning the gene
DGCR2. Both deletions shared identical break points, spanned 504
SNPs and overlapped ⩾80% with the typical larger 2.5 Mb deletion
that is associated with SCZ.4,6,8,20 As the frequency of this deletion

among patients with SCZ is well established, we did not aim for an
additional replication of this CNV.

CNVs not overrepresented in patients
In four genes, we identified CNVs that passed all our quality filter
criteria, but were only identified in a single patient. CNVs in
ALS2CL, CASP4, PIK3CB and TRAK1 were, therefore, not analyzed
further (Supplementary Table 3). These CNVs were not subject
to technical verification but were visually confirmed in
GenomeStudio.

Phenotypic characterization of RB1CC1 CNV carriers
Databases containing information regarding each patient carrying
a RB1CC1 duplication were searched for data concerning the
patient’s medical and family histories. As duplications in RB1CC1
have previously been described in children with intellectual
disability,23 we gathered additional information regarding the
highest educational qualification obtained by the patients. All
patient RB1CC1 duplication carriers were diagnosed with SCZ. The
pseudonymization of the patients (A–E) corresponds to Figure 1.
Patient A is a 27-year-old male with a diagnosis of chronic residual
type SCZ (DSM-IV: 295.30; age-at-onset (AAO), 17 years). He is
single and lives alone. He attended school for 10 years, passed his
final examinations and is currently unemployed. His disease
course has been chronic and deterioration is evident. Lifetime
symptoms include paranoia, delusions, anxiety, affective symp-
toms and suicidality. His symptoms have responded poorly to
medication including clozapine. He has no history of pre-morbid
cognitive impairment or somatic disorder. Patient A reports that a
maternal aunt committed suicide, but that there are no known
cases of SCZ in the family.
Patient B is a 33-year-old female with a diagnosis of

disorganized SCZ and paranoia (DSM-IV: 295.10; AAO, 23 years).
She left school without qualifications and failed to complete her
job apprenticeship. She has since worked in unskilled positions. At
the time of the interview, she had no prior history of inpatient
treatment. Treatment with haloperidol lead to a fast reduction of

hg18

53,600,000 53,700,000 53,800,000 53,900,000 54,000,000 54,100,000

Chromosome Bands Localized by FISH Mapping Clones

RefSeq Genes

Position of mutation described by Xu et al.

Bonn-Mannheim sample: 5/1 637 patients

Bonn-Mannheim sample: 1/1 627 controls

ISC sample: 2/3 111 patients

WTCCC2 sample: 1/1 564 patients

WTCCC2 sample: 2/6 944 controls

Dutch sample: 1/834 patients

DECODE sample: 11/100 864 controls

ST18 FAM150A RB1CC1
RB1CC1

NPBWR1

patient A

patient B
patient C
patient D
patient E

chr8:

200 kb

53,500,000

8q11.23

Figure 1. Duplications affecting RB1CC1. In the discovery + follow-up sample, nine duplications were found in patients (dark blue bars) and 14
in controls (light blue bars). This figure was generated using the UCSC genome browser (NCBI build 36).
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positive symptoms, but to no improvement of negative symp-
toms. Extensive information on neurocognitive performance is
available for patient B, and this indicates severe cognitive
impairment (Supplementary Figure 1). Patient B reports an
unremarkable family history.
Patient C is a 29-year-old female with a diagnosis of SCZ,

disorganized type (DSM-IV: 295.10; AAO 25 years). She is currently
going through a divorce. She attended school for 10 years. She
failed to complete any form of apprenticeship and is currently
employed. Her lifetime symptoms include affective symptoms,
social anxiety, paranoia and auditory command hallucinations. She
has a history of attempted suicide in response to these
commands. Patient C has experienced multiple episodes of illness,
which have shown only partial response to high-dose clozapine
and benperidol. She has no history of somatic disorder or pre-
morbid cognitive impairment. A maternal and a paternal aunt

were diagnosed with SCZ, and her mother has major depressive
disorder.
Patient D is a 57-year-old divorced male with a diagnosis of

paranoid SCZ (DSM-IV: 295.10; AAO, 41 years). He attended school
for 10 years, completed an apprenticeship and is now a self-
employed craftsman. Patient D has experienced multiple episodes
of illness with partial remission. During acute phases, he appears
cognitively intact and social withdrawn, and experiences delusions
of persecution and guilt. He also displays pronounced psycho-
motor tension and affective symptoms but no suicidality. The
patient has limited insight and poor treatment compliance. He
also has subacute eczema. He has no history of pre-morbid
cognitive impairment. Two maternal aunts received treatment for
unspecified psychiatric disorders.
Patient E is a 69-year-old female with a diagnosis of chronic

residual type SCZ (DSM-IV: 295.30; AAO, 29 years). She was
married and employed before the disorder started. She has no
history of poor pre-morbid work and social adjustment or any pre-
morbid personality disorder. Her disease course was characterized
by several episodes with partial remission between episodes, and
deterioration is evident. Lifetime symptoms include paranoia,
delusions, auditory hallucinations, formal thought disorder, bizarre
behavior, and blunted and inappropriate affect. Psychotic
symptoms dominate the clinical picture, although occasional
affective disturbance occurs. Her symptoms have responded to
medication. The patient reports a family history of psychiatric
disorders, but that there are no known cases of SCZ in the family.
The results from the quantitative PCR indicated a mosaicism
regarding the duplication.
These patients have SCZ, and experience severe paranoia and

hallucinations. An affective component is also evident. They have
shown only partial or no response to treatment. As a result, they
have experienced either only partial remission between episodes
or gradual deterioration. For patient B, extensive information on
her neurocognitive performance was available (Supplementary
Figure 1).
The examination of the neurocognitive profile (after being

diagnosed with SCZ) of the latter patient indicated severely
impaired cognitive functions compared with both a healthy
control group and a group of SCZ patients, while not fulfilling
the DSM-IV criteria for intellectual disability. Based on the
educational history of this patient, it is likely that the cognitive
deficits were already present before the onset of the neuropsy-
chiatric disorder.
No phenotypic information was available for the duplication

carriers identified in the follow-up samples.

DISCUSSION
We identified an association between rare duplications in RB1CC1
and SCZ in 8461 patients and 112 871 controls (OR = 8.58). The
brain expressed gene RB1-inducible coiled-coil 1 (OMIM *606837) is
located in chromosomal region 8q11.23. So far, information
regarding the biological function of RB1CC1 is limited. It has been
implicated in cell cycle progression,24 cell growth, cell prolifera-
tion, cell survival, cell spreading/migration25 and neurodegenera-
tion.26 In vitro, RB1CC1 insufficiency or dysfunction has been
shown to cause neuronal cell atrophy and death.27 Wang et al.28

demonstrated in mice that the deletion of FIP200 (also known as
Rb1cc1) caused a progressive loss of neural stem cells. Further-
more, in the postnatal brain of the mice carrying the
FIP200 ablation, the neuronal differentiation was dysfunctional
(Wang et al.28).
Applying exome-sequencing, Xu et al.3 identified a frameshift

deletion in RB1CC1, which was predicted to be damaging based
on predictions using PolyPhen. We hypothesize that both the
frameshift deletion and the duplications lead to a change in gene
dosage. As we did not have gene expression data for our CNV

Table 1. Results from Fisher's exact test and Cochran–Mantel–
Haenszel test

Patients Controls

Bonn (discovery sample) 5/1637 1/1627
ISC 2/3111 0/2267
WTCCC2 1/1564 2/6944
Munich 0/604 0/497
Dutch 1/834 0/672
deCODE 0/711 11/100 864
Follow-up sample 4/6824 13/111 244
Combined sample 9/8461 14/112 871
Combined sample
(excluding deCODE controls)

9/8461 3/12 007

Fisher's exact test
Discovery sample
P-value 0.218
OR (95% CI) 4.98 (0.56–235.50)

Fisher's exact test
Follow-up sample
P-value 0.015
OR (95% CI) 5.02 (1.19–16.25)

Fisher's exact test
Combined sample
P-value 1.29× 10−5

OR (95% CI) 8.58 (3.28–21.30)

Fisher's exact test
Combined sample (excluding deCODE controls)
P-value 0.035
OR (95% CI) 4.26 (1.06–24.47)

Cochran–Mantel–Haenszel test
Follow-up sample
P-value 0.302
OR (95% CI) 4.73 (0.68–33.09)

Cochran–Mantel–Haenszel test
Combined sample
P-value 0.058
OR (95% CI) 4.86 (1.13–20.91)

Cochran–Mantel–Haenszel test
Combined sample (excluding deCODE controls)
P-value 0.049
OR (95% CI) 5.29 (1.15–24.32)

Abbreviations: CI, confidence interval; ISC, International Schizophrenia
Consortium; OR, odds ratio; WTCCC2, Wellcome Trust Case Control
Consortium 2. Depicted in bold are the significant P-values.
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carriers, we were unable to examine the effect of the duplication
on RB1CC1 gene expression.
Searching the literature, we discovered one additional study on

neuropsychiatric phenotypes that reported duplications in
RB1CC1. Cooper et al.23 created a CNV morbidity map of
developmental delay based on data derived from 15 767 children
with intellectual disability and/or developmental delay and various
congenital anomalies. In total, 10 duplications, but no deletion in
RB1CC1, were identified among these patients. Only one of 8329
controls carried a duplication in this gene (OR = 5.29).23 The
frequency observed in controls is consistent with the frequency in
our study, providing further support for the validity of our finding.
In the literature, there are several examples of specific CNVs
conferring risk to both SCZ and intellectual disability, for example,
deletions at chromosome 1q214,5,29 and duplications at chromo-
some 16p13.1.30,31

Patient B showed severe cognitive impairment, although there
was only sparse or no information available on the cognitive
performance of the other patients. The available information did
not indicate any profound pre-morbid cognitive dysfunction;
however, it is of note that, in the discovery sample, any patient
with intellectual disability would have been excluded from
the study.
Using a candidate gene approach, we were able to successfully

identify an association of SCZ with duplications that have not
previously been reported in the context of this disease. The failure
of previous studies to detect this association may be explained by
the rarity of the duplication of RB1CC1 and hence the limited
power of their investigated samples.16

We were unable to unambiguously verify the CNVs detected in
OR4C46 in the discovery sample. This is not surprising for two
reasons: first, the CNVs were smaller in size (o20 kb) and their
calls therefore less reliable compared with larger variants; and
second, the gene is located close to the centromere. Previous
studies have excluded this genomic region from CNV analyses, as
it is known that the centromere is prone to producing false-
positive CNV results.6,15,32 Therefore, we removed the duplications
in OR4C46 from our analysis.
Adjustment for population stratification or sample-specific

effects was difficult. Typically, a CMH test or a logistic regression
with sample indicator covariates would be well suited for this
purpose. In our case, however, their application was difficult
as most sub-samples contained empty cells and, as a conse-
quence, had OR estimates either 0 or infinite. For this reason,
integration of the samples in a meta-analysis fashion was also not
possible.
Furthermore, we followed-up on exome-sequencing data

derived from 67 trios only. Among these individuals, de novo
mutations were identified in 55 genes. Not every gene hit by a de
novo mutation is necessarily involved in the development of SCZ.
Therefore, it is quite likely that the risk gene list used for this
study contained false positives. At the same time, many true risk
genes have not been identified yet, as only a very limited number
of individuals were included in the exome-sequencing studies,
so far.
This study provides the first evidence that rare duplications in

RB1CC1 are associated with SCZ. This interesting candidate gene
was first implicated based on exome-sequencing data. Our study
provides further evidence for the involvement of this gene in the
development of SCZ. In order to better understand the mutational
spectrum in this gene, more CNV and exome-sequencing studies
in larger samples are warranted. Not least, functional studies are
needed to obtain insights into pathophysiological consequences
of the identified mutations.
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