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Abstract

Over 782,000 individuals in the U.S. have end-stage kidney disease with about 72% of patients 

on dialysis, a life-sustaining treatment. Dialysis patients experience high mortality and frequent 

hospitalizations, at about twice per year. These poor outcomes are exacerbated at key time periods, 

such as the fragile period after transition to dialysis. In order to study the time-varying effects of 

modifiable patient and dialysis facility risk factors on hospitalization and mortality, we propose a 

novel Bayesian multilevel time-varying joint model. Efficient estimation and inference is achieved 

within the Bayesian framework using Markov Chain Monte Carlo, where multilevel (patient- 

and dialysis facility-level) varying coefficient functions are targeted via Bayesian P-splines. 

Applications to the United States Renal Data System, a national database which contains data 

on nearly all patients on dialysis in the U.S., highlight significant time-varying effects of patient- 

and facility-level risk factors on hospitalization risk and mortality. Finite sample performance of 

the proposed methodology is studied through simulations.

Keywords

End-stage kidney disease; Markov Chain Monte Carlo; Mixed-effects models; Varying-coefficient 
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1 | INTRODUCTION

End-stage kidney disease (ESKD) affects more than 782,000 individuals in the United 

States, with about 72% of patients on dialysis, a life-sustaining treatment1. Patients on 

dialysis experience a high burden of complex comorbid conditions and hence are frequently 

hospitalized, about twice a year, where these poor outcomes are exacerbated at key time 

periods after transitioning to dialysis. Frequent hospitalizations are a major contributor 
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to mortality in the dialysis population, in whom the mortality risk is significantly higher 

compared to other Medicare populations, including those with cancer and cardiovascular 

disease. Therefore, an important goal is to identify modifiable patient and dialysis facility 

risk factors and their time-dynamic effects on the correlated outcomes of hospitalization risk 

and mortality to guide patient care strategies.

To understand the time-varying effects of multilevel risk factors, we analyze data from 

the United States Renal Data System (USRDS), a large national database, where the data 

structure is hierarchical with longitudinal hospitalizations over time, nested within subjects, 

and subjects further nested within dialysis facilities where they receive regular care. The 

data also contains potential risk factors at both the patient (e.g., baseline demographics and 

comorbidities) and dialysis facility levels (e.g., dialysis staffing level, which can contribute 

to hospital readmission2). Thus, our modeling approach needs to take this multilevel 

structure into account while studying the impact of risk factors from both levels of the 

hierarchy. In addition, ESKD patients typically stay on dialysis for the duration of their 

lives or until successful kidney transplantation. As the patients’ clinical conditions may 

change after transitioning to dialysis, their hospitalization and mortality risks also vary post-

dialysis transition. Previous works documented these temporal changes in hospitalization 

risk and studied the time-varying effects of risk factors on hospitalizations in patients on 

dialysis3,4,5,6. However, time-varying effects of multilevel risk factors have not been studied 

for the correlated outcomes of hospitalizations and mortality, jointly.

There is extensive literature on joint modeling of longitudinal outcomes and survival as these 

models have become a valuable tool in analyzing mixed outcomes. See7 and8 for a detailed 

review. A popular approach to joint modeling is the shared-parameter modeling framework, 

where dependence between the outcomes is modeled via a set of shared underlying random 

effects9,10,11,12,13,14,15. While shared random effects models have been popular for a two-

level hierarchy, that is, repeated measurements nested within subjects, there is a paucity of 

works which consider three-level hierarchical data, with longitudinal data nested in subjects 

and subjects nested in a higher clustering units such as dialysis facilities, understandably due 

to significant computational challenges16,17,18. Liu et al. (2008) considered joint modeling 

of a continuous longitudinal outcome with survival in a frequentist framework utilizing 

an Expectation-Maximization (EM) algorithm with Gauss quadrature for integration of 

the random effects (REs), and Brilleman et al. (2019) considered joint modeling in a 

three-level hierarchy using a Bayesian framework. However, both works considered only 

subject-level risk factors. Kurum et al. (2021) extended the frequentist approach to model 

effects of multilevel risk factors (at both the subject and facility levels) on the longitudinal 

outcome and survival by utilizing an EM algorithm incorporating fully exponential Laplace 

approximations for integration of the potentially high-dimensional multilevel REs in the 

three-level hierarchical setting. However, under the EM algorithm, the likelihood-based 

standard errors (SEs) lead to bias in estimation of the true SEs, necessitating bootstrap 

inference in the frequentist setting12,13,14,18 and increasing the already high computational 

burden.

Furthermore, none of the aforementioned joint modeling approaches for three-level 

hierarchical data consider modeling time-varying effects. More specifically, only few works 
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in the joint modeling literature allow for time-varying effects, either time-varying response-

predictor relationships or time-varying relationships between the outcomes modeled19,20,21. 

However, these methods only allow for a two-level hierarchy, that is, repeated measurements 

nested within subjects. Our proposed Bayesian multilevel time-varying joint model (BMT-

JM) accounts for time-varying effects of multilevel risk factors on both hospitalization 

and mortality as well as the time-varying relationship between the two outcomes, while 

also accommodating the three-level hierarchical data structure of the USRDS data through 

multilevel REs. To study the time-varying effects of multilevel covariates and the time-

varying relationships between the outcomes, we employ varying-coefficient models22,23,24,3, 

which are widely used to study time-varying effects in longitudinal studies. In our proposed 

approach, the time-varying coefficients are estimated via Bayesian P-splines25, leading to 

a computationally efficient algorithm. In addition, valid inference is achieved within the 

Bayesian framework based on Markov Chain Monte Carlo (MCMC), avoiding reliance on 

computationally intensive bootstrap procedures.

Thus, our paper makes a novel contribution to the joint modeling literature by proposing 

an approach that can handle complex hierarchical data structures and feasibly estimate 

all manners of time-varying relationships (response-predictor and response-response). 

Furthermore, due to the Bayesian estimation framework, our method provides a 

computationally efficient algorithm for estimation and inference, overcoming the drawbacks 

of the standard estimation methods based on the EM algorithm. The remainder of the paper 

is organized as follows. The proposed BMT-JM and the Bayesian estimation, along with the 

inference procedure, are described in Section 2. Simulation studies to examine the efficacy 

of estimation are given in Section 3. In Section 4, we illustrate the proposed BMT-JM 

to jointly model longitudinal hospitalization risk and survival using the USRDS data. We 

conclude with a brief discussion in Section 5.

2 | BAYESIAN MULTILEVEL TIME-VARYING JOINT MODELS

2.1 | Model specification

In our joint modeling framework, we start with defining the submodels for each outcome. 

For the longitudinal submodel, we let Yij(t) represent the longitudinal outcome for the jth 

subject (patient), j = 1, …, ni, at the ith cluster (facility), i = 1, …, n, at time t. In our data 

application, the time index t is taken to be time (days) starting from when a patient transition 

to dialysis. Also, in our data application Yij(t) is a binary longitudinal outcome defined as 

the indicator of at least one hospitalization in a 3-month follow-up window with midpoint 

t for the subject j at facility i. Let Xij = Xij1, …, Xijp
T and Zi(j) = Zi(j)1, …, Zi(j)q

T be 

the subject- and facility-level predictors with the corresponding time-varying coefficients 

βX(t) = βX1(t), …, βXp(t) T
 and βZ(t) = βZ1(t), …, βZq(t) T

, respectively. For the USRDS 

data, the facility-level characteristics, such as nurse-to-patient ratio, are reported annually, 

and Zi(j) denote those characteristics recorded in the calendar year prior to the jth patient 

initiating dialysis. Hence, these predictors are indexed not only by the dialysis facility index 

i but also by the subject index j. In order to capture the time-dynamic trends in the data, we 

propose a generalized multilevel varying-coefficient model for the longitudinal submodel
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mij(t) = E Yij(t) ∣ Xij, Zi(j), bij, bi = g−1 XijTβX(t) + Zi(j)
T βZ(t) + bij + bi ,

where g( ⋅ ) denotes the canonical link, and bij and bi are the subject- and facility-level 

REs, respectively. For our motivating data application, the link function takes the form 

of the logit link g(p) = log{p/(1 − p)}. The subject- and facility-level REs are assumed 

to be independent, and each follows a normal distribution such that bij ∼ N 0, σS
2  and 

bi ∼ N 0, σF
2 . Although we make distributional assumptions about the REs, empirical results 

show that the parameter estimation and inference in joint modeling are robust to these 

specifications, similar to standard joint models12,13,14.

In the survival submodel, the true and observed event (death) times are denoted by Tij
∗

and Tij, respectively, for subject j at cluster i. The observed event time is defined as 

the minimum of the potential censoring time Cij and Tij
∗ . The event indicator is defined 

as δij = I Tij ≤ Cij , where I( ⋅ ) is the indicator function. We assume that the censoring 

mechanism is noninformative; that is, it is independent of the longitudinal process and the 

covariates. The proposed submodel for the survival outcome is the Cox model with time-

varying coefficients, where the hazard of death at time t, accounting for the hospitalization 

history up to time t is defined as

ℎij t ∣ Mij t , Xij, Zi j = lim
Δt 0

Pr t ≤ Tij∗ < t + Δt ∣ Tij∗ ≥ t, Mij t , Xij, Zi(j)

= ℎ0(t)exp XijTγX(t) + Zi(j)
T γZ(t) + α(t)mij(t) ,

with Mij(t) = mij(u), 0 ≤ u < t  denoting the history of the true unobserved longitudinal 

process up to time point t, γX(t) = γX1(t), …, γXp(t) T
 and γZ(t) = γZ1(t), …, γZq(t) T

denoting the multilevel covariate effects on survival, h0(t) denoting the baseline hazard and 

α(t) denoting the regression coefficient function that quantifies the time-varying effect of the 

longitudinal outcome on the risk of death. The corresponding survival function is

Sij t ∣ Mij(t), Xij, Zi(j) = Pr Tij∗ > t ∣ Mij(t), Xij, Zi(j)

= exp −∫
0

t
ℎ0(u)exp XijTγX(u) + Zi(j)

T γZ(u) + α(u)mij(u) du .

In our data application, the definitions of the hazard and survival functions imply that the 

survival function depends on the entire history of the longitudinal outcome Mij(t) , that is, 

hospitalization risk up to time t, whereas the hazard of death at time t depends only on the 

current value of the hospitalization risk score, mij(t).

Kürüm et al. Page 4

Stat Med. Author manuscript; available in PMC 2023 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.2 | Estimation

To estimate the parameters in our joint modeling framework, we propose a Bayesian 

estimation procedure and derive posterior inferences using an MCMC algorithm. Let 

θ(t) = θy
T(t), θs

T(t) T
, where θy t = βX

T t , βZ
T t , σS

2 , σF
2 T

 and θs(t) = γX
T (t), γZ

T (t), α(t), θℎ0
T

are the parameters in the longitudinal and survival submodels, respectively, with θℎ0
denoting the coefficients used to model the baseline hazard. We utilize Bayesian P-splines 

in estimation of the baseline hazard as well as the multilevel varying coefficient functions 

as outlined below. The joint likelihood is obtained under the conditional independence 

assumption, that is, the REs account for the association between the two outcomes, 

and given the REs, the outcomes are independent. Furthermore, we assume that, in 

addition to the time-varying effects, the subject-level REs also contribute to modeling 

the correlation between the longitudinal measurements within a subject, leading to the 

conditional likelihood

p Tij, δij, Yij ∣ bij, bi; θ(t) = p Tij, δij ∣ bij, bi; θ(t) p Yij ∣ bij, bi; θ(t) ,

p Yij ∣ bij, bi; θ(t) = ∏
k = 1

nij
p Yijk ∣ bij, bi; θy(t) ,

where for the jth patient at the ith facility, Yij = Y ij1, …, Y ijnij
T
 denotes the nij × 1 vector 

of longitudinal outcomes with Y ijk = Y ij tijk , k = 1, …, nij, and tijk denoting the midpoint of 

the kth three-month interval in the follow-up period. Thus, the posterior distribution

p θ(t), bij, bi ∣ Yij, T ij, δij ∝ p T ij, δij, Yij ∣ bij, bi, θ(t) p bij, bi, θ(t)

∝ ∏
k = 1

nij
p Y ijk ∣ bij, bi, θy(t) p T ij, δij ∣ bij, bi, θ(t) p

bij, bi ∣ θ(t) p θ(t) .

(1)

In our data application, where the longitudinal outcome is binary, the likelihood contribution 

from the longitudinal submodel is given by

p Yij ∣ bij, bi, θy(t) = ∏
k = 1

nij exp Xij
TβX tijk + Zi(j)

T βZ tijk + bij + bi Y ijk

1 + exp Xij
TβX tijk + Zi(j)

T βZ tijk + bij + bi
. (2)

In addition, the likelihood contribution of the survival submodel takes the form
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p T ij, δij ∣ Mij(t), θ(t) = ℎij T ij ∣ Mij T ij , θ(t) δijSij T ij ∣ Mij T ij , θ(t)
= ℎ0 T ij exp Xij

TγX T ij + Zi(j)
T γZ T ij + α T ij mij T ij

δij

× exp −∫
0

Tij

ℎ0(u)exp Xij
TγX(u) + Zi(j)

T γZ(u) + α(u)mij(u)

du

.

(3)

The integral in the survival function does not have a closed-form solution; hence a numerical 

approximation is employed. We use the Gauss-Kronrod method.

We utilize Bayesian P-splines in estimation of the time-varying coefficients in our 

submodels25. In this approach, we use a relatively large number of equally spaced knots, 

and to avoid overfitting and obtain sufficiently smooth fitted curves, we apply a roughness 

penalty26. Specifically, the time-varying coefficient functions take the form

βXω(t) = ∑r = 1
R ϕXω, rBr(t), βZv(t) = ∑r = 1

R ϕZv, rBr(t),

γXω(t) = ∑r = 1
R ψXω, rBr(t), γZv(t) = ∑r = 1

R ψZv, rBr(t), α(t)

= ∑r = 1
R ψα, rBr(t),

(4)

where Br(t) is the rth basis function of a B-spline, ϕXω, ϕZv, ψXω, ψZv, and ψα are the 

R-dimensional vectors of spline coefficients, ω = 1, …, p, and v = 1, … q. Moreover, 

we model the baseline hazard function h0(t) using the same flexible P-splines approach. 

More specifically, log ℎ0(t) = ∑r = 1
R ψℎ0, rBr(t) with ψℎ0 denoting the corresponding vector 

of spline coefficients. Note that proposed estimation and inference procedures can also 

accommodate parametric and other nonparametric forms for the baseline hazard function.

Under the P-splines approach, the posterior density in (1) is rewritten as

p θP, bij, bi ∣ Yij, Tij, δij ∝ ∏
k = 1

nij
p Yijk ∣ bij, bi, θyP p Tij, δij ∣ bij, bi, θP p bij, bi ∣ θP p θP ,

where θP = θyP
T , θsP

T T
 denotes the vector of parameters which includes the 

coefficients from the P-spline expansions with θyP = ϕXw
T , ϕZv

T , σS
2 , σF

2 T
 and 

θsP = ψXω
T , ψZv

T , ψαT, ψℎ0
T T

. In terms of prior distributions, we use the normal distribution 

for the spline coefficients such that ϕXω | τXω ∼ N 0, τXωPXω , ϕZv | τZv ∼ N 0, τZvPZv , 
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ψXω ∣ κXω ∼ N 0, κXωPXω , ψZv ∣ κZv ∼ N 0, κZνPZv , ψα ∣ κα ∼ N 0, καPα , and 

ψℎ0 ∣ κℎ0 ∼ N 0, κℎ0Pℎ0  with ω = 1, … p and v = 1, …, q. The penalty matrix P∗ (∗denoting 

Xω, Zv, α, or h0) in the above specified priors is calculated using the υth order difference 

matrix Dυ of dimension R × R, P∗ = Dυ
TDυ + 10−6I, where I denotes the R × R 

identity matrix. In applications, we utilize the commonly used second order difference 

matrix26. The variance parameters τ∗ and κ∗, utilized in the priors of the longitudinal 

and survival submodel parameters, respectively, control the smoothness of the varying 

coefficient functions, where they are assigned Inverse Gamma (IG) priors, τ∗ ∼ IG a1τ∗, a2τ∗
and κ∗ ∼ IG a1κ∗, a2κ∗ . For the subject- and facility-level random effect variances, we also 

assume IG priors, σS
2 ∼ IG a1S, a2S  and σF

2 ∼ IG a1F , a2F . In the IG priors, the common 

practice is to set a1’s equal to 1 and assign a small number to a2’s. However, alternative 

specifications are also available, and especially for the hyperpriors τ∗ and κ∗, where the 

selection depends on the smoothness of the function that is approximated via the P-splines 

approach27. As pointed out by25 and28, in some situations, the estimated functions may 

considerably depend on the particular choice of hyperparameters; in those cases, it is highly 

recommended to inspect the estimated results under a number of different choices for a1’s 

and a2’s.

For inference on the varying-coefficient functions, we use pointwise credible intervals 

and simultaneous credible bands29. Let ƒ(t) denote a single varying-coefficient function 

(taken to be α(t), h0(t) or a varying coefficient function from the longitudinal or survival 

submodels, β∗(t) or γ∗(t), respectively) observed at time points tk, for k = 1, …, K. Let f(t)
and SD{ƒ (t)} denote the mean and standard deviation of ƒ (t) obtained based on a total of 

L MCMC samples, respectively. Then the (1−α) pointwise credible intervals are given by 

f tk ± Φα/2SD f tk , where Φα/2 denotes the 100 × (1 − α/2)-percentile of the standard 

normal distribution. For the simultaneous credible bands, let cα be the (1−α) sample 

quantile of maxk = 1, …, K |f(ℓ) tk − f tk | /SD f tk ∣ with f(ℓ)(t), ℓ = 1…, L denoting the 

ℓth MCMC sample. Then the (1 − α) simultaneous credible band for ƒ (t) is given as 

f tk ± cαSD f tk .

We make three important remarks about our approach: (a) For simplicity of exposition, we 

describe the submodels using a common set of subject-and facility-level predictors; however, 

the estimation and inference procedures can accommodate design vectors with different 

dimensionality and composition. (b) Although the subject- and facility-level predictors 

are denoted as time-invariant covariates, they can include both baseline and time-varying 

covariates, under the condition that the time-varying covariates in the survival submodel 

are exogenous following the requirements of a proper Cox model. (c) In the estimation 

procedure, we use the same number of knots R in equation (4) only for ease of notation, our 

estimation procedure can handle a different number of knots for each function.

All computations have been performed in R (version 4.0.2), and as there are no closed-form 

solutions for the posterior distributions, we fit our model using the Bayesian software JAGS 
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(version 4.3.0) via the rjags package30. All R codes and documentation for fitting the 

proposed BMT-MJM are made publicly available at https://github.com/esrakurum/BMT-JM.

3 | SIMULATION STUDIES

3.1 | Design

We examined the performance of the proposed estimation and inference procedures via 

simulation studies. We report the results of two simulation studies with n = 200 and n = 

500 facilities. Motivated by the USRDS data application, the total number of patients within 

each facility was generated from a discrete uniform distribution on the interval [50, 162]. 

Similarly, mimicking the measurement times of the hospitalization outcome Y ij( ⋅ ) in the 

USRDS data, we assumed that the maximum number of repeated measurements per subject 

is 20, that is, every three months for a maximum of five years of follow-up. These repeated 

measurements were equally spaced on the interval [0, 1] before censoring by survival.

The subject-level covariates, Xij = X1ij, X2ij
T, were simulated from normal 

distributions with means 0 and 1.5 and variances 1 and 0.5, respectively. 

The facility-level covariates, Zi(j) = Z1i(j), Z2i(j)
T, were simulated from normal 

distributions with means −0.3 and 1.5 and variances 1 and 0.5, respectively. 

The time-varying parameters in models (2) and (3) were generated 

as βX(t) = βX0(t), βX1(t), βX2(t) T = cos(3/2πt) − 1, sin(2πt − 1/8), − sin(2πt − 1/8) T, 

βZ(t) = βZ1(t), βZ2(t) T = cos(πt − 0.5), − cos(πt − 0.5) T, 

γX(t) = γX1(t), γX2(t) T = cos(2πt), − cos(2πt) T,

γZ = γZ1(t), γZ2(t) T = sin(3/4πt), − sin(3/4πt) T, and 

α = sin(2πt). The Weibull function with λ = 1.5 was used to generate the 

baseline hazard ℎ0(t). The subject- and facility-level REs were independently simulated from 

a normal distribution with mean zero and variances σS
2 = 1.30 and σF

2 = 0.20, respectively.

The longitudinal outcome Y ij( ⋅ ) was simulated using an underlying normal latent variable 

Y ij
∗ ( ⋅ ) such that Y ij( ⋅ ) = I Y ij

∗ ( ⋅ ) > 0 , and the mean of Y ij
∗ ( ⋅ ) was determined by the 

longitudinal submodel (2). For the survival submodel, the true event times, Tij
∗ , for 

subjects were simulated using the inverse probability integral transformation with a Weibull 

baseline hazard function31. As described in Section 2.1, the observed time and the event 

indicator were calculated as Tij = min Cij, Tij
∗  and δij = I Tij ≤ Cij , respectively. Under this 

set-up, similar to the USRDS data, the overall hospitalization and censoring rates were 

approximately 29% and 62%, respectively.

3.2 | Simulation results

All time-varying coefficient functions and the baseline hazard function were estimated via 

the Bayesian P-splines with 20 equally spaced knots and a second-order penalty. Reported 

results for each simulation study (n = 200 and n = 500) are based on 150 Monte Carlo 
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runs. We ran three parallel chains for each simulated data set with 5000 iterations per 

chain, with the first 500 iterations discarded as burn-in period. We set thinning to keep 

1500 posterior samples in each chain, thus using a total of 4500 samples for estimation 

and inference. In order to determine the priors for the hyperparameters, following the 

suggestions by25 and28, we examined the estimated results under several different prior 

choices. The priors of the hyperparameters for subject- and facility-level varying-coefficient 

functions in both submodels were set to a1τ∗ = a1κ∗ = 1 and a2τ∗ = a2κ∗ = 0.005. For the 

time-varying coefficient α(t) and baseline hazard function ℎ0(t), a1κα, a2κα = (0.1, 0.5) and 

a1κℎ0, a2κℎ0 = (0.1, 0.005), respectively, were chosen as the priors.

We evaluate the performance of the proposed procedure in estimating the time-invariant (σS
2

and σF
2 ) and time-varying (α(t), h0(t), and varying-coefficient functions from the longitudinal 

or survival submodels, β∗(t) or γ∗(t), respectively) coefficients using the mean squared error 

(MSE) and root average squared error (RASE), respectively. RASE24,32,33, a commonly 

used measure to assess the accuracy of varying-coefficient estimations, is defined as

RASEf = 1
K ∑

k = 1

K f tk − f tk
 range f( ⋅ )

2 1/2

, (5)

where K = 20 and f( ⋅ ) denotes a single varying-coefficient function. The estimated time-

varying coefficient functions in longitudinal and survival submodels and the estimated 

baseline hazard function are depicted in Figures 1–2 along with their simultaneous credible 

bands from the simulation runs with the median RASE based on n = 200. We observe that 

our procedure performed well in simulation. In particular, the estimates (dashed) are close 

to the true functions (solid) that are mostly captured well within the simultaneous (dotted) 

and pointwise (dashed-dotted) credible intervals for all varying-coefficient functions. As 

expected, results improved (e.g., smaller bias and narrower pointwise and simultaneous 

credible bands) for the n = 500 facilities case (Figure 3). For subject-level random effect 

variance σS
2 , we obtain the estimated values and the 95% credible intervals for n = 200 and 

n = 500 as 1.285 (1.245, 1.326) and 1.294 (1.261, 1.327) respectively. Similarly, for the 

facility-level random effect variance σF
2 , the estimated values and the 95% credible intervals 

are 0.227 (0.182, 0.273) and 0.218 (0.181, 0.254) for n = 200 and n = 500, respectively. 

The results indicate that our method targets the true values closely, and similar to results 

on varying-coefficient functions, the bias gets smaller as the number of facilities increases. 

The (25th, 50th, 75th) percentiles of the RASE values for the varying-coefficient functions 

and the MSE values for the subject- and facility-level random effect variances are displayed 

in Table 1. As expected, the values for these error measures get smaller as the number of 

facilities increases. We also assess the coverage probabilities. Due to the clear boundary 

effects, that is, under-coverage at the boundaries, we present average coverage probabilities 

based on both simultaneous and pointwise credible bands for the time interval (0.2, 0.8) 

in Table 1. The coverage probabilities in this interval, which accounts for the boundary 

effects, are above the nominal level. These results are consistent with previous literature34,35 

Kürüm et al. Page 9

Stat Med. Author manuscript; available in PMC 2023 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and indicates that the Bayesian credible intervals are more conservative. In addition, we 

observe that the coverage probabilities get larger as the number of facilities increase and the 

pointwise credible bands are narrower than the simultaneous credible intervals; therefore, 

the coverage probabilities based on those are smaller.

4 | APPLICATION: HOSPITALIZATION AND SURVIVAL IN DIALYSIS 

PATIENTS

4.1 | USRDS study cohort and patient characteristics

We applied the proposed BMT-JM to data from the USRDS, a national database that collects 

data on nearly all U.S. patients with ESKD on dialysis. The study cohort included patients 

of age 18 years or older, initiating dialysis between January 1, 2006 and December 31, 2008. 

The maximum follow-up period was 5 years, with the last follow-up date as December 31, 

2013, where follow-up was truncated if a patient switched dialysis facilities. The inclusion 

criteria were: (1) patients who survived the first 90 days, did not have recovery of kidney 

function, and did not have a kidney transplant, and (2) patients who were covered by 

Medicare as their primary payer on Day 91 of the dialysis. Therefore, the first day of study 

follow-up started on Day 91, per the recommendation stated in the USRDS Researcher’s 

Guide “90-day rule” to allow for completion of the Medicare eligibility application process 

and establishment of stable dialysis treatment modality36. The final study cohort included 

292,672 observations over time on 34,030 patients in 520 dialysis facilities, where the 

number of patients per facility ranged from 50 to 162 (median 61, Q1–Q3 [first-third 

quartile]: 54–71). The overall hospitalization rate was 27.4% and the censoring was 61.4%.

For our joint modeling, the time index t is the time starting from when a patient transition 

to dialysis. This choice is of prime interest in the dialysis population since research over 

the past decade have shown that patient outcomes, such as hospitalization and death, are 

elevated particularly in the first 1–1.5 years after patients transition to dialysis and this 

trajectory changes thereafter. Thus, our proposed modeling also focuses on this main time 

index of interest, specifically, time since initiation of dialysis. Additionally, baseline age, 

i.e., the age at which patients transition to dialysis has been shown to be an important risk 

factor for both hospitalization and death; hence, this effect modeled as baseline age is also 

important in this population. Furthermore, modeling baseline age at transition to dialysis 

(instead of a time-dependent version) is also needed to avoid potential overlap between a 

time-dependent age covariate and follow-up across the main time index of interest. Hence, 

our current model is able to capture time-varying trends of covariates on outcomes as 

patients stay longer on dialysis while adjusting for the effect of age at initiation of dialysis.

The mean age of the patients in the study cohort was 65 years (SD 15), and 45% of 

the patients were female. Common baseline comorbidities included chronic obstructive 

pulmonary disease (COPD; 18.7%), septicemia (10.2%), other infectious diseases (23.1%), 

cardiorespiratory failure (12%), coagulopathy (7.9%), and psychiatric conditions (11.2%). 

Among the 520 facilities, the median length of patient follow-up was 24.3 months (Q1–Q3: 

21.1–27.4), and the mean number of hospitalizations was 1.8 per person-year (SD 2.2). 

The median marginal (unadjusted) survival was calculated as 46.5 months (3.9 years), and 
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we observed that the survival probability decreases noticeably for ESKD patients with 

additional baseline comorbidities such as COPD and/or septicemia. In terms of facility-level 

data, on average, the ratio of nurse-to-patient and patient care technician (PCT)-to-patient 

were 7.6% (SD 3.2) and 9.4% (SD 2.9), respectively.

The proposed BMT-JM was employed to study the time-varying effects of patient-level 

covariates on both longitudinal and survival outcomes. Patient-level covariates included age 

(centered), sex, and baseline comorbidities (COPD, coagulopathy, cardiorespiratory failure, 

septicemia, other infectious diseases/pneumonias, and psychiatric disorders). The facility-

level covariates included in both submodels were nurse-to-patient ratio and PCT-to-patient 

ratio (both centered). Following from (3), the survival submodel also had the hospitalization 

risk score as a covariate.

4.2 | Results

The estimated time-varying coefficient and baseline hazard functions were obtained using 

the Bayesian P-splines approach with 20 equally spaced knots and a second-order penalty. 

To obtain the posterior samples, we ran three parallel chains with 5000 iterations per 

chain, where 500 iterations were discarded as burn-in period. The thinning was chosen to 

keep 1500 posterior samples in each chain; hence we used 4500 samples for estimation 

and inference. The priors of the hyperparameters for subject- and facility-level varying-

coefficient functions in the longitudinal submodel were set to a1τ∗, a2τ∗ = (1, 0.005). In the 

survival submodel, we used a1κXω, a2κXω = (1, 0.0005) and a1κZv, a2κZv = (10, 0.0005) for 

the subject- and facility-level varying-coefficient functions, respectively. For the baseline 

hazard function and α(t), we selected a1κα, a2κα = (1, 0.005) and a1κℎ0, a2κℎ0 = (10, 0.0005), 

respectively, as the priors. Lastly, the priors for the variance components were set to 

a1 ∗ , a2 ∗ = (10, 0.0005). The subject- and facility-level random effect variances were 

estimated as σS
2 = 1.344 and σF

2 = 0.106 with standard errors 0.027 and 0.015, respectively.

The estimated time-varying effects of patient-level risk factors (solid line) on longitudinal 

hospitalizations are displayed in Figure 4, along with 95% simultaneous credible bands 

(dashed lines) and pointwise credible intervals (dotted lines). The estimated intercept βX1(t)

in the longitudinal submodel is increasing over time (Figure 4(a)). More specifically, 

the odds of hospitalization exp βX1(t)  for male patients initiating dialysis at mean age 

65 with no comorbidities and treated at a typical dialysis facility (with average nurse-

to-patient and PCT-to-patient ratio of 7.6% and 9.4%, respectively) is increasing over 

time, post-dialysis transition. Females have a higher odds of hospitalization compared 

to males, but this declines over the five year follow-up with highest time-varying odds 

ratio OR(t) = exp β2(t) ∼ 1.23 during the first year on dialysis (Figure 4(b)). Older age at 

transition to dialysis is associated with a higher odds of hospitalization starting at about 12 

months (i.e., after the fragile first year transition to dialysis time period; Figure 4(c)).

As expected, all comorbidities are associated with significantly higher odds of 

hospitalization (Figure 4(d)–(i)). In particular, the effects of chronic comorbid conditions, 
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such as COPD and psychiatric conditions, are relatively stable over time and are associated 

with significantly higher odds hospitalization (e.g., OR(t) ranges from 1.47 to 1.69 for 

COPD and 1.23 to 1.47 for psychiatric conditions). The effects of acute comorbidities, such 

as septicemia and other infectious diseases/pneumonia, decrease as patients remain longer 

on dialysis, but the highest risk period is during the first 12 months after transitioning to 

dialysis: OR(t) : 1.37 − 1.91 for septicemia and 1.38 − 1.72 for other infections, t < 12 

months. Of note, although the risk of hospitalization sharply declines after the first year, it 

remains significantly higher compared to those without prior acute infections (OR(t) : 1.21 − 

1.37 for t > 12). Similarly, coagulopathy and cardiorespiratory failure have significant effects 

on hospitalization during the first year post-dialysis transition.

The effects of patient-level covariates on the hazard of death are displayed in Figure 5. 

We observe that nearly all comorbidities (except for coagulopathy) have significant effects 

on the risk of death during the first year of dialysis, with the highest hazard of death 

observed in the several months immediately following transition to dialysis. The effects of 

comorbidities decrease over time as patients stay longer on dialysis. For example, COPD 

has a significant effect on survival approximately until the end of the third year of dialysis, 

with estimated time-varying hazard ratio, HR(t) = exp γ∗(t) , varying from 1.16 − 1.27 for t 

< 30 months. The effect trajectories of cardiorespiratory failure and septicemia on survival 

remain significant during the first two years after dialysis transition. Also, as expected, older 

age at dialysis transition is associated with an increased hazard of death. The estimated 

time-varying effect of hospitalization risk score, α(t), on the hazard of death is presented in 

Figure 5(i). Although the simultaneous credible bands show a non-significant effect (except 

for months 40–50), the pointwise credible intervals demonstrate a significant effect on 

survival up to about 20 months and the highest point estimate of HR(t) ~ 1.25 at about 10 

months post-dialysis. We note that the estimated baseline hazard of death was approximately 

constant over time (not shown).

Finally, at the facility level, the estimated time-varying effects of nurse-to-patient ratio 

and PCT-to-patient ratio on longitudinal and survival outcomes are presented in Figure 6. 

The nurse-to-patient ratio is not found to be significantly associated with either outcome 

(Figure 6 (a), (c)). The PCT-to-patient ratio significantly affects the hazard of death (Figure 

6 (d)) and hospitalization (Figure 6 (b)) approximately until 20 and 30 months of dialysis, 

respectively, where a higher ratio of technicians-to-patients is associated with a lower hazard 

of death and odds of hospitalization. However, these effect sizes are small relative to the 

effect sizes of patient-level risk factors, similar to prior findings 2,3.

5 | DISCUSSION

Motivated by the need to model three-level hierarchical data from the USRDS of the 

dialysis population, we developed a Bayesian multilevel time-varying framework to jointly 

model patient longitudinal hospitalization and survival. This work fills several critical 

methodological gaps in the joint modeling literature. First, it provides a joint modeling 

approach that (a) accommodates higher-level hierarchical data, especially for large data 

(providing a computationally feasible approach to handling ultra high-dimensional REs) and 

(b) allows for multilevel risk factors at the individual-level and the cluster-level (dialysis 
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facility). Second, to our knowledge, this is the first joint model of longitudinal and survival 

outcomes with time-varying coefficients for higher-level hierarchical data. The need to 

develop such a joint model was illustrated by our need to investigate the potential time-

varying effects of both patient-level and dialysis facility-level risk factors on hospitalization 

and survival in the dialysis population. Indeed, as detailed in the Results section, the analysis 

identified risk factors as well as specific time periods of elevated risk of hospitalization and 

death. For example, a history of acute comorbid conditions (infections, septicemia) prior to 

transition to dialysis is associated with a substantial risk of hospitalization, especially in the 

first year, suggesting a more aggressive monitoring of patients with such profile to reduce 

the likelihood of hospitalization during this fragile time period. On the other hand, chronic 

comorbid conditions such as COPD and psychiatric conditions have sustained and large 

effects on hospitalization throughout the time periods after patients transition to dialysis. 

Thus, these findings suggest a tailored approach to dialysis patient treatment and monitoring 

based on patient characteristics (e.g., type of comorbid conditions) and specific time periods 

of elevated hospitalization and mortality risk after transition to dialysis.

We note that in our joint modeling approach, the model for the hazard of mortality includes 

the longitudinal process (history of hospitalization) by choice. The reason for this choice 

is motivated by the fact that for the dialysis population, hospitalization and survival is 

intricately related and frequent hospitalizations in this population (at about twice per year) 

is a major source of both morbidity and mortality which have been well documented in 

our own works and others 5,6,4,1. Therefore, in this population, understanding time-varying 

effects of risk factors as well as hospitalization risk is key to developing effective patient 

monitoring strategies to reduce mortality; thus, hospitalization as a time-varying risk factor 

is itself an important recognized comorbid condition of equal importance relative to other 

traditional chronic and acute comorbid conditions in this population. The results displayed in 

Figure 5 show that the magnitude of the effect of hospitalization risk on mortality is roughly 

commensurate with the effect sizes of major chronic comorbid conditions such as COPD 

and cardiorespiratory failure during the first 18 months after transition to dialysis. Generally, 

the inclusion of the longitudinal process into the hazard model should be motivated by the 

specific data application. Other examples of this modeling choice include works by37 and20. 

Finally, although not of primary interest in modeling survival in the dialysis population, we 

note that the effect of traditional risk factors, such as COPD and cardiorespiratory failure, 

absent the longitudinal process, may be of interest in other contexts (e.g., other populations). 

In such a case, exclusion of the longitudinal process in the hazard model would be an 

appropriate choice.
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FIGURE 1. 
Estimated time-varying coefficient functions (dashed) in the longitudinal submodel from the 

simulation runs with the median RASE among 150 Monte Carlo runs for n = 200 facilities 

overlaying the true functions (solid) along with 95% simultaneous (dotted) and pointwise 

(dashed-dotted) credible intervals.
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FIGURE 2. 
Estimated time-varying coefficient functions and baseline hazard function (dashed) in the 

survival submodel from the simulation runs with the median RASE among 150 Monte Carlo 

runs for n = 200 facilities overlaying the true functions (solid) along with 95% simultaneous 

(dotted) and pointwise (dashed-dotted) credible intervals.
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FIGURE 3. 
Estimated time-varying functions (dashed) in the longitudinal and survival submodels from 

the simulation runs with the median RASE among 150 Monte Carlo runs for n = 500 

facilities overlaying the true functions (solid) along with 95% simultaneous (dotted) and 

pointwise (dashed-dotted) credible intervals.
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FIGURE 4. 
Estimated patient-level effects on hospitalization, time-varying odds ratio 

OR(t) = exp βX∗(t) , (solid) along with their 95% simultaneous (dashed) and pointwise 

(dotted) credible bands.
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FIGURE 5. 
Estimated patient-level effects on survival, time-varying hazard ratios HR(t) = exp γX∗(t)

and HR(t) = exp α(t) , (solid) along with their 95% simultaneous (dashed) and pointwise 

(dotted) credible bands.
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FIGURE 6. 
Estimated facility-level effects on (a, b) hospitalization, time-varying odds ratio 

OR(t) = exp βZ∗(t) , and (c, d) on survival, time-varying hazard ratio HR(t) = exp γZ∗(t) , 

(solid) along with their 95% simultaneous (dashed) and pointwise (dotted) credible bands.
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TABLE 1

The (25th, 50th, 75th) percentiles of the root average squared error (RASE) and mean squared error (MSE) 

for the time-varying and time-invariant estimates, respectively, along with average coverage probabilities of 

the 95% simultaneous (CPS) and pointwise (CP) credible band (computed for the time interval (0.2, 0.8) for 

time-varying coefficients) based on 150 Monte Carlo runs.

Number of facilities, n = 200 Number of facilities, n = 500

RASE/MSE 25% 50% 75% 25% 50% 75% CPS(%) CP(%) CPS(%) CP(%)

Longitudinal

βX0(t) 0.043 0.067 0.104 0.016 0.031 0.078 97.3 96.6 97.5 97.0

βX1(t) 0.049 0.051 0.053 0.021 0.022 0.023 97.2 96.3 97.3 96.5

βX2(t) 0.056 0.059 0.062 0.022 0.024 0.028 98.1 97.0 98.2 97.2

βZ1(t) 0.015 0.021 0.028 0.011 0.014 0.016 97.5 95.6 97.7 96.0

βZ2(t) 0.027 0.064 0.099 0.010 0.021 0.032 97.0 95.2 97.1 95.8

Survival

γX1(t) 0.021 0.043 0.112 0.024 0.029 0.041 95.3 95.1 96.1 95.5

γX2(t) 0.023 0.033 0.123 0.012 0.022 0.033 95.6 95.3 96.0 95.5

γZ1(t) 0.034 0.057 0.095 0.018 0.037 0.046 95.5 95.2 96.0 95.7

γZ2(t) 0.038 0.053 0.095 0.008 0.022 0.049 98.2 96.3 98.2 97.0

α(t) 0.111 0.142 0.185 0.052 0.076 0.120 96.9 95.7 97.4 96.8

ℎ0(t) 0.034 0.083 0.150 0.032 0.055 0.062 97.1 96.3 97.2 96.5

Variance components

σS
2 < .001 < .001 < .001 < .001 < .001 < .001 – 95.0 – 95.1

σF
2 < .001 0.002 0.007 < .001 0.001 0.005 – 91.3 – 93.4
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