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RESEARCH ARTICLE
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Abstract

Arachidonic acid is metabolized to epoxyeicosatrienoic acids (EETs) by cytochrome (CYP)

P450 epoxygenases, and toω-terminal hydroxyeicosatetraenoic acids (HETEs) by ω-

hydroxylases. EETs and HETEs often have opposite biologic effects; EETs are vasodilatory

and protect against ischemia/reperfusion injury, while ω-terminal HETEs are vasoconstric-

tive and cause vascular dysfunction. Other oxylipins, such as epoxyoctadecaenoic acids

(EpOMEs), hydroxyoctadecadienoic acids (HODEs), and prostanoids also have varied

vascular effects. Post-ischemic vasodilation in the heart, known as coronary reactive hyper-

emia (CRH), protects against potential damage to the heart muscle caused by ischemia.

The relationship among CRH response to ischemia, in mice with altered levels of CYP2J

epoxygenases has not yet been investigated. Therefore, we evaluated the effect of endothe-

lial overexpression of the human cytochrome P450 epoxygenase CYP2J2 in mice (Tie2-

CYP2J2 Tr) on oxylipin profiles and CRH. Additionally, we evaluated the effect of pharmaco-

logic inhibition of CYP-epoxygenases and inhibition ofω-hydroxylases on CRH. We hypoth-

esized that CRH would be enhanced in isolated mouse hearts with vascular endothelial

overexpression of human CYP2J2 through modulation of oxylipin profiles. Similarly, we

expected that inhibition of CYP-epoxygenases would reduce CRH, whereas inhibition of ω-

hydroxylases would enhance CRH. Compared to WT mice, Tie2-CYP2J2 Tr mice had

enhanced CRH, including repayment volume, repayment duration, and repayment/debt

ratio (P < 0.05). Similarly, inhibition ofω-hydroxylases increased repayment volume and

repayment duration, in Tie2-CYP2J2 Tr compared to WT mice (P < 0.05). Endothelial over-

expression of CYP2J2 significantly changed oxylipin profiles, including increased EETs

(P < 0.05), increased EpOMEs (P < 0.05), and decreased 8-iso-PGF2α (P < 0.05). Inhibition

of CYP epoxygenases with MS-PPOH attenuated CRH (P < 0.05). Ischemia caused a

decrease in mid-chain HETEs (5-, 11-, 12-, 15-HETEs P < 0.05) and HODEs (P < 0.05).
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These data demonstrate that vascular endothelial overexpression of CYP2J2, through

changing the oxylipin profiles, enhances CRH. Inhibition of CYP epoxygenases decreases

CRH, whereas inhibition ofω-hydroxylases enhances CRH.

Introduction

Arachidonic acid (AA) can be metabolized to epoxyeicosatrienoic acids (EETs) by cytochrome

P450 (CYP) epoxygenases, primarily of the CYP2C and CYP2J subfamilies. In a parallel path-

way, CYP ω-hydroxylases, such as CYP4A, hydroxylate AA to ω-terminal HETEs (hydroxyei-

cosatetraenoic acids), including the potent vasoconstrictor 20-HETE [1]. CYP epoxygenases

can generate four distinct EET regioisomers: 5,6-, 8,9-, 11,12- and 14,15-EET. EETs are

involved in numerous biological functions, including hyperpolarization and relaxation of vas-

cular smooth muscle cells [2, 3]. Mouse cardiomyocytes with increased EET generation are

protected against ischemia/reperfusion injury [4, 5]. EETs have short half lives, mainly due to

their conversion to dihydroxyeicosatrienoic acids (DHETs) [6] by soluble epoxide hydrolase

(sEH). Different strategies have been used to experimentally overcome this shortcoming to

assess the beneficial effects of EETs, including endothelial overexpression of CYP epoxy-

genases, such as CYP2J2 [7, 8]. While humans have just one CYP2J enzyme, CYP2J2, mice

express 7 functional CYP2J proteins [9]. CYP2J2 is expressed in different vascular tissues,

including the heart muscle and coronary arteries [4, 9]. Isolated aortic endothelial cells from

Tie2-CYP2J2 Tr mice had 30% higher production of 11,12- and 14,15-EETs into culture

medium [8]. In male mice, endothelial overexpression of human CYP2J2 (Tie2-CYP2J2 Tr)

enhanced blood flow and suppressed inflammation to protect against experimental cerebral

ischemia [8].

Ischemic insult to the heart is followed by transient increase in coronary blood flow [10]

which is known as coronary reactive hyperemia (CRH) [10, 11]. The increased perfusion asso-

ciated with CRH is protective by increasing nutrient and oxygen supply to the deprived heart

muscle and removing metabolic byproducts. Decreased CRH is documented in some patho-

logic conditions, such as cardiac hypertrophy [12], metabolic syndrome [13], unstable angina,

myocardial infarction, and congestive heart failure [14]. Several metabolic mediators regulate

CRH, including adenosine [12, 15, 16], nitric oxide (NO) [12], and hydrogen peroxide (H2O2)

[12]. Oxylipins, such as EETs, DHETs, EpOMEs, DiHOMEs, mid-chain HETEs, prostanoids,

and HODEs, have been investigated for their vascular effects [7, 17–20]. Oxylipins may play a

role in CRH [17].

In addition to EETs, CYP2J2 generates epoxyoctadecaenoic acid (EpOMEs) oxylipins from

linoleic acid [21]. EpOMEs protect against hypoxia/reoxygenation injury at physiological levels

[20, 22]. Changes in one oxylipin group may coincide with changes in other groups, such as

HETEs, hydroxyoctadecadienoic acids (HODEs), and prostanoids [17]. Epidemiological stud-

ies suggest a protective role of CYP2J2 against cardiovascular disease in humans [23, 24]. The

CYP2J2�7 polymorphism, which is associated with reduced CYP2J2 expression and activity, is

linked to a higher risk of adverse cardiovascular events including myocardial infarction [23,

24]. The effects of human CYP2J2 vascular overexpression and the associated changes in oxyli-

pin profiles, and inhibition of CYP-epoxygenases, ω-hydroxylases on CRH in response to

short ischemia have not been investigated. We hypothesized that vascular endothelial overex-

pression of human CYP2J2 enhances CRH through modulation of oxylipin profiles; and inhi-

bition of ω-hydroxylases enhances CRH, whereas inhibition of CYP-epoxygenases reduces

CRH.

Overexpression of human CYP2J2 modulates cardiac oxylipins and coronary reactive hyperemia in mice
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Materials and methods

Animals

The generation of transgenic mice expressing Tie2-driven human 2J2 in endothelial cells on a

C57BL/6 genetic background (Tie2-CYP2J2 Tr) was described by Lee et al. [7, 25]. Tie2-

CYP2J2 Tr and wild type (WT) mice were of the C57BL/6 genetic background, and were gen-

erously provided by Dr. Darryl Zeldin, National Institute of Environmental Health Sciences/

National Institutes of Health (NIH). All animal care and experimentation protocols were

approved and carried out in accordance with the West Virginia University Institutional Ani-

mal Care and Use Committee and were in accordance with the principles and guidelines of the

NIH’s Guide for the Care and Use of Laboratory Animals. Both male and female mice (14–16

wks old) in an equal ratio were used in our study. Mice were maintained in cages with a 12:12

hour light-dark cycle and free access to standard chow (Cat #2018, Envigo, Indianapolis, IN)

and water. Diet 2018 contains 6.2% fat by weight, including 0.7% palmitic, 0.2% stearic, 1.2%

oleic %, 3.1% linoleic, and 0.3% linolenic Acids.

Langendorff-perfused heart preparation

We used the constant pressure mode of the Langendorff isolated heart perfusion as previously

described [17]. Tie2-CYP2J2 Tr and wild-type mice (14–16 wks.) were euthanized with

sodium pentobarbital (100 mg/kg body weight intra-peritoneally). Hearts were excised and

immediately placed into heparinized (5 U/mL) ice-cold Krebs-Henseleit buffer containing (in

mM) 119.0 NaCl, 11.0 glucose, 22.0 NaHCO3, 4.7 KCl, 1.2 KH2PO4, 1.2 MgSO4, 2.5 CaCl2, 2.0

pyruvate, and 0.5 EDTA. After removal of the lungs and tissue surrounding the heart, the

aorta was rapidly cannulated with a 20-gauge, blunt-ended needle and continuously perfused

with 37˚C buffer continuously bubbled with [95% O2]–[5% CO2] at a constant perfusion pres-

sure of 80 mmHg. The left atrium was excised, and a water-filled balloon made of plastic wrap

was inserted into the left ventricle through the mitral valve. The balloon was connected to a

pressure transducer for continuous measurement of left ventricular developed pressure

(LVDP) and heart rate (HR). The heart was then immersed in a water-jacketed perfusate bath

(37˚C) and left to beat spontaneously. Left ventricular diastolic pressure was adjusted to 2–5

mmHg. A flow transducer was installed above the cannulated aorta for continuous measure-

ment of CF with an ultrasonic flow probe (Transonic Systems, Ithaca, NY). Data were acquired

using a Power–Lab Chart data acquisition system (AD Instruments, Colorado Springs, CO).

Heart function was allowed to stabilize for 30–40 min before initiation of CRH. Only hearts

whose CF increased by more than two fold after a 15-second total occlusion were included in

the analysis. This was to include only properly functioning hearts that were not damaged dur-

ing cannulation and baseline perfusion. Hearts with persistent arrhythmias or LVDP <80

mmHg were excluded.

Coronary reactive hyperemic response

After stabilization for 30–40 minutes, baseline CF, HR, and LVDP were recorded for isolated

Tie2-CYP2J2 Tr and WT mice hearts. Hearts were subjected to 15 seconds of total occlusion

by closing the valve directly above the cannulated heart to bring forth CRH. After CF returned

to pre-CRH baseline levels, post-CRH baseline CF, CF tracing, HR, LVDP, repayment volume

(RV), and repayment duration (RD) recordings were analyzed for each isolated heart. Investi-

gational drugs were infused into the aortic perfusion line using a microinjection pump (Har-

vard Apparatus, Holliston, MA) for 15 minutes, after which another CRH was induced and

the same parameters analyzed again. Drugs were infused at a rate equivalent to 1% of CF. The

Overexpression of human CYP2J2 modulates cardiac oxylipins and coronary reactive hyperemia in mice
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final concentrations, after standardization of dose (0.01, 0.1, 1, & 10 μM) response for the

various drugs used in this study were 1 μM for MS-PPOH (methylsulfonyl-propargyloxyphe-

nylhexanamide, CYP-epoxygenases inhibitor) and 1 μM DDMS (dibromo-dodecenyl-methyl-

sulfimide, CYP4A-blocker). These concentrations are equal or lower than used in previous

studies: MS-PPOH, 1 μM [17], and DDMS, 1 μM [26].

LC–MS/MS oxylipin analysis

Levels of oxylipins (5,6-, 8,9-, 11,12- and 14,15-EET; 5,6-, 8,9-, 11,12- and 14,15-DHET, 5-, 8-,

11-, 12- and 15-HETE; 9,10- and 12,13-EpOME; 9,10- and 12,13-DiHOME; 9- and 13-HODE;

6-keto prostaglandin-F1α [6K-PG-F1α], PG-F2α, thromboxane B2 [TxB2], PGD2, and PGE2),

and 8-iso-PGF2α were quantified in pre- and post-CRH heart perfusates of Tie2-CYP2J2 Tr

and WT mice through liquid chromatography, tandem mass spectroscopy (LC-MS/MS) as

described previously [25]. Heart perfusates were collected for 2.5 min after the first 30 min of

stabilization and immediately after reperfusion. Hearts were immersed in 5 mL of warm

(37˚C) Krebs-Henseleit buffer with 5 μL of 10 μM t-AUCB to block EET hydrolysis by sEH.

Heart perfusates were collected two times before ischemia (baseline) and pooled together as

one sample and two times after ischemia and pooled together as another sample for LC-MS/

MS analysis. Samples were stored at –80˚C until processing. Samples were spiked with 30 ng

PGE2-d4, 11,12-EET-d8, and 11,12-DHET-d8 (Cayman) as internal standards, mixed with

0.1 vol of 1% acetic acid in 50% methanol, and extracted by serial passage through Oasis HLB

C18 3mL columns (Waters, Milford, MA, USA). Columns were washed twice with 0.1% acetic

acid in 5% methanol and eluted with methanol into glass tubes containing 6 μL of 30% glycerol

in methanol. The methanol was then evaporated under a stream of nitrogen gas, and the dried

tubes were frozen and stored at –80˚C until analysis. Online liquid chromatography of ex-

tracted samples was performed with an Agilent 1200 Series capillary HPLC (Agilent Technolo-

gies, Santa Clara, CA, USA). Separations were achieved using a Halo C18 column (2.7 mm,

10062.1 mm; MAC-MOD Analytical, Chadds Ford, PA), which was held at 50˚C. Mobile

phase A was 85:15:0.1 water: acetonitrile: acetic acid. Mobile phase B was 70:30:0.1 acetonitrile:

methanol: acetic acid. Flow rate was 400 μL/min; Gradient elution was used. Mobile phase per-

centage B and flow rate were varied as follows: 20% B at 0 min, ramp from 0 to 5 min to 40%

B, ramp from 5 to 7 min to 55% B, ramp from 7 to 13 min to 64% B. From 13 to 19 min the col-

umn was flushed with 100% B at a flow rate of 550 μL/min. Samples were solvated in 50 μl of

30% ethanol. The injection volume was 10 μL. Samples were analyzed in triplicate. Analyses

were performed on an MDS Sciex API 3000 equipped with a TurboIonSpray source (Applied

Biosystems). Turbo desolvation gas was heated to 425˚C at a flow rate of 6 L/min. Negative ion

electrospray ionization tandem mass spectrometry with multiple reaction monitoring was

used for detection. Analyte quantification was performed using Analyst 1.5.1 software (AB

Sciex, Ontario, Canada). Relative response ratios of analytes and respective internal standards

were compared to a standard curve of response ratios for each analyte. Lipid standards, which

are sensitive to oxidative degradation, were stored in 100% ethanol under argon and used

within 1 year of purchase from Cayman Chemical (Detroit, MI).

Effect of DDMS (ω-hydroxylases-inhibitor) on CRH response

Isolated Tie2-CYP2J2 Tr and WT mice hearts were stabilized for 30–40 min, followed by 15

sec of total occlusion. Recordings of the first CRH (baseline CF, CF tracing, LVDP, HR, RV,

and RD) were analyzed for each heart and averaged. DDMS was infused at a final concentra-

tion of 1.0 μM for 15 minutes, after which the second CRH was induced. CRHs before and

after DDMS infusion were analyzed and compared.

Overexpression of human CYP2J2 modulates cardiac oxylipins and coronary reactive hyperemia in mice
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Effect of MS-PPOH (CYP-epoxygenases inhibitor) on CRH response

We followed the same protocol in the preceding section: MS-PPOH infused at a final concen-

tration of 1.0 μM for 15 minutes, and a second CRH was induced. CRHs before and after

MS-PPOH infusion were analyzed and compared.

Statistical and data analyses

Flow debt (baseline flow rate multiplied by occlusion duration) and repayment volume (RV;

the integral of hyperemic flow above the baseline flow) were calculated using “the integral rela-

tive to baseline” function in the data pad of Lab-Chart 7.0 software. Since absolute coronary

flow rates change proportionally with heart mass, the RV and flow debt are presented as ml/g

wet heart weight, and baseline and peak flow rate data are presented as (mL.min–1.g wet heart

weight–1). Repayment duration is the time period from reperfusion until the perfusion rate

returns to the pre-ischemia baseline level. Repayment/debt ratio is the quotient of the repay-

ment volume to flow debt. Values are means ± standard error; n represents the number of ani-

mals. For data analysis, two-tailed unpaired t-test was used for unpaired data analyses, and

two-way ANOVA was used to compare data between groups. Differences were considered sta-

tistically significant when P< 0.05.

Results

CRH response

Effect of endothelial overexpression of CYP2J2 (Tie2-CYP2J2 Tr) on CRH response.

Endothelial overexpression of CYP2J2 enhanced CRH in Tie2-CYP2J2 Tr compared to WT

mice. Compared to WT mice, Tie2-CYP2J2 Tr mice had increased repayment volume (7.2 ±
0.5 and 10.7 ± 1.3 mL/g, respectively; P< 0.05, Fig 1A), increased repayment duration (2.5 ±
0.2 and 3.6 ± 0.3 min, respectively; P< 0.05; Fig 1B), and increased repayment/debt ratio

(2.3 ± 0.2 and 3.6 ± 0.4, respectively; P< 0.05; Fig 1C). Baseline CF (Fig 1D), LVPD, and HR

(not shown) were not different between these two groups (P> 0.05).

EETs’ profile analysis of heart perfusate

Three out of the four EET regioisomers (8,9-, 11,12-, and 14,15-EETs) and their corresponding

metabolites (8,9-, 11,12-, and 14,15-DHETs) were detected by this technique. 11,12-, and

14,15-EETs were increased more in the heart perfusate of Tie2-CYP2J2 Tr vs. WT mice (P<
0.05; Fig 2B and 2C). 8,9-EET was not different between Tie2-CYP2J2 Tr and WT mice

(P> 0.05; Fig 2A). For DHETs, there was no significant difference between Tie2-CYP2J2 Tr

and WT mice (P> 0.05; Fig 2D–2F). Neither EETs nor DHETs were changed by the short

ischemia (P> 0.05; Fig 2A–2F).

Effect of MS-PPOH (CYP epoxygenase inhibitor) on CRH response

Similar to Fig 1, repayment volume was higher in Tie2-CYP2J2 Tr vs. WT mice. MS-PPOH

attenuated CRH in both Tie2-CYP2J2 Tr and WT mice; repayment volume was decreased in

WT mice (from 6.6 ± 0.4 to 5.5 ± 0.2 mL/g; P< 0.05) and in Tie2-CYP2J2 mice (from 9.8 ± 0.9

to 8.0 ± 0.4 mL/g; P< 0.05). Tie2-CYP2J2 Tr hearts repayment volume remained elevated after

treating both groups with MS-PPOH (MS-PPOH–treated Tie2-CYP2J2 Tr vs. MS-PPOH–

treated WT mice; P< 0.05, Fig 3A). MS-PPOH also decreased baseline CF in WT mice (from

13.6 ± 0.5 to 10.4 ± 0.8 mL/g; P< 0.05) and in Tie2-CYP2J2 Tr mice (from 14.0 ± 0.6 to

11.7 ± 0.6 mL/g; P< 0.05, Fig 3D). It was not different between the two groups before and after

treatment with MS-PPOH (P> 0.05, Fig 3D). Since the repayment/debt (R/D) ratio is a

Overexpression of human CYP2J2 modulates cardiac oxylipins and coronary reactive hyperemia in mice

PLOS ONE | https://doi.org/10.1371/journal.pone.0174137 March 22, 2017 5 / 21

https://doi.org/10.1371/journal.pone.0174137


function of both repayment volume and baseline coronary flow, MS-PPOH affected R/D ratio

based on how it affected repayment volume and baseline CF. While MS-PPOH increased R/D

ratio in WT mice (from 2.0 ± 0.1 to 2.3 ± 0.6; P< 0.05), it decreased it in Tie2-CYP2J2 Tr mice

(from 3.1 ± 0.2 to 2.7 ± 0.1; P< 0.05, Fig 3C). Repayment duration was longer in Tie2-CYP2J2

Tr vs. WT mice (P< 0.05; Fig 3B), but was not significantly reduced by MS-PPOH (P> 0.05;

Fig 3B). LVPD and HR were not different between and within the two groups (data not

shown).

Mid-chain HETEs’ profile analysis of heart perfusate

Mid-chain HETEs (5-, 8-, 11-, 12-, and 15-HETEs) were detected in WT and Tie2-CYP2J2 Tr

mouse heart perfusates before and after ischemia. In Tie2-CYP2J2 Tr mice, the levels of 5-, 11-

, and 15-HETE were similar those in WT mice at baseline and post-ischemia (P> 0.05; Fig

4A, C and E, respectively). However, the other detected mid-chain HETEs (8- and 12-HETE)

were significantly more elevated at baseline and post-ischemia in Tie2-CYP2J2 Tr compared

to WT mice (P< 0.05; Fig 4B and 4D, respectively). Additionally, the 15-sec ischemia

decreased the levels of mid-chain HETEs (reaching significant levels for 5-, 11-, 12-, and

15-HETEs) and in both Tie2-CYP2J2 Tr and WT mice (P< 0.05; Fig 4A–4E).

Fig 1. Comparison of coronary reactive hyperemia (CRH) between Tie2-CYP2J2 Tr and WT mice. Repayment volume (A), repayment

duration (B), and repayment/debt ratio (C), were increased in Tie2-CYP2J2 Tr compared to WT mice (P < 0.05). Baseline CF (D) was not different

between the two groups. * P < 0.05 versus WT. n = 8 per group.

https://doi.org/10.1371/journal.pone.0174137.g001
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Omega- (ω-) terminal HETEs (19-, and 20-HETEs) were not detectable in our samples.

Effect of DDMS (CYP4A inhibitor) on CRH response

DDMS enhanced CRH in both Tie2-CYP2J2 Tr and WT mice. Repayment volume was

increased in WT mice (from 7.9 ± 0.5 to 11.3 ± 1.0 mL/g; P< 0.05) and in Tie2-CYP2J2 mice

(from 10.9 ± 0.9 to 13.9 ± 0.9 mL/g; P< 0.05, Fig 5A). DDMS also increased repayment dura-

tion in WT mice (from 2.2 ± 0.2 to 4.4 ± 0.7 mL/g; P< 0.05) and in Tie2-CYP2J2 Tr mice

(from 3.3 ± 0.3 to 4.6 ± 0.6 mL/g; P< 0.05, Fig 5B). Both repayment volume and repayment

duration were more increased in Tie2-CYP2J2 Tr vs. WT mice (P< 0.05, Fig 5A and 5B);

however, they were not different between the two groups after infusing DDMS (P> 0.05, Fig

5A and 5B). Repayment/debt (R/D) ratio had an increasing trend by DDMS in both WT and

Tie2-CYP2J2 Tr mice, but was not statistically significant (P> 0.05, Fig 5C). Baseline CF (Fig

5D), LVPD, and HR (data not shown) were not different between and within the two groups

(P> 0.05).

Fig 2. LC–MS/MS analysis for EETs’ (8, 9–, 11, 12–, and 14, 15–) and DHETs’ (8, 9–, 11, 12–, and 14, 15–) levels in WT and Tie2-CYP2J2 Tr

mouse heart perfusates at baseline and post-ischemia. 11,12-EET (B), and 14,15-EET (C) were increased in Tie2-CYP2J2 Tr compared to WT mice

(P < 0.05), whereas 8,9-EET (A) was not significantly different between the two groups (P > 0.05). 8,9-DHET (D), 11,12-DHET (E), and 14,15-DHET (F)

were not significantly different between WT and Tie2-CYP2J2 Tr mice. Also, the levels of EETs and DHETs were not affected in response to ischemia in

either mouse genotype (P > 0.05). * P < 0.05 versus baseline WT. # P < 0.05 versus WT post-ischemia. n = 12 per group.

https://doi.org/10.1371/journal.pone.0174137.g002

Overexpression of human CYP2J2 modulates cardiac oxylipins and coronary reactive hyperemia in mice

PLOS ONE | https://doi.org/10.1371/journal.pone.0174137 March 22, 2017 7 / 21

https://doi.org/10.1371/journal.pone.0174137.g002
https://doi.org/10.1371/journal.pone.0174137


Prostanoids’ profile analysis of heart perfusate

The levels of 6K-PG-F1α, PG-F2α, PG-D2, PG-E2, and TxB2 were detected in our LC–MS/MS

(Fig 6). For these metabolites, no significant difference was noted between WT and Tie2-

CYP2J2 Tr mice at baseline or post-ischemia (P> 0.05; Fig 6). These metabolites generally

decreased in response to ischemia in both genotypes, with PG-F2α and PG-E2 being signifi-

cantly reduced (P< 0.05; Fig 6).

EpOMEs’ profile analysis of heart perfusate

Linoleic acid (LA) epoxides (9,10- and 12,13-EpOMEs) were increased in Tie2-CYP2J2 Tr

compared to WT mice (P< 0.05; Fig 7A). In both genotypes, these epoxides had a decreasing

trend in response to ischemia that was not statistically significant (P> 0.05; Fig 7A). The

Fig 3. Effect of the CYP-epoxygenases inhibitor, MS-PPOH (1 μM), on coronary reactive hyperemia (CRH) in Tie2-CYP2J2 Tr and WT mice. The

CYP-epoxygenases inhibitor, MS-PPOH, decreased CRH in both Tie2-CYP2J2 Tr and WT mice. (A): MS-PPOH decreased repayment volume in both

mouse genotypes. However, repayment volume was still higher in untreated Tie2-CYP2J2 Tr vs. untreated WT, and in MS-PPOH-treated Tie2-CYP2J2

Tr vs. MS-PPOH-treated WT. (B): repayment duration was not changed by the treatment with MS-PPOH in both WT and Tie2-CYP2J2 Tr mice, but

repayment duration was increased more in untreated Tie2-CYP2J2 Tr vs. untreated WT. (C): MS-PPOH increased repayment/debt ratio in WT mice, but

decreased it in Tie2-CYP2J2 Tr mice. Repayment/debt ratio was increased more in untreated Tie2-CYP2J2 Tr vs. untreated WT, and in MS-PPOH-

treated Tie2-CYP2J2 Tr vs. MS-PPOH-treated WT. (D): MS-PPOH decreased baseline CF in both mouse genotypes. There was no difference in

baseline CF between untreated Tie2-CYP2J2 Tr and untreated WT. * P < 0.05 versus untreated WT. # P < 0.05 versus untreated Tie2-CYP2J2 Tr mice.
Ψ P < 0.05 versus MS-PPOH-treated WT. n = 8 per group.

https://doi.org/10.1371/journal.pone.0174137.g003
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corresponding 9,10- and 12, 13-DiHOME levels were not significantly different between

Tie2-CYP2J2 Tr and WT mice (P> 0.05; Fig 7B).

HODEs’ profile analysis of heart perfusate

The hydroxylated LA metabolites, 9- and 13-HODEs, were not significantly different between

WT and Tie2-CYP2J2 Tr mice at baseline or post-ischemia (P> 0.05; Fig 8). However, in

both genotypes, 9- and 13-HODEs decreased in response to ischemia (P< 0.05; Fig 8).

8-iso-PGF2α profile analysis of heart perfusate

This prostaglandin-related isoprostane decreased in Tie2-CYP2J2 Tr versus WT mice at base-

line and post-ischemia (P< 0.05; Fig 9). Brief ischemia did not alter 8-iso-PGF2α in either

genotype (P> 0.05; Fig 9).

We summarized our observed results into a proposed schematic diagram (Fig 10).

Fig 4. LC–MS/MS analysis of 5-, 8-, 11-, 12- and 15-HETE levels in WT and Tie2-CYP2J2 Tr mouse heart perfusates at baseline and post-

ischemia. In Tie2-CYP2J2 Tr mice, the levels of 8-HETE (B) and 12-HETE (D) were increased compared to WT mice at baseline and post-ischemia

(P < 0.05). In both WT and Tie2-CYP2J2 Tr mice, post-ischemic levels of 5-HETE (A), 8-HETE (B), 11-HETE (C), 12-HETE (D) and 15-HETE (E) were

decreased compared to baseline levels (P < 0.05). * P < 0.05 versus baseline WT. # P < 0.05 versus WT post-ischemia. Ф P < 0.05 versus baseline

Tie2-CYP2J2 Tr. n = 12 per group.

https://doi.org/10.1371/journal.pone.0174137.g004
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Discussion

While CYP2J2 overexpression has shown beneficial effects on vasodilation, inflammation, and

contractile recovery from cardiac ischemia, the relevance of CYP2J2 metabolism in CRH had

not been previously explored. The signaling mechanisms involved in CRH may be substan-

tially different from the mechanisms which improve cardiac function or chronic hypertension

in other models. Herein, we investigated the role of endothelial-specific CYP2J2 overexpres-

sion and the accompanying oxylipin changes in the modulation of CRH using isolated WT

and Tie2-CYP2J2 Tr mouse hearts. Our data demonstrated that: 1) Endothelial overexpression

of CYP2J2 was associated with changes in some oxylipin profiles, including increase in EETs,

EpOMEs, and some mid-chain HETEs; 2) Brief ischemia caused changes in some oxylipin

profiles, including decrease in mid-chain HETEs, HODEs, and prostanoids; 3) Endothelial

overexpression of CYP2J2 increased CRH; 4) Inhibition of CYP epoxygenases (by MS-PPOH)

Fig 5. Effect of the CYP4A-blocker, DDMS (1 μM), on coronary reactive hyperemia (CRH) in Tie2-CYP2J2 Tr and WT mice. The CYP4A-blocker,

DDMS, enhanced CRH in both Tie2-CYP2J2 Tr and WT mice. Repayment volume (A) and repayment duration (B) were increased by DDMS in both

mouse genotypes. Both repayment volume (A) and repayment duration (B) were increased more in untreated Tie2-CYP2J2 Tr compared to untreated

WT mice. Similarly, repayment/debt ratio (C) was increased by DDMS in both mouse genotypes, but was significant in WT mice only. Also, repayment/

debt ratio was increased more in untreated Tie2-CYP2J2 Tr compared to untreated WT mice. Baseline CF (D) was not different between the two

groups. * P < 0.05 versus untreated WT. # P < 0.05 versus untreated Tie2-CYP2J2 Tr mice. n = 8 per group.

https://doi.org/10.1371/journal.pone.0174137.g005
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attenuated CRH in WT and Tie2-CYP2J2 Tr mice; and 5) Inhibition of ω-hydroxylases (by

DDMS) enhanced CRH in WT and Tie2-CYP2J2 Tr mice.

Endothelial overexpression of human CYP2J2 increased CRH after brief ischemia in Tie2--

CYP2J2 Tr mice compared to WT mice. Ischemia to the heart is likely to cause damage if not

corrected within a short time window. The heart responds to ischemia by transiently increas-

ing coronary flow through CRH [10] to reduce the potential for ischemia-induced damage.

This protective role of CRH was confirmed by several studies, which indicated that compro-

mised CRH is linked to certain cardiovascular pathologies [12, 13]. We previously demon-

strated that the levels of EETs, as well as other oxylipins, correlate with changes in CRH in

mice in response to brief ischemia [17]. EETs have well-established beneficial cardiovascular

effects [17, 27–31]; they protect against myocardial and cerebral ischemia/reperfusion injury

[5, 32], and vasodilate some vascular beds including the intestines [33], kidney preglomerular

vasculature [34], and brain [35]. Cytochrome P450 epoxygenase 2J2 (CYP2J2) is expressed in

vascular endothelial cells and cardiomyocytes [36], and generates EETs from AA through

epoxidation [17]. One of the strategies used experimentally to increase EETs’ levels, in order to

Fig 6. LC–MS/MS analysis of 6-keto-PG-F1α, PG-F2α, PG-D2, PG-E2, and TxB2 in WT and Tie2-CYP2J2 Tr mouse heart perfusates at baseline

and post-ischemia. The levels of prostaglandin 6-Keto-PG-F1α (A), PG-D2 and (C), and thromboxane (Tx)-B2 (E) were not significantly changed due to

ischemia or between Tie2-CYP2J2 Tr and WT mice (P > 0.05). In both Tie2-CYP2J2 Tr and WT mice, PG-F2α (B) and PG-E2 and (D) were decreased

post-ischemia (P < 0.05). * P < 0.05 versus baseline WT. Ф P < 0.05 versus baseline Tie2-CYP2J2 Tr. n = 8 per group.

https://doi.org/10.1371/journal.pone.0174137.g006
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Fig 7. LC–MS/MS analysis of EpOME and DiHOME levels in WT and Tie2-CYP2J2 Tr mouse heart perfusates at

baseline and post-ischemia. 9,10- and 12,13-EpOMEs (A) were increased in Tie2-CYP2J2 Tr compared to WT mice at
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study their effects, is the endothelial overexpression of CYP epoxygenases, such as CYP2J2 [7,

8]. Jia et al reported that endothelial overexpression of human CYP2J2 protected against exper-

imental cerebral ischemia in male mice, and that the levels of 11,12- and 14,15-EETs were

increased in culture medium containing aortic endothelial cells isolated from the same trans-

genic mice (Tie2-CYP2J2 Tr) [8]. The authors also suggested that the mechanism of protection

was in part linked to enhanced blood flow and suppression of inflammation in Tie2-CYP2J2

Tr mice [8], both of which are recognized effects of EETs [33–35, 37]. In contrast, Tie2-

CYP2J2 Tr mice showed no change in vasodilation during reperfusion after 20 minutes, global,

no-flow ischemia [7]. In this study, these Tie2-CYP2J2 Tr mice had increased CRH compared

to WT mice. The reason for this discrepancy remains unclear. The large vasodilation after 20

minutes of ischemia may be due to release of other factors, such as prostacyclin or nitric oxide,

baseline and post-ischemia (P < 0.05). 9,10- and 12, 13-DiHOMEs (B) did not change between Tie2-CYP2J2 Tr compared

to WT mice (P > 0.05). * P < 0.05 versus baseline WT. # P < 0.05 versus WT post-ischemia. n = 8 per group.

https://doi.org/10.1371/journal.pone.0174137.g007

Fig 8. LC–MS/MS analysis of HODEs in WT and Tie2-CYP2J2 Tr mouse heart perfusates at baseline and post-ischemia. In both WT and

Tie2-CYP2J2 Tr, 9- and 13-HODEs decreased in response to ischemia (P < 0.05). However, they were not significantly different between the two

groups at baseline or post-ischemia (P > 0.05). * P < 0.05 versus baseline WT. Ф P < 0.05 versus WT post-ischemia. n = 8 per group.

https://doi.org/10.1371/journal.pone.0174137.g008
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that obscure any contribution of EETs. Our study suggests that CYP2J2-derived EETs do

play a significant role in CRH after brief, transient ischemia. Human epidemiological studies

also support a protective role of CYP2J2 against cardiovascular disease. The CYP2J2�7 poly-

morphism, which is associated with reduced CYP2J2 expression and activity, was linked to

higher risk of adverse cardiovascular events including myocardial infarction [23, 24]. Cor-

relations with myocardial infarction does little to reveal which processes might be affected

in CYP2J2�7 patients; EETs may alter development of atherosclerosis, vasodilation, or protec-

tion of myocardium during infarction [38]. Our data do suggest that CYP2J2 expression,

Fig 9. LC–MS/MS analysis of 8-iso-PGF2α in WT and Tie2-CYP2J2 Tr mouse heart perfusates at baseline and post-ischemia. 8-Iso-PGF2α
decreased in Tie2-CYP2J2 Tr compared to WT mice at baseline and post-ischemia (P < 0.05). However, in both mouse genotypes, 8-Iso-PGF2α was

not significantly changed in response to ischemia (P > 0.05). *P < 0.05 versus baseline WT. #P < 0.05 versus WT post-ischemia. n = 8 per group.

https://doi.org/10.1371/journal.pone.0174137.g009
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correlating with changes in EETs levels, may alter CRH in human subjects with CYP2J2�7
polymorphisms.

We could reverse the effects of epoxygenases using pharmacologic inhibitors. MS-PPOH, a

CYP epoxygenase inhibitor, has previously been shown to block the role of EETs as mediators

of insulin-mediated augmentation of skeletal muscle perfusion [39]. In our previous study,

MS-PPOH significantly reduced CRH in WT mice. We believe this is at least in part due to

inhibition of the seven murine CYP2J isoforms [17, 40]. MS-PPOH reduced CRH in Tie2-

CYP2J2 Tr mice, though, as reflected by reduced coronary flow of the repayment volume. It

remains unclear why coronary flow remained elevated in Tie2-CYP2J2 Tr hearts. Further stud-

ies will be needed as we cannot confirm that our dose of MS-PPOH abolished the elevated

EETs levels in Tie2-CYP2J2 Tr compared to that in WT.

In addition to EETs, other arachidonic and linoleic acids-derived oxylipins may signifi-

cantly impact CRH in isolated mouse hearts [17]. Thus, we expanded our oxylipin analyses to

examine HETEs, EpOMEs, HODEs, and prostanoids in addition to the EETs. Mid-chain

HETEs are produced from AA by lipoxygenase [41] and epoxygenase CYP1B1 [19]. Mid-

chain (5-, 8-, 11-, 12- and 15-) HETE levels were affected by two variables in our study: genetic

modulation and ischemia. 8- and 12-HETEs were more elevated in Tie2-CYP2J2 Tr compared

to WT mice, whereas all measured mid-chain HETEs (5-, 8-, 11-, 12- and 15-HETEs) de-

creased in response to ischemia in both genotypes. Vasoconstriction and pro-inflammatory

effects are among the reported effects of mid-chain HETEs [19, 42]. Also, the increased forma-

tion of mid-chain HETEs was involved in cardiovascular dysfunction [43–46]. Our finding

Fig 10. A schematic diagram comparing the oxylipin changes observed in response to both brief

ischemia and CYP 2J2 over-expression as well as oxylipins’ possible effect on coronary reactive

hyperemia (CRH) in WT and Tie2-CYP2J2 Tr mice. Both ischemia and CYP 2J2 over-expression caused

changes in the measured oxylipin profiles. However, the changes associated with ischemia were common to

both mouse strains (WT and Tie2-CYP2J2 Tr). Overall, CRH was enhanced in Tie2-CYP2J2 Tr compared to

WT possibly through increased EETs, increased EpOMEs, and decreased 8-iso-PGF2α. Grey block arrows

indicate the effects of ischemia, whereas black block arrows indicate the effects of ischemia CYP 2J2 over-

expression.

https://doi.org/10.1371/journal.pone.0174137.g010
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that mid-chain HETEs were decreased in both mouse genotypes post-ischemia is in agreement

with our previously published data [17]. This finding is not only consistent across the studied

mouse genotypes in this and in previous studies [17], but seems intuitive based on the detri-

mental effects elevated mid-chain HETEs may have on ischemia. However, our finding that 8-

and 12-HETEs were more elevated in Tie2-CYP2J2 Tr presents a challenge to the overall

observed enhancement of CRH in Tie2-CYP2J2 Tr mice. This finding also contrasts with find-

ings by Jia et al in which 5-, 12- and 15-HETEs were not different between Tie2-CYP2J2 Tr

and WT mice [8]. Nonetheless, the different sources of samples may explain this difference:

their results were based on cultured aortic endothelial cells [8], whereas ours were based on

isolated heart perfusate samples. Therefore, the increased levels of 8- and 12-HETEs may have

mitigated the enhanced CRH in Tie2-CYP2J2 Tr mice driven by increased EETs levels.

Another class of HETEs, ω-terminal HETEs, are generated from AA by cytochrome P450

(CYP) ω-hydroxylases, primarily CYP4A and CYP4F subfamilies [1]. The two ω-terminal

HETEs, 19- and 20-HETEs, are potent oxylipins typically found at very low levels and are

notoriously difficult to assess by LCMS. These ω-terminal HETEs were below detectable levels

in our samples in both Tie2-CYP2J2 Tr and WT mice. However, since 20-HETE is a potent

vasoconstrictor [1], and is involved with the renin-angiotensin system to promote hyperten-

sion, vasoconstriction, and vascular dysfunction [47, 48], we evaluated the effect of inhibiting

ω-hydroxylases by DDMS. DDMS enhanced CRH in both Tie2-CYP2J2 Tr and WT mice.

Evaluating the effect of DDMS on the levels of ω-terminal HETEs would better link this

reported functional finding to biochemical changes in these oxylipins.

Another group of AA metabolites of the cyclooxygenase pathway is prostanoids, which

include prostaglandins (PGs) and TxB2. Endothelial overexpression of CYP2J2 did not cause

significant changes in the measured prostanoid levels in Tie2-CYP2J2 Tr compared to WT

mice. PGs are generally pro-inflammatory [49], but PG-D2 and PG-E2 have anti-inflammatory

effects as well by secreting the anti-inflammatory IL-10 [49, 50]. We previously published that

by targeting the breakdown pathway of EETs (through genetic deletion or pharmacologic inhi-

bition of sEH) the levels of prostanoids were decreased in isolated mouse heart perfusates [17].

Overexpressing the EETs-generating CYP2J2 in this study did not significant change prosta-

noid levels. Although the two approaches increase EETs levels (increasing their generation or

decreasing their breakdown), the different effects on prostanoids suggests other, yet undis-

closed, effects on the cyclooxygenase pathway. Interestingly, the levels of PG-F2α and PG-E2

were decreased in response to ischemia in both Tie2-CYP2J2 Tr and WT mice. TxB2 is the

inactive degradation product of TxA2 [49], Hellmann et al. suggested that prostaglandins are

not involved in post-occlusive reactive hyperemia in the skin [51]. Based on these data, we

speculate that prostanoids were not involved in mediating CRH in either mouse genotype.

In addition to arachidonic acid-derived oxylipins, we analyzed linoleic acid-derived oxyli-

pins, EpOMEs and HODEs. EpOMEs are linoleic-acid-derived epoxides, akin to EETs, while

the HODEs are hydroxyls similar to mid-chain HETEs. Both isomers of EpOMEs (9,10- and

12,13-EpOMEs) were increased in Tie2-CYP2J2 Tr mice compared to WT. However, their

corresponding metabolites, 9,10- and 12,13-DiHOMEs, were not different between the two

genotypes. This finding supports previous reports that CYP2J2 has predominantly epoxygen-

ase activity toward LA, to catalyze the formation of EpOMEs [21]. Physiological levels of

EpOMEs protected against hypoxia/reoxygenation injury [20, 22], whereas their hydrated

metabolites, DiHOMEs, may have been shown to be less active or cytotoxic [7, 20, 27]. The

changes in oxylipin levels and CRH in Tie2-CYP2J2 Tr hearts were similar to those seen in

sEH–/–[11] or sEH inhibitor-treated mice [17]. Oxylipin levels confirm that Tie2-CYP2J2 Tr

hearts increase overall oxylipin production, while sEH–/–hearts have altered epoxide hydroly-

sis. sEH–/–hearts produce nearly triple the amount 14,15-EET as WTs, with substantially
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reduced 14,15-DHET formed [11]. Tie2-CYP2J2 Tr hearts produce approximately 50% more

14,15- and 11,12-EET than WT hearts; 14,15- and 11,12-DHET values were also higher than

WT, though this was not statistically significant. Similarly, compared to WT hearts, sEH–/–

hearts produce nearly double the amount 9,10- and 12,13-EpOME-and lower levels of corre-

sponding DiHOMEs [11]. Tie2-CYP2J2 Tr hearts appear to increase both EpOME and

DiHOME production. Both sEH–/–and Tie2-CYP2J2 Tr hearts display 30% higher CRH than

littermate controls. The changes in CRH best correlate with increases in EET levels, either

through enhanced production or diminished hyrdrolysis.

In addition to EpOMEs, HODEs can be formed from linoleic acid (LA) through hydroxyl-

ation by CYP epoxygenases or lipoxygenases [41]. The two HODE isomers, 9-, and 13-HODE,

were not significantly different between Tie2-CYP2J2 Tr and WT. This is consistent with what

Moran et al reported: CYP2J2 has predominantly LA-epoxygenase (EpOMEs-forming), but

not LA-hydroxylase (HODEs-forming) activity [21]. The physiologic functions of HODEs

are not widely investigated [41]. 9- and 13-HODE isomers seem to have opposite effects:

13-HODE may be anti-inflammatory [52–56], whereas 9-HODE could be pro-inflammatory

[57, 58]. In this study, 9-, and 13-HODEs were decreased in response to ischemia in both

mouse genotypes. We did not observe this response to ischemia by HODEs in previously pub-

lished papers with similar settings [17]. More investigation is needed to better characterize the

role these metabolites may have in modulating the response to ischemia and their response to

it. Since endothelial overexpression of CYP2J2 did not change the levels of 9-, and 13-HODEs,

we expect that these metabolites did not play a role in the enhanced CRH in Tie2-CYP2J2 Tr

compared to WT mice.

8-iso-PGF2α, was detected in the heart perfusate and may provide more insight into the

mechanism(s) by which CYP2J2 overexpression enhanced CRH in Tie2-CYP2J2 Tr mice.

8-iso-PGF2α was lower in Tie2-CYP2J2 Tr mice. 8-iso-PGF2α is one of the isoprostanes, which

are produced by free radical-induced lipid peroxidation of AA [59]. Thus, 8-iso-PGF2α, pro-

duced under conditions of elevated reactive oxygen species (ROS), serves as a surrogate

marker for ROS production [7]. 8-iso-PGF2α is also a potent coronary vasoconstrictor in iso-

lated guinea pig hearts [59]. The level of 8-iso-PGF2α was not affected by ischemia in either

mouse genotype possibly because of the short duration of ischemia, but it was reproducibly

lower in CYP2J2 overexpressed mice pre- and post- ischemia. This decrease in 8-iso-PGF2α,

and subsequent decrease in vasoconstrictive activity, may have contributed to the enhanced

CRH observed in Tie2-CYP2J2 Tr mice.

In summary, the findings of this study demonstrate that endothelial overexpression of

CYP2J2 enhances CRH possibly through augmenting the CYP epoxygenase pathway, which

was manifested by increased EETs, increased EpOMEs, and decreased 8-iso-PGF2α. The

effects of CYP2J2 overexpression on these pathways might have collectively accounted for the

observed increase in CRH. Also, our findings demonstrate that inhibition of the CYP epoxy-

genase pathway attenuated, whereas inhibition of ω-hydroxylases enhanced CRH. Addition-

ally, short ischemia caused decrease in mid-chain HETEs and HODEs. Neither CYP2J2

overexpression nor ischemia produced changes in DHETs, DiHOMEs, and prostanoids.

Therefore, we conclude that CYP2J2 overexpression and inhibition of ω-hydroxylases

enhance, whereas inhibition of CYP epoxygenase pathway attenuates CRH.
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