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Abstract

Attitude Control and Estimation

by

Yizhou Wang

Doctor of Philosophy in Engineering – Mechanical Engineering

University of California, Berkeley

Professor Masayoshi Tomizuka, Chair

The attitude control problem, or the control of a spacecraft’s orientation with respect to a
frame of reference, is a challenging problem in space missions and has attracted much atten-
tion as it involves highly nonlinear characteristics of the governing equations. The attitude
control task requires an estimation algorithm that deduces the attitude from strapdown sen-
sor inputs and a control algorithm that computes the necessary torques so that the vehicle
can follow a desired attitude.

From the perspective of control, feedback control laws are sought for the purpose of asymp-
totic trajectory tracking, with the ability to reject unexpected external disturbances, and be
insensitive to parameter variations. An adaptive sliding mode spacecraft attitude controller
that fulfills those requirements is discussed in this dissertation. Unit quaternions and Ro-
drigues parameters are used to parameterize attitude. Lyapunov stability theory is used to
prove the stability of the closed-loop system.

For attitude estimation with increased accuracy, strap-down gyroscopes and vector mea-
surements are fused together. Because of the nonlinear nature of the attitude kinematics
equation and the measurement model, the problem becomes a nonlinear state estimation
problem, which is typically tackled by Bayesian inference. In this dissertation we discuss a
marginalized particle filtering algorithm, to possibly increase the estimation accuracy and
reduce the computation load compared with other non-parametric methods. We exploit the
linear-substructure and further show that the linear state evolution is completely indepen-
dent of the nonlinear partition.

We have also investigated a computationally efficient and easy-to-tune sensor fusion al-
gorithm, based on the complementary filter and the TRIAD algorithm. It is beneficial to
use a complementary filter because rate and angle sensor possess benefits and drawbacks in
different frequency regimes. The proposed algorithm shows comparable performance to the
EKF but with less computational burden. It aims to be implementable on a small portable



2

platform. In applications of mobile robots, the cutoff frequency can be adapted based on a
fuzzy logic in real-time to adjust trust to different sensors, to cope with problems such as
motion accelerations and magnetic distortions.



i

To my family



ii

Contents

Contents ii

List of Figures v

List of Tables vii

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation and Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Attitude Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Attitude Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Attitude Representations 6
2.1 Rotation Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Euler Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Unit Quaternions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Rodrigues Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

I. Attitude Control 12

3 Adaptive Sliding Mode Attitude Control 12
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Rodrigues Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.1 Sliding manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.2 Linearity in system parameters . . . . . . . . . . . . . . . . . . . . . 15
3.2.3 Direct approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.4 Hamiltonian approach . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.5 Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.6 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Quaternions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.1 Optimal design of sliding manifold . . . . . . . . . . . . . . . . . . . 22



iii

3.3.2 Direct approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.3 Hamiltonian approach . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.4 Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.5 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Parameter convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5 Disturbance rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

II. Attitude Estimation 35

4 Sensor Measurement Models 35
4.1 Gyroscope Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Accelerometer and Magnetometer Models . . . . . . . . . . . . . . . . . . . . 36
4.3 Star Camera Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3.1 Focal plane model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.2 QUEST model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 Attitude Determination Algorithm . . . . . . . . . . . . . . . . . . . . . . . 38
4.4.1 TRIAD algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4.2 q-method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Marginalized Particle Filter 43
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Stochastic Model and Bayesian Inference . . . . . . . . . . . . . . . . . . . . 44
5.3 Recursive Bayesian Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.4 Sequential Monte Carlo method . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4.1 Monte Carlo Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.4.2 Importance Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.4.3 Sequential Importance Sampling . . . . . . . . . . . . . . . . . . . . . 48
5.4.4 Resampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.4.5 Sequential Importance Resampling . . . . . . . . . . . . . . . . . . . 51

5.5 Marginalized Particle Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.5.1 Monte Carlo Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.5.2 Linear Substructure Assumption . . . . . . . . . . . . . . . . . . . . . 53
5.5.3 Particle Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.5.4 Kalman Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.5.5 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.6 Attitude estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.6.1 PF Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.6.2 Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.6.3 KF Update for yn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.6.4 PF propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



iv

5.6.5 KF Update for y′n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.6.6 KF propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.6.7 Steady-state KF for linear state . . . . . . . . . . . . . . . . . . . . . 60

5.7 Comparison with PF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.8 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6 Complementary filter 67
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.2 Complementary Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.3 Motivating 1-DOF attitude estimation example . . . . . . . . . . . . . . . . 69
6.4 CF in 3-DOF attitude estimation . . . . . . . . . . . . . . . . . . . . . . . . 71

6.4.1 Filter structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.5 Fuzzy Logic Based Time-Varying Cutoff Frequency Scheduling . . . . . . . . 73

6.5.1 Performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.5.2 Comparison with the EKF . . . . . . . . . . . . . . . . . . . . . . . . 75

6.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.6.1 Simulation results: 3-DOF spacecraft attitude estimation simulation . 76
6.6.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7 Conclusions and Future Works 83
7.1 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.2 Topics of Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Appendices 85

A Multiplicative EKF formulation 86
A.1 Error dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
A.2 Linearized measurement model . . . . . . . . . . . . . . . . . . . . . . . . . 88
A.3 Shift posterior information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Bibliography 90



v

List of Figures

1.1 A general attitude control system block diagram . . . . . . . . . . . . . . . . . . 2
1.2 Anatomy of the dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Illustration of three fundamental rotations. . . . . . . . . . . . . . . . . . . . . . 7

3.1 The closed-loop system response using the proposed adaptive attitude controllers
(Rodrigues parameters) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 The Lyapunov function values (Rodrigues parameters) . . . . . . . . . . . . . . 21
3.3 The feedback control inputs (Rodrigues parameters) . . . . . . . . . . . . . . . . 21
3.4 Map spacecraft specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Animated desired trajectory of the MAP spacecraft . . . . . . . . . . . . . . . . 29
3.6 Desired quaternion profile of the MAP spacecraft. . . . . . . . . . . . . . . . . . 29
3.7 The tracking errors using the proposed adaptive attitude controller (quaternions) 30
3.8 The Lyapunov function values (quaternions) . . . . . . . . . . . . . . . . . . . . 31
3.9 The feedback control inputs (quaternions) . . . . . . . . . . . . . . . . . . . . . 31
3.10 Tracking performance of the robust controller . . . . . . . . . . . . . . . . . . . 33

4.1 (a) A schematic of starcam measurements, (b) Position of a cataloged star ex-
pressed in the reference frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Collinearity of Perspective Center, Image and Object . . . . . . . . . . . . . . . 37
4.3 The diagram of the triad method . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1 Comparison of the target distribution N (0, 1) and its Monte Carlo estimator . . 46
5.2 Two different proposal distributions used to approximate the target distribution

N (0, 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3 The Monte Carlo estimator of N (0, 1) . . . . . . . . . . . . . . . . . . . . . . . 51
5.4 The Monte Carlo estimator of a 2D Gaussian random vector . . . . . . . . . . . 54
5.5 The underlying Markov assumption of the new model. . . . . . . . . . . . . . . 54
5.6 The Bayes’ net representation of the attitude estimation problem . . . . . . . . 58
5.7 Number of available stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.8 Attitude estimate errors in Euler angles from the three methods. . . . . . . . . . 65
5.9 Bias estimate from the three methods. . . . . . . . . . . . . . . . . . . . . . . . 65
5.10 Absolute error angles from the three methods . . . . . . . . . . . . . . . . . . . 66



vi

6.1 Block diagram of a general first-order complementary filter. . . . . . . . . . . . 69
6.2 A imaginary scenario: a bar swings from a pivot at one end, with two inertial

sensors attached at the other end. . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.3 (a) Comparison of the angle signals. (b) Comparison of the estimate errors. . . . 71
6.4 (a) Details of the tvcf block. (b) The nonlinear complementary filter used as a

prefilter to the triad method used in 3-dof attitude estimation. . . . . . . . . . . 72
6.5 The smooth saturation function that computes the fuzzy logic variable . . . . . 74
6.6 Plot of error euler angles from the ekf and cf . . . . . . . . . . . . . . . . . . . . 76
6.7 Plot of the error and standard deviation by triad, rate integration, cf+triad and

ekf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.8 (a) The 9-dof inertial measurement unit and (b) The quanser 3-dof gyroscope

(size: 0.7m× 0.5m× 0.5m). Both figures are not the same scale. . . . . . . . . . 77
6.9 Real-time visualization of the estimated attitude . . . . . . . . . . . . . . . . . . 78
6.10 Effect of the low-pass filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.11 Effect of the high-pass filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.12 The effect of the fuzzy logic to reject motion accelerations . . . . . . . . . . . . 80
6.13 (a) Plot of the attitude estimates from the different methods and the transitions

of the fuzzy logic based cutoff frequencies. (b) Zoomed-in plot of q1 . . . . . . . 81
6.14 Comparison of the estimate errors by the three methods . . . . . . . . . . . . . 82



vii

List of Tables

3.1 The necessary conditions for optimality from calculus of variations . . . . . . . . 23

5.1 The algorithmic comparison of PF and steady-state MPF for attitude estimation 61

6.1 Fuzzy logic for magnetometer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



viii

Acknowledgments

I am indebted to many people who are always accompanying and ready to give their endless
support in the past five years along the journey towards the doctorate degree. This disser-
tation would not have been possible without them.

I would like to thank my research advisor, Professor Masayoshi Tomizuka. Sensei kindly
took me into the lab so I have the opportunity to work on research projects under his in-
sightful and patient guidance, to work with many talented labmates who later became great
friends. Sensei’s knowledge and vision will always inspire me.

I am grateful to Professor O’Reilly, without whom I could have missed the chance to study
at Berkeley. I am also appreciative of Professor Hedrick and Professor Abbeel for being on
my dissertation committee.

In the early days, I worked under the mentorship of Dr. Hoday Stearns and Dr. Evan
Chang-Siu. Later I collaborated closely with Dr. Wenjie Chen and Dr. Xu Chen. I learned
not only valuable knowledge, but more importantly passion and meticulous attitude towards
research from the seniors.

My labmates have always made the lab a joyful place to work. I will always keep the memory
of them: Joonbum Bae, Shu-Wen Yu, Nancy Feng Dan Dong, Sanggyum Kim, Michael Chan,
Kan Kanjanapas, Chi-Shen Tsai, Pedro Reynoso, Cong Wang, Wenlong Zhang, Raechel
Tan, Minghui Zheng, Junkai Lu, Chung-Yen Lin, Chen-Yu Chan, Changliu Liu, Yaoqiong
Du, Kevin Haninger, Xiaowen Yu, Shiying Zhou, Dennis Wai, Shuyang Li, Te Tang, Hsien-
Chung Lin, Yu Zhao, Yongxiang Fan, Wei Zhan, Cheng Peng, Daisuke, Kaneishi.

I would like to thank Dr. Mohammed Almajed and Dr. Badr Alsuwaidan with National
Satellite Technology Program at King Abdulaziz City for Science and Technology (KACST)
for sponsoring our project and providing valuable advice.

Finally, I would like to thank my wife Jinghong Qian, my parents and parents-in-law for
their love and sacrifices. You are the meaning of my life.



1

Chapter 1

Introduction

1.1 Background

The first spacecraft can be traced back to Russian’s Sputnik 1, which entered space on Octo-
ber 4th, 1957. Since then, thousands of spacecraft, including Earth satellite and deep-space
probes, have been launched to travel and operate outside Earth’s atmosphere.

One challenging issue is attitude control, or the control of a spacecraft’s orientation with
respect to a frame of reference. The attitude must be controlled for various reasons [1]:

• the antenna needs to be aligned accurately to receivers on Earth or other satellites for
communication

• the onboard experiments may require precise pointing for accurate collection and in-
terpretation of data

• the heating and cooling effects of sunlight and shadow may be fully taken advantage
of for thermal control

• short propulsive maneuvers may be executed in the right direction for guidance

The attitude control task requires

1. sensors that provide useful orientation-related information

2. estimation algorithms that deduce the attitude from sensor inputs

3. control algorithms that compute the necessary torques so that the vehicle can follow a
desired attitude

4. actuators that apply the computed torques to re-orient the vehicle

A block diagram of the general attitude control problem is shown in Figure 1.1.
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Rotation 
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Figure 1.1: A general attitude control system block diagram

1.2 Motivation and Contribution

1.2.1 Attitude Control

The attitude control problem has attracted much attention as it involves highly nonlinear
characteristics of the governing motion equations. From the perspective of control, feed-
back control laws are sought for the purpose of asymptotic trajectory following, with the
ability to reject unexpected external disturbances, and be insensitive to parameter variations.

The simplest large-angle maneuver uses quaternion and velocity feedback similar to a propor-
tional derivative controller [2]. Model-based control techniques are also investigated such as
sliding-mode control [3] and adaptive control [4]. Sliding-mode control was investigated for
the purpose of robust attitude following for various attitude parameterizations (Rodrigues
parameters [5, 6], Modified Rodrigues parameters [7], quaternions [8, 9, 10]). Adaptive atti-
tude tracking control based on Lyapunov stability was studied for quaternions [11, 12] and
rotation matrices [13].

An adaptive sliding-mode attitude tracking controller is studied in this thesis [14]. A similar
methodology has been applied to control of robot manipulators by Slotine et. al. [15]. We
use two approaches to synthesize the reaching law, the direct approach and the Hamiltonian
approach. In the direct approach, the controller is directly constructed such that the Lie
derivative of the Lyapunov function candidate is negative semi-definite. In the Hamiltonian
approach [16], the plant model is first cast into the form of robotic manipulators, then the
adaptive controller is designed using the exact same method for robots. Rodrigues parame-
ters and unit quaternions are used to parameterize rotations. The advantage of the latter is
that it is the minimal singularity-free rotation representation. Based on the quaternion kine-
matic relation, a sliding manifold is chosen according to the optimality criterion proposed in
[17].

Compared with the existing methodologies in the attitude control literature, the proposed
controller in this thesis takes a simpler form. The asymptotic (robust) stability of attitude
following is rigorously proved. No prior information of the inertial parameters is required.
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Furthermore, one important contribution of this work is showing the equivalence of the two
approaches. It is proved that the resulting Lyapunov function is exactly the same (with
properly chosen controller parameters), even though the two controllers generate two differ-
ent closed-loop trajectories.

In the author’s opinion, attitude control literature is hard to understand due to the ex-
tensive use of rotation parameterizations (some of which may be less familiar to a general
audience) and their associated properties. To reduce the difficulty in reading, this disserta-
tion is made relatively self-contained and the framework used here should be straightforward
to understand.

1.2.2 Attitude Estimation

Attitude estimation can be traced back to 1965 when Wahba posed the question to estimate
the attitude of a spacecraft in the sense of least squares given noisy observations [18], resolved
in the body frame and the reference frame. Some well-known estimators that robustly solve
Wahba’s problem are Davenport’s q method [19], and the QUaternion ESTimator (QUEST)
[20].

For attitude estimation with increased accuracy, strap-down gyroscopes are used in combina-
tion with vector measurements. Because of the nonlinear nature of the attitude kinematics
equation and the measurement model, the problem becomes a nonlinear state estimation
problem, which is typically tackled by Bayesian inference. The extended Kalman filter
(EKF) was first studied in attitude estimation and in particular, Lefferts et. al. proposed
a multiplicative error approach in which the error quaternion and the gyroscope bias are
defined as the filter states [21, 22]. The drawback of EKF is that the mean and covariance
of the state is propagated analytically through the first-order linearization of the nonlinear
dynamics, which may introduce large approximation errors and lead to sub-optimal filter
performance. The unscented Kalman filter (UKF) is superior to EKF in terms of capturing
the posterior mean and covariance of the state distribution (accurately up to the 3rd order)
[23]. The UKF formulation for attitude estimation has been proposed by Crassidis et. al.[24].

Marginalized particle filter
Due to recent development in computational power, the use of particle filters (PF) gained
much traction and became practical for a broad area of applications. PF computes the pos-
terior state distribution by drawing random samples of the state vector (termed as particles)
and evaluates the likelihood of getting the actual system measurements conditioned on each
particle [25]. Cheng et. al. applied a bootstrap particle filter for sequential spacecraft atti-
tude estimation [26]. Because of the high dimensionality of the state vector, a prohibitively
large number of particles are needed to span the state space to support the state distribution.
In contrast to this approach, Oshman et. al. reduces the computational burden by sampling
only the attitude of the spacecraft and using a genetic algorithm to estimate the gyro bias



CHAPTER 1. INTRODUCTION 4

[27].

If there exists a linear sub-structure inherent in the nonlinear dynamics, it is possible to
marginalize out the linear state variables and estimate them instead with the Kalman filter
(KF) while the nonlinear state variables are estimated using the PF. This powerful combi-
nation of PF and KF, called the marginalized particle filter (MPF) or the Rao-Blackwellized
particle filter, can effectively increase the estimation accuracy and possibly reduce the com-
putation load [28]. The scheme has been directly applied for attitude estimation by Liu et.
al. [29]. This dissertation contributes is to further exploit the underlying linear-substructure,
and show that the linear state evolution is completely independent of the nonlinear part [30].

Complementary filter
In contrast to Bayesian filters, which are optimal under the assumption of some probabilistic
models but are usually computationally demanding, we seek an efficient, easy-to-tune sensor
fusion algorithm.

By combining two computationally efficient schemes, the TRIAD algorithm and the time-
varying complementary filter (TVCF), we present an algorithm that shows comparable per-
formance to the EKF with less computional burden [31]. It aims to be implementable on
a small portable platform with low computational power (e.g. inertial measurement units).
This application can benefit from complementary filtering because rate and angle sensors
(gyroscope versus accelerometer and magnetometer) possess benefits and drawbacks in dif-
ferent frequency regimes [32, 33, 34]. The TVCF, which uses a fuzzy logic scheme to adjust
trust to different sensors, has already been found to be useful for 1-DOF attitude estimation
due to its low computational requirement and the ability to discern stationary and motion
states [35]. This dissertation’s contribution is to first generalize the previous work to 3-DOF
attitude estimation. It is shown in the simulation that when the angle measurements are
from a star camera, the complementary filtering method with a tuned fixed cutoff frequency
also shows comparable performance to the EKF.

1.3 Dissertation Outline

The overall structure of this dissertation is depicted in Figure 1.2. More specifically, this
dissertation is organized as follows.

Chapter 2 presents various attitude representations and associated kinematics, including
rotation matrices, Euler angles, unit quaternions, Rodrigues parameters, which are used
throughout the entire dissertation. Chapter 4 presents the mathematical models of the
essential strapdown sensors for attitude estimation, including gyroscopes, accelerometers,
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Figure 1.2: Anatomy of the dissertation

magnetometers, star cameras. These models will be referred to in the development of the
proposed attitude estimation algorithms.

Details about my major contributions will be presented in two parts. In Part I, the atti-
tude control problem is solved using the idea of sliding mode control and Lyapunov stability
analysis in Chapter 3. In Part II, the attitude estimation problem is tackled using two ap-
proaches, that is, the marginalized particle filter in Chapter 5 and the complementary filter
in Chapter 6.
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Chapter 2

Attitude Representations

This chapter gives a basic review of the attitude representations for the development of the
rest of the thesis. A much detailed presentation can by found in a survey paper by Shuster
[36].

2.1 Rotation Matrices

A general expression of the rotation matrix R, in terms of an arbitrary axis of rotation r
and an angle of rotation θ, can be written using the Rodrigues’ rotation formula

R(r, θ) = cos θI3×3 + (1− cos θ)rrT − sin(θ)[r×] (2.1)

where [•×] : R3 7→ R3×3 denotes a cross-product matrix. The cross product between two
three-dimensional vectors can be written as a matrix-vector multiplication

u× v = [u×]v =

 0 −u3 u2

u3 0 −u1

−u2 u1 0

v1

v2

v3

 , ∀u, v ∈ R3 (2.2)

Rotation matrices are orthogonal and proper

RRT = RTR = I3×3, det(R) = 1 (2.3)

Hence the inverse rotation of R is its transpose RT .

Rotation matrices are useful as they map the representation of a vector from the reference
frame to the body frame

b = Rr (2.4)

where b = [bx, by, bz]
T represents a vector expressed in the body frame and r = [rx, ry, rz]

T is
the same vector but expressed in the reference frame. In the field of robotics,the convention
is to use the transpose of R defined here to represent rotation.
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The rotation kinematics equation is given by

Ṙ = −[ω×]R (2.5)

where ω is the angular velocity of the body frame relative to the reference frame.

2.2 Euler Angles

A general rotation is usually broke down into three consecutive fundamental rotations about
body axes. The fundamental rotations are the ones about the body x, y, z axes, illustrated
in Figure 2.1. The corresponding rotation matrices are given by
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Figure 2.1: Illustration of three fundamental rotations.
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R(x, φ) =

1 0 0
0 cosφ sinφ
0 − sinφ cosφ


R(y, θ) =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ


R(z, ψ) =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1


(2.6)

Composition of rotations is represented by pre-multiplying the rotation matrix of the i-th
rotation by the (i+ 1)-th rotation, i.e.

F ′′ R(r2,θ2)←−−−− F ′ R(r1,θ1)←−−−− F
R(r, θ) = R(r2, θ2) ·R(r1, θ1)

(2.7)

where R(r, θ) parameterizes the overall rotation, from F to F ′′. Note that rotation matrices
are generally not commutative. We use this composition rule to compute the overall rotation
of three successive fundamental rotations. For example, if 3-2-1 Euler angles {ψ, θ, φ} are
selected, the overall rotation is then

R(z, y, x;ψ, θ, φ) = R(x, φ) ·R(y, θ) ·R(z, ψ) (2.8)

There are twelve possible sets of Euler angles: six symmetric sets, e.g. 1-3-1, 3-1-3, and six
asymmetric sets, e.g. 3-2-1, 1-2-3.

2.3 Unit Quaternions

Using the double-angle formulas

sin θ = 2 sin(θ/2) cos(θ/2), cos θ = cos2(θ/2)− sin2(θ/2) = 1− 2 sin2(θ/2) (2.9)

Equation (2.1) can be rewritten as,

R(r, θ) =(cos2(θ/2)− sin2(θ/2))I3×3 + 2(sin(θ/2)r)(sin(θ/2)r)T

− 2 cos(θ/2)[sin(θ/2)r×]

=(q2
4 − ||ρ||22)I3×3 + 2ρρT − 2q4[ρ×]

=Ξ(q)TΦ(q)

=R(q)

(2.10)

In the above expression, the rotation matrix is expressed in terms of a unit quaternion q,
defined as

q =

[
ρ
q4

]
,

[
sin(θ/2)r
cos(θ/2)

]
(2.11)
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Ξ(q) and Φ(q) are defined as

Ξ(q) =

[
q4I3×3 + [ρ×]
−ρT

]
, Φ(q) =

[
q4I3×3 − [ρ×]
−ρT

]
(2.12)

A unit quaternion satisfies the unity-norm constraint

||q||2 =
√

sin2(θ/2) + cos2(θ/2) = 1 (2.13)

since it uses four parameters to describe three degrees of freedom.

Directly from the definition, it is easy to see that q and −q represent the same physical
rotation because one can think of −q representing a rotation of θ+ 2π angle along the rota-
tion axis r. One implication of this is that arithmetic mean is not well-defined in quaternion
space. To see this, consider qave = (q+(−q))/2 = [0, 0, 0, 0], which is not a unit quaternion.
The actual average of q and −q should obviously be either q or −q. Another complication
is that subtraction is not a good way to represent (tracking) errors. Instead, the error is
computed using quaternion multiplication, discussed later.

The quaternion kinematics equation is given by

q̇ =
1

2
Ξ(q)ω =

1

2
Ω(ω)q (2.14)

where

Ω(ω) =

[
−[ω×] ω
−ωT 0

]
(2.15)

Observe that the kinematics is free of singularities as well as bilinear in q and ω. In other
words, it is linear in q for fixed ω and vice versa.

The matrix Ξ(q) obeys the following relations:

ΞT (q)Ξ(q) = I3×3 (2.16a)

Ξ(q)ΞT (q) = I4×4 − qqT (2.16b)

ΞT (q)q = 03×1, ∀q ∈ R4 (2.16c)

ΞT (q)λ = −ΞT (λ)q, ∀q, λ ∈ R4 (2.16d)

Φ(q)ω = Γ(ω)q, Γ(ω) =

[
[ω×] ω
−ωT 0

]
, ∀q ∈ R4,∀ω ∈ R3 (2.16e)

Note that the last three equalities do not require unity norm constraint on the variables.
The third property is intuitive from the norm conservation

d

dt
( qT q︸︷︷︸

=1

) = 0 =
1

2
qTΞ(q)ω, ∀ω (2.17)
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Successive rotations can be accomplished using quaternion multiplication, which is also bi-
linear

q2 ⊗ q1 , [Φ(q2)
... q2]q1 = [Ξ(q1)

... q1]q2 (2.18)

where q2 is the rotation applied after q1. This convention is adopted here because the
order of operation is consistent with that of rotation matrices, where the second rotation
pre-multiplies the first rotation

R(q2)R(q1) = R(q2 ⊗ q1) (2.19)

It can be checked that an alternative way to write the kinematics equation is

q̇ =
1

2
Ω(ω)q =

1

2

[
ω
0

]
⊗ q (2.20)

The inverse quaternion is defined as

q−1 =

[
−ρ
q4

]
(2.21)

Note that q ⊗ q−1 = q−1 ⊗ q = [0, 0, 0, 1]T , which is the identity quaternion.

2.4 Rodrigues Parameters

Rodrigues parameters (Gibbs vector) is a minimal attitude representation (but not free of
singularities) closely related to unit quaternions. It is defined as

p , tan(θ/2)r = ρ/q4 (2.22)

Note that rotations with θ = (2k + 1)π,∀k ∈ Z are not defined using Rodrigues param-
eters. However, in this representation, subtraction can be used to represent errors, as
pe = p1−p2 = 03×1 means that the two rotations represented by p1 and p2 physically coincide.

Successive rotations can be computed as

p2 ⊗ p1 =
p2 + p1 − p2 × p1

1− pT2 p1

(2.23)

which does not possess the bilinearity property like unit quaternions.

The kinematics associated with Rodrigues parameters can be written as

ṗ = T (p)ω, where T (p) =
1

2
(I3×3 + [p×] + ppT ) (2.24)
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One can observe that T (p) is positive-definite regardless of p. In fact

T (p)− 1

2
I3×3 � 0 (2.25)

Hence, the inverse matrix always exists, and is given by

T−1(p) =
2

1 + pTp
(I3×3 − [p×]) (2.26)
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Chapter 3

Adaptive Sliding Mode Attitude
Control

An adaptive sliding mode attitude controller is derived in this chapter. It has the advantage
of not requiring knowledge of the inertia of the spacecraft and rejecting unexpected external
disturbances, with global asymptotic position and velocity tracking.

We use both Rodrigues parameters and quaternions to parameterize rotations. With Ro-
drigues parameters, the tracking error is simply the arithmetic difference. With quaternions,
the error must be quantified using quaternion composition rule. Furthermore, the sliding
manifold can be designed using optimal control analysis of the kinematics, trading off error
(which is physically meaningful in this case) and control effort.

The sliding mode control law and the parameter adaptation law are designed using Lyapunov
stability theory. We use two approaches to design the reaching law: the direct approach
and the Hamiltonian approach. We prove that the resulting controllers yield the same Lya-
punov function but different closed-loop trajectories. Numerical simulations are performed
to demonstrate both the nominal and the robust performance.

3.1 Introduction

As discussed in Chapter 1, feedback control laws are sought for the purpose of asymptotic
trajectory tracking, with the ability to reject unexpected external disturbances, and be in-
sensitive to parameter variations. The presence of highly nonlinear characteristics of the
governing motion equations complicates the controller synthesis process. In this chapter, an
adaptive sliding-mode attitude tracking controller is discussed. There are two attitude rep-
resentations under consideration, and two approaches are used to synthesize the controller.
Furthermore, we will show the equivalence of the two approaches.
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The remainder of the chapter is organized as follows. In Sec. 3.2 and Sec. 3.3, the adaptive
controller is designed using Rodrigues parameters and unit quaternions respectively. In each
section, a sliding manifold is designed. In the case of quaternions, an optimality criterion
is proposed. Lyapunov stability analysis is then used to derive an asymptotically stabi-
lizing sliding control law and a parameter adaptation law under two different approaches.
Equivalence between the two approaches are discussed. Numerical simulations are shown
to demonstrate the closed-loop performance of the proposed controller. In Sec. 3.4, the
sufficient condition for parameter convergence is stated. In Sec. 3.5, a robust controller is
designed to reject unexpected external disturbances.

3.2 Rodrigues Parameters

In the following section, we discuss the attitude controller when the attitude is parameterized
by Rodrigues Parameters. The state-space equation of the plant is given by

plant :

{
ṗ = T (p)ω kinematic equation

Jω̇ = −[ω×]Jω + τ dynamic equation
(3.1)

Assume that the desired attitude profile is given by pd(t) which is at least twice-differentiable.
The control objective is to design a feedback controller τ

τ = τ(p, ω, pd, ṗd, p̈d) (3.2)

so that p→ pd as t→∞.

We apply the sliding mode control for controller synthesis. The idea of sliding mode control
is to allow the transformation of a controller design problem for a general n-th order system
to a simple stabilization problem with reduced order. That is, we stabilize the dynamics
associated with the switching function. Then for the equivalent reduced-order system, intu-
itive feedback control strategies can be applied.

Sliding mode controller design consists of the following two steps:

1. design a stable sliding manifold on which the control objective is achieved

2. design a reaching law and the corresponding control input so that the switching function
is attracted to 0

3.2.1 Sliding manifold

The formal definition of the stability of a sliding manifold/switching function is given as
follows.
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Definition 3.1. A switching function s is stable, if the control objective is achieved when
the state variables are confined in the sliding manifold s = 0 as t→∞.

We consider the following three switching functions.

Proposition 3.1. The switching function s1 defined by

s1 = ω − ωr, where ωr = T−1(p)(ṗd − Λ(p− pd)) (3.3)

is stable if Λ is positive-definite. ωr is called the virtual velocity reference.

Proof. Define the (additive) tracking error

e = p− pd (3.4)

On the sliding manifold

s1 = 0

⇒ T (p)s1

=ṗ− ṗd + Λ(p− pd)
=ė+ Λe

=0

(3.5)

Because of the positive-definiteness of Λ, we conclude the exponential convergence of e to
0. �

Proposition 3.2. The switching function s2 defined by [16]

s2 = ṗ− ṗr, where ṗr = ṗd − Λ(p− pd) (3.6)

is also stable. ṗr is also a virtual velocity reference, but represented differently from the
previous one. Furthermore, the sliding manifolds of s1 and s2 are equivalent since T (p) is
positive-definite regardless of p

s2 = T (p)s1 = 0 ⇒ s1 = 0 (3.7)

and vice versa.

Proof. Same as the proof of Proposition 2.1. �

Proposition 3.3. The switching function s3 defined by [6]

s3 = ω − T−1(p)ṗd + Λ(p− pd) (3.8)

is also stable.
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Proof. On the sliding manifold,

s3 = 0 ⇒ T (p)s3

=ṗ− ṗd + T (p)Λ(p− pd)
=ė+ T (p)Λe

=0

(3.9)

Consider a candidate Lyapunov function V = 1
2
eTΛe, which is positive-definite in e. The Lie

derivative on the manifold is

V̇ = eTΛė

= −eTΛT (p)Λe
(3.10)

where we used the error dynamics in the last equality. Since T (p) � 1
2
I3×3, we further have

V̇ ≤ −1

2
||Λe||22 ≤ 0 (3.11)

That is, V̇ is negative-definite in e. The tracking error e converges to 0 as t→∞. �

3.2.2 Linearity in system parameters

In the dynamic equation (Equation (3.1)), we observe that the inertial parameters Jij, i, j =
1, 2, 3 appear linearly. To make this more explicit, we follow [11] to use the following linear
operator L : R3 7→ R3×6 acting on any three-dimensional vector ω = [ω1, ω2, ω3]T by

L(ω) =

ω1 0 0 0 ω3 ω2

0 ω2 0 ω3 0 ω1

0 0 ω3 ω2 ω1 0

 (3.12)

For any J = JT , it follows easily that

J11 J12 J13

J12 J22 J23

J13 J23 J33


︸ ︷︷ ︸

=J

ω = L(ω)


J11

J22

J33

J23

J13

J12


︸ ︷︷ ︸
,a

(3.13)

where we define a six-dimensional vector a of the inertial parameters Jij. We can further
denote the parameter estimate and the estimation error by â and ã respectively

ã(t) = â(t)− a (3.14)

In the following two subsections, we present two approaches for the design of reaching laws,
(i) the direct approach and (ii) the Hamiltonian approach. Later, we will also show that the
resulting reaching laws are closely related to each other.
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3.2.3 Direct approach

The reaching law derived from the direct approach is given in the following proposition.

Proposition 3.4. The following control law

τ1 = Y â1 −Kds1 (3.15)

and the adaptation law
˙̂a1 = −Γ−1Y T s1 (3.16)

yields a globally stable adaptive controller, where Γ and Kd are positive-definite matrices and
Y ∈ R3×6 is given by

Y (p, ṗ, pd, ṗd, p̈d) = [ω×]L(ω) + L(ω̇r) (3.17)

where

ω̇r = −T−1Ṫ T−1(ṗd − Λ(p− pd)) + T−1(p̈d − Λ(ṗ− ṗd))

Ṫ =
1

2
([ṗ×] + ṗpT + pṗT )

(3.18)

Proof. Consider a Lyapunov function candidate

V (t) =
1

2
sT1 Js1 +

1

2
ãT1 Γã1 (3.19)

which is positive-definite in s and ã1. The Lie derivative V̇ (t) yields

V̇ (t) = sT1 Jṡ1 + ãT1 Γ ˙̃a1

= sT1 J(ω̇ − ω̇r) + ãT1 Γ ˙̂a1

= sT1 (−[ω×]Jω + τ − Jω̇r) + ãT1 Γ ˙̂a1

= sT1 (−[ω×]L(ω)a− L(ω̇r)a+ τ) + ãT1 Γ ˙̂a1

= sT1 (−Y a+ τ) + ãT1 Γ ˙̂a1

(3.20)

Now substitute in the control law (Equation (3.15)) and the parameter adaptation law (Equa-
tion (3.16)). We have

V̇ = sT1 (Y ã1 −Kds1)− ãT1 ΓΓ−1Y T s1

= −sT1Kds1

≤ 0

(3.21)

Hence V̇ is negative semi-definite in s1. Recognizing the boundedness of V̈ and the uniform
continuity of V̇ , we invoke Barbalat’s Lemma to conclude

lim
t→0

V̇ = 0 ⇒ lim
t→0

s1 = 0 (3.22)

Therefore, the proposed adaptive controller is globally stable. �
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3.2.4 Hamiltonian approach

Alternatively, we can derive an adaptive controller which is similar to the controller synthesis
for robot manipulators, hence called the Hamiltonian approach.

Proposition 3.5. The state-space equation of the plant can be cast into the form of a second-
order differential equation in p

H(p)p̈+ C(p, ṗ)ṗ = F (3.23)

where p,H(p), C(p, ṗ), F resemble the joint displacement, the manipulator inertia matrix, the
Coriolis matrix, and the joint torques respectively.

H(p) = T−TJT−1

C(p, ṗ) = −T−TJT−1Ṫ T−1 − T−T [Jω×]T−1

F = T−T τ

(3.24)

Proof. Differentiating the kinematics equation to get

p̈ = Ṫ ω + T ω̇ (3.25)

Pre-multiplying JT−1 on both sides and substitute in the dynamic equation

JT−1p̈+ (−JT−1Ṫ − [Jω×])ω = τ (3.26)

Finally, pre-multiplying T−T and replacing ω by T−1ṗ yields

T−TJT−1︸ ︷︷ ︸
H(p)

p̈+ (−T−TJT−1Ṫ T−1 − T−T [Jω×]T−1)︸ ︷︷ ︸
C(p,ṗ)

ṗ = T−T τ︸ ︷︷ ︸
F

(3.27)

�

Just as already pointed out in research literatures of robotic manipulator control, we have
two important properties associated with this new system equation described below.

Lemma 3.1. The matrix Ḣ(p)− 2C(p, ṗ) is skew-symmetric.

Proof. The proof is done by direct algebraic manipulation. Note d
dt

(T−1) = −T−1Ṫ T−1.

Ḣ − 2C =
d

dt
(T−TJT−1)− 2T−TJ

d

dt
(T−1) + 2T−T [Jω×]T−1

=
d

dt
(T−T )JT−1 − T−TJ d

dt
(T−1)︸ ︷︷ ︸

skew-symmetric

+2T−T · [Jω×]︸ ︷︷ ︸
skew-symmetric

·T−1 (3.28)

�
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Lemma 3.2. The new state equation is still linear in terms of the inertial parameters J . In
other words, one can write

Hp̈r + Cṗr = Ȳ a (3.29)

where a = [J11, J22, J33, J23, J13, J12]T . The expression of Ȳ is given by

Ȳ = T−T
[
L(ω̇r) + [ωr×]L(ω)

]
(3.30)

Proof.

Hp̈r + Cṗr = T−TJT−1p̈r − T−TJT−1Ṫ T−1ṗr − T−T [Jω×]T−1ṗr

= T−TJT−1 d

dt
(Tωr)− T−TJT−1Ṫ ωr − T−T [Jω×]ωr

= T−TJω̇r + T−T [ωr×]Jω

= T−T
[
L(ω̇r) + [ωr×]L(ω)

]
a

, Ȳ a

(3.31)

Hence we get the expression of Ȳ , which resembles Y . Recall

Y = [ω×]L(ω) + L(ω̇r) (3.32)

�

The reaching law derived from the Hamiltonian approach is given in the following proposition.

Proposition 3.6. The following control law

F = Ȳ â2 − K̄ds2

τ2 = T TF
(3.33)

and the adaptation law
˙̂a2 = −Γ−1Ȳ T s2 (3.34)

yields a global stable adaptive controller, where Ȳ is given by Equation (3.30), K̄d is positive-
definite.

Proof. Consider a candidate Lyapunov function V (t) = 1
2
sT2Hs2+ 1

2
ãT2 Γã2. The Lie derivative

is

V̇ (t) = sT2 (
1

2
Ḣs2 +Hṡ2) + ãT2 Γ ˙̃a2

= sT2 (
1

2
Ḣs2 − Cs2︸ ︷︷ ︸

=0

+Cs2 +Hṡ2) + ãT2 Γ ˙̂a2
(3.35)

The first two terms are zero because of the skew-symmetry of Ḣ−2C. Then we combine the
definition s2 = ṗ− ṗr, the new system equation Hp̈+ Cṗ = F , the control input (Equation
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(3.33)), the parameter adaptation (Equation (3.34)) and the linearity property (Equation
(3.29))

V̇ (t) = sT2 (F −Hp̈r − Cṗr) + ãT2 Γ ˙̂a2

= sT2 (Ȳ â2 − K̄ds2 − Ȳ a)− ãT2 ΓΓ−1Ȳ T s2

= −sT2 K̄ds2

≤ 0

(3.36)

Again, we prove s2 → 0 as t→ 0 by invoking the Barbalat’s Lemma. Therefore, the proposed
controller is globally stable. �

3.2.5 Equivalence

In this subsection, we show that the two controllers are closely related.

Proposition 3.7. If τ2 is designed such that

K̄d = T−TKdT
−1 (3.37)

The Lyapunov functions and the Lie derivatives associated with the two closed-loop system
will be the same if given the same initial conditions and desired trajectory. However, the
resulting closed-loop trajectories will still be different.

Proof. Since s2 = Ts1, the two Lyapunov functions can be shown to be the same

V (t) =
1

2
sT2Hs2 +

1

2
ãTΓã

=
1

2
sT1 T

T · T−TJT−1 · Ts1 +
1

2
ãTΓã

=
1

2
sT1 Js1 +

1

2
ãTΓã

(3.38)

The Lie derivatives are

V̇ (t) = −sT2 K̄ds2

= −sT1 T T · T−TKdT
−1 · Ts1

= −sT1Kds1

(3.39)

We can also see that the two controllers look very similar. Through easy manipulations, one
can show that the two controllers are given by

Hamiltonian approach :

τ2 =
[
[ωr×]L(ω) + L(ω̇r)

]
â2 −Kds1

˙̂a2 = −Γ−1
[
[ωr×]L(ω) + L(ω̇r)

]T
s1

direct approach :

τ1 =
[
[ω×]L(ω) + L(ω̇r)

]
â1 −Kds1

˙̂a1 = −Γ−1
[
[ω×]L(ω) + L(ω̇r)

]T
s1

(3.40)
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The difference is highlighted in blue. �

3.2.6 Simulation results

Regulation
This subsection briefly illustrates the performance of the proposed controllers with simple
simulation. The selected scheme is regulating the attitude of a spacecraft with inertial matrix

a =

15 5 5
5 10 7
5 7 20

 (3.41)

from its initial attitude pinit = [0.1, 1, 0.5]T to zero, i.e. pd = ṗd = p̈d = [0, 0, 0]T . The
controller parameters are chosen to be

Λ = 10 · I3×3, Kd = 20 · I3×3, Γ = 30 · I6×6 (3.42)

The closed loop system response is shown in Figure 3.1. The state is successfully regulated
to zero with both control laws. However, there is a noticeable difference between the tra-
jectories. As pointed out previously, the Lyapunov functions and the Lie derivatives are
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direct
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Figure 3.1: The closed-loop system response using the proposed adaptive attitude controllers.
The desired trajectory is in red. The actual attitude profile using the direct approach is in
blue. The attitude profile using the Hamiltonian approach is in black.

exactly the same under two controllers, which is depicted in Figure 3.2. The control inputs
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Figure 3.2: The Lyapunov function values corresponding to the closed-loop response. The
two curves overlap expectedly.
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Figure 3.3: The feedback control inputs (blue: direct approach, black: Hamiltonian ap-
proach).

are shown in Figure 3.3. It is worth noting that the parameter estimation is not guaranteed
to converge to the true values. Indeed, in the simulation, we start with âinit = a but end
with

âfinal =


15.0300
9.0771
19.6904
5.7353
4.9323
5.0332

 , but a = âinit =


15
10
20
7
5
5

 (3.43)
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3.3 Quaternions

In the following section, we discuss the attitude controller when the attitude is parameterized
by unit quaternions. The state-space equation of the plant is given by

plant :

{
q̇ = 1

2
Ξ(q)ω new kinematic equation

Jω̇ = −[ω×]Jω + τ dynamic equation
(3.44)

Assume that in this case the desired attitude profile is given by qd(t) which is at least twice
differentiable. By the properties of the quaternion kinematics, we can easily compute the
desired body angular velocity and acceleration as

ωd = 2Ξ(qd)q̇d

ω̇d = 2Ξ(qd)q̈d
(3.45)

Again, the control objective is to design a feedback controller

τ = τ(q, ω, qd, q̇d, q̈d) (3.46)

so that q → qd as t→∞.

3.3.1 Optimal design of sliding manifold

Crassidis et. al. proposed an optimal sliding manifold [17]. The optimality is evaluated
when we only consider the quaternion kinematics equation and treat ω as the input. The
tracking error is defined using quaternion composition rule

δq = q ⊗ q−1
d =

[
Ξ(q−1

d ), q−1
d

]
q =

[
δρ
δq4

]
=

[
ΞT (qd)q
qT qd

]
(3.47)

This resolves the sign ambiguity and is physically meaningful. The following functional is
minimized

J∗(q(t), t) = min
ω

∫ ∞
t

1

2

{
r2δρT δρ+ (ω − ωd)T (ω − ωd)

}
dτ (3.48)

subject to the kinematic constraint

q̇ =
1

2
Ξ(q)ω

and the endpoint constraint
δq(∞) = [ 0, 0, 0, 1]T (3.49)

where r > 0 is the weighting factor, qd and ωd satisfy Equation (3.45). Without loss of
generality, we only consider δq4(t) ≥ 0.

There exists two main approaches to optimal control [37]: (1) calculus of variations (the
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Lagrangian L(q, ω, t) 1
2
r2δρT δρ+ 1

2
(ω − ωd)T (ω − ωd)

Lagrange multipliers λ ∈ R4

Hamiltonian H(q, λ, ω, t) L+ 1
2
λTΞ(q)ω

State equation q̇ = 1
2
Ξ(q)ω

Costate equation λ̇ = −∂H
∂q

Stationary condition ∂H
∂ω

= 0
Boundary condition δq(∞) = [ 0, 0, 0, 1]T

Table 3.1: The necessary conditions for optimality from calculus of variations

maximum principle) and (2) dynamic programming (the principle of optimality).

Calculus of variations
In [17], the necessary conditions for optimality are derived from calculus of variations. For
the functional minimization problem in Equation(3.48), the necessary conditions are sum-
marized in Table 3.1. It can be shown by direct substitution that the following optimal
angular velocity ω∗

ω∗ = ωd − rΞT (qd)q (3.50)

with λ∗ = −2rqd, satisfies all the conditions except the boundary condition. To prove the
satisfaction of the boundary condition, we use the kinematic equation for δq

δρ̇ =
1

2
δq4(ω − ωd) +

1

2
[δρ×](ω + ωd)

δq̇4 = −1

2
(ω − ωd)TΞT (qd)q

(3.51)

and a Lyapunov function candidate

V =
1

2
δρT δρ (3.52)

The Lie derivative taken with respect to the kinematic relation is

V̇ = −1

2
rδq4δρ

T δρ ≤ 0 (3.53)

The Lyapunov function value will keep decreasing until δρ = 03×1 and δq4 = ±1. From
Equation (3.51) and the minimizer ω∗, δq4 can converge only to 1 since

δq̇4 =
1

2
r(1− δq2

4) ≥ 0, = 0 only if δq4 = 1 (3.54)
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Therefore, all the necessary conditions are satisfied. The optimal value J∗(q(t), t) can be
derived to be

J∗(q(t), t) =

∫ ∞
t

r2(1− δq2
4)dτ

= 2r

∫ ∞
t

r

2
(1− δq2

4)dτ

= 2r

∫ ∞
t

δq̇4dτ

= 2r(1− δq4(t))

(3.55)

Dynamic programming
We can also prove optimality by showing that ω∗ satisfies the following Hamilton-Jacobi-
Bellman partial differential equation

∂J∗

∂t
(q, t) = −H(q,

∂J∗(q, t)

∂q
, ω∗, t) (3.56)

Proof : We expand ∂J∗

∂t
(q, t) by the chain rule,

LHS =
∂J∗(q, t)

∂qd

dqd
dt

= −rqTΞ(qd)ωd

(3.57)

On the other hand, by substituting ∂J∗

∂q
= −2rqd into the Hamiltonian, the right-hand side

becomes,

H(q,−2rqd, ω
∗, t) = r2δρT δρ− rqTd Ξ(q)(ωd − rΞT (qd)q)

= −rqTΞ(qd)ωd
(3.58)

Optimal sliding surface
For optimal tracking performance, it is natural to select the following switching function s1.

Proposition 3.8. The optimal switching function s1 defined by

s1 = ω − ωr, where ωr = ωd − rsgn[δq4]ΞT (qd)q (3.59)

is stable. Note that sgn[δq4(t)] is added for generality.

Proof. The stability of this sliding manifold has already been seen from the boundary con-
dition, i.e. q → qd as t → ∞. In view of the sliding condition, we can further show the
velocity tracking

ω = ωd − rΞT (qd)q︸ ︷︷ ︸
δρ→0

→ ωd, t→∞ (3.60)

�
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We will use this switching function in the direct approach. Alternatively, we design a different
switching function for the Hamiltonian approach.

Proposition 3.9. The switching function s2 defined by

s2 = q̇ − q̇r, where q̇r =
1

2
Ξ(q)ωr (3.61)

is also stable.

Proof. The stability can be inferred from the stability of s1. When the state variables are
confined in the sliding manifold s2 = 0, for any q 6= qd, we must have

s1 = 2ΞT (q)s2 = 0 (3.62)

Hence q → qd as t→∞. �

3.3.2 Direct approach

The reaching law derived from the direct approach is given in the following proposition.

Proposition 3.10. The following controller

τ1 = Y â1 −Kds1 (3.63)

and the parameter adaptation law

â1 = −Γ−1Y T s1 (3.64)

yields a globally stable adaptive controller, where Γ and Kd are positive -definite matrices
and Y ∈ R3×6 is given by

Y (q, q̇, qd, q̇d, q̈d) = [ω×]L(ω) + ω̇r (3.65)

where
ω̇r = ω̇d − rsgn[δq4](ΞT (q̇d)q + ΞT (qd)q̇) (3.66)

Proof. The proof is the same as Proposition 2.4. The only modification we need to make
is to change the switching function. �

3.3.3 Hamiltonian approach

The derivation here is similar to the previous derivation of the Hamiltonian approach using
Rodrigues parameters.
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Lemma 3.3. The state-space equation of the plant (using quaternion kinematics) can be
cast into the form of a second-order differential equation in q

H(q)q̈ + C(q, q̇)q̇ = F

where H(q) = 4ΞJΞT

C(q, q̇) = −4ΞJΞT Ξ̇ΞT − 4Ξ[Jω×]ΞT

F = 2Ξτ

(3.67)

Proof. The proof follows easily by noting that the left inverse of Ξ(q) is ΞT (q) for any unit
quaternion q. Differentiating the quaternion kinematic equation q̇ = 1

2
Ξ(q)ω

q̈ =
1

2
Ξ̇(q)ω +

1

2
Ξ(q)ω̇ (3.68)

Pre-multiplying 2JΞT (q) on both sides and substituting in the dynamic equation

2JΞT q̈ + (−JΞT Ξ̇− [Jω×])ω = τ (3.69)

Pre-multiplying 2Ξ and replacing ω by 2ΞT q̇ yields

4ΞJΞT︸ ︷︷ ︸
H(q)

q̈ + (−4ΞJΞT Ξ̇ΞT − 4Ξ[Jω×]ΞT )︸ ︷︷ ︸
C(q,q̇)

q̇ = 2Ξτ︸︷︷︸
F

(3.70)

Here we intentionally kept the common factor 2 for showing the equivalence of the two
approaches shortly. �

Lemma 3.4. The matrix Ḣ(q) − 2C(q, q̇) is also skew-symmetric. The new state equation
is linear in terms of the inertial parameters J . One can write

Hq̈r + Cq̇r = Ȳ a (3.71)

The expression of Ȳ is given by

Ȳ = Ξ ·
[
L(ω̇r) + [ωr×]L(ω)

]
(3.72)

Proof.

Hq̈r + Cq̇r = 4ΞJΞT q̈r + (−4ΞJΞT Ξ̇ΞT − 4Ξ[Jω×]ΞT )q̇r

= 2ΞJΞT (Ξ̇ωr + Ξω̇r)− 2ΞJΞT Ξ̇ωr − 2Ξ[Jω×]ωr

= 2Ξ ·
[
L(ω̇r) + [ωr×]L(ω)

]
a

(3.73)

�
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Proposition 3.11. The following control law

F = Ȳ â2 − K̄ds2

τ2 =
1

2
ΞTF

(3.74)

and the adaptation law
˙̂a2 = −Γ−1Ȳ T s2 (3.75)

yield a global stable adaptive controller, where Ȳ is given by Equation (3.72).

Proof. The proof is the same as Proposition 2.6. �

3.3.4 Equivalence

The two approaches can be shown to be closely related.

Proposition 3.12. If τ2 is designed such that

K̄d = 4ΞKdΞ
T (3.76)

The Lyapunov functions and the Lie derivatives associated with the two closed-loop system
will be the same if given the same initial conditions and desired trajectory.

Proof. Since s2 = 1
2
Ξs1, the two Lyapunov functions can be shown to be the same

V (t) =
1

2
sT2Hs2 +

1

2
ãTΓã

=
1

2
(
1

2
sT1 ΞT ) · 4ΞJΞT · (1

2
Ξs1) +

1

2
ãTΓã

=
1

2
sT1 Js1 +

1

2
ãTΓã

(3.77)

The derivatives are

V̇ (t) = −sT2 K̄ds2

= −(
1

2
sT1 ΞT ) · 4ΞKdΞ

T · (1

2
Ξs1)

= −sT1Kds1

(3.78)

The expressions of the two controllers are exactly the same as Equation (5.1), except that
the definition of s1 is now Equation (3.59). �
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Figure 3.4: Map spacecraft specifications. Source: [17].

3.3.5 Simulation results

Trajectory following
We test the proposed controllers in a more realistic scheme, for controlling the attitude of
the Microwave Anisotropy Probe (MAP) spacecraft [17]. The objective of the MAP mission
is to create a full-sky map of the cosmic microwave background and measure anisotropy with
0.3o angular resolution, in order to answer fundamental cosmological questions such as in-
flationary versus non-inflationary “big bang” models, accurate determination of the Hubble
constant, and the existence and nature of dark matter.

The spacecraft orbit and attitude specifications are shown in Figure 3.4. The spacecraft
spins about its body z-axis at 0.464 rpm, and the z-axis cones about the Sun-line at 1
rev/hour. A 22.5o ± 0.25o angle between the z-axis and the Sun direction must be main-
tained to provide a constant power input, and to provide constant temperatures for alignment
stability and science quality. The desired trajectory is animated in Figure 3.5, in which the
precession motion can be clearly seen.

The spacecraft’s desired attitude is defined by 3-1-3 Euler angles. The three Euler
angles are φd, θd, ψd

φ̇d = 1 rev/hr = 0.001745 rad/sec

ψ̇d = 0.464 rpm = 0.04859 rad/sec

θd = 22.5o = 0.3927 rad

(3.79)
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Figure 3.5: Animated desired trajectory of the MAP spacecraft. The spacecraft is rotating
about its body z-axis in addition to the precession motion.
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Figure 3.6: Desired quaternion profile of the MAP spacecraft.

φd and ψd are computed by integrating the Euler rates from zero initial conditions. Then
we can convert from Euler angles to quaternions as

qd(t) =


sin( θd

2
) · cos(φd−ψd

2
)

sin( θd
2

) · sin(φd−ψd

2
)

cos( θd
2

) · sin(φd+ψd

2
)

cos( θd
2

) · cos(φd+ψd

2
)

 (3.80)
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The desired quaternion profile is plotted in Figure 3.6. q̇d and q̈d are obtained by numerically
differentiating qd. We introduce an initial attitude error

q(t0) = [0, 0, sin(60o/2), cos(60o/2)]T ⊗ qd(t0) (3.81)

i.e. the spacecraft initially has a 60o error angle from the desired attitude along the body
z-axis. The controller parameters are chosen to be

r = 1, Kd = 2 · I3×3, Γ = 3 · I6×6 (3.82)

No prior information of J is assumed. That is

âinit = 06×1 (3.83)

A plot of the roll-pitch-yaw attitude errors are shown in Figure 3.7. It is observed that
the tracking errors converge to zero asymptotically under both control laws from the initial
60o error. The two curves are overlapping in the plot, indicating that the two closed-loop
trajectories are really close to each other. The Lyapunov function values along the closed-
loop trajectories under the two approaches is shown in Figure 3.8. It is guaranteed to
monotonically decrease until V̇ = 0. The low convergence rate is due to the fact that
no information of the inertial parameters is given. The feedback control inputs is shown in
Figure 3.9. In all of the plots, the difference in the numerical values under the two approaches
is not noticeable.
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Figure 3.7: The tracking errors represented by the Euler angles using the proposed adaptive
attitude controller (quaternions). blue: the direct approach, black: Hamiltonian approach.
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Figure 3.8: The Lyapunov function values corresponding to the closed-loop response. The
two curves overlap, as expected.
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Figure 3.9: The feedback control inputs (blue: direct approach, black: Hamiltonian ap-
proach).

3.4 Parameter convergence

To enforce the asymptotic parameter estimation, namely ã → 0 as t → 0, the following
persistent excitation condition must be satisfied∫ t+T

t

F T (δq, ω, ωd, ω̇d)F (δq, ω, ωd, ω̇d)dτ ≥ εI6×6, ∀t ≥ to (3.84)



CHAPTER 3. ADAPTIVE SLIDING MODE ATTITUDE CONTROL 32

where T, to, ε are some positive scalars. However, the parameter convergence will not have
an impact on the tracking performance.

3.5 Disturbance rejection

The framework used so far makes it very easy to modify the controller to account for possible
unexpected disturbances appearing in the dynamic equation

Jω̇ = −[ω×]Jω + τ + d (3.85)

Physically, the disturbance can be a combination of air drag, solar pressure, gravity gradient,
magnetic force, spherical harmonics, etc.. The disturbance can safely be assumed to be
bounded with known bounds

|di(t)| ≤ Di, i = 1, 2, 3 (3.86)

Di can also be time-varying.

The robust controller is given in the following proposition. Since the notations in the direct
or the Hamiltonian approaches with Rodrigues parameters or quaternions are very similar,
we will present the theory using general notations.

Proposition 3.13. The following control law

τ = Y â−Kds− (D + η) · sgn(s) (3.87)

and the adaptation law
˙̂a = −Γ−1Y T s (3.88)

yield a globally stable adaptive controller with disturbance rejection. (D + η) · sgn(s) is
calculated component-wise

(D + η) · sgn(s) =

(D1 + η1)sgn(s1)
(D2 + η2)sgn(s2)
(D3 + η3)sgn(s3)

 (3.89)

Proof. With the same Lyapunov function used before, it is straight-forward to show that

V̇ ≤ −
3∑
i=1

ηi|si| − sTKds ≤ 0 (3.90)

The system trajectories are thus guaranteed to reach the sliding manifold s = 0 regardless
of unknown disturbances, and therefore the control objective is achieved. �
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Chattering
Chattering is a major problem with sliding mode controller. A standard solution is replacing
the sgn(si) function by the saturation function sat(si/φi), where φi represents the thickness
of the corresponding boundary layer. After doing this, the switching function s is guaranteed
to converge to the boundary layer, corresponding to small tracking errors.

Simulation results
Assume that the MAP spacecraft is now subject to the following external disturbance

d =

0.005 · sin(0.05t)
0.003

0.005 · cos(0.05t)

 (3.91)

The parameters of the robust controller are set to

D = 0.005 · 13×1, η = 0.001 · 13×1 (3.92)

To highlight the ability to reject disturbance, we assume no initial attitude error and perfect
knowledge of J . The roll-pitch-yaw error angles are plotted in Figure 3.10. It is seen in the
plot that the tracking error is kept small with the presence of external disturbances, under
the robust controller.
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Figure 3.10: Tracking performance of the robust controller when the MAP spacecraft is
subject to external disturbances.
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3.6 Summary

In this chapter, an adaptive sliding mode attitude controller is designed for asymptotic
quaternion tracking, which assumes no inertial information and can reject unexpected exter-
nal disturbances. The stability was shown through a Lyapunov analysis. Both the nominal
performance and the robust performance are demonstrated in numerical simulations.
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Chapter 4

Sensor Measurement Models

This chapter provides a basic review of the models of rate measurements (rate gyroscopes)
and angle measurements (accelerometers, magnetometers, star cameras). Two algorithms
for determining attitude from angle measurements are reviewed.

4.1 Gyroscope Model

A gyroscope is a commonly used device/sensor that measures angular velocity. There are
three types of gyroscope, mechanical, optical and MEMS. They are strap-down, meaning
that they are mounted rigidly on the object, and therefore output quantities expressed in
the body frame rather than the reference frame. The measurement is usually mathematically
modeled as

ω = ωtrue + β + ηv

β̇ = ηu
(4.1)

where ωtrue and β denote the true angular rate and the bias drift. ηv is thermo-mechanical
zero-mean Gaussian white noise, appearing additive in the measurement. It is usually re-
ferred to as the angle random walk (ARW), with units rad/sec1/2 or o/hr1/2. The bias of a
gyroscope wanders over time due to flicker noise. It is modeled as a random signal, driven
by a zero-mean Gaussian white noise ηu. It is referred to as the rate random walk (RRW),
with units rad/sec3/2 or o/hr3/2. The two noises are not correlated.

There are other error sources not included in the model above, (i) a constant bias, (ii)
temperature effects (temperature dependent residual bias), (iii) calibration error (determin-
istic errors in scale factors, axes alignment, linearities), (iv) quantization error introduced
during analog-digital conversion. Those are either ignored or taken care of by proper cali-
brations.

One simple way to obtain orientation information is to simply integrate rate measurements
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from a gyroscope. However, due to the presence of noises, the uncertainty will grow un-
bounded as time increases. Therefore, we need some other sensors to provide angle measure-
ments directly.

4.2 Accelerometer and Magnetometer Models

Accelerometers and magnetometers are also common in inertial measurement units (IMU).
They are also strap-down devices, directly measuring quantities in the body frame. An
accelerometer measures both the gravitational acceleration and the motion acceleration. Its
model can be written as

a = R · g + amotion + ηa (4.2)

where R is the rotation matrix of the body frame with respect to the Earth frame, amotion
is the motion acceleration expressed in the body frame. ηa is a three-dimensional additive
zero-mean Gaussian white noise.

If the device is at rest, i.e. the measurement only picks off gravity, we can calculate the
relative orientation between the body frame and the Earth frame, with the orientation along
the Earth z-axis still being ambiguous.

Similarly, a magnetometer measures the environmental magnetic field intensity, expressed in
the body frame

m = R ·menv + ηm (4.3)

where menv denotes the magnetic field intensity in the Earth frame, ηm is also a three-
dimensional additive zero-mean Gaussian white noise. By using these two vector measure-
ments, one can compute the relative orientation without ambiguities.

4.3 Star Camera Model

In space application, one common angle sensor is the star camera (starcam). Photographs
of the stars can be made from one or more spacecraft fixed cameras. A schematic of starcam
measurements is shown in Figure 4.1(a). The brightest 250,000 stars spherical coordinate
angles (i.e. the right ascension angle α and the declination angle δ) are available in a
computer accessible catalog. Namely, the vector measurement expressed in the reference
frame is known (Figure 4.1(b))

rj =

rxjryj
rzj

 =

cos δj cosαj
cos δj sinαj

sinαj

 (4.4)
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(a) (b)

Figure 4.1: (a) Schematics of starcam measurements, (b) Position of a cataloged star ex-
pressed in the reference frame. Source: [22].

Figure 4.2: Collinearity of Perspective Center, Image and Object. Source: [22].

4.3.1 Focal plane model

Referring to Figure 4.2, if the relative rotation between the reference frame and the camera
frame is denoted as A, the photograph image plane x, y coordinates of the j-th star can be
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determined by the stellar collinearity equations{
xj = −f

(A11rxj+A12ryj+A13rzj
A31rxj+A32ryj+A33rzj

)
yj = −f

(A21rxj+A22ryj+A23rzj
A31rxj+A32ryj+A33rzj

) (4.5)

where f is the camera focal length, which is known from a priori calibration. The sensor
noise is usually modeled as an additive zero-mean Gaussian noise

p̃j =

[
−xj
−yj

]
+ εj, where E[εj] = 0, E[εjε

T
j ] = σ2

j I2×2 (4.6)

4.3.2 QUEST model

The vector measurement bj expressed in the body frame is (choosing the z-axis of the image
coordinate system to be directed outward along the boresight)

bj =
1√

x2
j + y2

j + f 2

−xj−yj
f

 (4.7)

It is straightforward to see that
bj = Arj (4.8)

and this holds true for every star j = 1, . . . , N , if N stars are captured and cataloged.

Shuster [38] has shown that nearly all the probability of the errors is concentrated on a
very small area about the direction of Arj

b̃j = Arj + vj, vTj Arj = 0 (4.9)

The measurement error vj is modeled as a zero-mean Gaussian noise, with the following
covariance

E[vjv
T
j ] = σ2

j

[
I3×3 − (Arj)(Arj)

T
]

(4.10)

Remark 4.1. The noise polluted measurement vector b̃j is used in the covariance matrix
because the true value Arj is not available in practice.

4.4 Attitude Determination Algorithm

As mentioned early, with vector measurements along (i.e. without rate information), one
can determine the attitude, parameterized by quaternions or rotation matrices. Therefore,
we also referred to these types of measurements as angle measurements earlier.
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In this section, two attitude determination algorithms are discussed for determining 3 DOF
attitude from at least two vector observations. Attitude determination, which is intentionally
phrased differently from attitude estimation, refers to the technique for obtaining a proper
rotation (direction cosine) matrix so that the measured vector observations in the body frame
are equal to the observations in the reference frame mapped by such a rotation matrix.

The vector observations could be unit-vector measurements (e.g. bj from a star cameras) or
non-unit-vector measurements (e.g. a from an accelerometers or m from a magnetometers).
We are seeking to solve the following equation for A

bi = Ari, i = 1, . . . , N (4.11)

where ri’s are a set of measured unit vectors in the reference frame (or normalized vectors),
bi’s are the ones in the body frame and N is the number of the available vector sensors. Both
observation vectors, measured in reference and sensor frames, are inevitably contaminated
by measurement noises. Hence, an exact solution to Equation (4.11) for the rotation matrix
A does not necessarily exist.

4.4.1 TRIAD algorithm

The TRIAD algorithm [20], which is the most popular attitude determination method due
to its simplicity, provides a deterministic, non-optimal solution based on two nonparallel
vector observation pairs {b1, r1} and {b2, r2}. These vectors are assumed to have unity mag-
nitude or have been normalized. The exact solution satisfying the following two equations
simultaneously usually doesn’t exist considering the presence of measurement noise in vector
sensors {

b1 = Ar1

b2 = Ar2

(4.12)

An approximate solution, however, can be found by constructing two triads based on mea-
sured vectors in the reference and the sensor frame respectively as follows

v1 = r1

v2 =
r1 × r2

||r1 × r2||2
v3 = v1 × v2

(4.13)

Namely, in order to construct the triad {v1, v2, v3} from the measurements {r1, r2}, first set
v1 equal to r1, then calculate v2 from the normalized cross product of v1 and r2 and finally
calculate v3 from the cross product of v1 and v2. Then, {v1, v2, v3} are three (orthonormal)
axes of the triad. The triad {w1, w2, w3} can be constructed similarly from measurements
{b1, b2}. This procedure is depicted is Figure 4.3.
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Figure 4.3: The diagram of the triad method. The rotation matrix A represents the trans-
formation between the frames Fr and Fb.

Lemma 4.1. There exists a unique rotation matrix A satisfying

wi = Avi, i = 1, 2, 3 (4.14)

and the solution is given by

A =
3∑
i=1

wiv
T
i (4.15)

Proof. To prove that the given expression is a solution, we simply plug it back to the right-
hand side of the equality. One can easily see that

RHS = (
3∑
i=1

wiv
T
i )vj = wj (4.16)

since vi’s are orthonormal

vTi vj =

{
0 if i 6= j

1 if i = j
(4.17)

To show the uniqueness, we assume that there exists another solution Ā 6= A. We then have

wi = AĀTwi, i = 1, 2, 3

⇒ AĀT = I3×3

⇒ A = Ā

(4.18)

which leads to a contradiction. �

The rotation matrix A given in the lemma is an approximate solution to Equation (4.11)
(it doesn’t solve the equation with i = 2). Clearly, the TRIAD algorithm discards some
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information in {b2, r2}. However, the approximate solution is exact if the following condition
is true

b1 · b2 = r1 · r2 (4.19)

The drawback of the TRIAD algorithm is that it can accommodate at most two observation
pairs. In cases where many vector observations are available, the TRIAD algorithm can be
cumbersomely repeated for every two pairs and the final determined attitude can fuse all
estimates by some means.

4.4.2 q-method

An optimal attitude solution is

A = arg min
A

1

2

N∑
i=1

σ−2
i ||bi − Ari||22︸ ︷︷ ︸
,J(A)

subject to AAT = I3×3

(4.20)

where σi is the weight on each observation pair, accounting for the confidence in each sensor.
This problem was first posed by Grace Wahba in 1965 [18] and the solution is the maximum-
likelihood solution, or the least square solution. The equality constraint is directly from the
definition of the rotation matrix. Its presence makes this problem harder to solve than an
ordinary least-square problem. However, the closed-form solution does exist, and is given by
the following lemma.

Lemma 4.2. The optimal attitude solution q̂ (parameterized in quaternions) can be found
by performing eigenvalue decomposition on K

Kq̂ = λmaxq̂, where K =
N∑
i=1

σ−2
i Ω(bi)Γ(ri) (4.21)

That is, q̂ is the normalized eigenvector of K associated with its largest eigenvalue.

Proof. We first rewrite the cost function

J(A) = −
∑

σ−2
i bTi Ari + const. (4.22)

The optimization problem is equivalent to maximizing

J ′(A) =
∑

σ−2
i bTi Ari (4.23)

To simplify the calculation further, we change the parameterization to the quaternion

J ′(q) =
∑

σ−2
i bTi Ξ(q)Ψ(q)︸ ︷︷ ︸

A

ri (4.24)
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with a equality constraint qT q = 1. Two identities are important here

Ξ(q)b = Ω(b)q

Ψ(q)r = Γ(r)q
(4.25)

Now the problem becomes

q̂ = arg max
q
qTKq subject to qT q = 1 (4.26)

One should be able to recognize that this problem is equivalent to the eigenvalue decompo-
sition problem. �

In contrast to the TRIAD algorithm, the q-method can accommodate arbitrary number of
observation pairs and optimally determine the attitude. Despite that, [4] has shown that
there is little advantage to use the q-method instead of the TRIAD algorithm when there
are only two observation pairs, by analyzing the difference between two corresponding error
covariance matrices. The TRIAD algorithm is less demanding in terms of the computation
than the q-method because the latter involves an eigenvalue decomposition in the solution.
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Chapter 5

Marginalized Particle Filter

A marginalized particle filter (MPF) is designed for attitude estimation problem. Unit quater-
nions are used to parameterize rotations. The linear structure in the gyroscope bias dynamics
enables us to completely decouple its evolution from quaternion particles. We further show
that the linear part of the proposed MPF reaches a steady state, similar to what Kalman
filter does for controllable and observable linear stochastic systems. Although the MPF is
similar to the particle filter in structure, it has two advantages: (i) the theoretical superior-
ity of marginalizing linear substructure, and (ii) the reduction in total computational time.
Numerical simulations are performed to demonstrate the performance of the proposed filter.

5.1 Introduction

As mentioned previously, due to recent development in computational power, the use of par-
ticle filters (PF) gained much traction and became practical for a broad area of applications.
Cheng et. al. applied a bootstrap particle filter for sequential spacecraft attitude estimation
[26]. Because of the high dimensionality of the state vector, a prohibitively large number of
particles are needed to span the state space to support the state distribution. In contrast
to this approach, Oshman et. al. reduced the computational burden by sampling only the
attitude of the spacecraft and using a genetic algorithm to estimate the gyro bias [27].

If there exists a linear sub-structure within the nonlinear dynamics, it is possible to marginal-
ize out the linear state variables and estimate them instead with the Kalman filter (KF) while
the nonlinear state variables are estimated using the PF. This powerful combination of PF
and KF, called the marginalized particle filter (MPF) or the Rao-Blackwellized particle filter,
can effectively increase the estimation accuracy and possibly reduce the computation load
[28]. The scheme has been directly applied for attitude estimation by Liu et. al. [29]. This
dissertation’s contribution is to further exploit the underlying linear-substructure, and show
that the linear state evolution is completely independent of the nonlinear part.
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The remainder of the chapter is organized as follows. In Sec. 5.2 through 5.5, a review
of Bayesian inference, the sequential Monte Carlo method and the marginalized particle fil-
ter is provided. In Sec. 5.6, the MPF is applied to tackle the attitude estimation problem.
The algorithm is discussed in details. In Sec. 5.7, an algorithmic comparison of PF and the
steady-state MPF is presented. In Sec. 5.8, a numerical study is performed to show superior
performance of MPF over PF and EKF.

5.2 Stochastic Model and Bayesian Inference

Consider a general discrete-time nonlinear stochastic model

xn+1 = f(xn, un, wn), x1 ∼ p(x1), wn ∼ p(w) (5.1)

where xn is a random vector representing the uncertain state variable at step n, wn is a
random vector representing the process noise, un is the deterministic control input, “∼”
means distributed according to, p(x1) is the probability density function of the initial state.
If the probability density of wn is known, the model above will further give p(xn+1|xn), which
is the probability density associated with the time evolution from xn to xn+1. Suppose we
can make statistically independent observations at each time according to

yn = h(xn, un, vn), vn ∼ p(v) (5.2)

That is, we are given p(yn|xn), the likelihood of getting a measurement yn conditioned on
the state xn. Note that the dependence on un has been dropped for notation simplicity.

The Bayesian filtering problem is to compute the posterior distribution of x1:n given a col-
lection of observations y1:n, denoted as p(x1:n|y1:n)

p(x1:n|y1:n) =
p(x1:n, y1:n)

p(y1:n)
(5.3)

where the joint probability density function p(x1:n, y1:n) and the normalizing factor p(y1:n)
can be computed using the process model, the measurement model and the initial state
distribution as follows

p(x1:n, y1:n) = p(x1:n)p(y1:n|x1:n)

p(x1:n) = p(x1)
n∏
k=2

p(xk|xk−1)

p(y1:n|x1:n) =
n∏
k=1

p(yk|xk)

p(y1:n) =

∫
p(x1:n, y1:n)dx1:n

(5.4)
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5.3 Recursive Bayesian Inference

Through straightforward algebraic manipulation and probability theory, one can show that
the posterior distribution p(x1:n|y1:n) can be computed in a recursive way. The unnormalized
posterior distribution p(x1:n, y1:n) can be expanded using the chain rule and simplified by
the Markov assumption

p(x1:n, y1:n) = p(yn|xn) · p(xn|xn−1) · p(x1:n−1, y1:n−1) (5.5)

Dividing both sides by p(y1:n) = p(yn|y1:n−1) · p(y1:n−1), we get

p(x1:n|y1:n) = p(x1:n−1|y1:n−1) · p(xn|xn−1) · p(yn|xn)

p(yn|y1:n−1)
(5.6)

Marginalizing out x1:n−1 in the equation above, we have the following update equation (5.7)

p(xn|y1:n) =
p(yn|xn) · p(xn|y1:n−1)

p(yn|y1:n−1)
(5.7)

The prior distribution term p(xn|y1:n−1) comes from the fact that∫ ∫
p(x1:n−1|y1:n−1) · p(xn|xn−1)dx1:n−2dxn−1

=

∫
p(xn−1|y1:n−1) · p(xn|xn−1)dxn−1

=p(xn|y1:n−1)

(5.8)

Equation (5.8) above is known as the prediction equation.

5.4 Sequential Monte Carlo method

5.4.1 Monte Carlo Estimator

Consider a random variable x having a generic probability density function π(x). If we
take N independent samples of the random variable, X i ∼ π(x) for i = 1, . . . , N , then the
Monte Carlo method approximates π(x) by π̂(x), called the Monte Carlo estimator (perfect
sampling)

π̂(x) =
1

N

N∑
i=1

δXi(x), X i ∼ π(x) (5.9)

where δX(•) denotes the Dirac delta function at X. The term “perfect sampling” comes
from the fact that X i ∼ π(x).
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Figure 5.1: Comparison of the target distribution N (0, 1) (in black) and its Monte Carlo
estimator (in cyan bars). The estimator is essentially a (normalized) histogram of 5000
samples drawn from the target distribution.

Figure 5.1 shows an example demonstrating the approximation accuracy between a tar-
get distribution N (0, 1) and its Monte Carlo estimator constructed using 5000 samples.
We can also approximate the expectation of any test function φ(x) given by

E[φ(x)] =

∫
φ(x)π(x)dx

Ê[φ(x)] =

∫
φ(x)π̂(x)dx =

1

N

N∑
i=1

φ(X i), X i ∼ π(x)

(5.10)

The last equality is obtained by simply plugging in the definition of π̂(x).

5.4.2 Importance Sampling

One problem associated with the basic Monte Carlo approach is that one is not able to
directly draw samples from the target distribution. For example, in order to do Bayesian
inference in the previous stochastic model, one has to sample from p(x1:n, y1:n), which is not
possible.

Importance sampling, as opposed to perfect sampling, addresses the aforementioned problem.
Writing the target probability density function π(x) as

π(x) =
γ(x)

Z
, where Z =

∫
γ(x)dx (5.11)
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where γ(•) is the unnormalized probability density which is assumed to be known only
pointwise, Z is the normalizing constant which might be unknown. We introduce a proposal
density q(x) that is known and has a wider support than π(x), i.e.

∀x, π(x) > 0⇒ q(x) > 0 (5.12)

We have

π(x) =
w(x) · q(x)

Z
, where Z =

∫
w(x)q(x)dx (5.13)

where w(x) called the unnormalized weight function is by definition

w(x) =
γ(x)

q(x)
(5.14)

Note w(x) is known pointwise. One should recognize that Z is the expectation of w(x) taken
over q(x), hence it has a Monte Carlo estimator Ẑ

Ẑ = Ê[w(x)] =
1

N

n∑
i=1

w(X i), X i ∼ q(x) (5.15)

Therefore, the Monte Carlo estimator (importance sampling) of π(x) is

π̂(x) =
1

NẐ

N∑
i=1

w(X i)δXi(x)

=
N∑
i=1

w(X i)∑N
j=1w(Xj)

δXi(x), X i ∼ q(x)

(5.16)

Remark 5.1. The fundamental modification here is that now the samples are drawn from a
proposal distribution q(x), instead of the target distribution π(x).

Remark 5.2. The last equality simply means the unnormalized weights have to be normalized
before approximating the target distribution.

The choice of the proposal distribution is important since it has a big impact on the accu-
racy of the approximation. For example, we use two proposal distributions q1(x) = U(−5, 5)
and q2(x) = N (0, 1.2) to approximate the target distribution π(x) = N (0, 1). The number
of samples is 5000 in both cases. The comparison is shown in Figure 5.2. It can be observed
that the approximation accuracy is higher when we use N (0, 1.2).

In summary, a good proposal distribution q(x) should have the following properties:

• q(x) has a wider support than π(x)

• q(x) should be as close as possible to π(x)

• it should be easy to draw samples from q(x)

• it should be easy to compute q(X) where X is any realization of x
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Figure 5.2: Two different proposal distributions used to approximate the target distribution
N (0, 1). (a) uniform distribution in [−5, 5], (b) normal distributionN (0, 1.2), (c) the approx-
imated target distribution when q1(x) = U(−5, 5), (d) the approximated target distribution
when q2(x) = N (0, 1.2).

5.4.3 Sequential Importance Sampling

Another problem with the Monte Carlo method is that the random vector may live in a com-
plex multi-dimensional space. Hence sampling in this space is not computationally efficient.
For example, samples of (x1:n, y1:n) need to be drawn from the aforementioned stochastic
model. In this following section, sequential importance sampling (SIS) will be discussed in
this specific context.

The target distribution is

πn , p(x1:n|y1:n) =
p(x1:n, y1:n)

p(y1:n)
,
γn
Zn

(5.17)
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where the subscript n indicates the time index. One can use the following proposal distri-
bution

qn = p(x1:n) (5.18)

Note that qn satisfies that

qn = qn−1 · p(xn|x1:n−1)

= q1 ·
n∏
k=2

p(xk|x1:k−1)

= q1 ·
n∏
k=2

p(xk|xk−1)

(5.19)

In order to generate samples {Xn+1} ∼ p(xn+1), one simply pass the samples in the previous
iteration {Xn} through the true process

X i
n+1 = f(X i

n, un,W
i
n), i = 1, . . . , N (5.20)

where W i
n is an instantiation of the process noise. Hence, sampling can be done recursively.

The weight can also be calculated in a recursive way

wn =
γn
qn

=
γn−1

qn−1

· γn
γn−1 · p(xn|xn−1)

= wn−1 ·
p(x1:n, y1:n)

p(x1:n−1, y1:n−1) · p(xn|xn−1)

= wn−1 · p(yn|xn)

(5.21)

where the last equality is directly from Equation (5.6). Although p(yn|y1:n−1) is unknown,
it is nothing but a normalizing factor. The recursion starts with

w1 =
γ1

q1

=
p(x1, y1)

p(x1)
= p(y1|x1) (5.22)

The SIS algorithm is summarized as follows

5.4.4 Resampling

We have seen that SIS provides a recursive way to generate samples of qn = p(x1:n). Al-
though the importance weights take into account of the measurements y1:n to make sure that
the Monte Carlo estimator is valid, the approximation accuracy will be poor since the pro-
posal distribution will gradually drift away from the target distribution because we sample



CHAPTER 5. MARGINALIZED PARTICLE FILTER 50

Data: Measurements y1:T

Result: Posterior distribution π̂(xn), n = 1, . . . , T
for n = 1:T do

if n = 1 then
for i = 1:N do

Sample X i
1 ∼ p(x1);

Compute the weights w1(X i
1) = p(y1|X i

1);

end

else
for i = 1:N do

Sample X i
n ∼ p(xn|X i

n−1);
Compute the weights wn(X i

1:n) = wn−1(X i
1:n−1) · p(yn|X i

n);

end

end

π̂(xn) =
∑N

i=1
wn(Xi

1:n)∑N
j=1 wn(Xj

1:n)
δXi

n
(xn);

end
Algorithm 1: Sequential importance sampling algorithm

regardless of the available measurements.

Resampling techniques are the real trick of the sequential Monte Carlo method. Resam-
pling transforms a set of particles to another set of the same size but corresponding to a
different distribution.

Suppose we are at the n-th step, and we approximate p(x1:n|y1:n) using the Monte Carlo
estimator p̂(x1:n|y1:n) with the weighted samples X i

1:n from p(x1:n). For better approxima-
tion accuracy in the next step, we want to draw samples from p(x1:n|y1:n). We can simply
sample from its approximation p̂(x1:n|y1:n). Equivalently, we draw with replacements N sam-
ples from {X1:n} to form a new set {X̄1:n}. The probability of drawing X i

1:n is given by its

normalized importance weight
wn(Xi

1:n)∑N
j=1 wn(Xj

1:n)
. After resampling, the weights need to be reset

to 1/N , i.e. the weights are not accumulated as in SIS. The new Monte Carlo estimator is

p̂new(x1:n|y1:n) =
1

N

N∑
i=1

δX̄i
1:n

(x1:n) (5.23)

The three most popular improved resampling algorithms found in the literature are:

1. systematic resampling

2. residual resampling
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Figure 5.3: The Monte Carlo estimator of N (0, 1), (a) before resampling, (b) after resam-
pling.

3. multinomial resampling

Figure 5.3 shows the Monte Carlo estimator of N (0, 1) using 5000 samples drawn from
N (0, 1.2) before and after resampling.

5.4.5 Sequential Importance Resampling

Resampling is equivalent to using a new proposal distribution p(x1:n+1, y1:n), as opposed to
p(x1:n+1). We obtain samples from it by passing {X̄1:n} ∼ p(x1:n, y1:n) through the process
model since

p(x1:n+1, y1:n) = p(xn+1|xn) · p(x1:n, y1:n) (5.24)

The weight in this case is

wn+1 =
p(x1:n+1, y1:n+1)

p(x1:n+1, y1:n)

= p(yn+1|xn+1)

(5.25)

which is not accumulative.

The algorithm of the SIS with resampling is called the sequential importance resampling
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(SIR), a.k.a. the particle filter (PF). The algorithm is summarized as follows

Data: Measurements y1:T

Result: Posterior distribution π̂(xn), n = 1, . . . , T
for n = 1:T do

if n = 1 then
for i = 1:N do

Sample X i
1 ∼ p(x1);

Compute the weights w1(X i
1) = p(y1|X i

1);

end
Resample {X i

1}Ni=1 to obtain N new equally weighted samples {X̄ i
1}Ni=1;

else
for i = 1:N do

Sample X i
n ∼ p(xn|X̄ i

n−1);
Compute the weights wn(X i

1:n) = p(yn|X i
n) (does not require wn−1);

end
Resample {X i

n}Ni=1 to obtain N new equally weighted samples {X̄ i
n}Ni=1;

end

π̂(xn) = 1
N

∑N
i=1 δX̄i

n
(xn)

end
Algorithm 2: Sequential importance resampling algorithm

5.5 Marginalized Particle Filter

We have demonstrated that a recursive algorithm offers computational efficiencies. Another
improvement can be done by partitioning the state into two parts and apply the Monte
Carlo method to one part, then apply efficient Bayesian filters, such as the KF, to the
other. This idea is called Rao-Blackwellization. The resulting SIR algorithm is called the
Rao-Blackwellized particle filter, or the marginalized particle filter.

5.5.1 Monte Carlo Estimator

Let us denote the two partitions of the random vector of interest as (x, z). The target
distribution π(x, z) can be written as

π(x, z) = p(z|x) · p(x) (5.26)

where p(x) is the marginal probability density of x, and p(z|x) is the conditional probability
density of z given x. If we are able to draw samples from p(x) and only have an analytical
expression for p(z|x), the Monte Carlo estimator (perfect sampling) of the target distribution
is

π̂(x, z) =
1

N

N∑
i=1

p(z|Xi) · δXi(x), X i ∼ p(x) (5.27)
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Example: Suppose we are to approximate the probability density of a two-dimensional
Gaussian random vector

π(x, z) =
1

2π
√

det(Q)
exp

{
− 1

2

[
z
x

]T
Q−1

[
z
x

]}
E[x] = 0, E[z] = 0

E
[ [z
x

] [
z
x

]T ]
= Q =

[
1 0.7

0.7 1

] (5.28)

Using the Monte Carlo method, we can draw samples from p(x),

X i ∼ p(x) =

∫
π(x, z)dz =

1√
2π

exp{−1

2
x2} (5.29)

It is known that conditional probability density p(z|X i) is also Gaussian

p(z|X i) = N (Q12Q
−1
22 X

i, Q11 −Q12Q
−1
22 Q21)

= N (0.7X i, 0.51)
(5.30)

Hence the Monte Carlo estimator will be

π̂(x, z) =
1

N

N∑
i=1

N (0.7X i, 0.51)δXi(x), X i ∼ N (0, 1) (5.31)

The estimated density is shown in Figure 5.4. Note it is a combination of slices, each slice
being exactly a Gaussian density N (0.7X i, 0.51) scaled by p(X i) approximately. Moreover,
the projection of this surface onto z − π(x, z) plane will look like π̂(x) Figure 5.1.

5.5.2 Linear Substructure Assumption

Moving forward, we will use a more specific system model

xn+1 = f(xn) + A(xn)zn +B(xn)wn

zn+1 = zn +Gen

yn = h(xn) + vn

x1 ∼ p(x1), z1 ∼ N (ẑ1|0, P1|0)

wn ∼ N (0, Q1), en ∼ N (0, Q2), ∀n
vn ∼ N (0, R), ∀n

(5.32)

where the state is partitioned such that x and z appear nonlinearly and linearly respectively.
Also, the process noise w, e and the measurement noise v are white, Gaussian and uncor-
related with each other and (x1, z1), and appear linearly in the system. The Bayes’ net is
shown in Figure 5.6.
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Figure 5.4: The Monte Carlo estimator of a 2D Gaussian random vector is shown in blue.
The true density is shown in black.

Figure 5.5: The underlying Markov assumption of the new model.

We marginalize out z from the target distribution

πn = p(x1:n, z1:n|y1:n) = p(z1:n|x1:n, y1:n)︸ ︷︷ ︸
KF

· p(x1:n|y1:n)︸ ︷︷ ︸
PF

(5.33)

The trick here is that we will use the particle filter to estimate p(x1:n|y1:n) while using
the Kalman filter to estimate p(z1:n|x1:n, y1:n) for tractability. By doing this, we guarantee
optimality for the linear sub-structure as well as significantly reduce the computational
complexity.
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5.5.3 Particle Filtering

Because of the partition of the state, we need to modify Equation (5.6) to get

p(x1:n.y1:n) = p(yn|xn) · p(xn|xn−1, y1:n−1) · p(x1:n−1, y1:n−1) (5.34)

Note the difference here is p(xn|xn−1, y1:n−1) 6= p(xn|xn−1) because of the change in the
Markov assumption. Suppose at time n − 1 after resampling, we have samples of equal
weights from p(x1:n−1|y1:n−1), we can use a proposal distribution p(x1:n, y1:n−1)

p(x1:n, y1:n−1) = p(xn|xn−1, y1:n−1) · p(x1:n−1, y1:n−1) (5.35)

The weight is

wn =
p(x1:n.y1:n)

p(x1:n, y1:n−1)
= p(yn|xn) (5.36)

Therefore, the two density functions we need are p(xn|xn−1, y1:n−1) and p(yn|xn). They are
given by

p(xn|xn−1, y1:n−1) = N
(
fn−1 + An−1ẑn−1|n−1, An−1Pn−1|n−1A

T
n−1 +Bn−1Q1B

T
n−1

)
(5.37)

p(yn|xn) = N
(
hn, R

)
(5.38)

where fn−1 , f(xn−1), hn , h(xn), An−1 , A(xn−1), ẑn−1|n−1 and Pn−1|n−1 are the state
estimate and the error covariance from the Kalman filter, respectively.

5.5.4 Kalman Filtering

To recursively compute p(zn+1|X i
1:n+1, y1:n+1) from p(zn|X i

1:n, y1:n), we can apply the Kalman
filter theory directly and think of X i

n+1 as the second measurement

y′n = X i
n+1 − fn = Anzn +Bnwn (5.39)

Then we can perform the KF update with X i
n+1:

ẑ∗n|n = ẑn|n +Kn

(
X i
n+1 − fn − Anẑn|n

)
Kn = Pn|nA

T
n

(
AnPn|nA

T
n +Q1

)−1

P ∗n|n = Pn|n − Pn|nAT
(
AnPn|nA

T
n +Q1

)−1

AnPn|n

(5.40)
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where fn , f(X i
n), An , A(X i

n), Bn , B(X i
n).

And then perform KF prediction:{
ẑn+1|n = ẑ∗n|n
Pn+1|n = P ∗n|n +GQ2G

T
(5.41)

The KF update with yn does nothing since yn does not explicitly depend on zn{
ẑn+1|n+1 = ẑn+1|n

Pn+1|n+1 = Pn+1|n
(5.42)

Remark 5.3. Note that there is a Kalman filter associated with each particle.

5.5.5 Algorithm

The algorithm of the marginalized particle filter is summarized as follows
Data: Measurements y1:T

Result: Posterior distribution p̂(xn, zn|y1:n), n = 1, . . . , T
for i = 1:N do

Sample X i
1 ∼ p(x1);

Initialize the Kalman filter, setting ẑi1|0 = ẑ1|0, P i
1|0 = P1|0;

Compute the weights w1(X i
1) = p(y1|X i

1) (Eqn (5.38));
Kalman filter y1 update (Eqn (5.42));

end
Resample to get {X̄ i

1}Ni=1;
for n = 2:T do

for i = 1:N do
prediction:

Sample X i
n ∼ p(xn|X̄ i

n−1) (Eqn (5.37);
Kalman filter X i

n update (Eqn (5.40));
Kalman filter prediction (Eqn (5.41));

update:
Compute the weights wn(X i

1:n) = p(yn|X i
n) (Eqn (5.38));

Kalman filter yn update (Eqn (5.42));

end
Resample to get {X̄ i

n}Ni=1;

p̂(xn, zn|y1:n) = 1
N

∑N
i=1N (ẑn|n, Pn|n)δX̄i

n
(xn)

end
Algorithm 3: Marginalized particle filter algorithm
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5.6 Attitude estimation

If we discretize the quaternion kinematics and the bias evolution using a fixed Euler step

qn+1 = qn +
∆t

2
Ξ(qn)ω̃n −

∆t

2
Ξ(qn)βn −

∆t

2
Ξ(qn)ζn

βn+1 = βn + ∆t · ηn
(5.43)

It can be readily seen that the filter dynamics in Equation (5.43), and the measurement
model in Equation (4.9) are in the form of the marginalized particle filter model (Equation.
(5.32)). In particular, the state partition is[

xn
zn

]
=

[
qn
βn

]
(5.44)

Matching with the formulation in these two equations,

f(xn) = qn +
∆t

2
Ξ(qn)ω̃n

A(xn) = B(xn) = −∆t

2
Ξ(qn)

G = ∆t · I3×3

h(xn) =


A(qn)r1

A(qn)r2
...

A(qn)rN


(5.45)

A direct implementation of MPF with the definitions of the matrices above will lead to the
MPF formulation for attitude estimation. However, there are several important features
inherent in this model, which can be seen from the Bayes’ net depicted in Figure 5.6. Fur-
ther exploitation of the underlying linear structure leads to a significantly simplified MPF
formulation. The modifications are done in the following steps: (1) KF update for z1

n, (2)
PF propagation, (3) KF update for z2

n, (4) KF propagation. The detailed MPF procedure
is presented in the following subsections.

5.6.1 PF Update

After the most recent vector measurement yn is obtained, the importance weights are calcu-
lated according to,

e(i)
n = yn −


A(q

(i)
n )r1

A(q
(i)
n )r2
...

A(q
(i)
n )rM


w(i)
n ∝ exp

{
− 1

2
e(i)
n

T
R−1e(i)

n

}
w

(i)
n−1

(5.46)
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Figure 5.6: The Bayes’ net representation of the attitude estimation problem

where q
(i)
n is generated from the importance sampling function which will be discussed shortly.

The importance weights should be normalized after this step.

5.6.2 Estimate

The a-posteriori bias estimate β̂n can be obtained by the weighted average.

β̂n =
N∑
i=1

w(i)
n β

(i)
n|n (5.47)

However, because of the unit norm constraint and the sign ambiguity, the weighted average
estimate for quaternions is not optimal. Following Markley et. al.[39], the optimal average
quaternion is defined as the maximizer of a constrained quadratic programming (equivalently,
a weighted sum of the squared Frobunius norms of attitude matrix differences). Hence, the
a-posteriori attitude estimate q̂n is,

q̂n = arg max
q
qTLq

subject to qT q = 1

where L =
N∑
i=1

w(i)
n q

(i)
n q

(i)
n

T

(5.48)

The maximization problem can be solved analytically. q̂n is an eigenvector of L corresponding
to the maximum eigenvalue.

5.6.3 KF Update for yn

The measurement yn does not contain any information about the linear state variable βn.
The corresponding KF update cannot be used and thus left out in the algorithm.
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5.6.4 PF propagation

The conditional a-priori distribution of the nonlinear state variables is,

P (qn+1|q(i)
n , Yn) =

N
(
q(i)
n +

∆t

2
Ξ(q(i)

n )(ω̃n − β(i)
n|n−1),

∆t2

4
Ξ(q(i)

n )(P
(i)
n|n + Q̄1)ΞT (q(i)

n )

)
(5.49)

where N represents a normal distribution. P (qn+1|q(i)
n , Yn) is actually the importance sam-

pling function in the MPF. One will instantiate N particles q
(i)
n+1 from this distribution.

Equivalently, q
(i)
n+1 can also be generated by,

q
(i)
n+1 = q(i)

n +
∆t

2
Ξ(q(i)

n )(ω̃n − β(i)
n|n − υ)

υ ∼ N (03×1, P
(i)
n|n + Q̄1)

(5.50)

5.6.5 KF Update for y′n

The second measurement y′n is important because it is the only way that information in
yn can be incorporated in the linear state variable. Based on the following measurement
equation

y′n = q
(i)
n+1 − q(i)

n −
∆t

2
Ξ(q(i)

n )ω̃n = −∆t

2
Ξ(q(i)

n )βn −
∆t

2
Ξ(q(i)

n )υ (5.51)

KF update is performed,

β
(i)
n|n = β

(i)
n|n−1 +Kn(y′n +

∆t

2
Ξ(q(i)

n )β
(i)
n|n−1)

P
(i)
n|n = P

(i)
n|n−1 −KnMnK

T
n

Mn =
∆t2

4
Ξ(q(i)

n )(P
(i)
n|n−1 + Q̄1)ΞT (q(i)

n )

Kn = −∆t

2
P

(i)
n|n−1ΞT (q(i)

n )M †
n

(5.52)

where the pseudo-inverse of Mn, denoted as M †
n is used in calculating the KF gain. M †

n is
found to be,

M †
n =

4

∆t2
Ξ(q(i)

n )(P
(i)
n|n−1 + Q̄1)−1ΞT (q(i)

n ) (5.53)

Also, Eqn. (5.51) simplifies the innovation error of KF,

y′n +
∆t

2
Ξ(q(i)

n )β
(i)
n|n = −∆t

2
Ξ(q(i)

n )υ(i) (5.54)

where υ(i) is the instantiation used to generate q
(i)
n+1. With those, the KF update can be

simplified to,
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Mean update:
β

(i)
n|n = β

(i)
n|n−1 + P

(i)
n|n−1(P

(i)
n|n−1 + Q̄1)−1υ(i) (5.55)

Covariance update:

P
(i)
n|n = P

(i)
n|n−1 − P

(i)
n|n−1(P

(i)
n|n−1 + Q̄1)−1P

(i)
n|n−1 (5.56)

It should be noted that the KF update does not involve q
(i)
n .

5.6.6 KF propagation

The Kalman filter propagation equations are given by,

Mean propagation:
β

(i)
n+1|n = β

(i)
n|n (5.57)

Covariance propagation:
P

(i)
n+1|n = P

(i)
n|n + ∆t2Q̄2 (5.58)

which imply that the Kalman filter equations (5.55) through (5.58) are independent of the
quaternion particles. Furthermore, if each particle’s bias covariances share the same initial-
ization P̄0 , then only one, instead of N , Riccati recursions is needed i.e the particle index of
the covariance can be dropped, which can lead to a substantial reduction in computational
complexity.

5.6.7 Steady-state KF for linear state

Combining Eqns. (5.56) and (5.58), we obtain the following algebraic Riccati equation of
the a-priori linear state covariance matrix,

P
(i)
n+1|n = P

(i)
n|n−1 + ∆t2Q̄2 − P (i)

n|n−1(P
(i)
n|n−1 + Q̄1)−1P

(i)
n|n−1 (5.59)

Following Kalman filter theory, the steady-state solution P∞ is guaranteed to exist and
be positive definite. Therefore, in the MPF algorithm, there is no need for covariance
propagation. Moreover, the mean update (Eqn. (5.55)) uses the steady-state KF gain
K∞ = P∞(P∞ + Q̄1)−1.

5.7 Comparison with PF

In this section, we discuss the differences between the steady-state MPF and the PF for
attitude estimation. An algorithmic comparison is summarized in Table 5.1.
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PF Steady-state MPF

Initialization

Initialize particles Initialize quaternion particles q
(i)
0

q
(i)
0 , β

(i)
0 β

(i)
0 = β̄0

Solve the Riccati equation for P∞

Update Sec. 5.6.1 same as PF

Estimate Sec. 5.6.2 same as PF

Resampling Sec. 5.4.4 same as PF

Propagation

ω
(i)
n = ω̃n − β(i)

n − η(i) ω
(i)
n = ω̃n − β(i)

n − υ(i)

q
(i)
n+1 = q

(i)
n + ∆t

2
Ξ(q

(i)
n )ω

(i)
n q

(i)
n+1 = q

(i)
n + ∆t

2
Ξ(q

(i)
n )ω

(i)
n

β
(i)
n+1 = β

(i)
n+1 + ∆tζ(i) β

(i)
n+1 = β

(i)
n+1 +K∞υ

(i)

η(i) ∼ N (03×1, Q̄2) υ(i) ∼ N (03×1, P∞ + Q̄1)

ζ(i) ∼ N (03×1, Q̄1)

Table 5.1: The algorithmic comparison of PF and steady-state MPF for attitude estimation

In the initialization step, the PF generates particles that represent the a-priori distri-
bution of the state. However, the steady-state MPF only generates the quaternion particles,
and the bias particles are set to be the a-priori mean of the bias. As discussed in Sec. 5.6.7,
one needs to solve the algebraic Riccati equation for P∞. The update, estimate, resampling
steps for the two filters are exactly the same. In the propagation step, the PF instantiates
two random variables η ∼ N (03×1, Q̄2) and ζ ∼ N (03×1, Q̄1) in the gyroscope measurement
model. The MPF only instantiates one random variable υ ∼ N (03×1, P∞ + Q̄1). Although
the two algorithms are extremely similar, the steady-state MPF is superior to the PF.

5.8 Simulation results

In this section, we demonstrate the performance of the proposed marginalized particle filter in
numerical simulations, in comparison with the EKF (see the algorithm in the appendix) and
the PF. We use the same setup as in [22]. The noise parameters for the gyro measurements
are given by

ηn ∼ N (03×1, (
√

10× 10−10)2 · I3×3)

ζn ∼ N (03×1, (
√

10× 10−7)2 · I3×3)
(5.60)

i.e. the rate random walk and angle random walk have standard deviations
√

10×10−10rad/sec3/2

and
√

10× 10−7rad/sec1/2 respectively.
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Figure 5.7: Number of available stars

A typical star camera is also used. The star camera can sense up to 10 stars in a 6o × 6o

field-of-view. If more than 10 stars are sensed, only the first 10 stars (in terms of magnitude,
the logarithmic measure of the brightness) are used. A star catalog is used, which stores
the positions of the stars in the reference frame as well as their magnitude. Uncorrelated
zero-mean Gaussian random variables each with 3-σ value of 0.005 degrees are added to the
raw star camera measurements (i.e. star positions in the camera sensor frame). The sam-
pling time for the gyro and the star camera is 1 second. The number of particles used is 3000.

The true initial quaternion is set to be [0, 1/
√

2, 0, 1/
√

2]T . The true angular velocity is
set to [−0.0012, 0, 0]T rad/sec (i.e. the spacecraft always rotates along the body x axis and
finishes a full revolution in 90 minutes). The number of stars available at each sampling
time is shown in Figure 5.7.

Case1: with prior information:
In this case, we assume that some prior information of the attitude and bias is available.
Concretely, the initial attitude and bias estimates are unbiased, and the initial covariance
for the attitude error is set to 12(deg2), the initial covariance for the gyro drift is set to
22(deg/hr)2. Thus the initial state error covariance in EKF is

P0|−1 =

[
(3.05× 10−5) · I3×3 0

0 (9.40× 10−5) · I3×3

]
(5.61)

The initial set of particles used in the MPF and the PF is drawn according to this distribu-
tion. Figure 5.8 shows the attitude error in Euler angles from the three methods. The MPF
and the EKF (overlapping each other in the plot) are able to keep the errors small, which
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are within the 3σ boundary computed in the EKF. The yaw error is much larger than the
yaw pitch errors, due to the fact that the boresight of the camera is aligned with the body
z-axis. The width of the boundary changes due to the number of available stars. The less
available star indicates a larger uncertainty. The PF is not able to track the true attitude
as well as the other two, especially in the yaw direction. The reason in the author’s opinion
is that 3000 particles is not enough to span a seven-dimensional space. A similar trend is
observed in the bias estimate in Figure 5.9, which shows the bias estimates from the three
methods. Again the MPF and the EKF are comparable, while the PF has a relatively larger
error in the z direction.

Case2: without prior information:
The proposed MPF formulation is especially powerful and attractive when there is no prior
information of the attitude. The EKF has no guarantee of convergence (it may still work
with a random initial state estimate and a large error covariance). The MPF and the PF
can uniformly sample from four-dimensional space, then normalize the obtained sample to
form a unit quaternion. The system parameters are kept the same.

To accommodate larger uncertainties, especially at the beginning, two heuristics discussed
in [26] are adopted:

• Use of an initially large but decaying measurement noise covariance:
If the number of particles is limited and the measurement distribution is too narrow,
it is possible that all the weights are tiny. This creates a numerical issue when one
wants to normalize the weights. One possible heuristic is to have a large measurement
noise covariance at the beginning, and then gradually decreases as the state distribution
narrows down. In the simulation, the following time-varying covariance is implemented

R′ = (1 + 5× 106 · exp{−0.008 · t}) ·R (5.62)

• Roughening:
As mentioned earlier, resampling focuses the particles at the region which has a high
density. Consequently, replicates are created for the particles with large weights.
Roughening refers to adding small independent jitter to those duplicates, i.e. to in-
crease variation/diversity in the particles.

Figure 5.10 shows the comparison of the convergence performance of the three methods.
Empirically, the performance of the EKF really depends on the accuracy of the initial guess,
which is random. For benchmarking, we are showing 90o and 180o(worst case) initial errors.
When the initial state error covariance is not tuned properly, it is also possible for the filter
to diverge. From the figure, we observe that the MPF and the PF have a comparable faster
convergence rate (overlapping each other in the plot) than the EKF. The estimate error is
reduced to around 3o in one step. Both curves corresponding to the EKF initially drop down
and then rise. This is very likely due to overshooting.
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5.9 Summary

This chapter derived a steady-state marginalized particle filter for sequential attitude esti-
mation. Marginalizing the linear gyroscope bias increases estimation accuracies. By further
exploiting the linear substructure, we show that the bias evolution is independent of the
quaternion particles and its covariance reaches a steady-state value, which will reduce the
computation complexity. Comparison with the standard particle filter and the extended
Kalman filter in numerical simulations validates the superior performance.
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Figure 5.8: Attitude estimate errors in Euler angles from the three methods. The 3σ bound-
ary from the EKF is provided.
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Figure 5.9: Bias estimate from the three methods.
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Figure 5.10: (a) Absolute error angles from the three methods. (b) Zoom-in view of the
errors.
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Chapter 6

Complementary filter

An innovative implementation of attitude estimation in 3 degrees of freedom (3-DOF) com-
bining the TRIAD algorithm [20] and a time-varying nonlinear complementary filter (TVCF)
is derived. This work is inspired by the good performance of the TVCF in 1-DOF [35] de-
veloped for applications limited to small mobile platforms with low computational power. To
demonstrate robust 3-DOF estimation, information from vector and rate-gyroscope measure-
ments are fused. Simulation and experimental results demonstrate comparable performance
to the extended Kalman filter (EKF) and improved performance over alternative methods
such as sole gyroscope rate-integration and the TRIAD algorithm without the TVCF as a
pre-filter.

6.1 Introduction

Orientation estimation in three degrees of freedom is useful and necessary for a broad area
of applications. Examples include satellites, mobile robots, phones and motion tracking for
video games, film industry and sports. Many sensors have been studied for this purpose;
for example, inertial measurement units (IMUs), indoor/outdoor GPS, star cameras, vision,
ultrasonic senors and range finders [40, 41, 42, 43]. For terrestrial applications, IMUs, while
still computationally limited are attractive since they are becoming faster, more compact
and affordable. For space/satellite applications, a star camera is convenient since unbiased
vector measurements can be acquired from the surrounding stars.

The results of other researchers that have studied 3-DOF orientation estimation [41, 44]
are promising, but can be improved in some form. Nonlinear forms of the Kalman filter
have also been studied for attitude estimation [45], but the heavy computational complexity
can make them less attractive in applications where only small scale processors are available.

We have combined two computationally efficient schemes, the TRIAD algorithm and the
time-varying complementary filter (TVCF), and developed an algorithm that shows compa-



CHAPTER 6. COMPLEMENTARY FILTER 68

rable performance to the EKF with less computional burden. It aims to be implementable
on a small portable platform with low computational power in Figure6.8a. This application
can benefit from complementary filtering because rate and angle sensors (gyroscope ver-
sus accelerometer and magnetometer) possess benefits and drawbacks in different frequency
regimes [32, 33, 34]. The TVCF, which uses a fuzzy logic scheme to adjust trust to different
sensors, has already been found to be useful for 1-DOF attitude estimation due to its low
computational requirement and the ability to discern stationary and motion states [35]. This
chapter generalizes the previous work to 3-DOF attitude estimation. We will also show that
when the angle measurements are from a star camera, the complementary filtering method
with a tuned fixed cutoff frequency also shows comparable performance to the EKF. The
experimental results are made possible by the Quanser 3-DOF gyroscope in Figure6.8b, to
provide true attitude verification and sensor calibration through high resolution encoders.

The remainder of the chapter is organized as follows. In Sec. 6.2, the concept of com-
plementary filtering is introduced. In Sec. 6.3, the complement filter is applied in 1-DOF
attitude estimation problem to demonstrate its effectiveness. In Sec. 6.4, an innovative non-
linear complementary filter structure for 3-DOF attitude estimation is discussed. Sec. 6.5
presents the extension of the fuzzy logic based cutoff frequency scheduling which makes the
algorithm suitable for use in many terrestrial applications. The simulation and experimental
results are shown in Sec. 6.6.

6.2 Complementary Filter

Complementary filtering is a well-known signal processing method, implemented in various
fields. The advantage of using CF is its simple structure yet it still yields good performance.
Compared with some optimal filters such as the Kalman filter, the computations required
by CF are much less, and can be easily handled by micro-processors such as Arduino. The
conventional CF method utilizes linear-time-invariant filters with different frequency char-
acteristics, such that only the reliable components are selectively extracted in the frequency
domain.

The block diagram of a general two input complementary filter is shown in Figure 6.1.
In the first-order implementation, Ghp can be set as a first-order high-pass filter with a fixed
cut-off frequency ωc. Namely

Ghp(s) =
s

s+ ωc
(6.1)

The complement low-pass filter is

Glp(s) =
ωc

s+ ωc
(6.2)

Note that
Ghp(s) +Glp(s) = 1, ∀ω, s = jω (6.3)
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Figure 6.1: Block diagram of a general first-order complementary filter.

If two input signals θl and θh are reliable at high and low frequencies respectively

θl(t) = θ(t) + ηl(t)

θh(t) = θ(t) + ηh(t)
(6.4)

where θ is the true value, ηl and ηh are low-frequency and high-frequency noises relative
to ωc. The estimator given by the CF , denoted as θ̂, can be obtained by utilizing the
complementary filter to attenuate noises by the corresponding high-pass and low-pass filters

θ̂ = Ghp(s) · (θ + ηl) +Glp(s) · (θ + ηh)

= θ +Ghp(s) · ηl +Glp(s) · ηh
(6.5)

Note that the signals in the equation above are in the Laplace domain. The actual perfor-
mance of the filter depends on (i) how separated the frequencies are and (ii) how well ωc is
designed.

The discretized complementary filter can be obtained by applying Tustin’s bilinear transfor-
mation. The time-domain difference equation is shown below

θ̂(n+1) =
1

2 + ωc∆t

(
(2−ωc∆t)·θ̂(n)+ωc∆t·(θh(n+1)+θh(n))+2·(θl(n+1)−θl(n))

)
(6.6)

where ∆t represents the sampling period.

6.3 Motivating 1-DOF attitude estimation example

In this section, we discuss the use of CF in determining the attitude in 1-DOF. Consider
the case where we want to calculate the angle of a bar which swings from a pivot at one
end. The schematic is shown in Figure 6.2. Two sensors are rigidly attached on the bar: a
gyroscope and an accelerometer. The CF is used to combine two angle measurements, one
from the rate integration and the other from the gravity vector.
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pivot

acc & gyro

Figure 6.2: A imaginary scenario: a bar swings from a pivot at one end, with two inertial
sensors attached at the other end.

By direct integrating the gyroscope measurements, one can write

θg(t) = θ0 +

∫ t

t0

ω(τ)dτ

= θ(t) +

∫ t

t0

β(τ) + ηv(τ) dτ︸ ︷︷ ︸
ηl(t)

, θl(t)

(6.7)

The second term is the integration of random noises, which has low frequency character-
istics. The accelerometer (planar) measures the gravitational acceleration and the motion
acceleration expressed in the body frame{

ax(t) = g · cos θ(t) + ηx(t)

ay(t) = g · sin θ(t) + ηy(t)
(6.8)

where ηx and ηy are zero-mean random noises. Motion acceleration is assumed to be negli-
gible. The orientation can be computed simply as

θa(t) = atan2

(
ax(t), ay(t)

)
, θh(t) (6.9)

The function atan2 produces results in the range (π, π]. This signal is usually reliable at low
frequencies, since it is predominately corrupted by measurement noises.

Thus the CF is able to fuse the two estimates to obtain a more accurate estimate com-
pared to each individual

θ̂ = Ghp(s) · θg +Glp(s) · θa (6.10)

We assume that the true angle profile is sinusoidal, with amplitude 60o and frequency
0.01rad/sec

θ = 60o · sin(0.01 t) (6.11)
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Figure 6.3: (a) Comparison of the angle signals. (b) Comparison of the estimate errors.

The gyroscope measurements are generated by adding the rate random walk and the angle
random walk to the true angular rate. The covariances of these random signals are given by

q = 6.5× 10−11rad1/2/sec, r = 7.6× 10−10(rad/sec)1/2 (6.12)

The accelerometer measures the gravitational vector projected in the body frame. The co-
variance of the additive Gaussian noise in the accelerometer is assumed to be 5×10−4m1/2/s.
Equation (6.6) is used to fuse the two measurements. The cut-off frequency ωc is selected to
be 3rad/s. The comparison is shown in Figures 6.3a and 6.3b. It is clear in the latter plot
that the CF is able to attenuate the measurement noise in the accelerometer and eliminate
the offset from the rate integration.

6.4 CF in 3-DOF attitude estimation

As we have seen in the motivating example, rate and angle sensors possess noises in different
frequency regimes, thus we are motivated to extend the complementary filtering method to
attitude estimation in 3 DOF.

6.4.1 Filter structure

In a first-order complementary filter, we extract the useful low frequency information from
the vector measurement (introduced in Chapter 4) by passing it through a low pass filter
and the useful high frequency information from the rate measurements by passing it through
a high pass filter (Figure 6.4a) where both filters have the same cutoff frequency, ωc. On
Earth, the vector measurements b1 and b2 in Fb could be taken by the on-board accelerom-
eter and magnetometer respectively; in space they could be two vector measurements from
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Figure 6.4: (a) Details of the tvcf block. (b) The nonlinear complementary filter used as a
prefilter to the triad method used in 3-dof attitude estimation.

a star camera.

In actuality, the components of the rate signal, ḃg are passed through a slightly modified
high-pass filter (lower channel of Figure 6.4a) that incorporates an integrator,

Y (s) =
s

s+ ωc
U(s) =

1

s+ ωc
L{u̇} (6.13)

It is desirable to directly use the measurements from a gyroscope, ω, as the rate signal,
however the nonlinearity in the attitude kinematics requires further treatment. We denote
bg1 and bg2 as two vector measurements estimated by integrating angular velocity. The rate
of change of these two vector measurements can be estimated by the gyroscope measurement
using the rotation matrix kinematic relationship

ḃgi(k) = Ȧ(k)ri

= −[ω(k)×]A(k)ri

≈ −[ω(k)×]b̂i(k), i = 1, 2

(6.14)

Note that the ri’s are constant vectors in the reference frame and b̂i’s are the best estimates
of the vectors from the TVCF. A discrete-time complementary filter is obtained by applying
the bilinear transformation.

The block diagram of the entire 3-DOF estimation scheme is shown in Figure 6.4b, which
can be summarized as follows: the initial measurements of the earth gravitational vector r1

and the magnetic flux r2 are recorded during the setup initialization. Namely, the initial
attitude is chosen to be the reference frame. Also, the IMU is assumed to be initialized
properly so that no bias is present initially. At time step k, the best estimate of attitude
is available, or equivalently the b̂i(k)’s are available. The vectors b1(k + 1), b2(k + 1), and
ω(k + 1) are measured by the accelerometer and magnetometer or star camera, and gyro-
scope respectively. Their derivatives ḃg1(k+ 1) and ḃg2(k+ 1) are calculated from Equation
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(6.14). Two parallel time-varying complementary filters then fuse the sensor measurements
to obtain the best estimates of the normalized vector measurements

b̂i(k + 1) =
ωci(k + 1)∆t

2 + ωci(k + 1)∆t
(bi(k) + bi(k + 1))+

2− ωci(k + 1)∆t

2 + ωci(k + 1)∆t
b̂i(k) +

∆t

2 + ωci(k + 1)∆t
(ḃgi(k) + ḃgi(k + 1))

i = 1, 2

(6.15)

where ∆t denotes the sampling period. With b̂1(k + 1) and b̂2(k + 1) obtained from the
TVCF, the attitude estimate at time step k+ 1, parameterized by the rotation matrix A, is
then calculated by the TRIAD algorithm.

6.5 Fuzzy Logic Based Time-Varying Cutoff

Frequency Scheduling

When using an accelerometer and a magnetometer, we can take advantage of their physical
properties to adapt the cutoff frequencies between a low and high value based on a fuzzy
logic approach proposed by Chang-Siu et al [35]. In 1-DOF pitch angle estimation, the
magnetometer is not required; for the accelerometer, a fuzzy logic scheme is used to discern
the stationary state. In 3-DOF the magnetometer provides true heading information, but
the scheme will need to account for disturbances in the magnetic field. The output of the
fuzzy logic variable µ, which is valued in the range of [0, 1], signifies how the cutoff frequency
shifts between ωhigh and ωlow as

ωc = µωhigh + (1− µ)ωlow (6.16)

Note that if µ = 1 then ωc = ωhigh, which indicates when the accelerometer or magnetometer
signal is trusted more than the gyroscope. Conversely, if µ = 0 and ωc = ωlow, the gyroscope
is trusted more. The cutoff frequency decreases when the magnitude of the accelerometer
or magnetometer signals deviate from their initial value (indicating rotational or transla-
tional acceleration, and magnetic disturbances), and increases when these signals are close
to their initial values. The extension from 1-DOF to 3-DOF is simple; just one additional
TVCF filter needs to be added in parallel. Therefore, two independent fuzzy logic variables,
µi, i = 1, 2, need to be computed. The details of calculating µ1 of the accelerometer channel
are the same as the 1-DOF case in [35].

For the magnetometer, the signal ym(t) = [ymx(t), ymy(t), ymz(t)]
T is considered trustwor-

thy if there are minimal magnetic disturbances. This is operationalized by examining
x1(t) = ||ym(t)||−||ym(0)|| and x2(t) = d

dt
||ym(t)|| and decreasing µ2 when these signals have

a high value, where ||ym(t)|| =
√
ymx(t)2 + ymy(t)2 + ymz(t)2. The IMU is assumed to be
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Figure 6.5: The smooth saturation function that computes the fuzzy logic variable. The
slope SI and the 50% threshold xoi can be tuned.

Table 6.1: Fuzzy logic for magnetometer.

Condition x̄1 x̄2 µ2(t)

no magnetic disturbance low low 1
constant disturbance high low 0
moving disturbance high high 0

initialized in an environment free of magnetic disturbance. If there is a constant disturbance,
such as a large piece of iron, it can be detected by comparing the magnitude of the current
magnetometer signal ||ym(t)|| to its initial value ||ym(0)||. Fluctuations in the magnetic
field, evidence of a moving disturbance, are detected by examining d

dt
||ym(t)||. This logic is

depicted in Tab. 6.1.

More formally, µ2 in the magnetometer channel is calculated by µ2(t) =
∏2

i=1(1 − x̄i(t)),
where x̄1(t) = f1(||ym(t)|| − ||ym(0)||) and x̄2(t) = f2( d

dt
||ym(t)||). As detailed in [35], fi is a

smooth saturation function shown in Figure 6.5 that converts physical units to logical units
bounded by [0, 1] and distinguishes between high and low based on parameters dependent
on the stationary signals.

6.5.1 Performance analysis

The high-frequency noises, present in the accelerometer and magnetometer measurements,
are attenuated by the low-pass filters in the algorithm. Consequently, less oscillatory behav-
ior is observed in the attitude estimation.

For the bias present in the gyroscope measurement, we will analytically show that it does not
cause the accumulation of error in this estimation scheme unlike the pure rate-integration.
However, the filtered vector measurement does maintain small steady-state error. To sim-
plify the analysis, we suppose that the body stays steady. Hence, any signals measured by
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the gyroscope are just bias β. We also neglect high-frequency noise in the accelerometer and
magnetometer in this analysis. Equation (6.15) becomes

αb̂ss =
2ωc∆t

2 + ωc∆t
btrue +

2− ωc∆t
2 + ωc∆t

b̂ss −
2∆t

2 + ωc∆t
[β×]b̂ss (6.17)

where b̂ss is the steady-state estimate from the TVCF. Note that the output from the TVCF
does not necessarily have unity norm because of discretization and noises in the accelerometer
and magnetometer. However, α ≈ 1 if fast sampling rate is assumed and noises are neglected.
Thus b̂ss has a closed-form solution

b̂ss ≈ (I3×3 + [
β

ωc
×])−1btrue (6.18)

The term in the parenthesis is invertible because its determinant is always greater than or
equal to 1. If ωc is chosen to be much greater than β component-wise, the matrix inverse
will be close to the identity. Hence the bias in the gyroscope measurement results in only
a small steady-state error in the TVCF estimate. Furthermore, there exists a tradeoff in
selecting high or low cut-off frequency. In order to attenuate the high-frequency noise using
the low-pass filter, ωc should be chosen significantly lower than noise frequencies. However,
it should be noted that the proposed filter during motion or magnetic disturbances is limited
by the quality of the gyroscope.

6.5.2 Comparison with the EKF

Since the above filters only require simple algebraic manipulations, the proposed algorithm
does not demand much computational power; the required computations can be handled by
low power processors. This is a major reason why the proposed estimation scheme should
be found attractive compared with some known optimal Kalman filter formulations when
the implementation is on mobile platforms with low computational power. For example,
several high-dimensional matrix operations (addition, multiplication and inversion) need to
be performed in the multiplicative quaternion EKF. In practice, it takes an 8MHz Arduino
Pro Mini processor on average 9 milliseconds to perform either a 6 × 6 matrix inversion or
a multiplication of two 6 × 6 matrices. Since the EKF requires more than four operations,
it cannot be processed within an acceptable sampling rate (i.e. 25Hz in our case).

In terms of filter performances, for terrestrial applications the proposed algorithm signifi-
cantly simplifies the design of the fuzzy logic law that is used to shift trustworthiness between
available sensors, and thus make it possible to easily identify distortions in vector measure-
ments. Although theoretically the EKF perfectly captures the stochastic properties of the
system and should produce more accurate estimation, it is extremely difficult in practice
to develop some equivalent time-varying noise covariance scheduling in order to account for
distortions measured in inertial vector sensors.
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Figure 6.6: Plot of error euler angles from the ekf and cf, showing similar performances
between the two methods. ωc is fixed at 2rad/s.
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Figure 6.7: Plot of the error and standard deviation by triad, rate integration, cf+triad and
ekf. significant improvements are seen using the latter two algorithms.

6.6 Results

6.6.1 Simulation results: 3-DOF spacecraft attitude estimation
simulation

Via a simulated space mission, the proposed combination of the complementary filter and the
TRIAD algorithm are shown to estimate attitude equally well compared with the multiplica-
tive quaternion EKF formulation, which is detailed in the appendix. The gyroscope model re-
mains the same but the vector measurements b1 and b2 are assumed from a star camera that
do not possess non-zero bias but only zero-mean Gaussian noises. Hence, a properly tuned
fixed cutoff frequency is used in the complementary filter approach. An arbitrary true atti-
tude profile is used. Based on the literature [22], the other parameters are set to be: the sam-
pling rate f = 100Hz, the gyro noise parameters σu = 0.003rad1/2/s, σv = 0.003(rad/s)1/2,
the star camera measurement noise covariance R = 0.03I6×6, and the initial state error co-
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9-DOF Sensor Stick

(a) (b)

Figure 6.8: (a) The 9-dof inertial measurement unit and (b) The quanser 3-dof gyroscope
(size: 0.7m× 0.5m× 0.5m). Both figures are not the same scale.

variance P0 = 0.001I6×6. No initial quaternion and bias estimate errors are present. To
evaluate performance, the error Euler angles, {φ, θ, ψ} are computed by the following equa-
tion when they are small

Aerr ≈

 1 ψ −θ
−ψ 1 φ
θ −φ 1

 (6.19)

From Figure 6.6, it can be seen that the errors from the two methods are quite similar.

The total error angle, regardless of rotation axis, can be calculated from the scalar part
of error quaternion as

θtot = 2 cos−1(qerr,4) (6.20)

Figure 6.7 shows the comparison of the mean error and standard deviation from the four dif-
ferent methods. Compared with the sole TRIAD and rate integration methods, the proposed
algorithm and the EKF significantly improve the accuracy of the estimation. The proposed
algorithm retains good performance while being less demanding in terms of computations.

6.6.2 Experimental results

The performance of the proposed TVCF+TRIAD in 3-DOF attitude estimation is evaluated
via experiments. Figure 6.8a shows the 9-DOF IMU developed in the Mechanical System
Control Laboratory at UC Berkeley. It has an Arduino Pro Mini microprocessor and a
Sparkfun 9-DOF sensor stick (ADXL345 accelerometer, HMC5843 magnetometer, ITG-3200
gyroscope) onboard. The sampling frequency is set to 25Hz. The clock rate of the processor
is only 8MHz, but is capable of handling all the required computations including three
estimation algorithms in real time. This shows the computational friendliness of the proposed
TVCF algorithm. The three estimation schemes are (i) TVCF+TRIAD, (ii) angular rate
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Figure 6.9: Real-time visualization of the estimated attitude. Three benchmarks are dis-
played at the same time.

integration and (iii) pure TRIAD. In the performance validations shown below, when different
cutoff frequencies are compared, the data are collected in real time but the attitude estimates
are calculated offline. During the experiment, a graphical user interface (GUI) is used so
that the estimated attitude can be visualized in real-time (Figure 6.9).

Effect of the low-pass filter

The low-pass filter attenuates the high-frequency noise in the accelerometer and the magne-
tometer. Figure 6.10 shows the comparison of the attitude estimates when the IMU is kept
steady. The error angles are computed from the quaternions estimated by the two methods
using Equation (6.20). The oscillatory behavior is significantly attenuated when the cutoff
frequency decreases from infinity (i.e. CF is not utilized) to 0.3 rad/s, which shows the
benefit of choosing a small cutoff frequency. Due to the unity magnitude constraint of the
quaternion parameterization, noisy measurement signals result in large mean errors. The
mean error is thus effectively reduced by the proposed algorithm.

Effect of the high-pass filter

Direct rate integration of the gyroscope measurements is not desirable for applications re-
quiring long period of operation because nonzero bias and noises keep accumulating during
the integration. The high-pass filter prevents the accumulation of errors in the gyroscope
measurements. The information from angle sensors are utilized to correct the estimate errors.
Figure 6.11 shows that the attitude estimate from the rate integration method drifts away,
while the CF+TRIAD estimate maintains a bounded error when the IMU is kept steady for
a long period of time. This shows the benefit of choosing large cutoff frequencies. Note that
the average bias in this particular test is calculated to be 8.3 × 10−4rad/s hence the β/ωc
ratio is of the order -4 when ωc is selected to be 3rad/s. The result confirms our analysis in
Equation (6.18).
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Figure 6.10: Effect of the low-pass filter. The noise attenuation increases after the proposed
tvcf prefilter is added to the triad and increases more as the cutoff frequency decreased from
3rad/s to 0.3rad/s.
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Figure 6.11: Effect of the high-pass filter. As the cutoff frequency in the cf estimate is
increased from 0.003rad/s to 3rad/s, the estimate does not drift away when nonzero bias
exists.

Selection of the cutoff frequencies

An admissible cutoff frequency range can then be designed. The lower and upper limits of
the range are suggested by the test results shown in Figure 6.10 and Figure 6.11 respectively.
Namely, the design of the lower value depends on the desired noise attenuation and the upper
value depends on the tolerable drift due to the existence of bias. A more rigorous way of
choosing cutoff frequency is discussed in [35] where rms estimation errors are experimentally
obtained over a grid of cutoff frequencies.



CHAPTER 6. COMPLEMENTARY FILTER 80

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

er
ro
r
a
n
g
le

(d
eg
)

 

 TVCF + TRIAD, TRIAD

0 1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

time (sec)

cu
to
ff
fr
eq

u
en

cy
(r
a
d
/
se
c)

Figure 6.12: The effect of the fuzzy logic to reject motion accelerations. The IMU undergoes
pure translational motion in the y-axis. The errors are significantly reduced when the tvcf
is added. The upper and lower limits of the cutoff frequency are 8rad/s and 0.1rad/s.

Effect of the fuzzy logic

Without the TVCF as a prefilter, the motion acceleration and the magnetic distortion cause
the pure TRIAD method to predict incorrect attitude, which is problematic. Figure 6.12
shows that when the IMU undergoes y-axis translational motion, the TVCF correctly identi-
fies the motion acceleration and thus predicts much smaller attitude change compared with
the estimate from the sole TRIAD. The lower plot shows the time-varying scheduling of the
cutoff frequency in the accelerometer channel. The gyroscope is more trustworthy when the
translational motion is detected. Similar behaviors are observed in the presence of temporary
magnetic disturbances.

3-DOF attitude estimation experiment

The IMU undergoes a random rotational motion and is attached to the Quanser 3-DOF gy-
roscope shown in Figure 6.8b, which is equipped with the 5000 lines/rev quadrature optical
encoder on each gimbal. The encoder readings can be converted to the quaternion parame-
terization, providing a true attitude reference for comparison. Magnetic shielding is applied
to motors on the testbed to minimize the change of magnetic field due to gimbal movements.
However, the magnetic distortion is still large enough to cause problems if the TVCF is not
applied. All attitude estimates from the IMU are processed in real time and the quater-
nions are transmitted to the computer. Figure 6.13a compares the first three components
of the quaternions from the encoders, the TVCF+TRIAD algorithm, the rate integration
method and the sole TRIAD method. The upper and lower limits of the cutoff frequency are
5rad/s and 0.1rad/s. It can be easily observed that (i) in the q1 plot, the rate integration
drifts in 2 minutes of operation, (ii) in the time intervals where the fuzzy logic shifts the
cutoff frequency to its lower limit in the magnetometer channel, the TRIAD method gives
inaccurate estimates due to the change of magnetic field (at around 103s and 107s). The
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Figure 6.13: (a) Plot of the attitude estimates from the different methods and the transitions
of the fuzzy logic based cutoff frequencies. (b) Zoomed-in plot of q1

estimate from the proposed algorithm gives the most accurate attitude estimates among the
three methods. Figure 6.14 shows the mean errors calculated from Equation (6.20) and the
standard deviation corresponding to the same experiment, where improvements using the
proposed algorithm can be concluded. It should also be noted that the effectiveness of the
proposed algorithm is underestimated in this experiment because larger errors from the sole
TRIAD and the rate integration method will be obtained if the motion accelerations get
larger (the centripetal accelerations in this experiment are small due to the small radius of
curvature) and if long-term operation is performed, as already demonstrated in Figure 6.11
and 6.12.



CHAPTER 6. COMPLEMENTARY FILTER 82

TRIAD Rate integration TVCF+TRIAD
−5

0

5

10

15

m
ea
n
er
ro
r
a
n
d

st
a
n
d
a
rd

d
ev

ia
ti
o
n
(d
eg
)

Figure 6.14: Comparison of the estimate errors by the three methods. Among them, the
proposed algorithm gives the most accurate attitude estimates.

6.7 Summary

In this chapter, a computationally efficient and tractable method for estimating orientation
in 3-DOF is presented. This method can be implemented on many mobile applications
and has been shown to be well suited for small, low-cost platforms. The proposed algorithm
shows comparable performance to the extended Kalman filter in the simulated space missions
and improved performance over alternative methods, such as the rate integration and the
TRIAD without TVCF as a prefilter, in inertial measurement applications on Earth. It
is capable of not only attenuating noises in different frequency ranges, but also detecting
motion acceleration and change of magnetic field, when used in 3-DOF IMUs.
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Chapter 7

Conclusions and Future Works

7.1 Concluding Remarks

This dissertation discusses the control algorithms and the estimation algorithms for the at-
titude control problem.

Adaptive sliding mode attitude control
The adaptive sliding mode attitude control is studied in Chapter 3. The treatment is rela-
tively complete. Both nominal and robust (asymptotic) stability is rigorously proved. Fur-
thermore, the system parameters are adapted in real-time, hence the controller is insensitive
to parameter variation.

Marginalized particle filter for attitude estimation
The sequential attitude estimation problem is tackled using Bayesian inference in Chapter 5.
Specifically, the marginalized particle filter is found attractive in this case because the system
dynamics has a linear sub-structure corresponding to the bias random walk. Furthermore,
we show that the bias evolution is decoupled from the quaternion particles. Comparison
with the standard particle filter and the extended Kalman filter in numerical simulations
validates the superior performance.

Complementary filter for attitude estimation
A computationally efficient and easy-to-tune algorithm is discussed in Chapter 6. Not lim-
ited to space missions, this algorithm is desirable for many terrestrial applications since it
is implementable on small-scale micro-processors and explicitly deals with noises in inertial
sensors (e.g. motion accelerations and magnetic interference). The performance is validated
in experiments.
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7.2 Topics of Future Research

Parameter convergence
The adaptive control discussed in Chapter 3 guarantees asymptotic convergence of the track-
ing errors. However, parameter convergence is not guaranteed from the Lyapunov analysis.
This can be observed in the simulation results. Recently, Barkana presented a new Invariance
Principle for nonlinear nonautonomous systems [46]. The new theorem expands the scope
of stability analysis by further mitigating the conditions in the original formulation of the
Invariance Principle that are no necessarily needed. It is definitely interesting to explore a
relaxed condition for parameter convergence in this new framework, to replace the relatively
strong sufficient condition proposed in this dissertation.

Model predictive control
The control algorithm discussed does not explicitly deal with actuator saturation. Insta-
bility issue may rise if the computed body torques exceed the actuation authorities. The
magnitude of the computed torques may be implicitly controlled via tuning of the controller
parameters in practice. Model predictive control becomes a practical methodology for sys-
tems of which control saturation needs special attention and minimization of control/power
is greatly desirable. The author presented a novel idea of combining model predictive con-
trol and sliding mode control [47]. Stability can be rigorously proved for linear systems, but
tricky for nonlinear systems. A meaningful extension would be to apply that idea to the
attitude control problem, and hopefully design a model predictive controller with stability
guarantee.
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Appendix A

Multiplicative EKF formulation

This appendix presents the derivation of the multiplicative EKF for attitude estimation [22].

If the quaternion estimate is denoted as q̂ and the true attitude is q, the multiplicative
error quaternion in the body frame can be defined as

δq = q ⊗ q̂−1, where δq = [δρT , δq4]T (A.1)

A.1 Error dynamics

First we take the time derivative of the error quaternion

δq̇ = q̇ ⊗ q̂−1 + q ⊗ d

dt
(q̂−1)

=
1

2
Ω(ω) q ⊗ q̂−1︸ ︷︷ ︸

δq

+q ⊗ d

dt
(q̂−1)

=
1

2

[
ω
0

]
⊗ δq + q ⊗ d

dt
(q̂−1)

(A.2)

We now need to determine an expression for d
dt

(q̂−1), with the short-hand notation ˙̂q−1. The
estimated quaternion follows its kinematics model

˙̂q =
1

2
Ξ(q̂)ω̂ =

1

2
Ω(ω̂)q̂ (A.3)

Taking the time derivative of q̂ ⊗ q̂−1 = [0, 0, 0, 1]T gives

˙̂q ⊗ q̂−1 + q̂ ⊗ ˙̂q−1 = 04×1 (A.4)

Combine the last two equations

1

2
Ω(ω̂) q̂ ⊗ q̂−1︸ ︷︷ ︸

[0, 0, 0, 1]T

+q̂ ⊗ ˙̂q−1 = 04×1 (A.5)
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By definition of Ω(ω̂), this further reduces to

1

2

[
ω̂
0

]
+ q̂ ⊗ ˙̂q−1 = 04×1 (A.6)

Pre-multiply (in the sense of “⊗”) q̂−1, we get

˙̂q−1 = −1

2
q̂−1 ⊗

[
ω̂
0

]
(A.7)

Substituting Equation (A.7) into Equation (A.2), we get

δq̇ =
1

2

{[
ω
0

]
⊗ δq − δq ⊗

[
ω̂
0

]}
(A.8)

We define the error angular velocity

δω = ω − ω̂ (A.9)

Substituting this into Equation (A.8)

δq̇ =
1

2

{[
ω̂
0

]
⊗ δq − δq ⊗

[
ω̂
0

]}
+

1

2

[
δω
0

]
⊗ δq

= −
[
[ω̂×]δρ

0

]
+

1

2

[
δω
0

]
⊗ δq

≈
[
[ω̂×]δρ

0

]
+

1

2

[
δω
0

] (A.10)

The first term is simplified with simple algebraic manipulations, which is exact. The second
term is linearized using first-order approximation. This is intuitive because δq is close to
[0, 0, 0, 1]T .

The estimated angular velocity is ω̂ = ω̃ − β̂, where β̂ is the estimated bias in the sen-
sor. The bias error is ∆β = β − β̂. The error angular velocity is

δω = ω − (ω̃ − β̂) = −∆β − ηv (A.11)

Hence Equation (A.10) becomes

δρ̇ = −[ω̂×]δρ− 1

2
(∆β + ηv)

δq̇4 = 0
(A.12)

By the small angle approximation δρ ≈ δα/2, where δα consists of the small Euler angles
(roll-pitch-yaw), we finally reach

δα̇ = −[ω̂×]δρ− (∆β + ηv) (A.13)
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The estimated bias differential equation follows

˙̂
β = 03×1 (A.14)

Hence
∆β̇ = ηu (A.15)

The EKF error model is thus

∆ẋ(t) = F (x̂(t), t)∆x(t) +G(t)w(t) (A.16)

where ∆x = [δαT , ∆βT ]T , w = [ηTv , η
T
u ]T , and the system matrices are given by

F (x̂(t), t) =

[
−[ω̂×] −I3×3

03×3 03×3

]
, G(t) =

[
−I3×3 03×3

03×3 I3×3

]
(A.17)

The process noise covariance matrix is

Q(t) =

[
σ2
vI3×3 03×3

03×3 σ2
uI3×3

]
(A.18)

A.2 Linearized measurement model

N vector measurements can be concatenated to form

ỹ(t) = h(x(t)) + v(t) =


A(q(t))r1

A(q(t))r2
...

A(q(t))rN

+ v(t)

where E[v] = 03N×1, E[vvT ] = diag[σ1I3×3, . . . , σ
2
NI3×3]

(A.19)

The sensitivity matrix H(x̂) (i.e. the Jacobian of h(x(t)) evaluated at x̂) can be derived as
follows. Again use the definition of the error quaternion, we get

q = δq ⊗ q̂ ⇒ A(q) = A(δq) · A(q̂) (A.20)

When the error is small, the error attitude matrix A(δq) and the error Euler angles are
related by

A(δq) ≈ I3×3 − [δα×] (A.21)

Thus

∆b = b− b̂
= A(q)r − A(q̂)r

= −[δα×]A(q̂)r

= [A(q̂)r×]δα + 03N×3 ·∆β

(A.22)
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The sensitivity matrix H(x̂) is thus

H(x̂) =

 [A(q̂)r1×] 03×3
...

...
[A(q̂)rN×] 03×3]

 (A.23)

A.3 Shift posterior information

The derivation of the filter equation is now complete. After taking measurements at each
time and run the Kalman filter update, we obtain the a-posteriori estimate

∆x̂+ =

[
δα̂+

∆β̂+

]
(A.24)

We need to shift the posterior information to q̂ and β̂

q̂+ = q̂− +
1

2
Ξ(q̂−)δα+

β̂+ = β̂− + ∆β̂+
(A.25)

∆x̂+ is then set to 0. A brute-force normalization should be performed to insure q̂+T q̂+ = 1.
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