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Thermopower and the Mott formula for a Majorana edge state

Chang-Yu Hou,1, 2 Kirill Shtengel,1, 3 and Gil Refael2
1Department of Physics and Astronomy, University of California at Riverside, Riverside, CA 92521

2Department of Physics, California Institute of Technology, Pasadena, CA 91125
3Institute for Quantum Information, California Institute of Technology, Pasadena, CA 91125

(Dated: August 9, 2013)

We study the thermoelectric effect between a conducting lead and a Majorana edge state. In the tunneling
limit, we first use the Landauer-Büttiker formalism to derive the Mott formula relating the thermopower and
the differential conductance between a conducting lead and a superconductor. When the tunneling takes place
between a conducting lead and a Majorana edge state, we show that a non-vanishing thermopower can exist.
Combining measurements of the differential conductance and the voltage induced by the temperature difference
between the conducting lead and the edge state, the Mott formula provides a unique way to infer the temperature
of the Majorana edge state.

PACS numbers:

I. INTRODUCTION

Electron thermometry is a crucial component in most con-
densed matter experiments. It is especially necessary for ex-
ploring the unconventional thermoelectric response of low-
dimensional systems1,2. One technique for probing the elec-
tron temperature utilizes the Seebeck effect by measuring the
thermally induced voltage difference between a sample and a
weakly coupled lead in the absence of a current. Then, using
the Mott formula3–5,

S = −
∆V
∆T

=
π2

3

k2
BT
e

 (d ln G(E)
dE

)
E=µ

, (1.1)

the temperature of the sample can be inferred from the dif-
ferential conductance, G(E), at energy E. Here, S is the ther-
mopower (Seebeck coefficient) defined as the ratio of the volt-
age difference, ∆V , and the temperature difference, ∆T , be-
tween the sample and the lead, while T and µ can be taken as
the average temperature and chemical potential, respectively.
Experimentally, such a technique was first demonstrated in
quantum point-contact devices6,7 and later used to measure
the temperature variation of quantum Hall edge states8.

In this paper, we consider thermal and electric transport be-
tween a conducting lead and a Majorana edge state that ap-
pears at the boundary of a two-dimensional chiral p-wave
superconductor9. It is not clear, a priori, whether a non-
vanishing thermopower can be established, since the Ma-
jorana edge mode is charge-neutral due to its underlying
particle–hole symmetry. Here, we use the Landauer–Büttiker
formalism10–14 and show that the Mott formula for the ther-
mopower between a superconducting sample and a conduct-
ing lead is satisfied in general once both normal and Andreev
scattering processes are taken into account.15 We will then fo-
cus on several simplified models in order to address the utility
of the Mott formula for probing the temperature of a Majorana
edge state. This technique could be naturally used in p+ip su-
perconductors to probe the non-Abelian nature of Majorana
zero modes through their unique magneto-thermoelectric sig-
natures16.

The paper is organized as follows. In Sec. II, we consider

a setup in which a quantum dot with discrete quantum lev-
els couples weakly to a Majorana edge state. As a proof of
principle, we show that the thermoelectric response in such
setups can be non-vanishing. In the absence of a current,
a finite voltage is established in the presence of a tempera-
ture difference between the quantum dot and the edge state.
In Sec. III, the linear thermoelectric response coefficients be-
tween a metallic and a superconducting lead are expressed
in terms of scattering probabilities within the framework of
the Landauer-Büttiker formalism. The Mott formula is then
derived from the response coefficients. In Sec. IV, we ex-
plicitly derive the scattering matrix for a single-channel lead
coupled to a Majorana edge state. Two scenarios are consid-
ered: (a) a single point-contact and (b) a double point-contact.
We demonstrate that the single point-contact setup has vanish-
ing thermopower, while the double point-contact setup gener-
ically has non-vanishing thermopower. We also discuss the
possible thermopower strength for case (b). We conclude our
paper in Sec. V. To supplement discussions in the main text,
we also include two Appendices that provide a proof of the
Onsager relation and a list of the scattering matrix elements
for a double-point-contact setup.

II. COUPLING BETWEEN A QUANTUM DOT AND THE
MAJORANA EDGE STATE

To gain some intuition as to how a non-vanishing ther-
mopower can arise between a conducting lead and the Majo-
rana edge state, we begin by considering a simplified model in
which a conducting lead is replaced by a non-superconducting
quantum dot, as schematically shown in Fig. 1.

A. Single-state quantum dot

Let us first consider the case in which a quantum dot con-
sisting of a single quantum state weakly couples to the chiral
Majorana edge state as shown in Fig. 1a. The quantum dot
has temperature Tn and chemical potential µn, while the chiral
Majorana edge state has temperature Ts and chemical poten-
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FIG. 1: The upper panel schematically depicts a quantum dot weakly
coupling to a Majorana edge state. The temperature and chemical
potential of the quantum dot are Tn and µn respectively, and those of
the Majorana edge state are Ts and µs. (a) A quantum dot with a sin-
gle energy level ε is coupled to a Majorana edge state with tunneling
strength t. (b) Multiple energy levels ε j of a quantum dot are coupled
to a Majorana edge state with tunneling strengths t j for each state.

tial µs = 0. All energies are measured with respect to the
chemical potential of the superconductor.

In the continuum limit, the effective Hamiltonian reads

H = εc†c + i
vm

2

∫
η(x)∂xη(x)dx + it(c + c†)η(0) (2.1)

where c is the annihilation operator of the fermionic state with
energy ε in the quantum dot17, η(x) represents the chiral Ma-
jorana fermion mode9,18, vm is the velocity of the edge state,
and the coordinate x runs along the boundary of the super-
conductor.19 The last term describes the fermionic coupling,
with strength t, between the quantum dot and the Majorana
edge state at x = 0. The Majorana edge state appears at the
boundary of a two-dimensional chiral p-wave superconductor,
which reflects the topological property of the superconduc-
tor9. As a result of the spontaneously broken time-reversal
symmetry, it flows with a definite chirality along the edge,
akin to the quantum Hall edge state. However, since the Ma-
jorana edge state is Bogoliubov-de Gennes quasiparticles, it
consists of half of the quantum Hall edge state degrees of free-
dom. Due to the particle-hole symmetry, the Majorana edge
state is formally expressed as a chiral real (Majorana) field,
η(x).

The Majorana edge state can be represented in momentum
space by

η(x) =

∫ ∞

−∞

dk
2π

e−ikxη(k), (2.2)

where η†(k) = η(−k) due to the real nature of the field, η†(x) =

η(x). Under the transformation, we have

H = εc†c +

∫
k>0

dk
2π
εkη
†(k)η(k)

+ it(c + c†)
∫

k>0

dk
2π

(η(k) + η†(k)), (2.3)

where the spectrum of the edge state is given by εk = vmk and
we have used the relation η†(k) = η(−k) for the last term.Note
that the symbol ε is used to denote the energy spectrum of
either the quantum dot or the edge modes. Now, we can treat
the first line of Eq. (2.3) as the unperturbed Hamiltonian H0,
and the second line as the perturbed term V .

The transition rate between the quantum dot and the edge
state is given by the Fermi-golden rule,

T (i→ f ) =
2π
~
|〈 f |V |i〉|2δ(Ei − E f ), (2.4)

where i and f indicate the initial and the final states of a tun-
neling process with the corresponding total energies Ei and
E f of the system, respectively, and the delta function en-
forces the energy conservation. To compute the matrix el-
ements, let us denote the states of the system as |ncnη(k)〉,
where nc, nη(k) = 0, 1 represent occupation numbers of the
quantum dot state and chiral edge states with energy εk re-
spectively. With the assumption ε > 0, energy conservation
implies that fermions can tunnel between states with energy
εk = ε for single particle processes. Only two matrix ele-
ments 〈01|V |10〉 = 〈10|V |01〉 = it are non-vanishing and give
tunneling rates

T (10→ 01) = T (01→ 10) =
2π
~

t2δ(ε − εk). (2.5)

With these tunneling rate, the current tunneling from the
quantum dot to the edge state can be written as

I = −
e
~

t2

vm

[
fn(ε) − fs(ε)

]
, (2.6)

where fn(E) and fs(E) are the Fermi-Dirac distributions of the
quantum dot and the edge state, respectively. To first order in
µn − µs and Tn − Ts, we obtain a linearized current response

I =
e
~

t2

vm

(
∂ fs(E)
∂E

)
E=ε

[
(µn − µs) +

ε

Ts
(Tn − Ts)

]
, (2.7)

that generically has a thermoelectric response such that the
temperature difference will lead to a potential difference with
a vanishing current and hence a non-vanishing thermopower.

B. Multilevel quantum dot

For a quantum dot whose energy spectrum contains multi-
ple levels as shown in Fig. 1b, the Hamiltonian can be mod-
eled as

∑
j ε jc

†

jc j, where c j is the annihilation operator for the
state with energy εi. Now, the Hamiltonian representing the
coupling between the quantum dot states and the Majorana
edge state can be generically written as

V = +i
∑

j

t(ε j)(c j + c†j )
∫

k>0
(η(k) + η†(k)), (2.8)

where t(ε j) is the coupling strength for each energy ε j.
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In the weak tunneling limit, i.e., where higher order scat-
tering processes are neglected, the linearized current flowing
from the quantum dot to the edge state becomes

I =
e
~

∑
j

t(ε j)2

vm

(
∂ fs(E)
∂E

)
E=ε j

[
(µn − µs) +

ε j

Ts
(Tn − Ts)

]
.

(2.9)
Now, a finite thermoelectric response appears when the sum-
mation of the second term is finite. In the continuum limit, we
can define the density of states of the quantum dot as ρ(E) and
take ε j → E to the continuum energy. Because E (∂ f (E)/∂E)
is an odd function of energy E, we need ρ(E)t(E)2 to be non-
even in order for the thermopower not to vanish. Hence we
conclude that the asymmetry of ρ(E)t(E)2 as a function of en-
ergy is crucial for obtaining a finite thermopower.

Since only lowest-order tunneling processes are considered
throughout this section, we have neglected higher-order scat-
tering processes present at NS junctions, specifically Andreev
scattering. To include contributions of Andreev scattering
processes, we will employ the Landauer–Büttiker formalism
for scattering between the conducting lead and the supercon-
ductor in the next section.

III. LANDAUER–BÜTTIKER SCATTERING FORMALISM

As we have shown in the previous section, the thermopower
at the boundary between a quantum dot and a Majorana
edge state is generically non-vanishing. Here, by using the
Landauer–Büttiker formula, we derive a Mott formula for the
thermopower between a conducting lead and a superconduct-
ing region, akin to the normal Mott formula in Eq. (1.1).

Let us consider a generic setup shown in Fig. 2, in which a
conducting lead weakly couples to a superconductor lead. The
temperature and chemical potential of the conducting lead are
Tn and µn, respectively, and those of the superconductor are
Ts and µs. Again, we set µs = 0 in what follows. To adapt
the Landauer–Büttiker formula, we describe both the conduct-
ing lead and the superconductor by one-dimensional channels.
Since a quasiparticle can scatter into either a quasiparticle or
a quasihole, we need to specify numbers of quasiparticle (p)
and quasihole (h) channels. At a given energy E, we denote
Nnα(E) and Nsα(E) as the number of α = p/h channels of
the conducting lead and the superconductor, respectively. We
note that quasiparticles are electrons in the conducting lead
while in the superconductor they are Bogolyubov–de Gennes
quasiparticles.

In the weak tunneling and dc limits, all transport proper-
ties between the conducting lead and the superconductor are
governed by a unitary scattering matrix. The scattering ma-
trix elements, which give scattering amplitudes from channel
( j, β, b) to (`, α, a), are denoted by siαa

jβb(E). Here, `, j = n/s
are lead indices, α, β = p/h are particle/hole indices, and
a = 1, . . . ,N`α(E) (b = 1, . . . ,N jβ(E)) are channel indices. We
adopt the convention that lower indices represent an incoming
state while the upper indices represent an outgoing state. The

Conducting lead

N (E)n
α

N (E)s
β

Tn μn Ts μs

Superconductor

Chennels Chennels

s(E)

FIG. 2: Schematic picture of a tunneling junction between a con-
ducting lead and a superconductor. The conducting lead has Nα

n (E)
channels at energy E while the superconductor has Nβ

s (E), where
α(β) = p, h represents the quasiparticle or quasihole channels. The
temperature and chemical potential of the conducting lead are Tn and
µn respectively, and those of the superconductor are Ts and µs. s(E)
represents the scattering matrix across the tunneling junction.

particle–hole symmetry of superconductors gives

s`αa
jβb (E) = αβ[s`ᾱa

jβ̄b (−E)]∗, (3.1)

where particle indices α, β = p/h are defined as +/− in the
equation and ᾱ, β̄ are defined as p̄, h̄ ≡ h, p.

Now, the probability of an incoming current at the chan-
nel ( j, β, b) scattering into the outgoing current at the channel
(`, α, a) is given by |s`αa

jβb (E)|2. As we are interested in the total
tunneling current between the conducting lead and the super-
conductor, it is convenient to trace out channel indices and
introduce the scattering probability

P`α
jβ (E) =

∑
a,b

|s`αa
jβb (E)|2 (3.2)

for the current in the ( j, β) state to scatter into the (`, α) state.
Here, ` = j corresponds to reflection while ` , j correspond
to transmission. The processes with α , β are Andreev scat-
tering processes. Due to the unitarity of the scattering matrix,
scattering probabilities satisfy∑

j,β

P`α
jβ (E) = Niα(E),

∑
`,α

P`α
jβ (E) = N jβ(E). (3.3)

The particle–hole symmetry, Eq. (3.1), further implies that

P`ᾱ
jβ̄ (−E) = P`α

jβ (E). (3.4)

Combining Eqs. (3.3) and (3.4), we find that the number of
channels satisfies N`h(E) = N`p(−E).

Now, electric and heat currents can be expressed in terms
of scattering probabilities12–14. The electric current reads

I =
e
h

∫ ∞

0
dE

{
− f p

n (E)
(
Nnp − Pnp

np + Pnh
np

)
+ f h

n (E)
(
Nnh − Pnh

nh + Pnp
nh

)
+ f p

s (E)
(
Pnp

sp − Pnh
sp

)
+ f h

s (E)
(
Pnh

sh − Pnp
sh

) }
, (3.5)

while the heat current reads

Q =
1
h

∫ ∞

0
dE E

{
+ f p

n (E)
(
Nnp − Pnp

np − Pnh
np

)
+ f h

n (E)
(
Nnh − Pnh

nh − Pnp
nh

)
− f p

s (E)
(
Pnp

sp + Pnh
sp

)
− f h

s (E)
(
Pnp

sh + Pnh
sh

) }
, (3.6)
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where energy dependences of all N`α and P`α
jβ are implied. The

Fermi-Dirac distributions of particles and holes are given by

f α` (E) = (e(E±µ`)/kBT` + 1)−1, (3.7)

where ` = n/s and α = p/h. The “+” sign in the exponent cor-
responds to particles (α = p), the “−” sign – to holes (α = h).
Since the particle–hole picture effectively maps quasiparticles
with negative energy to quasiholes with positive energy, the
integration in Eqs. (3.5) and (3.6) is performed only over the
positive energy region to avoid double counting. Intuitively,
the expression of the electric current in Eq. (3.5) sums over
flows in all channels of the conducting lead multiplied by
the sign of their charge carriers (negative(positive) charge for
the electron(hole)) while the heat flow expression in Eq. (3.6)
sums over energy flows in all channels.

With the aid of the unitarity properties (3.3) and the
particle–hole symmetry (3.4), the electric current becomes

I =
−e
h

∫ ∞

−∞

dE
(

f p
n − f p

s

) (
Nnp − Pnp

np + Pnh
np

)
, (3.8)

while the heat current can be rewritten as

Q =
1
h

∫ ∞

−∞

dEE
(

f p
n − f p

s

) (
Nnp − Pnp

np − Pnh
np

)
. (3.9)

Here, we have used the relation f h
n (E) = 1 − f p

n (−E) to ex-
tend the range of integration to all energies. Importantly, both
electric and heat currents involve only reflection probabilities
in the conducting leads.12

To linear order, the expressions for the electric and heat
currents can be organized in terms of the chemical poten-
tial difference ∆µ = µn − µs and the temperature difference
∆T = Tn − Ts as(

I/(−e)
Q

)
=

(
L11 L12/Ts
L21 L22/Ts

) (
∆µ
∆T

)
. (3.10)

The linear response coefficients Li j are given by

L11 =
−1
h

∫ ∞

−∞

dE
∂ f
∂E

(
Nnp − Pnp

np + Pnh
np

)
, (3.11a)

L12 =
−1
h

∫ ∞

−∞

dEE
∂ f
∂E

(
Nnp − Pnp

np + Pnh
np

)
, (3.11b)

L21 =
−1
h

∫ ∞

−∞

dEE
∂ f
∂E

(
Nnp − Pnp

np − Pnh
np

)
, (3.11c)

L22 =
−1
h

∫ ∞

−∞

dEE2 ∂ f
∂E

(
Nnp − Pnp

np − Pnh
np

)
. (3.11d)

As shown in Appendix A, the Onsager reciprocal relation is
satisfied for these linear response coefficients. In the pres-
ence of time-reversal symmetry, one can show that L12 = L21
even though the expressions given by Eqs. (3.11) do not di-
rectly reflect this. In the absence of time-reversal symmetry,
linear-response coefficients between the system and its time-
reversed system are related due to the Onsager relation, i.e.,
L12 = T [L21], where T [. . . ] represents the coefficient in the
time-reversed system.

As we are interested in the relation between L11 and L12, it
is convenient to define a function

K(E) = Nnp(E) − Pnp
np(E) + Pnh

np(E). (3.12)

When the tunneling probabilities are smooth functions of
energy E, the linear response coefficients Li j can be ap-
proximated by Sommerfeld expansions.20 To the lowest non-
vanishing order, the Sommerfeld expansion of L11 is given by

L11 ≈
1
h

K(E)
∣∣∣∣
E=0

+ O(kBTs)2, (3.13)

while the Sommerfeld expansion of L12 reads

L12 ≈
1
h
π2

3
(kBTs)2 dK(E)

dE

∣∣∣∣
E=0

+ O(kBTs)4. (3.14)

We observe that both L11 and L12 can be related to the differ-
ential conductance by G(E = eV) = − e2

h K(E) with an applied
voltage V at the normal lead and with a fixed chemical poten-
tial at the superconductor.

Now, the thermopower (Seebeck coefficient) can be readily
evaluated and shown to satisfy the Mott formula

S = −
∆V
∆T

=
1

eTs

L12

L11
=
π2

3
k2

BTs

e
d ln G(E)

dE

∣∣∣∣
E=µs

. (3.15)

Here, ∆V is the voltage in response to the temperature dif-
ference ∆T between the tunneling junction in the absence of
total current. The thermopower vanishes when the differential
conductance is an even function of energy E. The presence
of the Mott relation provides a unique way to infer the tem-
perature difference by measuring the differential conductance
and the voltage difference between the conducting lead and
the superconductor.

IV. SINGLE-CHANNEL CONTINUUM MODELS

In this section, we discuss two simplified models that de-
scribe a single-channel conducting lead tunneling into a chi-
ral Majorana edge state. These models provide examples in
which the thermopower is (A) vanishing as tunneling proba-
bilities have no energy dependence due to an accidental sym-
metry for a single-point contact setup, or (B) non-vanishing as
tunneling probabilities gain energy dependence in a double-
points contact setup. The goal here is not to present realistic
models for such systems, but rather to argue that the scenario
(B) represents a generic case for a realistic system.

A. Single-point-contact geometry

Let us consider a setup where a tip of a single-channel con-
ducting lead couples to a chiral Majorana edge state. In such
a case, the non-chiral channel can be unfolded to form a chiral



5

Tn μna
superconductor
Ts μs

Majorana edge state

t

Tn μn

superconductor
Ts μs

t

single channel
conducting lead

unfolded channel

b

x=0

Majorana edge state

Tn μn

superconductor
Ts μs

t

unfolded channel

c

Majorana edge state

x=-a

x=a

1

t2

FIG. 3: (a) Schematic plot of a tip of a single-channel lead coupled
to a Majorana edge state (red curve at the boundary of the supercon-
ductor). The tunneling strength is t. The temperature and chemi-
cal potential of the conducting lead are Tn and µn, respectively, and
those of the Majorana edge state are Ts and µs. (b) A single-electron
channel can be unfolded into a chiral electron channel that couples
to a Majorana edge state at the point x = 0. (c) The plot shows a
toy model of a double-point-contact setup between an unfolded elec-
tronic channel and a Majorana edge state. Two tunneling points are
at x = ±a along the chiral electron mode.

electron mode as depicted in Fig. 3b. The coupling Hamilto-
nian is given by18,21

H =HN + HMF + Ht,

HN = − ivf

∫ ∞

−∞

dxψ†(x)∂xψ(x),

HMF = − i
vm

2

∫ ∞

−∞

dxη(x)∂xη(x),

Ht =
i
√

2

∫ ∞

−∞

dx
(
tψ(x) + t∗ψ†(x)

)
η(x)δ(x).

(4.1)

Here, the ψ(x) is the annihilation operators for the chiral
electron mode with velocity vf, η(x) is the chiral Majorana
mode with velocity vm, and t is the coupling strength. ψ
satisfies the usual fermionic commutation relations, while
the Majorana fermion satisfying the anticommutation relation
{η(x), η(x′)} = δ(x − x′). The equations of motion are readily
written as

∂tψ = − vf∂xψ + t∗ηδ(x)/
√

2, (4.2)

∂tψ
† = − vf∂xψ

† + tηδ(x)/
√

2, (4.3)

∂tη = − vm∂xη −
(
tψ + t∗ψ†

)
δ(x)/

√
2. (4.4)

By removing the time dependence with the Ansatz

ψ = e−iEtψ(x), ψ† = e−iEtψ†(x), η = e−iEtη(x), (4.5)

we have

vf∂xψ(x) =iEψ(x) + t∗η(x)δ(x)/
√

2,

vf∂xψ
†(x) =iEψ†(x) + tη(x)δ(x)/

√
2,

vm∂x(x) =iEη(x) −
(
tψ(0) + t∗ψ†(x)

)
δ(x)/

√
2.

(4.6)

Now, a single-point-contact scattering problem at x = 0
can be solved by the transfer matrix method. First, the delta
function δ(x) is approximated as a bump function with width
` and height 1/`. Then, the transfer matrix of this bump ge-
ometry can be obtained by partitioning the width ` by N → ∞
steps. Finally, the δ(x) function is recovered by taking the
limit ` → 0. By following these steps, we connect operators
at x = 0+ to operators at x = 0− by a transfer matrix M as η(0+)

ψ(0+)
ψ†(0+)

 = M

 η(0−)
ψ(0−)
ψ†(0−)

 . (4.7)

As this transfer matrix M gives the particle hopping am-
plitudes but not the current scattering amplitudes between the
conducting lead and the Majorana edge state, it is convenient
to convert the transfer matrix to the scattering matrix asso-
ciating with the current scattering by including the effect of
different velocities. We obtain the scattering matrix

S t =

 sηη sηp sηh
sp
η sp

p sp
h

sh
η sh

p sh
h

 (4.8)

=


cos 2|t̃| − eiφ

√
2

sin 2|t̃| − e−iφ
√

2
sin 2|t̃|

e−iφ
√

2
sin 2|t̃| cos2|t̃| −e−2iφ sin2|t̃|

eiφ
√

2
sin 2|t̃| −e2iφ sin2|t̃| cos2|t̃|

 ,
where the effective coupling constant t̃ is defined as t̃ =

t/
(
2
√

vfvm

)
with φ being its phase: t = |t|eiφ. The sαβ are

matrix elements corresponding to scattering amplitudes of a
quasiparticle type β scattering to type α. Here, η, p and h
indicate Majorana edge mode, electron and hole. One can di-
rectly verify that this scattering matrix S is unitary.

From Eq. (3.2), we conclude that the scattering probabili-
ties have no energy and phase dependence. Thereby, the ker-
nel defined in Eq. (3.12) and, consequently, the differential
conductance will not depend on the energy of the incoming
flows. It then follows from the Mott relation (3.15) that the
thermopower vanishes for the single-point-contact geometry.
This is a consequence of uniform coupling strengths between
the states with different energies along with the constant den-
sity of states of both electronic and Majorana modes – an ar-
tifact of our model.

B. Double-point-contact geometry

To emulate the finite extent of the tunneling region between
a conducting leadand a Majorana edge state, we consider a
double-point-contact setup. Once again, for simplicity, the
non-chiral channel in the conducting lead is unfolded to form
a chiral electronic mode. With two point contacts at x = ±a/2,
as shown in Fig. 3(c), the tunneling Hamiltonian Ht becomes

Htt =
i
√

2

(
t1ψ(−a/2) + t∗1ψ

†(−a/2)
)
η(−a/2)

+
i
√

2

(
t2ψ(a/2) + t∗2ψ

†(a/2)
)
η(a/2), (4.9)
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The scattering matrix S tt which connects currents on both
sides of the scattering region can be obtained by combining
two scattering matrices in Eq. (4.8) with the transfer matrix,
and is given by

S tt = S (t2)

 eikma 0 0
0 eik f a 0
0 0 eik f a

 S (t1). (4.10)

Here momenta are defined by k f = E/vf and km = E/vm and
the tunneling amplitudes are defined by t1 = |t1|eiφ1 and t2 =

|t2|eiφ2 .
As the full expression of the scattering matrix becomes

quite lengthy, we list its elements in Appendix B. Using
Eqs. (B1) and (B2), we obtain the kernel defined in Eq. (3.12)
as

K(E) = 1 − cos(2|t̃1|) cos(2|t̃2|) + sin(2|t̃1|) sin(2|t̃2|)

×
(
cos2(|t̃1|) cos(k̃a − φ12) + sin2(|t̃1|) cos(k̃a + φ12)

)
. (4.11)

Here, we have used the notation k̃ = k f − km and φ12 = φ1 −φ2

and defined effective tunneling constants |t̃i| = |ti|/
(
2
√

vfvm

)
,

i = 1, 2. To have non-vanishing thermopower, K(E) needs
to be a non-even function of energy, which requires the phase
α1 , α2 +nπ. Since the phase difference of the contact tunnel-
ing strengths can be arbitrary (or tuned by threading magnetic
flux), an electric voltage difference will generically appear be-
tween the conducting lead and the Majorana edge state. We
then expect that a finite tunneling region, in general, leads to
a non-vanishing Seebeck coefficient.

We conclude this section by discussing possible signatures
of the Seebeck effect in the double-point-contact setup. The
purpose is to show that a non-vanishing Seebeck coefficient
of reasonable magnitude can appear. In the weak tunneling
limit, |t̃1| ∼ |t̃2| � 1, the energy derivative of the differential
conductance can be evaluated from Eq. (4.11), and is given by

d ln G(E)
dE

∣∣∣
E=0 ≈

a
~

sin φ12

1 + cos φ12

(
1
vf
−

1
vm

)
. (4.12)

From the Mott formula in Eq. (3.15), the Seebeck coefficient
can be approximated to be

S ≈ −
π2

3
k2

BTs

e
a
~vm

. (4.13)

where we have used vm � vf as the velocity of the Majorana
edge state is reduced by comparison with the Fermi velocity,22

and we have taken the phase-dependent factor, sin(φ12)/(1 +

cos(φ12)) ∼ 1, as its median value. For a ∼ 0.1 − 10 µm and
vm ∼ 104 m/s at Ts ∼ 100 mK, we expect the value of the
thermopower

S ∼ 10−5 − 10−3 V/K. (4.14)

This will result in a reasonably strong signal for the potential
difference ∆V when the temperature difference ∆T is around
1 ∼ 10 mK. In this limit, we note that the Seebeck coeffi-
cient scales linearly with the distance between the two con-
tacts while it is inversely proportional to the propagating ve-
locity of the Majorana edge mode.

V. CONCLUSIONS

In summary, by employing the Landauer-Büttiker formal-
ism, we have demonstrated explicitly that the thermopower
(Seebeck coefficient) between a conducting lead and a su-
perconductor satisfies the Mott formula. Using point-contact
models, we argued that the thermopower between a conduct-
ing lead and a Majorana edge state generically does not van-
ish. In the absence of current, this leads to a finite voltage
when a temperature difference is established across a tunnel-
ing junction. With the aid of the Mott formula, the tempera-
ture of the Majorana edge state can be inferred by measuring
the differential conductance and the voltage across the tun-
neling region in the absence of current flow. Since this tech-
nique has been demonstrated in non-superconducting systems
for tunneling geometries6–8, we expect that a similar technique
can be used to probe the temperature of Majorana edge states.
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Appendix A: Proof of the Onsager relation

1. Time-reversal-invariant case

From Eq. (3.11), the form of the following linear-response
coefficients

L12 =
1
h

∫ ∞

−∞

dE E
(
−
∂ f
∂E

) (
Nnp − Pnp

np + Pnh
np

)
, (A1)

L21 =
1
h

∫ ∞

−∞

dE E
(
−
∂ f
∂E

) (
Nnp − Pnp

np − Pnh
np

)
, (A2)

is not identical and does not obviously satisfy the Onsager
relation. Our goal here is to show that these linear response
coefficients do in fact follow the Onsager reciprocity relation
L12 = L21 in the presence of time reversal symmetry (TRS).
We observe that L12 and L21 differ only by a minus sign in
the last term of the integrand. Hence, to satisfy the Onsager
relation, the contribution from the last term has to vanish after
the integration. In the presence of TRS, we will show that
Pnh

np(E) is indeed an even function of energy and hence does
not contribute to the integrals in Eqs. (A1,A2).

Let us define the basis for a scattering problem between a
normal and a superconducting lead for spin-1/2 electrons as(

ψnp↑(E), ψsp↑(E), ψnp↓(E), ψsp↓(E),

ψnh↑(E), ψsh↑(E), ψnh↓(E), ψsh↓(E)
)T , (A3)
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where each ψiασ(E) has Niασ(E) channels that will be indi-
cated by indices a/b in what follows, and σ is the spin index.
In this basis, a scattering matrix S (E) has matrix elements

S (E) =
{
siασ

jβσ′ (E)
}
i, j=n/s;α,β=p/h;σ,σ′=↑,↓

(A4)

where each s`ασjβσ′ is an N`ασ(E) × N jβσ′ (E) matrix with its ele-
ments denoted by s`ασa

jβσ′b(E), which relates the outgoing current
at state (`, α, σ′, b) to the incoming current at state ( j, β, σ, a).

For spin-1/2 electrons, the time reversal transformation of
the scattering matrix in the electron basis is given by

T [S ] = σyS Tσy (A5)

where the σy is the Pauli matrix acting on spins and the su-
perscript T indicates the transpose of the matrix. With the
TRS, we have T [S ] = S . (A similar transformation can be
defined for spinless electrons by T [S ] = S T . Then all con-
clusions in this appendix will follow.) For a superconduc-
tor, the corresponding time reversal transformation becomes
T [S ] = (11ph ⊗ σy ⊗ 11)S T (11ph ⊗ σy ⊗ 11), where the 11ph acts
on the particle–hole indices, σy acts on the spin indices, and
11 acts on the lead×channel indices. The time reversal trans-
formation maps matrix elements of the scattering matrix by

T [S (E)] =
{
s`ασjβσ′ (E) 7→ (σσ′) × s jβσ̄′

iασ̄ (E)T
}

(A6)

where σ̄ and σ̄′ indicate the flip of spin, i.e., ↑̄ =↓ and vise
versa, and the values of σ,σ′ inside the parentheses are taken
to be ±1 for σ,σ′ =↑ / ↓.

The presence of TRS implies S (E) = T [S (E)] and leads to
following useful identities for each element

snh↑a
np↑b(E) = snp↓b

nh↓a (E), snh↓a
np↓b(E) = snp↑b

nh↑a (E),

snh↑a
np↓b(E) = −snp↑b

nh↓a (E), snh↓a
np↑b(E) = −snp↓b

nh↑a (E).
(A7)

Let us recall the definition of the scattering probability Pnh
np(E)

in terms of of the scattering matrix elements

Pnh
np(E) =

∑
σ,σ′;a,b

snhσa
npσ′b(E)snhσa

npσ′b(E)∗

= −
∑

σ,σ′;a,b

snhσa
npσ′b(E)snpσa

nhσ′b(−E).
(A8)

where we have used the particle–hole symmetry (PHS) given
by Eq. (3.1) for the second equality. With the aid of the iden-
tities given by Eq. (A7), we have

Pnh
np(E) =

∑
σ,σ′;a,b

snpσb
nhσ′a(E)snpσb

nhσ′a(E)∗

= −
∑

σ,σ′;a,b

snpσa
nhσ′b(E)snhσa

npσ′b(−E),
(A9)

where we again used the PHS for the last equality. Compar-
ing the results in Eqs. (A8) and (A9), we can conclude that
Pnh

np(E) = Pnh
np(−E). Hence, Pnh

np(E) is an even function of the
energy E and leads to no contribution of the linear response
coefficient. Thus, the Onsager reciprocal relation is satisfied
in the presence of TRS.

2. Generic case

In the absence of TRS, the Onsager reciprocal relation
states that Li j = T [L ji], where T [L ji] stands for the linear-
response coefficient of the time-reversed system. Therefore
we need to verify that the following relations are satisfied

L11 = T [L11], L22 = T [L22], L12 = T [L21]. (A10)

As Eqs. (3.11) involve one channel number and two tunneling
probabilities, Nnp(E), Pnp

np(E) and Pnh
np(E), we shall focus on

those quantities of the time-reversed system.

First, the number of channels is invariant under the time re-
versal, i.e., T [Nnp(E)] = Nnp(E). Second, from the definition
of the scattering probability Pnp

np(E) =
∑
σ,σ′;a,b |s

npσa
npσ′b|

2, and

time reversed elements in Eq. (A6), T [snpσ
npσ′ ] = (σσ′)×snpσ̄′

npσ̄
T

,
we have T [Pnp

np(E)] = Pnp
np(E) under the time-reversed trans-

formation. Finally, the time reversed form of T [Pnh
np(E)] =∑

σ,σ′;a,b |s
npσa
nhσ′b(E)|2, given in Eq. (A9), is not invariant under

the time reversal transformation.

We shall now discuss each Onsager relation separately.

a. Diagonal response coefficients

Let us recall the linear response coefficient in Eq. (3.11)

L11 =
1
h

∫ ∞

−∞

dE
(
−
∂ f
∂E

) (
Nnp − Pnp

np + Pnh
np

)
. (A11)

As both Nnp(E) and Pnp
np(E) are invariant under the time rever-

sal transformation, we have

L11 − T [L11]

=
1
h

∫
dE

(
−
∂ f
∂E

) (
Pnh

np − T [Pnh
np]

)
=

1
h

∫
dE

(
−
∂ f
∂E

) ∑
σ,σ′;a,b

(
|snhσa

npσ′b|
2 − |snpσb

nhσ′a|
2
)
,

=
−1
h

∫ ∞

−∞

dE
(
−
∂ f
∂E

) ∑
σ,σ′;a,b

(
snhσa

npσ′b(E)snpσa
nhσ′b(−E)

− snpσb
nhσ′a(E)snhσb

npσ′a(−E)
)
,

(A12)

where we have use the PHS for the last equality. As all terms
inside parentheses are, in overall, odd functions and

(
−
∂ f (E)
∂E

)
is an even function of energy, the integration vanishes. Hence
we have shown that L11 = T [L11]. A similar argument shows
that L22 = T [L22] as well.
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b. Off-diagonal response coefficients

From Eqs. (A1) and (A2), we immediately have

L12 − T [L21]

=
1
h

∫
dE E

(
−
∂ f
∂E

) (
Pnh

np + T [Pnh
np]

)
=

1
h

∫
dE E

(
−
∂ f
∂E

) ∑
σ,σ′;a,b

(
|snhσa

npσ′b|
2 + |snpσb

nhσ′a|
2
)
,

= −

∫ ∞

−∞

dE E
(
−
∂ f
∂E

) ∑
σ,σ′;a,b

(
snhσa

npσ′b(E)snpσa
nhσ′b(−E)

+ snpσb
nhσ′a(E)snhσb

npσ′a(−E)
)

(A13)

where we have used the PHS for the last equality. Since all
terms inside the parentheses are even functions of E while

E (−∂ f (E)/∂E) is an odd function of energy, the integral van-
ishes. We therefore obtain LA

12 = T [LA
21].

Appendix B: Scattering matrix elements of two point contact
setup

In this Appendix, we list scattering matrix elements sαβ of
the two-points contact setup. The tunneling amplitudes are
defined by t1 = |t1|eiφ1 and t2 = |t2|eiφ2 . It is convenient to de-
fine effective tunneling amplitudes |t̃i| = |ti|/

(
2
√

vfvm

)
. First,

matrix elements associating with the kernel are given by

sp
p =

1
2

(
2eik f a

(
e2i(φ1−φ2) sin2(|t̃1|) sin2(|t̃2|) + cos2(|t̃1|) cos2(|t̃2|)

)
− ei(kma+φ1−φ2) sin(2|t̃1|) sin(2|t̃2|)

)
, (B1)

sh
p = −

1
2

(
2eik f a

(
e2iφ1 sin2(|t̃1|) cos2(|t̃2|) + e2iφ2 cos2(|t̃1|) sin2(|t̃2|)

)
+ ei(kma+φ1+φ2) sin(2|t̃1|) sin(2|t̃2|)

)
. (B2)

The rest of the matrix elements are given by

sηη =eikma cos(2|t̃1|) cos(2|t̃2|) − eik f a cos(φ1 − φ2) sin(2|t̃1|) sin(2|t̃2|) (B3)

sηp = −
1
√

2

(
ei(k f a−φ2) sin(2|t̃2|)

(
e2iφ2 cos2(|t̃1|) − e2iφ1 sin2(|t̃1|

)
) + ei(kma+φ1) sin(2|t̃1|) cos(2|t̃2|)

)
(B4)

sηh = −
1
√

2

(
ei(k f a+φ2) sin(2|t̃2|)

(
e−2iφ2 cos2(|t̃2|) − e−2iφ1 sin2(|t̃1|)

)
+ ei(kma−φ1) sin(2|t̃1|) cos(2|t̃2|)

)
(B5)

sp
η =

1
√

2

(
ei(k f a+φ1) sin(2|t̃1|)

(
e−2iφ1 cos2(|t̃2|) − e−2iφ2 sin2(|t̃2|)

)
+ ei(kma−φ2) cos(2|t̃1|) sin(2|t̃2|)

)
(B6)

sp
h = −

1
2

(
2eik f a

(
e−2iφ1 sin2(|t̃1|) cos2(|t̃2|) + e−2iφ2 cos2(|t̃1|) sin2(|t̃2|)

)
+ ei(kma−φ1−φ2) sin(2|t̃1|) sin(2|t̃2|)

)
(B7)

sh
η =

1
√

2

(
ei(k f a−φ1) sin(2|t̃1|)

(
e2iφ1 cos2(|t̃2|) − e2iφ2 sin2(|t̃2|)

)
+ ei(kma+φ2) cos(2|t̃1|) sin(2|t̃2|)

)
(B8)

sh
h =

1
2

(
2eik f a

(
e−2i(φ1−φ2) sin2(|t̃1|) sin2(|t̃2|) + cos2(|t̃1|) cos2(|t̃2|)

)
− ei(kma−φ1+φ2) sin(2|t̃1|) sin(2|t̃2|)

)
(B9)

With these matrix elements, one can show that the scattering
matrix S tt(E) is unitary and satisfies the particle–hole symme-

try defined in Eq. (3.1).
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