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A B S T R A C T

Long-Duration Energy Storage (LDES) has gained interest due to its key role in attaining a decarbonized, low-
cost, and stable grid driven by variable renewable electricity (VRE). Currently, there is a wide range of LDES
technologies being developed to provide electricity with 8+ hours of consecutive discharge. However, current
capacity expansion models used in long-term planning processes rarely consider low cost LDES as a candidate
technology. If they do, the storage balancing horizon (SBH) of the model usually only considers non-consecutive
1-day periods that do not capture the potential of LDES to shift energy across multiple days or even seasons.
Addressing these limitations in existing models, this work explores the ways in which the optimal energy
storage changes when increasing the number of consecutive days in the SBH and how these changes will impact
planners who are determining the future roles of energy storage. Our analysis uses SWITCH, an open-source
capacity expansion model with a high spatial resolution for the entire Western Electricity Coordinating Council
(WECC) in a zero-carbon scenario in 2050. We find that the number of consecutive days in the SBH changes
both the total selected power and energy capacity of LDES when storage energy and power capacity overnight
costs are $13 USD/kWh (or less) and $113 USD/kW, respectively. We also find that the amount of required
energy in storage to drive a future VRE-driven WECC grid ranges from 2.5 TWh to 16.0 TWh depending on
the length of the SBH. The optimal storage duration (energy to power ratio) we obtain ranges from 10 h to
620 h among all the scenarios. Furthermore, depending on the storage cost assumption, we observe different
charge/discharge patterns when varying the length of the SBH. Given our results, we anticipate that as more
LDES technologies become commercially available, it will be critical to increase the length of the SBH to fully
capture the benefits of LDES assets in long-term planning processes of high VRE-driven grids.
1. Introduction

1.1. Background, motivation and research gaps

Around the world, energy storage paired with variable renewable
energy (VRE) has been described as an indispensable technology that
will play a pivotal role in achieving decarbonized energy policy goals
and greenhouse gas (GHG) reduction targets, at the least cost compared
to alternatives [1–4]. Storage at utility scale is a versatile technology
that can (a) charge when there is surplus VRE and discharge during
high electrical demand periods, (b) provide ancillary services with
fast response times and (c) provide reserves when needed [5]. Some

∗ Corresponding author.
E-mail address: pesapsanchez@gmail.com (P.A. Sánchez-Pérez).

1 Most of it comes from pumped hydro storage with 23 GW and around 2 GW of electrochemical storage and the rest from other technologies.

energy storage technologies can also provide cross-sectoral benefits like
hydrogen production and thermal storage [6].

Currently, in the U.S., the cumulative energy storage power capacity
in the electrical grid1 surpassed 28 GW with 420 GWh of energy
capacity [7]. It is expected that many regions across the U.S. will deploy
an additional 10 GW that will come online during 2021–2023 [8].
Nevertheless, the required amount and type of energy storage to deliver
renewable electricity to a growing electrical demand with a high level
of reliability are still unclear [9–11].

Recently, there has been an increased interest in longer duration
energy storage (LDES) in research and industry as a solution to the
intermittency challenge and seasonal imbalance produced under an
vailable online 26 April 2022
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Abbreviations

𝑆𝑂𝐶 State of charge of storage asset [%]
LDES Long-duration energy storage
NPV Net present value
SBH Storage balancing horizon
VRE Variable renewable energy
WECC Western Electricity Coordinating Council

Constants

𝜂𝑐 Storage charging efficiency [%]
𝜂𝑑 Storage discharging efficiency [%]
𝑤𝑡 Time weight factor

Sets

 Set of energy storage assets
 Set of modeling timeseries

Decision variables

𝐶𝑠,𝑡 Charging of storage asset 𝑠 at time 𝑡 [MW]
𝐷𝑠,𝑡 Discharging of storage asset 𝑠 at time 𝑡

[MW]

electrical grid dominated by wind and solar power [12]. In this vein,
the U.S. Department of Energy (DOE) launched the Long Duration
Storage Shot initiative that sets a bold target to reduce the cost of
grid-scale LDES by 90% within the decade [13]. A study by multiple
LDES companies forecasts that around 1.5–2.5 TW and 85–140 TWh
will be deployed globally by 2040 from a diverse range of LDES tech-
nologies that are capable of discharging electricity for 8+ hours [14].
However, one of the biggest challenges of these LDES technologies is
to store and maintain energy in storage at a cheaper price point than
competing Li-ion technology where the capital energy cost ranges from
247–309 $/kWh [15].

The required amount of energy storage to ensure a reliable VRE-
grid is not well understood and will most likely depend on the share of
VRE and regional seasonal energy needs. With this in mind, the design
for the duration of energy storage required will not only depend on
daily or weekly balancing of VRE output but also balancing and shifting
energy across longer periods of time. Still, current tools used to model
long-term planning and capacity additions are not designed to capture
the full benefits and operations of a weekly or seasonal storage asset.
Accurately modeling the different types and duration of energy storage
is pivotal to finding the least cost solution to meet clean energy targets
and GHG reduction goals.

There is a growing literature related to LDES technologies that
spans a wide variety of electrical markets and modeling assumptions.
We identified some works that focus on understanding the economic
valuation of LDES technologies and economic opportunities [16,17]
and works using detailed modeling of LDES and its interaction with
a VRE-driven grid [11,12,18–20]. Such studies found that LDES can
fulfill a variety of grid services to help balance the grid with discharge
capabilities of consecutive hours that range from 10–650 h. The works
related to economic opportunities for LDES [16,17] explore LDES tech-
nologies with 10 to 100 h of duration (ratio of energy capacity to
power capacity). Other studies have calculated the required amount of
energy storage to run the entire U.S. using a constrained energy balance
model and constraining the operations of LDES using a state of charge
(SOC) formulation with an hourly resolution [18]. Nonetheless, [18]
does not use a multi-nodal transmission network which could result
in an increased need for LDES. Even though the work considers a full
year arbitrage, the authors did not systematically study the impact of
2

changing the Storage Balancing Horizon (SBH).
Modeling a full 8760 hourly resolution in a capacity expansion
model can be computationally intensive depending on the problem size.
Yet, there are multiple approaches or simplifications in the formulation
of the time horizon to address this (see [21] for more details of the
approaches). Multiple academic works and models used in long-term
planning processes (e.g., [11,20,22]) have used these approaches to
simplify the computational burden. However, the research gap remains
as we have not quantified the errors incurred by these simplified
approaches; we cannot truly understand the interactions between LDES
and the grid without a full 8760 hourly resolution within a large-scale
balancing area with a high geographical nodal resolution.

Lastly, some authors have highlighted that the availability of zero-
carbon firm technologies could diminish the need for LDES [23]. Yet,
most of these types of studies faced challenges in correctly modeling
LDES as the temporal resolution was either using a subset of the year
or representative days. In summary, simplifying the temporal resolution
decreases the SBH which ultimately modifies the utilization of storage
and the need of it. To accurately calculate the benefits of LDES assets
it is key that the model includes several consecutive days to properly
capture balancing and shifting energy across longer periods of time.

1.2. Statement of contributions

For this work, we endeavor to understand and build capacity ex-
pansion models that correctly capture the value of LDES toward ac-
celerating decarbonization of the electrical sector. To perform this, we
systematically explore how changes in the modeled SBH or number
of consecutive days changes the need and utilization of LDES. We
also analyze, for different LDES cost assumptions, how the different
modeled SBH affect optimal LDES deployment and operation. We create
a set of future scenarios using SWITCH, an open-source capacity expan-
sion model with high spatial resolution, for various storage balancing
horizon lengths and storage energy capacity cost scenarios. We model
future LDES assets by using an energy storage candidate technology
without any duration constraint and let the model identify the optimal
LDES duration for the proposed scenarios. To the best of our knowl-
edge, the impacts of how different lengths of storage balancing horizons
can affect the optimal selected power and duration of energy storage
under a high temporal and spatial resolution capacity expansion model
of the U.S. have not previously been explored.

1.3. Manuscript outline

The structure of this manuscript is as follows: First we introduce
the methodology and input assumptions to formulate the capacity
expansion model in Section 2. Next, in Section 3 we present the main
findings of the different balancing lengths and storage cost scenarios.
Finally, in Section 4 we highlight some of the main conclusions on the
importance of the length of the storage balancing horizon in capacity
expansion formulations.

2. Methods

To develop this analysis, we use SWITCH [24], an open-source
model for power systems, to work with large shares of variable renew-
able energy, storage and thermal power plants. SWITCH is a modular
capacity expansion model that minimizes the net present value (NPV)
of the cost for all investment periods and time points for an electrical
grid [24]. It optimizes the investment in capacity (chooses an optimal
power system design directly) and it optimizes the operational costs
(evaluating the cost of running the power system design) [25]. It has
been widely used for decarbonization and energy transition scenarios in
different regions around the world [26–35]. Using a set of assumptions
of the market, policies and technology, SWITCH optimizes capacity
additions, transmission expansion, and system dispatch while simul-

taneously being mindful of the constraints in place, such as carbon
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targets, RPS (Renewable Energy Portfolio Standards), etc. This work
uses the latest release of the SWITCH-WECC3 capacity expansion model
hat is formulated as a linear program (LP). For a detailed explanation
f all the variables, constraints and parameters in the SWITCH model
efer to the Supplementary Materials.

.1. SWITCH model formulation

SWITCH has different modules that create the capacity expansion
nd dispatch problem. Each module incorporates system constraints
nd parameters on top of the base formulation allowing the user to
xpand and customize the functionality of the model according to the
ntended analysis. For this work, we use the SWITCH formulation and
nputs as described in the Supplementary Materials. Here we present a
hort summary of the modules we use in this study:

• Timescales — Defines the time horizon for the energy balancing
and the multi-period optimization,

• Financial — Defines the base year for the NPV calculation and the
discount and interest rate for the investments,

• Generator — Optimizes new generation build-out and electricity
dispatch based on fuel costs, variable O&M, and overnight costs,

• Transmission — Handles the operation of the transmission assets
and expansion using a lossy-transport model,

• Storage — Defines energy storage assets, optimizes new power
and energy capacity, and optimizes their operation (e.g. state of
charge constraint),

• Hydro — Enforces monthly minimum and average flows for hydro
resources for a given time horizon,

• Policies — Enforces energy policy constraints like RPS and carbon
targets, and

• Reserves — Enforces minimum capacity requirements for the
system.

.2. Geographical scope

This analysis considers a tailored version of SWITCH that encom-
asses the entire WECC region that we refer to as ‘‘SWITCH-WECC.’’
here are 38 functional Balancing Authorities (BA) in the WECC, seven
f which are generation-only BAs [36]. For this model, The geographi-
al resolution divides the WECC into 50 representative load zones (see
ig S.1). Each load zone is interconnected according to the (aggre-
ated) existing transmission line topology and using the latest thermal
apacity limits [37]. In total there are 126 existing transmission lines
onnecting the load zones. We add up the capacity for the different
ransmission lines that interconnect each of the load zones such that
he capacity for the simplified load zones is the same as the aggregated
hermal capacity of each of the individual transmission lines for the
espective interconnection points. This not only simplifies the model,
ut also captures the existing thermal transmission line ratings between
ones (see Fig S.2 for detailed transmission map).

.3. Time resolution and storage balancing horizon

The multi-period analysis commonly used for long-term planning
an be easily implemented using the SWITCH timescale module. Under
he SWITCH modeling toolkit, the time resolution is treated using

three-level hierarchy that accounts for the temporal dimension in
arious scales: periods (), time series ( ) and time points (𝑡).

3 This work used an adapted version of SWITCH-WECC v2.0.0. The docu-
entation of the model is available at: https://github.com/REAM-lab/switch

nd in the Supplementary Materials.
3

2.3.1. Periods.
The periods, which are a set of multi-year timescales, describe the

times when the investment decisions are taken. SWITCH has been fre-
quently framed as a multi-period optimization across multiple decades.
However, the formulation we use in this analysis considers a single
period that stretches 10 years from 2046 to 2055 which we refer to
as 2050. This period uses the load of 2050 and is scaled such that it
represents the length of a 10 year period.

2.3.2. Time series.
The next level of granularity is the time series that denotes blocks of

consecutive time points within a period. An individual time series could
represent a single day, a week, a month, or an entire year. A time series
also limits the length of time energy may be stored. For example, if a
time series is composed of 7 days it means that energy can be stored on
day 1 and be discharged on any day from 1 to 7, but the model does
not allow any surplus or deficit to be carried into a later time series.

2.3.3. Storage balancing horizon.
To properly account for the energy stored in each of the storage

assets, the storage module of SWITCH includes a state of charge for-
mulation that keeps track of the current state of charge (SOC) based
on the time series provided. This is one of the main constraints that
captures the usage of energy storage assets (𝑠). The set of all the assets
in the model is denoted by . The state of charge is modeled by
considering the electricity previously stored, SOC𝑠,𝑡−1, the discharge
amount, D𝑠,𝑡, the charge amount, C𝑠,𝑡, and the duration of the time
oint, 𝛥𝑡 (e.g., 4 h). The following constraint models it:

SOC𝑠,𝑡 = SOC𝑠,𝑡−1 +
(

𝜂𝑐C𝑠,𝑡 −
D𝑠,𝑡

𝜂𝑑

)

𝛥𝑡 ∀𝑠 ∈  ∀𝑡 ∈  , (1)

where 𝜂𝑐 and 𝜂𝑑 are the charging and discharging efficiency, respec-
ively. Additionally to (1), the storage module incorporates a constraint
hat bounds the beginning SOC, SOC𝑠,0, and end SOC𝑠,𝑓 , where 𝑓

denotes the last time point of the time series. This constraint is added
such that the time series is treated cyclically, which means that the SOC
at 0:00 a.m. on the first day of the time series is the same as midnight
SOC for the last day of the same times series. As we change the length of
the time series from a week to a whole year, this modifies the number
of consecutive days considered for the storage balancing decision (see
Fig. 1).

The duration of the SBH should be selected to align with the scope
of the analysis proposed and the specific market and policy rules. We
have identified that most of the existing models focus on short-duration
storage (up to 4 h of consecutive discharge) and using a subset of
consecutive number of days to represent the entire year. There is no
standardization on how to select the appropriate balancing horizon
to understand the role of long-duration energy storage. The selection
of the storage balancing horizon mostly depends on the purpose of
the modeling, but can also be related to the type of load shape and
storage utilization. The ideal scenario will run a single time series
with 8760 h, yet this could be computationally intensive for large-
scale capacity expansion models. For this work, we use four storage
balancing horizons: 1 week, 2 months, 6 months and 1 year. This is
done by changing the input file that is handled under the timescale
and storage module. Each time series scenario has a different ending
for the SOC as illustrated in Fig. 1.

2.3.4. Time points.
Finally, time points describe unique time steps within a time series.

The duration and number of time points per time series depends on
the analysis intended but they are typically on the order of one or
more hours. Time points are the smallest timescale in the model and
are used to index exogenous variables such as electricity demand and
renewable energy generation profiles. All of the time series scenarios
used in this study include exactly the same days (364 days) with a

https://github.com/REAM-lab/switch
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Table 1
Cost assumptions for each of the candidate technologies provided to SWITCH. Data are shown for the 2050 period.
Category Technology Overnight costa

($/kW)
Energy cost
($/kWh)

Fixed O&M
($/kW)

Fuel cost
($/unit)

Lifetime
(years)

Zero-emissions technologies

Fixed tilt solar (20%–33% CF) 703 – 8.29 – 20
Wind (23%–46% CF) 1042 – 33.70 – 30
Off shore wind (30% CF)b 2227 – 112.30 – 20
Geothermal 6970 – 173.11 – 20
Biogas — ICTc 2118 – 64.38 0.00 20
Bioliquid — ST 3226 – 80.01 0.01 40
Biosolid — ST 3226 – 80.01 0.32 20

Conventional technologiesd

CCGT 925 – 12.86 6.31–7.36 40
CCGT — Cogen 103 – 5.31 20

Energy storage

4 h Li-ion 113 130 15.80 – 10

Note: Overnight, energy and fixed O&M cost numbers [15] represent the average of the selected period to study from 2046–2055 year
range.
aThe overnight capital cost is the capital expenditure required to achieve commercial operation of a plant, excluding the construction
period financing cost and the interconnection cost.
bOffshore technology is only available for California load zones.
cFor the baseline scenario there is no fuel cost associated with using biogas.
dNatural gas price varies according to the load zone.
Fig. 1. Diagram showing the storage balancing horizon (SBH) concept for three
different lengths: 1-Year, 6-Month and 1-Week.

4 hour resolution, producing a total of 2184 data points per year. The
evaluation of the same 2184 data points for each of the horizons avoids
variability in the results dependent on which input data (e.g., sampled
hourly loads, capacity factors, etc.) are or are not included.

2.4. Existing and candidate generator and cost data.

The list of existing generators in the WECC is from the latest version
of the form EIA-860 [38] geolocated to its respective load zone using
the latitude and longitude reported. The overnight costs for each of the
candidate plants were provided using the baseline scenario from the
NREL-ATB 2020 [15]. From this source, we extracted the overnight,
4

energy and O&M costs as shown in Table 1. For the capacity expan-
sion, SWITCH-WECC provides one candidate resource per non-variable
technology (see Table 1) per load zone. In total, there are 7,149
candidate locations for new power plants (from which approximately
6,000 correspond to solar and wind sites). The cost numbers represent
an average of the projected cost for the 10 year period (2046–2055)
modeled.

3. Results

All the input files for each of the scenarios are constructed and run
individually in a server with 24 cores, 2.8 GHz clock speed, and 512 GB
of RAM memory located at UC San Diego. We use Gurobi [39] as the
solver for all the runs using one thread and crossover as the solving
mechanism. On average, the solutions to the optimization problems are
found in 4–5 h.

First, we show the results of the optimal online capacity and trans-
mission expansion for the entire WECC using the baseline energy
cost scenario as shown in Fig. 2. From Fig. 2, we observe that most
of the western load zones are dominated by both solar and storage
technologies. In the southwest region, i.e. California and Arizona, we
observe that utility-scale solar and energy storage dominate the share
of capacity with up to 80% of the installed capacity. Three out of five
load zones with highest annual electrical demand are located in this
region. Wind energy is deployed in the northern part of the WECC in the
load zones of Alberta and British Columbia with up to 70% and 50% of
the new capacity additions respectively. Also, in the same region, new
transmission is needed to balance and transmit wind and solar energy.
For biomass, only one load zone located in the Northern part of Oregon
expands this technology due to low solar and wind annual capacity
factors for this zone (10% for solar and 20% for wind) in comparison
with other regions of the WECC.

The results of the optimal new built capacity are shown in Fig. 3.
The ratio of solar to wind remains almost constant across the different
scenarios with an average ratio of 3. The maximum capacity deployed
for solar power is 17% of the potential available capacity WECC-
wide, while the maximum capacity deployed for wind power is 11%.
From these results, we observe that the 1-Week SBH always results in
additional solar and storage being deployed in comparison with longer
SBH where the optimal power capacity remains almost constant in all

cost scenarios as seen in Fig. 3(a). This overbuild from both solar and
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Fig. 2. Map of optimal online capacity and new installed transmission for a zero-
carbon WECC in 2050. Cost assumptions correspond to the baseline storage energy
cost scenario using a 1-Week SBH. Solar and storage dominate the capacity mix in
most of the WECC. Additional transmission is required in the northern balancing zones
to accommodate extra capacity selected.

storage is required to adjust the energy balance constraint to meet the
high load week that occurs from July to August. We observe a similar
overbuild in all cost scenarios and in particular in the 6-Month SBH
scenarios as seen in both Figs. 3(b) and 3(c) where the first week of
the second SBH coincides with the summer peak. Changing the storage
energy capacity cost did not substantially change the total installed
power capacity until reaching 1% of the cost. In this case, we observe
a decrease in total power capacity from 766 GW (1-Week SBH) to
707 GW (1-Year SBH) as seen in Fig. 3(c). Another interesting trend is
that wind power is deployed less as we reduce the cost of storage energy
capacity. In the baseline energy capacity cost scenarios the installed
capacity for wind power ranges from 118 GW to 141 GW, while in the
1% energy cost scenarios, the capacity ranges from 92 GW to 120 GW.

Next, we present results related to the optimal duration for the
storage technologies. As we explain in Section 2, the model is able
to optimize both the power and energy ratings of each of the storage
candidate assets for each load zone. The optimal cumulative number
of storage assets is shown in Fig. 4. For the baseline cost scenario
we observe that 50% of the storage assets have 7 or fewer hours
of duration. Furthermore, we also observe that for the baseline cost
scenario, the SBH length does not change the optimal storage duration.

As the storage energy cost decreases, we obtain that the optimal
duration deployment depends on the length of the time series. We
observe this behavior in both 10% and 1% of the baseline cost scenarios
with the latter showing the biggest difference and longer duration with
up to 600 h of duration. For the 10% cost scenario, we observe that
there is a shift of the 50th percentile to at least 8 h duration with up
to 24 h for all SBH lengths as shown in Fig. 4. Although the 10% cost
scenario represents an aggressive cost reduction, by 2050 such a low
cost may be a reasonable assumption especially if the DOE is successful
in reaching this cost in 2030. For both the 10% and 1% costs, the model
finds optimal seasonal storage duration with up to a month of energy
discharge capacity.

Moreover, results show that the length of the balancing horizon
reduces the amount of renewable curtailment. For all the scenarios,
we observe the peak of curtailment occurring between April and May,
mostly from solar energy. We observe a reduction in the total amount
of curtailed electricity as we increase the number of consecutive days
5

Fig. 3. Optimal selected capacity mix for a zero-carbon WECC in 2050 considering
the different lengths of storage balancing horizons and storage energy costs with the
storage cost being (a) $130/kWh, (b) $13/kWh, and (c) $1.3/kWh.

modeled in the 10% and 1% cost scenarios with a higher reduction
in the latter as shown in Fig. 5. For the 1% energy cost scenario, the
curtailment is highest for the 1-Week SBH with up to 171 TWh and
lowest for the full year horizon with 43 TWh. In both these cases, most
of the curtailment comes from solar technologies. For these low-cost
storage scenarios, the model finds it optimal to store additional energy
instead of building new VRE capacity, in particular in load zones where
VRE generation profiles are low.

The utilization of storage also changes with the balancing horizon.
For the baseline cost, most of the short duration (5–8 h) storage
selected is being utilized for daily arbitrage to balance solar and wind
generation. The model also selects 8+ hour duration at baseline cost
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Fig. 4. Cumulative number of storage assets selected by the model for the optimal energy storage duration (energy to power ratio). The different panels show results depending
on the storage energy capacity cost assumption: the left corresponds to the baseline cost, the middle panel corresponds to $13/kWh, and the right panel corresponds to $1.3/kWh.
Each color represents a different storage balancing horizon (SBH) where the blue line represents the 1-Week, orange 2-Month, green 6-Month and red 1-Year. We observe an
increase in optimal storage duration deployment as the storage energy capacity costs decrease.
Fig. 5. Total solar and wind curtailment for the $1.3/kWh energy capacity cost
cenario for each SBH scenario. Curtailment is defined as the difference of the available
ispatch capacity at each time point and the dispatch decision. Curtailment is reduced
s the SBH duration increases.

hat is also utilized mostly for daily arbitrage, but only in 4 load zones.
n Fig. 7(a) the model selects 5–10 h storage (orange line) and some
eekly storage (green line) and, for both, the amount of energy in

torage reaches up to 1 TWh for the entire WECC.
The model does not add additional energy capacity for any of

he balancing horizons the use the baseline cost as it becomes more
xpensive than overbuilding solar or wind capacity. On the other hand,
e observe a complete utilization of storage for the 10% and 1%
nergy cost scenarios. The model selects LDES starting from the 2-
onth horizon at 10% cost and for all horizons at 1% of the energy

ost (see Fig. 6). In particular, for the 1-Year scenario at 1% energy
ost, the model selects two types of storage only: weekly and seasonal.
he weekly storage is also used for daily arbitrage and is capable of
ischarging up to 2 TWh while maintaining a minimum SOC of 1 TWh
hroughout the year. The seasonal storage is also being used for daily
rbitrage but it is optimized to meet two main discharge events that
atch the summer and winter peaks of the entire WECC with a total of
2 TWh of energy in storage.

Finally, we show the storage power capacity difference obtained
y changing the SBH for the baseline energy cost as shown in Fig. 7.
verall throughout the WECC, the 1-Week SBH requires an additional

torage power capacity of up to 4 GW per load zone (shown in dark
ed). On the other hand, 15 balancing zones, mostly in the East of the
ECC (shown in dark blue), show the need to add more storage power
6

capacity of up to 2 GW mostly to balance the different usage of storage
in neighboring zones. In total, 5 out of the 50 zones did not see any
change from the different SBH.

4. Conclusions and future work

In this work, we systematically explore the impact of extending
the SBH to longer time frames and how the initial assumption of SBH
changes the role of low-cost LDES in a capacity expansion formulation.
From our results, we conclude that shortening the SBH undermines
the true potential of LDES technologies for seasonal storage or energy
shifting. While LDES technologies are still in early stages, we expect
that their costs will further decrease and anticipate them playing a
bigger role to support additional VRE deployment.

When we compare extreme scenarios, i.e., a full year of consecutive
days for storage balancing using $1.3/kWh as the cost for energy ca-
pacity versus one week of consecutive days at $130/kWh, the installed
storage energy capacity varies by up to 13%. We also find that the total
amount of energy required to balance the WECC increases as the SBH
increases. Moreover, we find that the amount of storage needed for an
optimal WECC ranges from 2.47 TWh for the 1-Week SBH at $113/kWh
scenario to 16.05 TWh for the 1-Year SBH at $1.3/kWh scenario.

In terms of energy storage duration, we find that the model adds
weekly (10–100 h) and seasonal (100+ h) energy storage for the
$13/kWh and $1.3/kWh energy capacity cost scenarios, respectively.
The length of the SBH increases the optimal deployment of storage
duration from a maximum of 8 h in the baseline cost scenario up to
620 h when the cost is $1.3/kWh. When we model 1-Year SBH for each
of the energy capacity cost scenarios, we obtain a total optimal energy
capacity WECC-wide that ranges from 1.5 TWh to 12 TWh for the 10%
and 1% energy capacity cost scenarios, respectively.

An accurate power system modeling of LDES technologies is key
to understand the importance of LDES for a high-VRE electrical grid.
This work takes the first step towards correctly modeling LDES in
capacity expansion models and understanding the errors incurred and
differences found when not modeling a full year of consecutive days
for storage balancing. We expect that this work will not only identify
limitations of existing models in capturing the value of low-cost LDES
technologies, but also motivate new work related to capacity expansion
formulation. Additionaly, the approach we present in this work aims to
inspire energy modelers to adopt a year-long SBH for LDES technologies
in their capacity expansion models.
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Fig. 6. Aggregated state of charge for all energy storage technologies installed throughout the WECC region. (a) For the 1-Week SBH using $130/kWh and (b) for the 1-Year SBH
using $1.3/kWh. Duration of energy storage is classified according to its optimal range of duration (energy to power ratio). The range between 10–100 h is classified as weekly
and 100+ hours is classified as seasonal. In panel (b) we observe seasonal storage to balance summer and winter peak.
Fig. 7. Storage power capacity difference between 1-Week SBH and 1-Year SBH for
the baseline energy cost for each of the WECC regions.
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