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ABSTRACT OF THE DISSERTATION

Boundary Characterization of Iterated Automorphism Orbits on Bounded Domains

by

Joshua Alexander Strong

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, June 2016

Dr. Bun Wong, Chairperson

The problem of characterizing bounded domains in Cn can be related to the au-

tomorphism group and the geometry of the boundary. It is a conjecture of Greene and

Krantz that if a smoothly bounded domain has a noncompact automorphism group, then the

boundary is of finite type at any automorphism accumulation point. While there have been

numerous supporting results, the conjecture is as yet unsolved. The purpose of this disser-

tation is to provide another result in support of the Greene-Krantz conjecture. Specifically,

if the boundary of a smoothly bounded convex domain admits an iterated automorphism

orbit nontangentially, then it is of finite type.
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Chapter 1

Introduction

A major consideration in many subjects of mathematics is that one would like to

know which objects are “the same.” That is, under some equivalence relation, how many dif-

ferent types of equivalence classes are there and what are these types of equivalences. When

studying domains in Cn, we care about equivalence under biholomorphism. That is, two

domains in Cn are equivalent if there is a biholomorphism between them. This equivalence

is especially useful when our domains are endowed with the Kobayashi or Carathéodory

metrics, for under theses metrics, any biholomorhpism preserves the distance between be-

tween any two points. So no matter how much their Euclidean distances may differ, they

are still the same distance apart in the Kobayashi metric. The Kobayashi metric will be

an essential tool in whats follows. Some other useful tools for bounded domains are the

automorphism group (biholomorphic self mappings) of the domain and the type (order of

contact with a variety) of the boundary. It is a conjecture of Greene and Krantz that a

smoothly bounded domain with a noncompact automorphism group is of finite type at any
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boundary orbit accumulation point. If this conjecture is true, it would classify all smoothly

bounded domains in C2 with a noncompact automorphism group, for they would be, up to

biholomorphism, the ball or a complex ellipsoid.

In Chapter 2, we give some background on the problem of classifying domains as

well as a series of definitions and theorems about the analytic and geometric properties

that will be used throughout. Chapter 3 will cover the Kobayashi metric and Gromov

hyperbolicity. We discuss the relationship between the two and important properties. In

chapter 4 we provide the specific details that lead up top the proof of the main theorem.
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Chapter 2

Background

2.1 Preliminaries

Firstly, let us provide some definitions and basic notation to be used throughout.

Definition 2.1.1 Let Ω be an open subset of Cn. A function f : Ω → C is said to be

holomorphic (or analytic) if at each p ∈ Ω there is som open neighborhood U of p such that

f has a power series expansion

f(z) =
∞∑

j1,...,jn=0

aj1...jn(z1 − p1)j1 . . . (zn − pn)jn

which converges for all z ∈ U . If instead f : Ω → Cm then we say f is holomorphic if the

component functions

fj(z1, ..., zn)

are holomorphic for j = 1, ...,m.
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It is a nontrivial fact that a function f : Ω ⊂ Cn → C is holomorphic if and only

if f is holomorphic in each variable separately. That is the mapping

ζ 7→ f(z1, ..., zj−1, ζ, zj+1, ..., zn)

is a holomorphic function of one complex variable for all j = 1, ..., n.

Definition 2.1.2 For two open subsets W,V ⊂ Cn, a function f : W → V is said to be a

biholomorphism if f is holomorphic and admits a holomorphic inverse f−1 : V →W .

Note that, contrary to the real case, if f is a one-to-one holomorphic map, then it is a

biholomorphism onto its range. We will denote by Hol(U, V ) the collection of holomorphic

maps from U to V . The unit disk in C is given by

∆ = {z ∈ C : |z| < 1},

the upper half plane in C by

H = {z ∈ C : Im(z) > 0},

and the unit polydisk in Cn by

∆n = ∆× · · · ×∆ = {(z1, ..., zn) ∈ Cn : |zj | < 1 for all j = 1, ..., n},

Finally the unit ball in Cn is

Bn = {(z1, ..., zn) ∈ Cn : |z1|2 + · · ·+ |zn|2 < 1}.
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2.2 The Complex Plane and Cn

We begin our consideration of the classification of complex domains with the plane,

C. In this case, the Riemann mapping theorem classifies all simply connected domains.

Definition 2.2.1 We say that a domain Ω ⊂ C is simply connected if it is connected and

any closed curve in Ω can be continuously shrunk to a point in Ω.

Originally, the Riemann mapping theorem was written as a statement about the

existence of a bijective holomorphism from domains to the unit disk. For our purposes, we

will use an equivalent statement.

Theorem 2.2.2 (Riemann Mapping Theorem) Let Ω ⊂ C be a simply connected do-

main such that Ω 6= C. Then Ω is biholomorphic to ∆.

This powerful theorem tells us that for simply connected domains in C, there

are only two equivalence classes: (1) the entire plane and (2) any other simply connected

domain. Now one might hope that the Riemann mapping theorem could be extended to

higher dimensions. However, once n = 2 the theorem fails. Not only that, but the number

of equivalence classes increases dramatically in higher dimensions.

Theorem 2.2.3 (Burns/Schneider/Wells [4]) If n ≥ 2, there exists an infinite dimen-

sional family of holomorphically distinct bounded strictly pseudoconvex domains in Cn ob-

tained by C∞ perturbations of the unit ball.
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2.3 Domains of Holomorphy

The differences between C and Cn do not end with the ball and the bidisk. For

example, if Ω ⊂ C is a bounded domain then a function f : Ω → C may be meromorhic.

That is f has isolated singularities in Ω. If these singularities are removable, then f can be

extended to a holomorphic function Ω. However, if these are poles or essential singularities,

then there is no hope of extending the function f . Of course this also does not extend to

higher dimensions.

Theorem 2.3.1 (Hartogs’s Phenomenon) Let Ω ⊂ Cn be a bounded domain with n ≥

2. Let K ⊂ Ω be compact such that Ω \K is connected. If f : Ω \K → Cn is holomorphic,

then there is a holomorphic function F : Ω→ Cn where F |Ω\K = f .

One can infer from this theorem that there can be no isolated poles or essential

singularities of a holomorphic function on a bounded domain in Cn. For if there were

such a singularity, then we could extend the function to include such points giving us a

contradiction.

Theorem 2.3.1 does not actually take care of all cases when a holomorphic function

can be extended to a larger domain.

Definition 2.3.2 A domain Ω ⊂ Cn is called a domain of holomorphy if there does not

exist any nonempty open sets U, V , where V is connected and not contained in Ω, U ⊂ V ∩Ω,

and for any holomorphic function f on Ω there is a holomorphic function g on V such that

f = g on U .
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Simply put, Ω is a domain of holomorphy if there is at least one holomorphic

function on Ω which cannot be holomorphically extended past ∂Ω. On the complex plane,

every domain is a domain of holomorphy. We give a short proof that the unit disk is such

a domain.

Proposition 2.3.3 The unit disk ∆ ⊂ C is a domain of holomorphy.

Proof. Define f : ∆→ C by

f(z) =
∞∑
k=0

2−kz2k .

By the Weierstrass M -test, we get that f is analytic on ∆ and continuous on ∆̄. However,

on ∂∆, the mapping

θ 7→ f(eiθ) =
∞∑
k=0

2−keiθ2
k

is a nowhere differentiable function. Thus, we cannot extend f holomorphically past ∂∆

and so ∆ is a domain of holomorphy.

An important fact about open subsets is that an open subset Ω ⊂ Cn is that Ω

is a domain of holomorphy if and only if it is peudoconvex. We discuss characteristics of

psedoconvexity in the next section.
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2.4 Pseudoconvexity

Psudoconvexity is the complex analog of convexity in the real sense. When de-

scribing domains, it is convenient to use the notion of a defining function.

Definition 2.4.1 Let Ω ⊂ Rn be an open set with Ck boundary. A function ρ : Rn → R is

said to be a defining function for Ω if ρ is Ck and

1. ρ(x) < 0 for all x ∈ Ω,

2. ρ(x) > 0 for all x /∈ Ω, and

3. ∇ρ(x) 6= 0 for all x ∈ ∂Ω.

Example 2.4.2 The unit ball Bn.

The unit ball in Cn can be described by the function ρ : Cn → R defined by

ρ(z) = ||z||2 − 1.

That is

Bn = {z ∈ Cn : ρ(z) < 0}.

Now for our purposes, we will only consider domains with C2 boundary. Our

notion of convexity will then depend on tangent vectors of the boundary.

Definition 2.4.3 Let Ω ⊂ Rn have a C1 defining function ρ. Let p ∈ ∂Ω. Then w =

(w1, ..., wn) is a tangent vector to ∂Ω at p if

n∑
k=1

∂ρ

∂xk

∣∣∣∣
p

wk = 0.

In this case we write w ∈ Tp(∂Ω).
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Definition 2.4.4 Let Ω ⊂ Rn be a domain with C2 boundary, p ∈ ∂Ω, and ρ be a defining

function for Ω. We say that ∂Ω is convex at p if

n∑
j,k=1

∂2ρ

∂xj∂xk

∣∣∣∣
p

wjwk ≥ 0

for all w = (w1, ..., w2) ∈ Tp(∂Ω). If, instead, we have a strict inequality for all nonzero w

satisfying the second equation, we say that q is a point of strict convexity.

For domains in Cn with C2 boundary, the notion of Levi pseudoconvexity uses

complex tangent vectors rather that real tangent vectors.

Definition 2.4.5 Let Ω ⊂ Cn be a doimain with C2 boundary, p ∈ ∂Ω, and ρ be a defining

function for Ω. We say that p is a point of Levi pseudoconvexity if

n∑
j,k=1

∂2ρ

∂zj∂z̄k

∣∣∣∣
p

wjw̄k ≥ 0

for all w ∈ Cn such that
n∑
j=1

∂ρ

∂zj

∣∣∣∣
p

wj = 0.

If instead, we have a strict inequality for all nonzero w satisfying the second equation, we

say that x is a point of strict (Levi) peudoconvexity. In general, when we say a boundary

point is pseudoconvex we mean that it is weakly pseudoconvex.

The vectors satisfying the second equation in the above definition are called com-

plex tangent vectors. We shall denote the complex tangent space by T
(1,0)
p (∂Ω). Note that

T
(1,0)
p (∂Ω) ⊂ Tp(∂Ω). In fact, the complex tangent space at a point p ∈ ∂Ω is the largest

complex subspace of the real tangent space to ∂Ω at p. We call
∑n

j,k=1
∂2ρ

∂zj∂z̄k

∣∣∣
p
wjw̄k the

Levi form of ρ at p. So p ∈ ∂Ω is a point of weak (respectively strong) psuedoconvexity if

its Levi form is positive semidefinite (respectively positive definite).
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Proposition 2.4.6 Let Ω ⊂ C2 be a domain with C2 boundary and p ∈ ∂Ω. If ∂Ω is

convex at p, then it is also pseudoconvex at p.

Proof. Let ρ be a defining function for Ω. Let w = (w1, ..., wn) ∈ T
(1,0)
p (∂Ω). Write

wj = ξj + iηj for j = 1, ..., n. Then (ξ1, η1, ξ2, η2, ..., ξn, ηn) ∈ Tp(∂Ω). Since ∂Ω is convex at

p then

0 ≤
n∑

j,k=1

∂2ρ

∂xj∂xk

∣∣∣∣
p

ξjξk + 2

n∑
j,k=1

∂2ρ

∂xj∂xk

∣∣∣∣
p

ξjηk +

n∑
j,k=1

∂2ρ

∂xj∂xk

∣∣∣∣
p

ηjηk

=
1

4

n∑
j,k=1

(
∂

∂zj
+

∂

∂z̄j

)(
∂

∂zk
+

∂

∂z̄k

)
ρ

∣∣∣∣
p

(wj + w̄j)(wk + w̄k)

+
1

2

n∑
j,k=1

(
∂

∂zj
+

∂

∂z̄j

)[
i

(
∂

∂zk
− ∂

∂z̄k

)]
ρ

∣∣∣∣
p

(wj + w̄j)[−i(wk − w̄k)]

+
1

4

n∑
j,k=1

[
i

(
∂

∂zj
− ∂

∂z̄j

)][
i

(
∂

∂zk
− ∂

∂z̄k

)]
ρ

∣∣∣∣
p

[−i(wj − w̄j)][−i(wk − w̄k)]

=

n∑
j,k=1

∂2ρ

∂zj∂zk

∣∣∣∣
p

wjwk +

n∑
j,k=1

∂2ρ

∂z̄j∂z̄k

∣∣∣∣
p

w̄jw̄k + 2

n∑
j,k=1

∂2ρ

∂zj∂z̄k

∣∣∣∣
p

wjw̄k

= 2Re

 n∑
j,k=1

∂2ρ

∂zj∂zk

∣∣∣∣
p

wjwk

+ 2
n∑

j,k=1

∂2ρ

∂zj∂z̄k

∣∣∣∣
p

wjw̄k.

Now since w ∈ T (1,0)
p (∂Ω) then so is iw. So we get

0 ≤ −2Re

 n∑
j,k=1

∂2ρ

∂zj∂zk

∣∣∣∣
p

wjwk

+ 2
n∑

j,k=1

∂2ρ

∂zj∂z̄k

∣∣∣∣
p

wjw̄k.

Combining these two inequalities then yields

0 ≤ 4
n∑

j,k=1

∂2ρ

∂zj∂z̄k

∣∣∣∣
p

wjw̄k.

Thus, p is a point of pseudoconvexity.

Note that a pseudoconvex domain need not be convex. We can see this by con-

sidering domains in C. Recall that the complex tangent space for a boundary point p

10



of any domain Ω ⊂ C is T
(1,0)
p (∂Ω) = {0}. Therefore, every domain in C is vacuously

pseudoconvex.

Our definition of pseudoconvexity seems dependent on the defining function cho-

sen, but we shall see in the next proposition that it is in fact independent of the given

defining function.

Proposition 2.4.7 Pseudoconvexity is independent of the chosen defining function.

Proof. Let Ω = {ρ < 0} ⊂ Cn be a domain with C2 boundary and p ∈ ∂Ω be a point of

pseudoconvexity. Let ρ̂ be another defining function for Ω in a neighborhood, U , of p. Then

there is a C2 function, h : U → R, that is nonvanishing on U (shrinking U if necessary),

such that ρ̂ = hρ. Now

∂2ρ̂

∂zj∂z̄k
=
∂2(hρ)

∂zj∂z̄k
= h

∂2ρ

∂zj∂z̄k
+

∂ρ

∂z̄k

∂h

∂zj
+
∂ρ

∂zj

∂h

∂z̄k
+ ρ

∂2h

∂zj∂z̄k
.

Therefore, evaluating at p yields

∂2ρ̂

∂zj∂z̄k

∣∣∣∣
p

=

[
h

∂2ρ

∂zj∂z̄k
+

∂ρ

∂z̄k

∂h

∂zj
+
∂ρ

∂zj

∂h

∂z̄k

]
p

since ρ(p) = 0. So for w ∈ T (1,0)(∂Ω),

n∑
j,k=1

∂2ρ̂

∂zj∂z̄k

∣∣∣∣
p

wjw̄k =

n∑
j,k=1

[
h

∂2ρ

∂zj∂z̄k
+

∂ρ

∂z̄k

∂h

∂zj
+
∂ρ

∂zj

∂h

∂z̄k

]
p

wjw̄k

= h(p)
n∑

j,k=1

∂2ρ

∂zj∂z̄k

∣∣∣∣
p

wjw̄k + 2Re
n∑

j,k=1

∂ρ

∂zj

∂h

∂z̄k

∣∣∣∣
p

wjw̄k

= h(p)

n∑
j,k=1

∂2ρ

∂zj∂z̄k

∣∣∣∣
p

wjw̄k.

And finally, since h(p) 6= 0, we get that

n∑
j,k=1

∂2ρ̂

∂zj∂z̄k

∣∣∣∣
p

wjw̄k = 0

11



if and only if
n∑

j,k=1

∂2ρ

∂zj∂z̄k

∣∣∣∣
p

wjw̄k = 0.

Thus pseudoconvexity does not rely on the defining function.

Now there is also a notion of pseudoconvexity for domains which do not have a

C2 boundary. First we will need a few definitions.

Definition 2.4.8 Let Ω ⊂ C be an open set. A function u : Ω → [−∞,∞) is called upper

semicontinuous if

u(a) ≥ lim sup
z→a

u(z).

Definition 2.4.9 Let Ω ⊂ C be an open set. A function u : Ω → [−∞,∞) is called

subharmonic if u is upper semicontinuous and for each a ∈ Ω there is a neighborhood U of

a such that

u(a) ≤ 1

2π

∫ 2π

0
u(a+Reiθ) dθ

whenever the closed disk {a+ reiθ : 0 ≤ r ≤ R, 0 ≤ θ ≤ 2π} ⊂ U .

There is, of course, an analog of subharmonic functions for several complex vari-

ables, called plurisubharmonic functions.

Definition 2.4.10 For p, v ∈ Cn, a complex line in Cn passing through p in the direction

of v is given by {p+ zv : z ∈ C}

Definition 2.4.11 Let Ω ⊂ Cn be an open set. A function u : Ω → [−∞,∞) is called

plurisubharmonic if u is upper semicontinuous and u|L : L∩Ω→ [−∞,∞) is subharmonic

where L is any complex line passing through some point in Ω.

12



Definition 2.4.12 Let Ω ⊂ Cn be an open set. A continuous function u : Ω→ R is called

an exhaustion function for Ω if for any c ∈ R the set

{z ∈ Ω : u(z) ≤ c}

is compact in Ω.

Now we can define a notion of pseudoconvexity that does not require any smooth-

ness of the boundary.

Definition 2.4.13 Let Ω ⊂ Cn be an open set. We say that Ω is pseudoconvex if it admits

a continuous plurisubharmonic exhaustion function.

For domains in Cn with C2 boundary, the definition above and the definition of

Levi pseudoconvexity are equivalent, see Gunning [12].

Now we show that pseudoconvexity is preserved under biholomorphisms.

Proposition 2.4.14 Let Ω1,Ω2 ⊂ Cn and ϕ : Ω1 → Ω2 a biholomorphism. Suppose Ω1 is

a pseudoconvex domain. Then Ω2 is also a psuedoconvex domain.

Proof. If Ω1 is pseudoconvex then there is a continuous plurisubharmonic exhaustion

function u : Ω1 → [−∞,∞). Then the composite u ◦ ϕ−1 : Ω2 → [−∞,∞) is also a

continuous plurisubharmonic function, see Gunning [12]. Furthermore, we can see that

u ◦ ϕ−1 is also an exhaustion function for W2. Thus, W2 is pseudoconvex.

13



We now discuss a couple examples of pseudoconvex domains.

Example 2.4.15 The unit ball B2 ⊂ C2.

Consider the unit ball in C2. That is

B2 = {(z1, z2) ∈ C2 : |z1|2 + |z2|2 − 1 < 0}.

Then
2∑

j,k=1

∂2ρ

∂zj∂z̄k
wjw̄k = |w1|2 + |w2|2,

which vanishes only when w = (w1, w2) = (0, 0). Thus, every boundary point is strictly

pseudoconvex.

Example 2.4.16 A complex ellipsoid E2.

Let

E2 = {(z1, z2) ∈ C2 : |z1|2 + |z2|4 − 1 < 0}.

Then
2∑

j,k=1

∂2ρ

∂zj∂z̄k
wjw̄k = |w1|2 + 4|z2|2|w2|2.

So for any boundary point of the form p = (eiθ, 0) ∈ ∂E2, we must have w1 = 0 and

2∑
j,k=1

∂2ρ

∂zj∂z̄k

∣∣∣∣
p

wjw̄k = 0.

These are then the points of weak pseudoconvexity. Every other boundary point is strictly

pseudoconvex.
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2.5 Variety Type

From our discussions in the previous sections, one might infer that, for n ≥ 2, a

domain Ω ⊂ Cn may be characterized by boundary properties. Therefore, we will develop

the notion of variety type in the sense of D’Angelo.

Definition 2.5.1 Let U ⊂ Cn. A subset V ⊂ U is called a holomorphic variety if it is

composed of the roots of a finite number of holomorphic functions. That is

V = {z ∈ U : f1(z) = f2(z) = · · · = fk(z) = 0}

where fi are holomorphic functions on U .

When a variety, V , is one (complex) dimensional, then it can be parameterized.

See Gunning [13] for a precise statement of the local parameterization theorem. We state

only what is necessary for our purposes.

Proposition 2.5.2 If V ⊂ Cn is a one dimensional holomorphic variety and p ∈ V , then

there is a neighborhood U of p and a holomorphic function, f : ∆→ Cn with f(0) = p and

f(∆) ⊂ U ∩ V .

We often refer to a one dimensional holomorphic variety as a holomorphic disk or

curve. When appropriate, we will refer to the image, f(∆), as the holomorphic disk.

Given a smooth function f : C → C with f(0) = 0, we let ν(f) denote the

order of vanishing of f at 0. If g : C → Cn is a smooth function with g(0) = 0 we let

ν(g) = mini ν(gi), where g = (g1, ..., gd).
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Definition 2.5.3 Let Ω be a smooth domain in Cn and q ∈ ∂Ω. Let ρ(z) be a defining

function for Ω in a neighborhood of q. We say that ∂Ω is of finite type C in the sense of

D’Angelo if

sup
f

{
ν(ρ ◦ f)

ν(f)

}
= C <∞,

where f ranges through nonconstant holomorphic parameterizations of one dimensional

holomorphic subvarieties of Cn with f(0) = q.

We say that ∂Ω is of finite line type L if

sup
`
{ν(ρ ◦ `)} = L <∞,

where ` ranges through complex lines in Cn with `(0) = q.

Note that ν(ρ ◦ `) ≥ 2 if and only if the image of ` is tangent to ∂Ω at q. So if

we have a domain Ω ⊂ Cn and a point q ∈ ∂Ω such that there is a holomorphic disk V

passing through q, the D’Angelo (or variety) type of q is essentially a measurement of “how

close” is V to actually lying in ∂Ω. Now if V ⊂ ∂Ω then q would be a point of infinite type.

However, this is not a necessary condition as we shall see in an example. When working

with geometrically convex domains, one need only consider the line type rather than the

more general variety type. This is due to McNeal, who showed the following proposition.

Proposition 2.5.4 (McNeal [21]) Let Ω ⊂ Cn be a convex domain with q ∈ ∂Ω. Then q

is a point of finite variety type if and only if it is of finite line type.
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The following examples are all convex sets, so we only consider the line type.

Example 2.5.5 The unit ball Bn.

The unit ball in C2 is given by

B2 = {(z1, z2) ∈ C2 : ρ(z1, z2) = |z1|2 + |z2|2 − 1 < 0}.

Consider the point (1, 0) ∈ ∂B2. The complex line tangent to ∂B2 at (1, 0) is given by the

function ` : C→ Cn defined by

`(ζ) = (1, ζ).

So we get that

ρ ◦ `(ζ) = |ζ|2

and so we see that

ν(ρ ◦ `) = 2.

Thus, (1, 0) is a point of finite type. Furthermore, since we can rotate the unit ball so that

any boundary point is sent to (1, 0), we have that every boundary point is of finite type.

Example 2.5.6 The complex ellipsoid Em.

The complex ellipsoid (or egg domain) in C2 is given by

Em = {(z1, z2) ∈ C2 : ρ(z1, z2) = |z1|2 + |z2|2m − 1 < 0},

where m is a positive integer. The point (1, 0) lies on ∂Em and the complex line tangent to

∂Em at (1, 0) is again the function

`(ζ) = (1, ζ).
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Here we have

ρ ◦ `(ζ) = |ζ|2m

and so

ν(ρ ◦ `) = 2m.

Thus, (1, 0) is a point of finite type.

Example 2.5.7 The bidisk ∆2.

The bidisk in C2 is given by

∆2 = {(z1, z2) ∈ C2 : ρ1(z1, z2) = |z1|2 − 1 < 0 and ρ2(z1, z2) = |z2|2 − 1 < 0}.

Again (1, 0) ∈ ∂∆2. In this case, a neighborhood of the complex line

`(ζ) = (1, ζ)

is contained in ∂∆2 and

ρ1 ◦ `(ζ) = 0.

Thus,

ν(ρ ◦ `) =∞.

So we say ∂∆2 is of infinite type at (1, 0).

Now one might hope that a boundary point of a convex domain is infinite type

only when there is a complex line passing through such a point which is contained in the

boundary. However, this is not the case.
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Example 2.5.8 An exponentially flat domain, E∞.

Consider the domain

E∞ = {(z1, z2) ∈ C2 : ρ(z1, z2) = |z1|2 + 2 exp
(
−|z2|−2

)
− 1 < 0}.

(1, 0) ∈ ∂E∞ and the complex line tangent to ∂E∞ at (1, 0) is again given by

`(ζ) = (1, ζ).

Then

ρ1 ◦ `(ζ) = 2 exp
(
−|ζ|−2

)
and so

2 exp
(
−|ζ|−2

)
|ζ|n

−→ 0

as ζ → 0 for all n ≥ 0. So

ν(ρ ◦ `) =∞.

Thus, (1, 0) is a point of infinite type. Here, the complex line, `, intersects ∂E∞ only at

(1, 0), but (1, 0) is still of infinite type.
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2.6 Automorphism Orbits

For a domain Ω ⊂ Cn, the group of automorphisms will be denoted by Aut(Ω).

That is, Aut(Ω) is the collection of biholomorphic self mappings of Ω. As the name suggests,

Aut(Ω) is a group under composition of functions. Aut(Ω) is also a topological space under

the compact-open topology. The automorphism group can yield information about the

domain in question. One very important property is whether Aut(Ω) is compact or not.

Definition 2.6.1 A mapping f : Ω1 → Ω2 between topological spaces is called proper if

f−1(K) is compact in Ω1 whenever K is compact in Ω2. For bounded domains, Ω1 and Ω2,

if {zk} ⊂ Ω is a sequence such that zk → q ∈ ∂Ω1, then f(zk)→ p ∈ ∂Ω2.

If f ∈ Aut(Ω), then f is a proper mapping since f−1 is continuous.

Definition 2.6.2 Let G be a group and X a topological space. We say that G acts on X

if there is a mapping σ : G ×X → X : (g, x) 7→ gx, with the property that if e ∈ G is the

identity element, then σ(e, x) = x and if g, h ∈ G, then σ(gh, x) = g(hx).

Definition 2.6.3 Let G be a group and X a topological space. Lex x ∈ X. The orbit of x

under the action σ is the set

{y ∈ X : σ(g, x) = y for some g ∈ G}.

For domains Ω ⊂ Cn, Aut(Ω) acts on Ω by the mapping (ϕ, z) 7→ ϕ(z). We can

use the action of Aut(Ω) on Ω to determine the compactness of Aut(Ω).

Definition 2.6.4 Let Ω ⊂ Cn be a domain and q ∈ Ω. We say p is an orbit accumulation

point of Aut(Ω) if there is a sequence {ϕk} ⊂ Aut(Ω) such that ϕk(q)→ p. If p ∈ ∂Ω then

we say p is a boundary orbit accumulation point for {ϕk}.

20



H. Cartan showed that for a bounded domain, Ω, Aut(Ω) is a Lie group which

acts properly on Ω, see Narasimhan [22]. We can determine the compactness of Aut(Ω) by

examining the orbits.

Proposition 2.6.5 Suppose Ω ⊂ Cn is a bounded domain. Aut(Ω) admits a boundary orbit

accumulation point if and only if Aut(Ω) is noncompact.

Proof. Suppose there is some q ∈ Ω and a sequence {ϕk} ⊂ Aut(Ω) such that

ϕ(q)→ p ∈ ∂Ω.

Suppose, for a contradiction, that Aut(Ω) is compact. Then there is a subsequence {ϕkj} ⊂

{ϕk} such that

ϕkj → ϕ ∈ Aut(Ω).

Now

ϕ(q) = lim
j→∞

ϕkj (q) = p ∈ ∂Ω.

This is a contradiction since ϕ is an automorphism. Thus, Aut(Ω) is noncompact. Con-

versely, suppose that Aut(Ω) is noncompact. Then there is a sequence {ϕk} ⊂ Aut(Ω) such

that ϕk → ϕ /∈ Aut(Ω) as k →∞. Now it is a theorem of H. Cartan that either ϕ ∈ Aut(Ω)

or ϕ(Ω) ⊂ ∂Ω, see Narasimhan [22]. Therefore, for any z ∈ Ω,

lim
k→∞

ϕk(z) = ϕ(z) ∈ ∂Ω

and so Aut(Ω) admits a boundary orbit accumulation point.
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We shall now discuss some examples of domains with noncompact automorphism

groups.

Definition 2.6.6 A domain Ω ⊂ Cn is said to be homogeneous if it possesses a transitive

automorphism group. That is, for all z, w ∈ Ω, there is some ϕ ∈ Aut(Ω) such that

ϕ(z) = w.

Example 2.6.7 The unit disk ∆.

By the Schwarz lemma we see that any automorphism of the unit is given by

Aut(∆) =

{
ϕ(z) = eiθ

z − a
1− āz

: |a| < 1, 0 ≤ θ < 2π

}
.

Let a, b ∈ ∆ and consider the automorphisms

ϕa(z) =
z − a
1− āz

and

ϕ−b(z) =
z + b

1 + b̄z
.

Then

ϕ−b ◦ ϕa(a) = ϕ−b(0) = b,

Thus, ∆ is homogeneous.

Example 2.6.8 The polydisk ∆n, n ≥ 2.

The automorphism group of the polydisk is given by

Aut(∆n) =

{
ϕ(z1, ..., zn) =

(
eiθ1

zσ(1) − a1

1− ā1zσ(1)
, ..., eiθn

zσ(n) − an
1− ānzσ(n)

)}
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where σ is a permutation of {1, ..., n}, a = (a1, ..., an) ∈ ∆n, and θ = (θ1, ..., θn) ∈ [0, 2π)n.

Note that the coordinate functions are simply the automorphisms of the unit disk in each

coordinate after a permutation. Thus, one might assume that ∆n is homogeneous, which is

indeed true. Let a = (a1, ..., an), b = (b1, ..., bn) ∈ ∆n and consider the automorphisms

ϕa(z) =

(
z1 − a1

1− ā1z1
, ...,

zn − an
1− ānzn

)

and

ϕ−b(z) =

(
z1 + b1
1 + b̄1z1

, ...,
zn + bn
1 + b̄nzn

)
.

Then

ϕ−b ◦ ϕa(a) = ϕ−b(0) = b,

Thus, ∆n is homogeneous.

Example 2.6.9 The unit ball Bn.

Firstly, a complex rotation is clearly an automorphism of the unit ball. Complex rotations

are the linear maps that make up the group of unitary transformations, Un, of Cn. That is,

Un = {A ∈ Matn×n(C) : AĀt = I = ĀtA}.

Also, for a ∈ ∆, the mappings

ψa(z1, ..., zn) =

(
z1 − a
1− āz1

,

√
1− |a|2z2

1− āz1
, ...,

√
1− |a|2zn
1− āz1

)

are automorphisms of Bn. Now the group of automorphisms of Bn is the group generated

by these two types of mappings. That is,

Aut(Bn) = 〈Un ∪ {ψa : a ∈ ∆}〉 .
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Let a = (a1, ..., an), b = (b1, ...bn) ∈ Bn. There are points a′ = (a′1, 0, ..., 0), b′ = (b′1, 0, ..., 0) ∈

Bn such that |a| = |a′| and |b| = |b′|. That is a′ and b′ are just the image of a and b under

a rotation that sends each to lie on the z1-axis. Let Φ,Ψ ∈ Un be the maps such that

Φ(a) = a′

and

Ψ(b′) = b.

Recall from our example of the unit disk, ∆, that we have automorphisms ϕa′1 : ∆ → ∆

and ϕ−b′1 : ∆→ ∆ such that

ϕa′1(a′1) = 0

and

ϕ−b′1(0) = b′1.

Furthermore, we can write

ψa′1 =

(
ϕa′1 ,

√
1− |a′1|2z2

1− ā′1z1
, ...,

√
1− |a′1|2zn
1− ā′1z1

)

and

ψ−b′1 =

(
ϕ−b′1 ,

√
1− | − b′1|2z2

1 + b̄′1z1
, ...,

√
1− | − b′1|2zn

1 + b̄′1z1

)
.

Therefore,

Ψ ◦ ψ−b′1 ◦ ψa′1 ◦ Φ(a) = Ψ ◦ ψ−b′1 ◦ ψa′1(a′) = Ψ ◦ ψ−b′1(0) = Ψ(b′) = b.

Thus, Bn is homogeneous.

In the last three examples, we saw that ∆,∆n, and Bn all posses a transitive

automorphism group. So why then are their automorphism groups noncompact? To answer

this, we give the following proposition.
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Proposition 2.6.10 Let Ω ⊂ Cn be a homogeneous domain. Then Aut(Ω) is noncompact.

Proof. Let {zk} ⊂ Ω be a sequence so that zk → p ∈ ∂Ω. Then since Ω is homogeneous,

there is ϕk ∈ Aut(Ω) such that ϕk(zk) = zk+1 for all k ∈ N. Now let

ψk = ϕk ◦ · · · ◦ ϕ1 ∈ Aut(Ω).

Then

lim
k→∞

ψk(z1) = p.

Thus, Aut(Ω) admits a boundary orbit accumulation point and so, by proposition 2.6.5,

Aut(Ω) is noncompact.

Example 2.6.11 The egg domain Em.

Recall

Em = {(z1, z2) ∈ C2 : |z1|2 + |z2|2m − 1 < 0}.

The group of automorphisms of Em is given by

Aut(Em) =

ψa(z1, z2) =

 z1 − a
1− āz1

,

(√
1− |a|2

1− āz1

) 1
m

z2

 : |a| < 1

 .

The automorphism group of Em is not transitive as in the previous examples. However

Aut(Em) is still noncompact. To see this, one just needs to take any sequence {aj} ⊂ ∆

such that aj → −1 as j →∞ and consider ψaj ∈ Aut(Em). Then for any z ∈ Em,

ψaj (z) =

 z1 − aj
1− ājz1

,

(√
1− |aj |2

1− ājz1

) 1
m

z2

 −→ (1, 0) ∈ ∂Em.

So (1, 0) is a boundary orbit accumulation point. Thus, Aut(Em) is noncompact.
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2.7 The Greene-Krantz Conjecture

We now have all the necessary machinery to state the Greene-Krantz conjecture.

Conjecture 2.7.1 (Greene/Krantz) Let Ω ⊂ Cn be a bounded domain with smooth C∞

boundary. If p ∈ ∂Ω is a boundary orbit accumulation point for Aut(Ω), then ∂Ω is of finite

type at p.

There are numerous results that support this conjecture. We list just a few.

Theorem 2.7.2 (Wong [26]) Let Ω ⊂ C2 be a bounded domain and {ϕj} ⊂ Aut(Ω) such

that

1. ϕj(Ω) → W as j → ∞ where W ⊂ ∂Ω is a one dimensional complex subvariety of

C2,

2. W is contained in an open subset U ⊂ ∂Ω where ∂Ω is C1 at U and there is an open

set V ⊂ C2 such that V ∩ ∂Ω = U and V ∩ Ω is convex, and

3. There is a point p ∈ Ω such that ϕj(p)→ q ∈W nontangentially.

Then Ω is biholomorphic to ∆2.

In the above theorem, no global smoothness is assumed. One can see that the

boundary could not be globally smooth for that would imply a contradiction that Ω is also

biholomorphic to the ball B2, see Wong [25].

Theorem 2.7.3 (Kim [16]) Suppose that Ω ⊂ C2 is a bounded convex domain with piece-

wise C∞ smooth Levi flat boundary. If Aut(Ω) is noncompact then Ω is biholomorphic to

∆2.
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Notice that, to be bounded, convex, and piecewise smooth Levi flat, ∂Ω cannot

be globally smooth. So while the above theorems of Wong and Kim do not imply the

conjecture, we see that the boundary could have orbit accumulation points of infinite type

when ∂Ω is not smooth.

Theorem 2.7.4 Let M be a real analytic subvariety of Cn. Then p ∈M is a point of finite

type if and only if there does not exist a nontrivial holomorphic variety passing through p

and lying in M .

See D’Angelo [7] for a proof of the above theorem. The boundary of an arbitrary

smoothly bounded domain Ω ⊂ Cn could contain a point p ∈ ∂Ω of infinite type even

though there is no holomorphic variety passing through p and lying in ∂Ω. In this case ∂Ω

would not be real analytic. Now it is a theorem of Diederich and Fornæss, see [8], that any

compact real analytic subvariety of Cn contains no nontrivial complex analytic subvariety.

Combining this with the above theorem yields that if a smoothly bounded domain, Ω ⊂ Cn,

has a real analytic boundary, then ∂Ω must be of finite type.

Theorem 2.7.5 (Lee/Thomas/Wong [20]) Let Ω ⊂ Cn be a smoothly bounded convex

domain. Suppose there is a sequence {ϕj} ⊂ Aut(Ω) such that ϕ(z) converges nontangen-

tially to some boundary point for all z ∈ Ω. If p ∈ ∂Ω is an orbit accumulation point, then

there does not exist any non trivial complex analytic variety passing through p and lying in

∂Ω.

In [14], Hamann shows that we can remove the nontangential requirement in the

above theorem. Again, the nonexistence of a holomorphic variety contained in the boundary
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is not enough to show that a boundary point is of finite type, in general. Though, finite

type would imply that there is no holomorphic variety in the boundary.

Finally, we state the well-known ball characterization theorem of Wong, which

classifies strongly pseudoconvex domains with noncompact automorphism group.

Theorem 2.7.6 (Wong [25]) If Ω ⊂ Cn is a strongly pseudoconvex bounded domain with

a noncompact automorphism group, then Ω is biholomorphic to the unit ball Bn.
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Chapter 3

The Kobayashi Pseudometric and

Gromov Hyperbolicity

3.1 The Kobayashi Pseudometric

An important biholomorphic invariant is the Koboayashi pseudometric. We start

with a chain of holomorphic disks.

Definition 3.1.1 Let z, w ∈ Cn. We say there is a chain of holomorphic disks from z to

w if there exist z = x1, x2, ..., xk+1 = w ∈ Ω and analytic maps ϕ1, ..., ϕk : ∆→ Ω such that

xi, xi+1 ∈ ϕi(∆) for i = 1, ..., k.

In order to define the length of such a chain, we will use the Poincaré metric on

the unit disk.

Definition 3.1.2 Let z ∈ ∆ and v ∈ C. The Poincaré metric for the unit disk is defined
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by

K∆(z, v) =
|v|

1− |z|2
.

The Poincaré metric is a complete metric on ∆. It yields a pseudodistance function

given by

d∆(z, ω) = tanh−1

∣∣∣∣ z − ω1− zω̄

∣∣∣∣ =
1

2
log

(
|1− zw̄|+ |z − w|
|1− zw̄| − |z − w|

)
.

Definition 3.1.3 For a chain, α, of holomorphic disks, the length of α is given by

`(α) =

k∑
i=1

d∆(ϕ−1(xi), ϕ
−1(xi+1)).

Of course, we want to take a minimizing chain as our distance definition.

Definition 3.1.4 The Kobayashi pseudodistance between z and w is then given by

dΩ(z, w) = inf
α
`(α),

where α ranges over all chains of holomorphic disks from z to w.

Note that, using this definition, on the unit disk the Kobayashi distance coincides

with the Poincaré distance. For our purposes, we will use an integral formula for the

Kobayashi pseudodistance.

Definition 3.1.5 Given Ω ⊂ Cn, p ∈ Ω, and v ∈ Cn, the Kobayashi pseudometric is given

by

KΩ(p, v) = inf{|ζ| : f ∈ Hol(∆,Ω), f(0) = p, f ′(ζ) = v}.

Again, the Poincaré metric coincides with this metric on ∆. Now we can also

define an integrated pseudodistance using this infinitesimal pseudometric. Furthermore,

Royden showed that the pseudodistances are equivalent.
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Theorem 3.1.6 (Royden [23]) The Kobayashi pseudodistance is given by

dΩ(z, w) = inf
γ

∫ 1

0
KΩ(γ(t), γ′(t)) dt.

where z, w ∈ Ω and a curve γ : [0, 1]→ Ω such that γ(0) = z, γ(1) = w.

For convex domains that do not contain any complex lines, Barth [2] showed that

the Kobayashi pseudodistance is an actual distance in the sense that dΩ(z, w) > 0 if z 6= w.

The following example may allude to the fact that containing no complex lines is necessary.

Example 3.1.7 dC ≡ 0

For any z, w ∈ C there is a holomorphic map, f : ∆→ C, such that

f(0) = z

and

f(ε) = w

where ε is arbitrarily small. To see this, one just needs to take a rotation and dilation of ∆

so that ε 7→ w − z and then translate 0 to z. Thus,

dC(z, w) = 0.

We now discuss some properties of the Kobayashi metric.

Definition 3.1.8 We say that a subset Ω ⊂ Cn is C-proper if Ω does not contain any

nontrivial complex affine lines.
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Definition 3.1.9 Let Ω ⊂ Cn be a C-proper open set. For z ∈ Ω and v ∈ Cn, let L(z, v) ⊂

Cn be the complex line passing through z in the direction of v. We set

δΩ(z, v) = dEuc(z, ∂Ω ∩ L(z, v))

and

δΩ(z) = dEuc(z, ∂Ω).

That is, δΩ(z, v) is the Euclidean distance from z to ∂Ω in the complex direction of v and

δΩ(z) is the overall Euclidean distance from z to ∂Ω.

Proposition 3.1.10 Let U, V be domains in Cn and f : U → V be a holomorphic map.

Then

KV (f(p), f ′(v)) ≤ KU (p, v)

and

dV (f(z), f(w)) ≤ dU (z, w).

Proof. Put q = f(p) and w = f ′(v) and let g ∈ Hol(U, V ) such that g(0) = p and g′(ζ) = v.

Then

f ◦ g(0) = f(p) = q

and

f ′ ◦ g′(ζ) = f ′(v) = w.

Thus

{|ζ| : f ∈ Hol(∆, U), f(0) = p, f ′(ζ) = v} ⊂ {|ζ| : f ∈ Hol(∆, V ), f(0) = p, f ′(ζ) = v}
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and so

KV (f(p), f ′(v)) ≤ KU (p, v).

Then the second inequality is now clear since

dV (f(z), f(w)) = inf
γ

∫ 1

0
KV (f ◦ γ(t), f ′ ◦ γ′(t)) dt

≤ inf
γ

∫ 1

0
KU (γ(t), γ′(t)) dt

= dU (z, w).

Corollary 3.1.11 If U, V are domains in Cn and f : U → V is a biholomorphism, then

KV (f(p), f ′(v)) = KU (p, v)

and

dV (f(z), f(w)) = dU (z, w).

Proof. Apply f−1 to the previous proposition.

We call this the distance decreasing property of holomorphic maps for the Kobayashi

metric. A more precise term would be distance “nonincreasing” since equality may still hold.

However “decreasing” is the standard term used in the literature. Another very useful prop-

erty of the Kobayashi metric is upper and lower estimates. For general domains, we have

an upper estimate.

Proposition 3.1.12 Let Ω ⊂ Cn be a domain, z ∈ Ω, and v ∈ Cn. Then

KΩ(z, v) ≤ ||v||
δΩ(z, v)

.
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Proof. Let D be the largest open disk contained in {z + Cv} ∩ Ω. Then δΩ(z, v) = δD(z).

Let r be the radius of D. Since translations, dialations, and rotations are biholomorphisms,

we may assume z = 0, v = (v1, 0, ...0), and D = ∆. Thus,

KΩ(z, v) ≤ KD(0, v) =
|v1|
1

=
|v1|
δD(0)

=
||v||

δΩ(z, v)
.

Now when Ω is convex, we see that the Kobayashi metric also has a lower estimate.

However, we will need some information about the Poincaré metric on the upper half plane

H ⊂ C.

Definition 3.1.13 For z ∈ H and v ∈ C, the Poincaré metric for the upper half plane is

defined by

KH(z, v) =
|v|

2Im(z)
.

Since the Poincaré models for the unit disk and half plane are equivalent, we see

that on H the Kobayashi and Poincaré metrics coincide. We also have an explicit distance

function on H given by

dH(z, ω) =
1

2
cosh−1

(
1 +

|z − w|2

2Im(z)Im(w)

)
.

Proposition 3.1.14 Let Ω ⊂ Cn be a conxex domain, z ∈ Ω, and v ∈ Cn. Then

KΩ(z, v) ≥ ||v||
2δΩ(z, v)

.

Proof. Put x ∈ ∂Ω so that δΩ(z, v) = dEuc(z, x). By rotating and translating, we may

assume x = 0, z = z1, 0, ..., 0), v = (v1, 0, ..., 0), and Ω ⊂ {z ∈ Cn : Im(z1) > 0}. Let
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π : Cn → C be the projection onto the first coordinate. Then

KΩ(z, v) ≥ Kπ(Ω)(z1, v1) ≥ KH(z1, v1)

=
|v1|

2Im(z1)
≥ |v1|

2|z1|
=

||v||
δΩ(z, v)

.

On product domains, the Kobayashi metric has a well know nice property, see

Kobayashi [17].

Proposition 3.1.15 Let U, V ⊂ Cn be domains. Then for any (u, v), (u′, v′) ∈ U × V ,

dU×V ((u, v), (u′, v′)) = max{dU (u, u′), dV (v, v′)}.
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3.2 Gromov Hyperbolocity

For bounded domains, the notion of Gromov hyperbolicity is related to the variety

type of the boundary. Gromov hyperbolicity concerns geodesic triangles. Geodesics are just

generalizations of straight lines in Euclidean space.

Definition 3.2.1 Let (X, d) be a metric space. We say σ : [a, b]→ X is a geodesic if

d(σ(t), σ(s)) = |t− s|

for all t, s ∈ [a, b]. For A ≥ 1, B ≥ 0, σ is an (A,B)-quasigeodesic if

1

A
|t− s| −B ≤ d(σ(t), σ(s)) ≤ A|t− s|+B

for all t, s ∈ [a, b].

Just as with holomorphic disks, we sometimes refer to the image of σ as the

geodesic or quasigeodesic.

Definition 3.2.2 Let (X, d) be a proper geodesic metric space (that is, any closed ball under

the metric d is compact and every two points is connected by a minimizing geodesic). Let

x, y, z ∈ X, σxy (similarly σyz and σzx) be the geodesic segment from x to y (similarly y

to z and z to x). We say that the geodesic triangle formed by these three points is δ thin

if there is some δ > 0 such that the δ neighborhood of σxy ∪ σyz conatains σzx. If there is

some fixed δ > 0 such that every geodesic triangle in X is δ thin, then we say that (X, d) is

a Gromov hyperbolic metric space.
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We will also consider the Gromov product.

Definition 3.2.3 Let (X, d) be a metric space and x, y, z ∈ X. The Gromov product of x

and y at z, denoted (x|y)z, is given by

(x|y)z =
1

2
(d(x, z) + d(z, y)− d(x, y)).

Due to the triangle inequality we see that the Gromov product is always nonneg-

ative. The Gromov product can be used to determine Gromov hyperbolicity as well, see

Buyalo and Schroeder [5].

Theorem 3.2.4 A proper geodesic metric space (X, d) is Gromov hyperbolic if and only if

there is a δ > 0 such that for all x, y, z, p ∈ X,

(x|y)p ≥ min{(x|z)p, (z|y)p} − δ.

Now in an arbitrary domain, Ω ⊂ Cn, under the Kobaysahi metric, geodesics are difficult

to find in general. However, there are certain quasigeodesics that can be found relatively

easier. A nice property of Gromov hyperbolic metric spaces is that every quasigeodesic is

close to an actual geodesic, see Buyalo and Schroeder [5].

Proposition 3.2.5 Let (X, d) be a Gromov hyperbolic metric space for some δ and x, y ∈

X. Fix some A ≥ 1, B ≥ 0 and let σxy be a geodesic and γxy be an (A,B)-quasigeodesic

such that σxy(s) = x = γxy(s
′) and σxy(t) = y = γxy(t

′) for some s, t, s′, t′ ∈ R. Then there

is some constant H = H(A,B, δ) ≥ 0 such that σxy is contained in the H-neighborhood of

γxy.
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Using the above proposition, we see that for any (A,B)-quasigeodesic segment, σ

between two points, x and y, in a Gromov hyperbolic metric space (X, d), there is an actual

geodesic segment between x and y which has a maximum distance H from σ where H is

dependent on A,B, and δ. So if every geodesic triangle is δ thin then we can find an M > 0

such that every (A,B) quasigeodesic is M thin.

For bounded domains in Cn, Gromov hyperbolicity in the Kobayashi metric is

related to the variety type ∂Ω. Of course, every bounded domain is trivially Gromov

hyperbolic under the Euclidean metric. However, we have seen that for bounded convex

domains, Ω, the distance from any point x ∈ Ω to ∂Ω is infinite. So it is feasible to assume

there could be bounded domains which are not Gromov hyperbolic under the Kobayashi

metric.

Example 3.2.6 The bidisk, ∆2, is not Gromov hyperbolic under the Kobayashi metric.

In fact, for any bounded convex domain, Ω ⊂ Cn, such that ∂Ω contains a complex

affine disk, Ω is not Gromov hyperbolic under the Kobayashi metric. The key to the proof

of this fact is that we can find a sequence of (A,B)-quasigeodesics which are parallel to

the affine disk which is contained in the boundary. Furthermore, as we shall see in the

sequel, we can parameterize certain line segments, that end at the boundary, to be (A,B)-

quasigeodesics as well. Now this forms a sequence of geodesic triangles where one side

converges uniformly to ∂Ω and since we have seen that ∂Ω is infinitely far away from any

other point in Ω, under the Kobayashi metric, then this essentially gives us that we can

find a quasigeodesic triangle that is not M -thin for any M > 0.
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For smoothly bounded convex sets, there is an open neighborhood of the boundary,

where the real normal lines to the boundary can be parameterized as quasigeodesics. First,

we need a global estimation of the Kobayashi distance in terms of supporting hyperplanes

for convex subset of Cn.

Lemma 3.2.7 Suppose Ω ⊂ Cn is a convex open set and H ⊂ Cn is a complex hyperplane

such that H ∩ Ω = ∅. Then for all z, w ∈ Ω

dΩ(z, w) ≥ 1

2

∣∣∣∣log
dEuc(H, z)

dEuc(H,w)

∣∣∣∣ .
Proof. Since Ω is convex there is a real hyperplane HR such that H ⊂ HR and HR∩Ω = ∅.

We may assume

HR = {(z1, ..., zn) ∈ Cn : Im(z1) = 0},

Ω ⊂ {(z1, ..., zn) ∈ Cn : Im(z1) > 0},

H = {(0, z2, ..., zn) ∈ Cn}.

Let P : Cn → C be the projection onto the first coordinate. Then P (Ω) ⊂ H which implies

dΩ(w.z) ≥ dP (Ω)(P (w), P (z)) ≥ dH(P (w), P (z)).

Also

dH(w, z) =
1

2
cosh−1

(
1 +
|w − z|2

2|w||z|

)
≥ 1

2
cosh−1

(
|w|
2|z|

+
|z|

2|w|

)
=

1

2
log

(
|w|
|z|

)
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and the fact that |P (z)| = dEuc(H, z) gives us

dΩ(w, z) ≥ 1

2

∣∣∣∣log
dEuc(H, z)

dEuc(H,w)

∣∣∣∣ .

Definition 3.2.8 For a bounded domain Ω ⊂ Cn with C1 boundary and a point x ∈ ∂Ω,

we denote by nx the inward pointing unit normal vector to ∂Ω at x.

Proposition 3.2.9 Suppose Ω ⊂ Cn is a bounded convex open set with C∞ boundary.

Then there exists ε,K > 0 such that if x ∈ ∂Ω then the curve σx : R≥0 → Ω given by

σx(t) = x+ e−2tεnx

is a (1,K) quasigeodesic with respect to the Kobayashi metric.

Proof. Since ∂Ω is smooth, there is a disk, D ⊂ C, centered at some p ∈ C on the

positive real axis with radius p such that the image of the function ϕx : D → Cn defined by

ϕx(z) = x+ znx is contained in Ω. Define ψ : D → ∆ by

ψ(z) =
p− z
p

.

Then ψ is a biholomorphism with ψ(R ∩D) = R ∩∆ and

0 ≤ 1− ct = ψ(t) ≤ 1− t

c
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where c = p−1 and t ∈ [0, p]. Now d∆(z, w) = 1
2 log

(
|1−zw̄|+|z−w|
|1−zw̄|−|z−w|

)
, so for 0 < a < b ≤ p

dD(a, b) = d∆(ψ(a), ψ(b))

=
1

2
log

(
(1 + ψ(a))(1− ψ(b))

(1− ψ(a))(1 + ψ(b))

)
≤ 1

2
log

(
(1 + ψ(a))(1− ψ(b))

(1− ψ(a)))

)
≤ log

√
2c+ log

b

a
.

Then since dD(e−2tε, e−2sε) = d∆(ψ(e−2tε), ψ(e−2sε)) we have

dΩ(σx(t), σx(s)) = dΩ(ϕx(e−2tε), ϕx(e−2sε))

≤ dD(e−2tε, e−2sε)

≤ log
√

2c+

∣∣∣∣log
e−2tε

e−2sε

∣∣∣∣
= log

√
2c+ |t− s|.

Also,

dΩ(σx(t), σx(s)) ≥ 1

2

∣∣∣∣log
dEuc(Hx, σx(t))

dEuc(Hx, σx(s))

∣∣∣∣
=

1

2

∣∣∣∣ e−2tε

e−2sε

∣∣∣∣
= |t− s|

where Hx is the complex tangent hyperplane to ∂Ω at x. Thus, σx is a (1, log
√

2c) quasi-

geodesic.
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Chapter 4

Iterated Orbit Accumulation

4.1 Nontangential Convergence

The direction of travel of an automorphism orbit can yield certain conclusions.

Nontangential convergence provides us with useful properties.

Definition 4.1.1 For a domain Ω ⊂ Cn with C1 boundary, a sequence {qj} ⊂ Ω, and a

point q ∈ ∂Ω, we say that qj → q nontangentially if for all j large enough

qj ∈ Γα(q) = {z ∈ Ω : ||z − q|| ≤ αδΩ(z)}

for some α > 1. We say that qj → q normally if the qj’s approach q along the real normal

line to ∂Ω at q.

Lemma 4.1.2 Let Ω ⊂ Cn be a convex domain with C1 boundary. Let z ∈ Ω and q′ =

q + tnq for some t > 0. Then

Γα(q) ⊂
{
z ∈ Ω : 0 ≤ ∠zqq′ ≤ arccos

(
1

α

)}
.
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Proof. Put H = {z ∈ Cn : Im(z1) > 0}. We may assume q = 0, nq = (i, 0, ..., 0),

and Ω ⊂ H. Then δΩ(z) ≤ δH(z) = Im(z1) which implies that ||z − q|| ≤ αIm(z1) =

α||(Im(z1), 0, ..., 0)||. Then since

cos(∠zqq′) =
||(Im(z1), 0, ..., 0)||

||z − q||
,

we have ∠zqq′ ≤ arccos(1/α).

When ∂Ω admits a nontangential orbit accumulation point, Lee, Thomas, and

Wong [20] showed that there is a sequence of points {pj} ⊂ Ω, within some fixed Kobayashi

distance from p ∈ Ω, such that the action of the sequence of automorphisms {ϕj} ⊂ Aut(Ω)

on the respective pj ’s approaches the accumulation point q ∈ ∂Ω along the real normal line

to the boundary at q. To be precise:

Lemma 4.1.3 Let Ω ⊂ Cn be a convex domain with C1 boundary. Suppose {ϕj} ⊂ Aut(Ω)

and ϕj(p)→ q ∈ ∂Ω nontangentially for some p ∈ Ω. Then there exists {pj} ⊂ Ω such that

ϕj(pj)→ q normally and dΩ(p, pj) ≤ r for some r > 0.

Proof. Let `q = {q + tnq : t ∈ R} and define π : Cn → `q as the projection mapping

onto `q. Put qj = ϕj(p), q̃j = π(qj), and pj = ϕ−1(q̃j). Then q̃j → q normally and

||q̃j − qj || ≤ ||qj − q||. Now by lemma 4.1.2

1

α
≤ cos(∠zqq′) =

||q̃j − q||
||qj − q||

.
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Let γ(t) = (1− t)qj + tq̃j . Then

dΩ(p, pj) = dΩ(qj , q̃j)

≤
∫ 1

0
KΩ(γ(t), γ′(t)) dt

≤
∫ 1

0

||γ′(t)||
δΩ(γ(t), γ′(t))

dt

≤
∫ 1

0

||γ′(t)||
δΩ(γ(t))

dt

≤
∫ 1

0

||γ′(t)||α
||γ(t)− q||

dt

≤ ||q̃j − qj ||α
||q̃j − q||

≤ ||qj − q||α
||q̃j − q||

≤ α2.

Finally, we let r = α2.

Essentially, this gives us that the Kobayashi distance from each ϕj(p) to the real

normal line of the boundary at q ∈ ∂Ω remains bounded by a fixed constant.
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4.2 A Class of Holomorphic Mappings

We will need to know that a certain class of holomorphic mappings from the

bi-disk to smoothly bounded convex subsets of Cn cannot exist. Much of this section is a

modification of an argument of Zimmer, see [28], which was originally under the assumption

that Ω had a C1,α boundary. However, we will only consider domains with C∞ boundary.

For convex sets, we also have an estimation of the Kobayashi distance, see Abate

[1], for two points sufficiently away from each other. In this section, we denote by Hx to be

the complex hyperplane in Cn that is tangent to ∂Ω at x ∈ ∂Ω.

Lemma 4.2.1 Suppose Ω ∈ Cn is a bounded convex set with C2 boundary and x, y ∈ ∂Ω

with Hx 6= Hy. Then there are ε > 0 and C ∈ R such that

dΩ(p, q) ≥ 1

2
log

1

δΩ(p)
+

1

2
log

1

δΩ(q)
− C

for all p, q ∈ Ω with dEuc(p,Hx), dEuc(q,Hy) ≤ ε.

Lemma 4.2.2 Suppose Ω ⊂ Cn is a bounded convex open set with C∞ boundary, o ∈ Ω,

and {pj}, {qk} ⊂ Ω are sequences such that pj → x ∈ ∂Ω and qk → y ∈ ∂Ω. If

lim sup
j,k→∞

(pj |qk)o =∞,

then Hx = Hy.

Proof. By proposition 3.2.9 there exists 1 ≥ ε > 0 and K > 0 so that the function

σz : R≥0 → Ω given by σz(t) = z+ e−2tεnz is a (1,K) quasigeodesic for all z ∈ ∂Ω. We can

pick xj , yj ∈ ∂Ω and tj , sj ∈ R such that pj = σxj (tj) and qj = σyj (sj) where tj , sj →∞ as
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j →∞. Also there is some R ≥ 0 such that dΩ(σz(0), o) ≤ R for all z ∈ ∂Ω. Now suppose,

by way of contradiction, that

Hx 6= Hy.

Notice that

tj =
1

2
log

ε

δΩ(pj)
≤ 1

2
log

1

δΩ(pj)
.

Thus

dΩ(o, pj) ≤ dΩ(o, σxj (0)) + dΩ(σxj (0), pj)

≤ R+ tj +K

≤ R+K +
1

2
log

1

δΩ(pj)
.

Similarly,

dΩ(o, qj) ≤ R+K +
1

2
log

1

δΩ(qj)
.

Also, by lemma 4.2.1, there is a C ∈ R such that for n large enough

dΩ(pj , qj) ≥
1

2
log

1

δΩ(pj)
+

1

2
log

1

δΩ(qj)
− C.

Let C ′ = max{R+K,C}. Then

2(pj |qj)o ≤ C ′ +
1

2
log

1

δΩ(pj)
+ C ′ +

1

2
log

1

δΩ(qj)
− 1

2
log

1

δΩ(pj)
− 1

2
log

1

δΩ(qj)
+ C ′ = 3C ′

which implies that

lim sup
n→∞

(pj |qj)o ≤
3

2
C ′

and hence, a contradiction. Therefore we must have Hx = Hy.
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Definition 4.2.3 For a set A ⊂ Cn, let Nε(A) be the ε-neighborhood of A under the stan-

dard Euclidean distance. The Hausdorff distance between bounded sets is given by

dH(A,B) = inf{ε > 0 : A ⊂ Nε(B) and B ⊂ Nε(A)}.

We say that a sequence {Aj} ⊂ 2C
n

converges to A ⊂ Cn in the local Hausdorff topology if

lim
j→∞

dH(Aj ∩BR(0), A ∩BR(0)) = 0

for all R > 0.

For a sequence {Aj} ⊂ 2C
n

with uj ∈ Aj and a set A ⊂ Cn with u ∈ A we denote

by

(Aj , uj)→ (A, u)

to mean that Aj → A in the local Hausdorff topology and uj → u.

The following result of Frankel will be used in the main propositions of this section.

It allows us to work in lower dimensions when concerning applications of affine transforma-

tions. Aff(V ) denotes the set of complex affine transformations on some V ⊂ Cn.

Lemma 4.2.4 (Frankel [9]) Suppose Ω ⊂ Cn is a C-proper convex open set. If V ⊂ Cn

is a complex affine subspace intersecting Ω and {Aj} ⊂ Aff(V ) is a sequence of affine

transformations such that Aj(Ω ∩ V ) converges in the local Hausdorff topology to a C-

proper convex open set Ω̂V ⊂ V , then there exists affine maps Bj ∈ Aff(Cn) such that BjΩ

converges in the local Hausdorff topology to a C-proper convex open set Ω̂ with Ω̂∩V = Ω∩V .

We can, under a sequence of affine transformations, send a domain with a bound-

ary point of infinite type to a C-proper domain (not necessarily bounded) such that the
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boundary contains a holomorphic disk. Note that proposition 4.2.5 below only concerns

domains in C2. We will apply lemma 4.2.4 for domains in Cn.

Proposition 4.2.5 Suppose Ω ⊂ C2 is a C-proper convex open set with 0 ∈ ∂Ω and

Ω ∩ O = {(x+ iy, z) ∈ O : y > f(x, z)}

where O is a neighborhood of 0 and f : R × C → R is a convex nonnegative function such

that t 7→ f(t, 0) is C1 at t = 0. Suppose further that there is no nontrivial holomorphic disk

contained in the boundary and 0 ∈ ∂Ω is a point of infinite type. Then there exists tj →∞

and complex affine maps Aj such that

Aj(Ω, (ie
−tj , 0))→ (Ω̂, (i, 0)),

where

Ω̂ ∩ (C× {1}) = ∅,

H×∆ ⊂ Ω̂ ⊂ {(z, w) ∈ C2 : Im(z) > 0},

Ω̂ is C-proper and ∂Ω̂ contains a nontrivial holomorphic disk.

Proof. We may assume O = (V + iW )×U where V,W ⊂ R and U ⊂ C are neighborhoods

of 0 and by rescaling B1(0, 0) ⊂ U . Since 0 ∈ ∂Ω is of infinite type, then for all j > 0

lim
z→0

f(0, z)

|z|j
= 0.

So we can find some aj → 0 and zj ∈ C with |zj | < 1 such that f(0, zj) = aj |zj |j and for any

w ∈ C with |w| < |zj | we have f(0, w) ≤ aj |w|j . Since there is no nontrivial holomorphic
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disk contained in the boundary, we may assume that f(0, zj) 6= 0 and zj , f(0, zj) → 0.

Define

Aj =

 f(0, zj)
−1 0

0 z−1
j


and let Ωj = AjΩ. By possibly passing to a subsequence, we see that there is a tj → ∞

such that e−tj = f(0, zj) which gives us

Aj(ie
−tj , 0)→ (i, 0).

Now there are ε1, ε2 > 0 such that Bε1(ε2i, 0) ⊂ Ωj for all j and since, for any R > 0,

{Ω′ : Ω′ is open, convex, and Bε1(ε2i, 0) ⊂ Ω′ ⊂ BR(0, 0)} is compact in the local Hausdorff

topology, then we may pass to a subsequence such that Ωj converges to a closed convex set

C ⊂ {(z, w) ∈ C : Im(z) ≥ 0}. Since t 7→ f(t, 0) is C1 at t = 0 then we must have

H× {0} ⊂ C.

Put Oj = AjO. Then

Ωj ∩ Oj = {(x+ iy, z) : x ∈ Vj , z ∈ Uj , y > fj(x, z)}

where Vj = f(0, zj)
−1V , Uj = z−1

j U , and fj(x, z) = f(0, zj)
−1f(f(0, zj)x, zjz). Now for

|w| < 1

fj(0, w) =
f(0, zjw)

f(0, zj)

≤ aj |zj |j |w|j

f(0, zj)

= |w|j → 0
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as j →∞, and so

{0} ×∆ ⊂ ∂C.

Since C is convex, H×∆ ⊂ C. Let Ω̂ be the interior of C. Then Ωj converges to Ω̂, where

there is a holomorphic disk contained in ∂Ω̂, and

H×∆ ⊂ Ω̂ ⊂ {(z, w) ∈ C2 : Im(z) > 0}.

Notice that fj(0, 1) = 1 for all j which implies (i, 1) ∈ ∂Ω̂. So (i, 1), (0, 1) ∈ ∂Ω̂ which gives

us that H× {1} ⊂ ∂Ω̂ and so

Ω̂ ∩ (C× {1}) = ∅.

Therefore any affine map z 7→ (a1, a2)z + b with its image in Ω̂ must have a1 = a2 = 0.

Thus, Ω̂ is C-proper.

Proposition 4.2.6 Suppose Ω̂ ⊂ Cn, n ≥ 2, is a C-proper convex open set such that

H × ∆ × {(0, ..., 0)} ⊂ Ω̂ ⊂ {z ∈ Cn : Im(z1) > 0} and C × {(1, 0, ..., 0)} ∩ Ω̂ = ∅. Then

there exist a holomorphic map f : ∆×∆→ Ω̂ such that

1. for all z, w ∈ ∆

dΩ̂(f(z, 0), f(w, 0)) = d∆(z, w),

2. for all s, t ≥ 0

|t− s| − log
√

2 ≤ dΩ(f(0, tanh(t)), f(0, tanh(s))) ≤ |t− s|

Proof. Firstly, we claim that the map g : H → Ω̂ given by g(z) = (z, 0, ..., 0) induces

an isometric embedding (H, dH) → (Ω̂, dΩ̂). We have dΩ̂(g(z), g(w)) ≤ dH(z, w) by the
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distance decreasing property of holomorphic maps. Let P : Cn → C be the projection onto

the first coordinate. Since

Ω̂ ⊂ {(z1, ..., zn) ∈ Cn : Im(z1) > 0}

and

H× {(0, ..., 0)} = Ω̂ ∩ (C× {(0, ..., 0)})

then P (Ω) = H and P ◦ g = Id, then dH(z, w) = dH(P (g(z)), P (g(w))) ≤ dΩ̂(g(z), g(w))

and so

dΩ̂(g(z), g(w)) = dH(z, w).

Now define f : ∆×∆→ Ω̂ by

f(z, w) =

(
i
1 + z

1− z
, w, 0, ..., 0

)
.

Then for all z, w ∈ ∆

d∆(z, w) = dH

(
i
1 + z

1− z
, i

1 + w

1− w

)
= dΩ̂

((
i
1 + z

1− z
, 0, ..., 0

)
,

(
i
1 + w

1− w
, 0, ..., 0

))
= dΩ̂(f(z, 0), f(w, 0)).

Now put xt = f(0, tanh(t)) = (i, tanh(t), 0, ..., 0). Then

dΩ̂(xt, xs) ≤ d∆×∆((0, tanh(t)), (0, tanh(s))

≤ d∆(tanh(t), tanh(s))

= |t− s|.
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Consider the complex line L = C × {(1, 0, ..., 0)}. Then L ∩ Ω̂ = ∅ so there is a complex

hyperplane, H, with L ⊂ H and H ∩ Ω̂ = ∅. So

dΩ̂(xt, xs) ≥
1

2

∣∣∣∣log
dEuc(H,xt)

dEuc(H,xs)

∣∣∣∣
=

1

2

∣∣∣∣log
dEuc(L, xt)

dEuc(L, xs)

∣∣∣∣
=

1

2

∣∣∣∣log
1− tanh(t)

1− tanh(s)

∣∣∣∣ .
Finally, using the fact that tanh(x) = 1− 2

e2x+1
for x ∈ R we get

dΩ̂(xt, xs) ≥
1

2
| log(e2t + 1)− log(e2s + 1)|

≥ 1

2
(| log(e2t)− log(e2s)| − log(1 + e−2s))

≥ |t− s| − log
√

2.

Now for a smoothly bounded domain, Ω, we see that the mappings above cannot

have Ω as a codomain.

Proposition 4.2.7 Suppose Ω ⊂ Cn is a bounded convex open set with C∞ boundary.

Then there does not exist a holomorphic map f : ∆×∆→ Ω and c ≥ 0 such that

1. for all z, w ∈ ∆

d∆(z, w)− c ≤ dΩ(f(z, 0), f(w, 0)) ≤ d∆(z, w) + c,

2. for all s, t ≥ 0

|t− s| − c ≤ dΩ(f(0, tanh(t)), f(0, tanh(s))) ≤ |t− s|+ c
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Note that if f : ∆2 → Ω is holomorphic and induces an isometric embedding of (∆2, d∆2)

into (Ω, dΩ) then

dΩ(f(0, tanh(t)), f(0, tanh(s))) = |t− s|.

Proof. Suppose there is a function f : ∆×∆→ Ω with the properties above. Then

lim
t→∞

dΩ(f(tanh(t)eiθ, 0), f(0, 0)) ≥ lim
t→∞

d∆(tanh(t)eiθ, 0)− c = lim
t→∞

t− c =∞.

Also

lim
t→∞

dΩ(f(0, tanh(t)), f(0, 0)) ≥ lim
t→∞

t− c =∞.

Now put

σθ,j = f(tanh(j)eiθ, 0)

and

σk = f(0, tanh(k)).

By passing to a subsequence, we may assume that there is an x ∈ ∂Ω and for every eiθ ∈ ∂∆

there is some xθ ∈ ∂Ω such that σθ,j → xθ and σk → x. Put o = f(0, 0). Then

2(σθ,j |σk)o ≥ j + k − 2c− dΩ(σθ,j , σk)

≥ j + k − 2c− d∆×∆((tanh(j)eiθ, 0), (0, tanh(k))

= j + k − 2c−max{d∆((tanh(j)eiθ, 0), d∆(0, tanh(k))}

= j + k − 2c−max{j, k}.

Thus

lim
j,k→∞

(σθ,j |σk)o =∞

53



and so, by lemma 4.2.2,

Hxθ = Hx

for all θ ∈ R. We may assume that

Hx = {(z1, ...zn) ∈ Cn : z1 = 0}

and

Ω ⊂ {(z1, ...zn) ∈ Cn : Im(z1) > 0}.

Let π : Cn → C be the projection onto the first coordinate and define g : ∆→ C by

g(z) = π(f(z, 0)).

Then Im(g(z)) > 0 for all z ∈ ∆, g is bounded, and for all θ ∈ R,

lim
r→1−

g(reiθ) = 0.

So for any w ∈ ∆,

g(w) =

∫
|z|=r

g(z)

z − w
dz −→

∫
|z|=1

g(z)

z − w
dz = 0,

where the convergence is given by the dominated convergence theorem as r → 1−. Thus,

we have a contradiction.

4.3 Finite Type

We will now be able to showcase a condition that guarantees finite type for some

boundary point of a smoothly bounded convex domain. We will use another result of

Frankel that gives us a sufficient condition for a sequence of affine transformations to send

a domain, Ω, to another domain, Ω̂, which are biholomorphic to each other.
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Theorem 4.3.1 (Frankel [10]) Suppose Ω is a C-proper convex set, X ⊂ Ω is a compact

subset, and {ϕj} ⊂ Aut(Ω). If there exists xj ∈ X and complex affine maps Aj such that

Aj(Ω, ϕjxj)→ (Ω̂, p)

where Ω̂ is a C-proper convex set, then Ω is biholomorphic to Ω̂.

Definition 4.3.2 For a domain Ω ⊂ Cn denote by BΩ(o,M) the closed ball centered at

o ∈ Ω with Kobayashi radius M . That is

BΩ(o,M) = {z ∈ Ω : dΩ(o, z) ≤M}

The key to our main result is the ability to cover a quasigeodesic, with an endpoint

that is a boundary orbit accumulation point for some sequence {ϕj} ⊂ Aut(Ω), with the

image under the action of each ϕj on a compact subset of Ω. In this case, Zimmer showed

that the boundary point is indeed of finite type. Essentially, the sequence of affine transfor-

mations, {Aj}, from proposition 4.2.5 will send a bounded convex domain, Ω, that admits

a boundary point of infinite type to an unbounded, yet still C-proper, convex domain, Ω̂,

in which the boundary contains a nontrivial affine disk. Now the affine transformations are

constructed using the defining function for a neighborhood of the infinite type boundary

point, x, and a specific sequence of points which converge to x. This new domain then ad-

mits a function which “almost” induces an isometric embedding of the bidisk into Ω̂, which

we saw was impossible for smoothly bounded domains. At this juncture, we just need Ω

to be biholomorphic to Ω̂, which would imply a contradiction. Based on the formula for

the affine transformations, there is a specific sequence of points that lie on the real normal

line to ∂Ω at x, pj , which converge to x while each Ajpj = ζ ∈ Aj(Ω), where ζ is fixed.
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Ultimately, ζ ∈ Ω̂. According to Frankel, if each pj was the image of some automorphism

acting on points contained in a compact subset of Ω, then Ω is indeed biholomorphic to

Ω̂. If we could construct the affine maps based on the automorphism orbit rather than the

defining function of Ω, we may be able to remove the covering condition. However, it is

unclear whether that can be done. Now if every point sufficiently close to x and on the real

normal line to x is the image of some automorphism ϕ(q) with q in a compact subset of Ω,

then we have our biholomorphic equivalence. So once we cover the real normal line segment

up to the boundary with the action of the automorphism group on a compact subset, we

have our contradiction.

Theorem 4.3.3 (Zimmer [28]) Suppose Ω ⊂ Cn is a bounded convex open set with C∞

boundary. If there exists o ∈ Ω, x ∈ ∂Ω,M ≥ 0, and T ∈ R so that

{x+ e−tnx : t > T} ⊂ Aut(Ω)BΩ(o,M)

then x is of finite type in the sense of D’Angelo.

Proof. Suppose x is of infinite type. By assumption, for any sequence {tj} ⊂ R with tj > T

and tj → ∞, we can find xj ∈ BΩ(o,M) and ϕj ∈ Aut(Ω) such that ϕj(xj) = x + e−tjnx.

Now combining lemma 4.2.4 and proposition 4.2.5 gives us that there are a sequence of affine

maps, Aj , such that AjΩ → Ω̂ and Ajϕj(xj) → (i, 0, ..., 0) ∈ Ω̂, where Ω̂ is C-proper, ∂Ω̂

contains a nontrivial holomorphic disk, and there is a holomorphic function f : ∆×∆→ Ω̂,

with the same properties as in proposition 4.2.6. Also by theorem 4.3.1 we must have that

Ω and Ω̂ are biholomorphic. But, there can be no such function into Ω by proposition 4.2.7.

Thus we have a contradiction, and so x must be of finite type.
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4.4 Main Result

We can now present our main result. While it is still unclear whether or not the

nontangential assumption is necessary, it does provide us some sufficient tools.

Theorem 4.4.1 Suppose Ω ⊂ Cn is a bounded convex domain with C∞ boundary. Suppose

there exists ϕ ∈ Aut(Ω) and p ∈ Ω such that for the sequence of iterates {ϕj} ⊂ Aut(Ω) we

have ϕj(p)→ x ∈ ∂Ω nontangentially. Then x is of finite type.

Note that smoothness of the boundary is indeed a necessary assumption. By

theorem 2.7.5, a boundary orbit accumulation point for Aut(Ω) cannot be in any holo-

morphic disk in ∂Ω. Moreover, the estimate of lemma 4.2.1 can fail if there is a singu-

larity of the boundary. In the specific case of the bidisk, ∆2, just take (t, s), (t′, s) ∈ ∆2,

where t, t′, s ∈ R are sufficiently close to (1, 1) ∈ ∂∆2. In this case, H1 = C × {1} and

H2 = {1} × C are complex hyperplanes that are not equal and do not intersect ∆2. Then

(t, s) and (t′, s) are sufficiently close to both H1 and H2. If we fix t, t′ and send s→ 1, then

d∆2((t, s), (t′, s)) = d∆(t, t′) which remains constant. Now this would imply that lemma

4.2.2 (involving the Gromov product) may fail for domains without a smooth boundary.

Lemma 4.2.2 also provides us with the conditions that guarantee the nonexistence of our

bidisk function from proposition 4.2.7. Also, we are not guaranteed a tubular neighborhood

of the boundary where the real normal lines to the boundary are quasigeodesics, which is

key to the proof of our main theorem. Finally, in C2, singularities of the boundary could

yield the hypothesis of theorem 2.7.2, which would also be contrary to our conclusion.
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Before we begin the proof, let us first provide an example that satisfies the hy-

pothesis and conclusion of the main result.

Example 4.4.2 The egg domain, Em.

Recall that Em = {(z, w) ∈ C2 : |z|2 + |w|2m − 1 < 0} and has automorphism group

Aut(Em) =

ϕa(z, w) =

 z − a
1− āz

,

(√
1− |a|2
1− āz

) 1
m

w

 : |a| < 1

 .

Let a = −1
2 and put

ϕ(z, w) = ϕ− 1
2
(z, w) =

 z + 1
2

1 + 1
2z
,


√

1− |12 |2

1 + 1
2z


1
m

w

 .

Then ϕ(0, 0) = (1
2 , 0). Also, for any iteration of ϕ, ϕj(0, 0) = (ϕj1(0, 0), ϕj2(0, 0)) =

(ϕj1(0, 0), 0). Since the first coordinate function does not depend on w, we will only concern

ourselves with the mapping

f(z) = ϕ1(z, 0) =
z + 1

2

1 + 1
2z
.

Then we see that for the sequence given by {f j(0)},

f j(0) =
3j − 1

3j + 1
−→ 1

as j → ∞. Then since each f j(0) ∈ R, we see that ϕj(0, 0) converges normally to

(1, 0) ∈ ∂Em. And as we have seen previously, the point (1, 0) is of finite type.

Proof of theorem 4.4.1. Firstly, we may assume that there is no nontrivial holomorphic

disk contained in ∂Ω passing through x due to theorem 2.7.5. Since ϕ ∈ Aut(Ω) and

the composition of any two automorphisms remains an automorphism, we have that ϕj ∈
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Aut(Ω) for all j ∈ N and ϕ−1 ∈ Aut(Ω). Put M = dΩ(p, ϕ(p)). We may assume M > 0,

since otherwise, ϕ would fix p. Then for every consecutive pair of iterates we have

dΩ(ϕj(p), ϕj+1(p)) = dΩ(ϕ−1(ϕj(p)), ϕ−1(ϕj+1(p)))

= dΩ(ϕj−1(p), ϕj(p))

...

= dΩ(p, ϕ(p))

= M.

By lemma 4.1.3, there exists {pj} ⊂ Ω such that ϕj(pj)→ x normally and dΩ(p, pj) ≤ r for

some r > 0. So we have

dΩ(ϕj(pj), ϕ
j+1(pj+1)) ≤ dΩ(ϕj(pj), ϕ

j(p)) + dΩ(ϕj(p), ϕj+1(p)) + dΩ(ϕj+1(p), ϕj+1(pj+1))

≤ r + dΩ(ϕj(p)), ϕj+1(p)) + r

= 2r + dΩ(p, ϕ(p))

= 2r +M,

for all j ∈ N. By convexity, we may assume x = 0 and nx = (i, 0, ..., 0). Furthermore, we

may assume that |ϕj(pj)| > |ϕj+1(pj+1)| since ϕj(pj) → 0 as j → ∞. Now consider some

z, y, w ∈ Ω that lie on the real normal line to ∂Ω at x such that |w| < |y| < |z|. We claim

that, for sufficiently small |z|, if w ∈ BΩ(z,R) for some R > 0, then y ∈ BΩ(z,R) as well.

If z is sufficiently small, then there is a one (complex) dimensional affine disk, D, centered

at z, such that D ⊂ Ω∩ {ζ ∈ Ω : Im(ζ1) > 0}, 0 ∈ ∂D, and ∂D is tangent to ∂Ω at 0. Note

that D is essentially a copy of the unit disk under a translation and dialation and so D is

biholomorphic to ∆. Now any geodesic under the Poincaré (equivalently Kobayashi) metric
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passing through z in D is a straight line. Thus

dD(z, w) = dD(z, y) + dD(y, w).

Let π : Cn → C be the projection onto the first coordinate so π(Ω) ⊂ H. Then

dΩ(z, w) ≥ dπ(Ω)(π(z), π(w))

≥ dH(π(z), π(w))

= dD(z, w)

= dD(z, y) + dD(y, w)

≥ dD(z, y)

≥ dΩ(z, y)

where the last inequality is given by the inclusion map from D into Ω. Therefore, if w ∈

BΩ(z,R) for z, w ∈ {x+ e−tnx : t > T} with T sufficiently large, then y ∈ BΩ(z,R) for all

y ∈ {x + e−tnx : t > T} with |w| < |y| < |z|. Note that we can derive this fact using the

estimates of the Kobayashi metric as well. Finally, since dΩ(ϕj(pj), ϕ
j+1(pj+1)) ≤ 2r +M ,

then there is a T > 0 such that

{x+ e−tnx : t > T} ⊂ ∪j∈NBΩ(ϕjpj , 2r +M),

and so

{x+ e−tnx : t > T} ⊂ Aut(Ω)BΩ(p, 3r +M).

Thus, by theorem 4.3.3, x ∈ ∂Ω is of finite type.

Now, in C2, our main theorem gives will us a classification of domains with the

properties of the hypothesis. Recall that our example of a nontangential iterated auto-

morphism accumulation point was given by the egg domain Em. Berteloot and Cœuré [3]
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showed that if a smoothly bounded domain Ω ⊂ C2 admits an automorphism accumulation

point which is of finite type, then Ω is biholomorphic to Em for some m. Thus, we have a

stronger conclusion for domains in C2 for our main theorem, which we state as a corollary.

Corollary 4.4.3 Suppose Ω ⊂ C2 is a bounded convex domain with C∞ boundary. Suppose

there exists ϕ ∈ Aut(Ω) and p ∈ Ω such that for the sequence of iterates {ϕj(p)} ⊂ Aut(Ω)

we have ϕj(p)→ x ∈ ∂Ω nontangentially. Then Ω is biholomorphic to an egg domain, Em.
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Chapter 5

Conclusions

Our result is a special case of the Greene-Krantz conjecture under the additional

hypothesis that the domain is convex, the automorphism orbit comes from the iterations

of a single automorphism, and the convergence is nontangential. Of course, we would like

to remove theses additional hypotheses to prove the conjecture. One might note that in

the proof of the main theorem, we just need the Kobayashi distance of each consecutive

point in the automorphism orbit sequence to be bounded by some fixed number. So if there

was a boundary automorphism orbit accumulation point in which a sequence converges

nontangentially so that the distances of each consecutive terms were bounded by a fixed

constant, then we would have the result of our main theorem. Of course, we would like to

solve the Greene-Krantz conjecture completely, but the next logical step would be solving

the conjecture in the case of convex domains.
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