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Abstract

Acellular scaffolds derived from Bombyx mori silk fibroin were investigated for their ability to support functional tissue
regeneration in a rabbit model of urethra repair. A bi-layer silk fibroin matrix was fabricated by a solvent-casting/salt
leaching process in combination with silk fibroin film casting to generate porous foams buttressed by homogeneous silk
fibroin films. Ventral onlay urethroplasty was performed with silk fibroin grafts (Group 1, N = 4) (Width6Length, 162 cm2) in
adult male rabbits for 3 m of implantation. Parallel control groups consisted of animals receiving small intestinal submucosa
(SIS) implants (Group 2, N = 4) or urethrotomy alone (Group 3, N = 3). Animals in all groups exhibited 100% survival prior to
scheduled euthanasia and achieved voluntary voiding following 7 d of initial catheterization. Retrograde urethrography of
each implant group at 3 m post-op revealed wide urethral calibers and preservation of organ continuity similar to pre-
operative and urethrotomy controls with no evidence of contrast extravasation, strictures, fistulas, or stone formation.
Histological (hematoxylin and eosin and Masson’s trichrome), immunohistochemical, and histomorphometric analyses
demonstrated that both silk fibroin and SIS scaffolds promoted similar extents of smooth muscle and epithelial tissue
regeneration throughout the original defect sites with prominent contractile protein (a-smooth muscle actin and SM22a)
and cytokeratin expression, respectively. De novo innervation and vascularization were also evident in all regenerated
tissues indicated by synaptophysin-positive neuronal cells and vessels lined with CD31 expressing endothelial cells.
Following 3 m post-op, minimal acute inflammatory reactions were elicited by silk fibroin scaffolds characterized by the
presence of eosinophil granulocytes while SIS matrices promoted chronic inflammatory responses indicated by mobilization
of mononuclear cell infiltrates. The results of this study demonstrate that bi-layer silk fibroin scaffolds represent promising
biomaterials for onlay urethroplasty, capable of promoting similar degrees of tissue regeneration in comparison to
conventional SIS scaffolds, but with reduced immunogenicity.
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Introduction

The urethra serves as a crucial outlet conduit through which

urine is expelled from the urinary tract. It has a major role in the

urinary continence mechanism [1], and in the adult male, an

intact urethra is essential for the adequate anterograde transport of

seminal fluid and ultimately fertility [2]. A wide variety of

congenital and acquired pathologies including hypospadias,

epispadias, strictures, fistulas, malignancy, and straddle injuries

can compromise the normal functionality of the urethra necessi-

tating organ reconstruction [3–7]. End-to-end anastomosis is

frequently used to repair short, non complex urethral defects

wherein organ continuity is surgically restored by aligning and

joining normal tissue segments [8]. In circumstances in which

there is a lack of patient urethral tissue, extragenital skin flaps

[9,10], buccal mucosa [11], bladder mucosa [12,13], and tunica

vaginalis [14] have been utilized clinically as autologous tissue

grafts for urethroplasty procedures. In addition to the risk of donor

site morbidity, the long-term success of these implants is often

suboptimal due to significant complications such as fistula

formation [15], recurrent strictures [16], hair growth [17], stone

formation [18], diverticula [19], and meatal stenosis [20]. Given

the limitations associated with conventional surgical approaches,

there exists a substantial need for the development of alternative

strategies for urethral tissue replacement.

Over the past several decades, an array of natural and synthetic,

biodegradable scaffolds either alone or seeded with ex vivo

expanded, primary cell sources have been investigated for urethral

tissue engineering applications [21,22]. Decellularized collagen-

based biomaterials such as small intestinal submucosa (SIS) and

bladder acellular matrix (BAM) have shown promise as acellular

grafts for onlay urethroplasty. These matrices have been

demonstrated to promote epithelial and smooth muscle tissue
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regeneration in short, semi-circumferential urethral defects by

supporting host tissue integration in both animal models [23–25]

as well as patients afflicted with hypospadias [26] and urethral

strictures [27,28]. Although initial defect consolidation is often

achieved, long-term adverse side-effects such as stricture recur-

rence and fistula formation have been reported [29,30], therefore

raising the risk for graft failure and the need for surgical re-

intervention.

Synthetic biomaterials derived from polyesters have also been

explored for urethral substitution [31–33]. In particular, a recent

study by the Atala group demonstrated the efficacy of tubularized

constructs composed of poly-glycolic acid: poly-(lactide-co-glycolic

acid) meshes seeded with autologous bladder cells for treatment of

traumatic urethral injuries in children [33]. Short-term results

revealed this approach achieved regeneration of native tissue

architecture as well as restoration of organ function in the majority

of study participants. However, degradation metabolites of

polyester-based scaffolds are known to elicit chronic inflammatory

responses in vivo [34] and therefore have the potential to negatively

impact long-term organ function due to adverse foreign body

reactions [35]. In addition, the requirement for invasive tissue

biopsies and the costs associated with ex vivo cell propagation for

implant seeding still remain practical barriers for widespread

clinical utilization of this technology [22]. We hypothesized that a

useful strategy for urethral tissue engineering would consist of an

‘‘off the shelf’’ acellular graft with structural, mechanical, and

degradation properties sufficient to support initial defect stabiliza-

tion and organ continuity while allowing for gradual remodeling

and host tissue regeneration without deleterious immunogenic

reactions.

Silk fibroin scaffolds derived from Bombyx mori silkworm cocoons

represent versatile platforms for urogenital tissue reconstruction

due their mechanical robustness [36], diverse processing plasticity

[37], and tailorable biodegradability [35,38]. Previous reports

have demonstrated the ability of acellular silk fibroin matrices to

support the formation of innervated, vascularized smooth muscle

and urothelial tissues in both rodent and porcine models of

bladder augmentation [39,40]. In vivo comparisons between

conventional SIS and poly-glycolic acid-based biomaterials have

also shown that silk fibroin scaffolds offer distinct advantages for

bladder tissue repair including improved functional organ

performance, reduced inflammatory reactions, and enhanced

tissue regeneration [39,41]. In the current study, we evaluated

the efficacy of an acellular, bi-layer silk fibroin matrix to mediate

tissue regeneration in a rabbit model of onlay urethroplasty. The

bi-layer scaffold configuration is composed of a porous silk fibroin

foam which serves to allow for ingrowth of surrounding host tissues

while an annealed silk fibroin film functions to provide a fluid-tight

seal for retention of hollow organ contents (i.e. urine) during defect

consolidation [39,40]. Our group has recently demonstrated that

bi-layer silk fibroin matrices support superior functional tissue

regeneration in comparison to multi-laminate gel spun silk fibroin

biomaterials in a rat model of bladder tissue repair [39].

Therefore, the utility of this bi-layer matrix for urethral tissue

engineering was investigated.

Materials and Methods

Ethics Statement
B. mori silkworm cocoons were obtained from a commercial

supplier (Tajima Shoji Co., Yokohama, Japan) and therefore no

specific field studies were performed for their acquisition. This

study was carried out in strict accordance with the recommenda-

tions in the Guide for the Care and Use of Laboratory Animals of

the National Institutes of Health. All animal experiments were

performed with approval by Boston Children’s Hospital Animal

Care and Use Committee (Protocol Number: 12-06-2196). All

surgery was performed under isoflurane anesthesia, and all efforts

were made to minimize suffering.

Biomaterials
Aqueous silk fibroin solutions were prepared from B. mori

silkworm cocoons using published procedures [36] and utilized to

construct a bi-layer silk fibroin matrix using methods previously

described [39]. Briefly, a silk fibroin solution (8% wt/vol) was

poured into a rectangular casting vessel and dried in a laminar

flow hood at room temperature for 48 h to achieve formation of a

silk fibroin film. A 6% wt/vol silk fibroin solution was then mixed

with sieved granular NaCl (500–600 mm, average crystal size) in a

ratio of 2 g NaCl per ml of silk fibroin solution and layered on to

the surface of the silk fibroin film. The resultant solution was

allowed to cast and fuse to the silk fibroin film for 48 h at 37uC
and NaCl was subsequently removed by washing the scaffold for

72 h in distilled water with regular volume changes. Bi-layer silk

fibroin scaffold morphology was assessed by scanning electron

microscopy using published protocols [40]. Before implantation,

silk fibroin scaffolds were sterilized in 70% ethanol and rinsed in

phosphate buffered saline (PBS) overnight. SIS grafts (Cook,

Bloomington, IN) were evaluated in parallel as a standard point of

comparison. Tensile properties of both scaffold configurations

have been previously reported [39].

Surgical Procedures
Scaffold groups (Silk fibroin: N = 4; SIS: N = 4) were evaluated

in a ventral onlay urethroplasty model [42] using adult male New

Zealand white rabbits (3–3.5 kg, ,3–4 m of age). Surgery was

performed under sterile technique with maintenance anesthesia of

2–3% isoflurane following induction with intramuscular injection

of 0.04 mg/kg glycopyrrolate. All rabbits were kept under

mechanical ventilation for the duration of the operative proce-

dures. Following urethral catheterization, the penile urethra was

exposed through a ventral midline skin incision and mobilized

from the underlying corpora spongiosum. A 162 cm2 (Width6
Length) area of ventral urethral tissue was excised and a

biomaterial graft of equal size was anastomosed to the defect site

using interrupted 6-0 polyglactin sutures. Non absorbable 6-0

polypropylene sutures were placed at the proximal, distal, and

lateral boundaries of the implantation area for identification of

graft borders. Skin incisions were subsequently closed with

running sutures. In addition, a control group of animals (N = 3)

receiving urethrotomy alone was treated similarly in parallel. All

animals were administered prophylactic antibiotics (5 mg/kg/d

BaytrilH) for 3 d post-operatively. For all experimental groups, an

8 French Firlit-Kluge urethral stent (Cook Urological, Spencer,

IN) was secured to the urethra to allow for reinforcement of the

repair site and free urine drainage via catheterization for 7 d

following surgical procedures. After stent removal, animals were

allowed to void voluntarily until the completion of the study.

Analysis of serum creatinine levels was performed in all animals

pre-operatively and at 1 and 3 m post-operatively. Controls and

rabbits receiving implants were euthanized at 3 m post-implanta-

tion and isolated urethral specimens were subjected to histological,

immunohistochemical, and histomorphometric analyses.

Retrograde urethrography (RUG)
Retrograde urethrography was performed pre-operatively and

at 3 m post-repair in all experimental groups to evaluate

regenerated urethra continuity and the presence of strictures,
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fistulas or stone formation as previously described [42]. Under

general anesthesia, an 8 French feeding tube was inserted into the

urethral meatus and 1.5 ml iothalamate meglumine 17.2% (Cysto-

Conray II, Mallinckrodt Inc, St. Louis MO) saline solution was

injected in a retrograde fashion through the feeding tube while X-

rays were taken in the supine and lateral positions.

Histological, immunohistochemical, and
histomorphometric analyses

Regenerated and control tissue segments from the proximal,

distal and central regions of the original surgical site were excised

for standard histological processing. Briefly, specimens were fixed

in 10% neutral-buffered formalin, dehydrated in graded alcohols,

and then embedded in paraffin. Sections (5 mm) were cut and then

stained with hematoxylin and eosin (H&E) or Masson’s trichrome

(MTS) using routine histological protocols. For immunohisto-

chemical (IHC) analyses, contractile smooth muscle markers such

as a-smooth muscle actin (a-SMA) and SM22a; epithelial-

associated proteins, cytokeratins (CK); neuronal and endothelial

markers, synaptophysin (SYP38) and CD31, respectively, were

detected using the following primary antibodies: anti-a-SMA

[Sigma-Aldrich, St. Louis, MO, 1:200 dilution], anti-SM22a
[Abcam, Cambridge, MA, 1:200 dilution], anti-pan-CK [Dako,

Carpinteria, CA, 1:200 dilution], anti-SYP38 [Abcam, 1:200

dilution], anti-CD31 [Abcam, 1:100 dilution]. Sections were then

incubated with species-matched Cy3-conjugated secondary anti-

bodies (Millipore, Billerica, MA) and nuclei were counterstained

with 49, 6-diamidino-2-phenyllindole (DAPI). Specimens were

visualized using an Axioplan-2 microscope (Carl Zeiss MicroIma-

ging, Thornwood, NY) and representative images were acquired

using Axiovision software (version 4.8).

Figure 1. Structural characterization of silk fibroin scaffold. Photomicrographs of gross scaffold morphology (scale bar = 1 cm) and SEM
images of cross-sectional and top views of bi-layer scaffold architecture (scale bars = 400 mm).
doi:10.1371/journal.pone.0091592.g001

Figure 2. Ventral onlay urethroplasty model. Photomicrographs of various surgical stages of silk fibroin scaffold implantation and gross
morphology of regenerated tissue. [A] Excision of native tissue and defect creation in penile urethra. [B] Anastomosis of silk fibroin graft (S) into the
urethral defect. [C] Surgical closure of defect site. [D] Original implantation site following 3 m post-op. Inset: cross-section of harvested penis with
corpora cavernosa (#) and regenerated urethra (*). Arrows denote marking sutures. [A–D], scale bar = 2 cm; inset, scale bar = 0.6 cm.
doi:10.1371/journal.pone.0091592.g002
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Histomorphometric analysis was performed to assess the degree

of smooth muscle and epithelial tissue regeneration in both control

and implant groups using ImageJ software (version 1.47). Image

thresholding and area measurements were carried out on 12–18

independent microscopic fields (magnification 106, a-SMA; 206,

CK) equally dispersed along the proximal, distal, and central

regions of the original surgical sites to determine the percentage of

tissue area occupied by a-SMA+ smooth muscle bundles and

CK+epithelium relative to the total tissue area examined. In

addition, the number and diameter of CD31+ vessels and

Figure 3. Retrograde urethrography in matrix-grafted animals at pre-op and following 3 m of implantation. Boxes denote original
implantation sites while B denotes contrast-instilled bladders.
doi:10.1371/journal.pone.0091592.g003

Figure 4. Histological evaluations (H&E and MTS analyses) of urethral tissue regeneration in control and implant groups following
3 m post-op. [1st and 2nd columns] Photomicrographs of gross penile cross-sections in proximal regions of tissue repair. Scale bars = 3 mm. Inset:
residual silk fibroin matrix fragment (S), scale bar = 100 mm. Brackets represent sites of original scaffold implantation or control urethrotomy. [3rd

column] Magnification of global tissue regeneration bracketed in 2nd column. Scale bars = 600 mm. (*) = aggregate of mononuclear cells indicative of
chronic inflammation. [4th and 5th columns] Magnified de novo smooth muscle (SM) and epithelial (EP) tissue formation displayed in 3rd column. Scale
bars = 200 mm.
doi:10.1371/journal.pone.0091592.g004
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aggregates of mononuclear cell infiltrates (.100 mm in diameter)

were measured similarly in 6 independent microscopic fields

(magnification 106) and normalized to the total tissue area

examined to ascertain the extent of de novo vascularization and

chronic inflammatory reactions, respectively, in all experimental

groups. Data for these measurements (N = 3–4 animals/group)

were analyzed with the Kruskal-Wallis test in combination with

the post-hoc Scheffé’s method using SPSS Statistics software v19.0

(http://www.spss.com) and expressed as mean 6 standard

deviation. Statistically significant values were defined as p,0.05.

Results and Discussion

SEM analysis of the bi-layer silk fibroin matrix revealed the

formation of distinct structural compartments (Figure 1). The

solvent-cast/NaCl-leached layer comprised the bulk of the total

matrix thickness (2 mm) and resembled a foam configuration with

large pores (pore size, ,400 mm) interconnected by a network of

smaller pores dispersed along their periphery. This compartment

was buttressed on the external face with a homogenous, non

porous silk fibroin layer (200 mm thick) generated by film

annealment during casting.

Ventral onlay urethroplasty was a feasible approach for surgical

integration of both SIS and silk fibroin scaffolds into urethral

defects (Figure 2A–C). Animals in each experimental group had

an uneventful post-operative period with no mortality observed

prior to scheduled euthanasia. Over the course of the 3 m

implantation period, voluntary voiding was achieved in all animals

studied following initial 7 d catheterization. RUG analysis of each

scaffold group at 3 m post-op demonstrated wide urethral calibers

and preservation of organ continuity at the original implantation

site similar to pre-operative and control features with no evidence

of contrast extravasation, strictures, fistulas, or stone formation

(Figure 3). Gross tissue evaluations revealed host tissue ingrowth

spanning the entire area of the original implantation site in

animals receiving silk fibroin grafts with negligible contraction

observed between the proximal/distal or lateral marking sutures

(Figure 2D); similar results were obtained with SIS scaffolds. In

addition, macroscopic examination of the upper urinary tract

showed no signs of hydronephrosis or renal anomalies in controls

or animals implanted with silk fibroin or SIS scaffolds. These

observations are consistent with the lack of significant alterations

in serum creatinine levels in all experimental groups over the

course of the study (data not shown) suggestive of normal kidney

function.

Global histological examinations (H&E and MTS analyses) at

3 m post-op demonstrated that in both implant groups there was

prominent ingrowth of connective tissue from the host urethral

wall along the entire longitudinal axis of the original implantation

site (Figure 4). Cross-sectional organization throughout the de novo

urethral wall in each scaffold group resembled control tissue

architecture with distinct tissue compartments consisting of a

luminal, multi-layered epithelium, an extra-cellular matrix (ECM)-

rich lamina propria, and an outer smooth muscle layer.

Comparable degrees of scaffold degradation were qualitatively

observed in both implant groups following the 3 m study period

with minute residual matrix fragments dispersed throughout the

regenerated tissue (Figure 4, insert).

MTS analysis demonstrated discrete areas of mild fibrosis

within the lamina propria of the consolidated tissues supported by

each matrix configuration (data not shown). However, SIS

matrices were found to elicit chronic inflammatory reactions in

the sub-epithelial (Figure 5A, A9) and lamina propria (Figure 5B,
B9) regions of the de novo urethral tissue characterized by significant

induction of mobilized follicular aggregates of mononuclear cell

infiltrates (density, 2.060.8 aggregates/10 mm2 tissue area;

aggregate diameter, 4626241 mm) in comparison to control

(p,0.010) and silk fibroin groups (p,0.010). In contrast,

occasional eosinophil granulocytes indicative of minimal acute

inflammatory reactions were observed following silk fibroin

scaffold implantation at 3 m post-op (Figure 5C, C9) with no

evidence of mononuclear cell infiltrates. These immunogenic

Figure 5. Inflammatory responses elicited by scaffold groups. Photomicrographs of acute and chronic inflammatory reactions in H&E-stained
proximal regions of tissue repair following 3 m post-op. Mobilized follicular aggregates of mononuclear cell infiltrates [chronic inflammation, denoted
by (*)] present in sub-epithelial [A, A9 (magnified view)] and lamina propria [B, B9 (magnified view)] regions of de novo tissue supported by SIS
implants. [C, C9 (magnified view)] Eosinophil granulocytes (acute inflammation, denoted by arrows) present in de novo tissue supported by silk fibroin
scaffolds. [A, B], scale bars = 600 mm; [A9, B9, C], scale bars = 200 mm, [C9], scale bar = 100 mm.
doi:10.1371/journal.pone.0091592.g005
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responses are similar to those previously detected in rodent models

of bladder augmentation with silk fibroin biomaterials [39].

IHC evaluations (Figure 6A) revealed a-SMA and SM22a
contractile protein expression in the reconstituted smooth muscle

layers supported by both scaffold groups as well as controls

indicative of smooth muscle differentiation. Epithelial maturation

in controls and throughout all regenerated tissues supported by silk

fibroin and SIS matrices was also confirmed by robust CK

expression. Histomorphometric analysis demonstrated statistically

similar extents of a-SMA+ smooth muscle bundles (Figure 6B)

and CK+ epithelium (Figure 6C) within the original surgical sites

across all experimental conditions reflecting comparable degrees of

smooth muscle and epithelial tissue regeneration. Evidence of de

novo vascularization and innervation processes were also detected

in each implant group. The number and diameter of vessels

containing CD31+ endothelial cells within the original surgical

sites were found to be statistically similar across all experimental

conditions as determined by histomorphometric analysis

(Figure 6D). In addition, neuronal lineages displaying prominent

SYP38 protein expression indicative of synaptic transmission areas

were also localized throughout the de novo urethra walls in both

implant groups as well as in controls. These data demonstrate that

silk fibroin scaffolds are capable of supporting regeneration of

innervated, vascularized smooth muscle and epithelial tissues in a

rabbit model of urethra repair.

Conclusions

The results presented in this study detail the feasibility of bi-

layer silk fibroin scaffolds to serve as acellular grafts for onlay

urethroplasty. Performance comparisons with conventional SIS

biomaterials demonstrated that silk fibroin matrices displayed

superior biocompatibility, due to the absence of chronic inflam-

matory reactions, while promoting similar degrees of tissue

regeneration as well as maintenance of urethral function following

3 m of implantation. Future studies will focus on long-term

evaluations and efficacy assessments in animal models of urethral

disease in order to ascertain the potential of silk fibroin scaffolds

for clinical urethral reconstruction.

Figure 6. Immunohistochemical and histomorphometric assessments of urethral tissue regeneration in control and scaffold groups
following 3 m post-op. [A] Photomicrographs of protein expression of smooth muscle (SM) contractile markers (a-SMA and SM22a); epithelial (EP)-
associated cytokeratins (CK); the endothelial marker, CD31; and the innervation marker, synaptophysin (SYP38) in proximal sites of tissue repair. V
denotes vessels and arrows denote neuronal lineages. For all panels, respective marker expression is displayed in red (Cy3 labeling) and blue denotes
DAPI nuclear counterstain. Scale bars in all panels = 200 mm. [B–D] Histomorphometric analysis of the extent of regenerated a-SMA+ smooth muscle
bundles [B], CK+epithelium [C], and CD31+ vessels [D] present in the original surgical sites of control and scaffold groups.
doi:10.1371/journal.pone.0091592.g006

Silk Fibroin Scaffolds Support Urethral Tissue Repair

PLOS ONE | www.plosone.org 6 March 2014 | Volume 9 | Issue 3 | e91592



Acknowledgments

Suzanne White and the staff at the Histology Core Facility at Beth Israel

Deaconess Medical Center, Boston, MA are acknowledged for technical

assistance with tissue processing for histological analyses.

Author Contributions

Conceived and designed the experiments: JM CE DT YC. Performed the

experiments: DT YC DF EG KA. Analyzed the data: DT YC DF EG KA

RA DK JM CE. Contributed reagents/materials/analysis tools: EG DK.

Wrote the paper: JM DT.

References

1. Olesen KP, Walter S, Frimodt-Moller C, Hebjorn S, Gammelgaard PA, et al.

(1975) Morphology and function of the bladder and urethra in female urinary

incontinence. Int Urol Nephrol 7: 303–13.

2. Mawhinney M, Mariotti A (2013) Physiology, pathology and pharmacology of

the male reproductive system. Periodontol 2000 61: 232–51. doi: 10.1111/

j.1600-0757.2011.00408.x.

3. Macedo A Jr, Rondon A, Ortiz V (2012) Hypospadias. Curr Opin Urol 22: 447–

52. doi: 10.1097/MOU.0b013e328357bc62.

4. Lee YJ, Kim SW (2013) Current Management of Urethral Stricture.

Korean J Urol 54: 561–9.

5. Bhatnagar A, Upadhyaya VD, Kumar B (2012) Congenital urethrocutaneous

fistula: Case report with review of literature. Indian J Plast Surg 45: 563–5. doi:

10.4103/0970-0358.105979.

6. Siosaki MD, Machado RD, Souza AT, Magnabosco WJ, Santos AC, et al.

(2013) Primary proximal urethral adenocarcinoma: Case report and brief

review. Can Urol Assoc J 7: E499–501. doi: 10.5489/cuaj.399.

7. Elgammal MA (2009) Straddle injuries to the bulbar urethra: management and

outcome in 53 patients. Int Braz J Urol 35: 450–8.

8. Brandes S (2006) Initial management of anterior and posterior urethral injuries.

Urol Clin North Am 33: 87–95, vii.

9. Zinman L (1997) Extragenital muscular myocutaneous and fasciocutaneous flaps

in urethral reconstruction. Urol Clin North Am 24: 683–98.

10. Sugita Y, Tanikaze S, Yoshino K, Yamamichi F (2001) Severe hypospadias

repair with meatal based paracoronal skin flap: the modified Koyanagi repair.

J Urol 166: 1051–3.

11. Kozinn SI, Harty NJ, Zinman L, Buckley JC (2013) Management of Complex

Anterior Urethral Strictures With Multistage Buccal Mucosa Graft Reconstruc-

tion. Urology 82: 718–23. doi: 10.1016/j.urology.2013.03.081.

12. Monfort G, Bretheau D, Di Benedetto V, Bankole R (1992) Urethral stricture in

children: treatment by urethroplasty with bladder mucosa graft. J Urol 148:

1504–6.

13. Marzorati G, Ghinolfi G, Pachera F, Meazza A (2008) Bladder and buccal

mucosa graft in urethral stricture reconstruction. Urologia 75: 177–9.

14. Kadian YS, Rattan KN, Singh J, Singh M, Kajal P, et al. (2011) Tunica

vaginalis: an aid in hypospadias fistula repair: our experience of 14 cases.

Afr J Paediatr Surg 8: 164–7. doi: 10.4103/0189-6725.86054.

15. Cimador M, Vallasciani S, Manzoni G, Rigamonti W, De Grazia E, et al. (2013)

Castagnetti M. Failed hypospadias in paediatric patients. Nat Rev Urol [Epub

ahead of print]. doi: 10.1038/nrurol.2013.164.

16. Meeks JJ, Erickson BA, Granieri MA, Gonzalez CM (2009) Stricture recurrence

after urethroplasty: a systematic review. J Urol 182: 1266–70. doi: 10.1016/

j.juro.2009.06.027.

17. Finkelstein LH, Blatstein LM (1991) Epilation of hair-bearing urethral grafts

using the neodymium:YAG surgical laser. J Urol 146: 840–2.

18. Xie L, Li S, Li Q (2013) Surgical Treatment and Prevention of Recurrence of

Urethral Calculi Associated with Hairballs after Urethroplasty. Urol Int 91

[Epub ahead of print]. doi: 10.1159/000353101.

19. Chandrasekharam VV (2013) Single-stage repair of hypospadias using

longitudinal dorsal island flap: Single-surgeon experience with 102 cases.

Indian J Urol 29: 48–52. doi: 10.4103/0970-1591.109984.

20. Mellon MJ, Bihrle R (2013) Ventral onlay buccal mucosa urethroplasty: A 10-

year experience. Int J Urol [Epub ahead of print]. doi: 10.1111/iju.12236.

21. Fu Q, Cao YL (2011) Tissue engineering and stem cell application of

urethroplasty: from bench to bedside. Urology 79: 246–53. doi: 10.1016/

j.urology.2011.08.043.

22. Palmer BW, Kropp BP (2013) Update on tissue engineering in pediatric urology.

Curr Urol Rep 14: 327–32. doi: 10.1007/s11934-013-0329-6.

23. Kropp BP, Ludlow JK, Spicer D, Rippy MK, Badylak SF, et al. (1998) Rabbit

urethral regeneration using small intestinal submucosa onlay grafts. Urology 52:
138–42.

24. Chen F, Yoo JJ, Atala A (1999) Acellular collagen matrix as a possible ‘‘off the

shelf’’ biomaterial for urethral repair. Urology 54: 407–10.
25. Villoldo GM, Loresi M, Giudice C, Damia O, Moldes JM, et al. (2013)

Histologic changes after urethroplasty using small intestinal submucosa unseeded
with cells in rabbits with injured urethra. Urology 81: 1380.e1–5.

26. Atala A, Guzman L, Retik AB (1999) A novel inert collagen matrix for
hypospadias repair. J Urol 162: 1148–51.

27. El-Kassaby AW, Retik AB, Yoo JJ, Atala A (2003) Urethral stricture repair with

an off-the-shelf collagen matrix. J Urol 169: 170–3; discussion 173.
28. Palminteri E, Berdondini E, Colombo F, Austoni E (2007) Small intestinal

submucosa (SIS) graft urethroplasty: short-term results. Eur Urol 51: 1695–701;
discussion 1701.

29. Hauser S, Bastian PJ, Fechner G, Müller SC (2006) Small intestine submucosa in

urethral stricture repair in a consecutive series. Urology 68: 263–6.
30. Palminteri E, Berdondini E, Fusco F, De Nunzio C, Salonia A (2012) Long-term

results of small intestinal submucosa graft in bulbar urethral reconstruction.
Urology 79: 695–701. doi: 10.1016/j.urology.2011.09.055.

31. Olsen L, Bowald S, Busch C, Carlsten J, Eriksson I (1992) Urethral

reconstruction with a new synthetic absorbable device. An experimental study.
Scand J Urol Nephrol 26: 323–6.

32. Cilento BG, Retik AB, Atala A (1995) Urethral reconstruction using a polymer
mesh. J Urol 153: 371–4.

33. Raya-Rivera A, Esquiliano DR, Yoo JJ, Lopez-Bayghen E, Soker S, et al. (2011)
Tissue-engineered autologous urethras for patients who need reconstruction: an

observational study. Lancet 377: 1175–82. doi: 10.1016/S0140-6736(10)62354-

9.
34. Ceonzo K, Gaynor A, Shaffer L, Kojima K, Vacanti CA, et al. (2006)

Polyglycolic acid-induced inflammation: role of hydrolysis and resulting
complement activation. Tissue Eng 12: 301–8.

35. Gomez P 3rd, Gil ES, Lovett ML, Rockwood DN, Di Vizio D, et al. (2011) The

effect of manipulation of silk scaffold fabrication parameters on matrix
performance in a murine model of bladder augmentation. Biomaterials 32:

7562–70. doi:10.1016/j.biomaterials.2011.06.067.
36. Kim UJ, Park J, Kim HJ, Wada M, Kaplan DL (2005) Three-dimensional

aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials 26: 2775–
85.
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