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Abstract. On the basis of an impedance boundary condition, we study
theoretically the transmission of a surface plasmon polariton incident normally
on a periodic row of circular metallic or dielectric dots deposited on a planar
metallic substrate. The field of the transmitted surface plasmon polaritons
displays periodic self-images of this row that are separated from it by multiples
of a characteristic distance. This is the analogue for surface plasmon polaritons
of the Talbot effect for volume electromagnetic waves.

When light is transmitted through a one-dimensional periodic structure, the image of that
structure is found to repeat itself periodically with increasing distance of the image plane
from the structure. This self-imaging of the periodic structure was discovered by H F Talbot
in 1836 [1], and has been the subject of many subsequent theoretical and experimental
investigations1.

As in the case of other effects originally associated with volume electromagnetic waves
whose analogues have begun to be studied in the context of surface electromagnetic waves,
such as negative refraction [3] and cloaking [4], the analogue of the Talbot effect has recently
been studied theoretically for surface plasmon polaritons [2]. The system studied by Dennis
et al consisted of a periodic row of holes drilled in a metal film and illuminated from the back
side. Periodic images of this row in the intensity distribution of the total transmitted field on the
front side of the film were produced, which were separated from the original one by multiples
of a characteristic length.

In this paper, we study theoretically the Talbot effect for surface plasmon polaritons on
the basis of a rather different system from the one considered by Dennis et al, and by a rather
different approach. The system we study should be as simple as theirs to fabricate. It consists

1 A good list of references to studies of the Talbot effect is contained in the paper by Dennis et al [2].
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Figure 1. The geometry under study.

of vacuum in the region x3 > 0 and a metal characterized by a dielectric function ε1(ω) in the
region x3 < 0. Deposited on this surface is a periodic row of dots of a material characterized by
a dielectric function ε2(ω) (figure 1). The radius of each dot is R, and they are centered at the
points (0, nb, 0), where n = 0, ±1, ±2, . . .. We assume that R < b/2, so that the dots do not
overlap. The interface between vacuum and the metal whose dielectric function is ε1(ω) supports
a surface plasmon polariton of frequency ω. A surface plasmon polariton of this frequency is
incident on this row of dots from the region x1 < 0. The scattering and transmission of the
incident surface plasmon polariton by this structure are studied on the basis of an impedance
boundary condition [5] on the surface x3 = 0, which can be successfully used for metals [5]
and for strongly reflecting dielectric surfaces [6]. We write this boundary condition in the form
(i, j = 1, 2)

JE(x‖|ω)i = K (0)

i j (x‖|ω)JH (x‖|ω) j , (1)

where summation over repeated subscripts is assumed. In equation (1), we have introduced
the vectors JE(x‖|ω) = x̂3 × E>(x|ω)|x3=0 and JH (x‖|ω) = x̂3 × H>(x|ω)|x3=0, where
E>(x|ω) (H>(x|ω)) is the total electric (magnetic) field in the vacuum region x3 > 0,
and the caret over a vector denotes a unit vector. The only nonzero elements of the surface

impedance tensor
↔

K
(0)

(x‖ω) are

K (0)

12 (x‖|ω) = κ1(ω) + (κ2(ω) − κ1(ω))S(x‖)

= − K (0)

21 (x‖|ω), (2)

where

S(x‖) =

∞∑
n=−∞

θ(R − |x‖ − x̂2nb|), (3)

θ(x) is the Heaviside unit step function and κ j(ω) = i/(−ε j(ω))1/2.
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The incident surface plasmon polariton is p polarized. The total electric and magnetic fields
E>(x|ω) and H>(x|ω), respectively, are then given by

E>(x|ω) =
c

ω
[ik̂‖(ω)β0(ω) − x̂3k‖(ω)] exp[ik‖(ω) · x‖ − β0(ω)x3]

+
∫

d2q‖

(2π)2
exp[iq‖ · x‖ − β0(q‖)x3]

×

{ c

ω
[iq̂‖β0(q‖) − x̂3q‖]A‖(q‖) + (x̂3 × q̂‖)A⊥(q‖)

}
, (4a)

H>(x|ω) = (x̂3 × k̂‖(ω)) exp[ik‖(ω) · x‖ − β0(ω)x3]

+
∫

d2q‖

(2π)2
exp[iq‖ · x‖ − β0(q‖)x3]

{
(x̂3 × q̂‖)A‖(q‖) −

c

ω
[iq̂‖β0(q‖) − x̂3q‖]A⊥(q‖)

}
.

(4b)

A time dependence exp (−iωt) has been assumed for these fields, but has not been
indicated explicitly.

The first term on the right-hand side of equations (4a) and (4b) gives the field of the
incident surface plasmon polariton. It has the form of an evanescent plane wave whose angle
of incidence measured counterclockwise from the negative x1-axis is θ . The vector k‖(ω) is
given by k‖(ω) = k‖(ω) (cos θ, sin θ, 0), where k‖(ω) = (ω/c)[1 − 1/ε1(ω)]1/2 is the solution
of the dispersion relation, in the impedance approximation, for surface plasmon polaritons at
the planar interface between vacuum and a metal whose dielectric function is ε1(ω), namely

[k2
‖
(ω) − (ω/c)2]1/2 + i(ω/c)κ1(ω) = 0. (5)

The function β0(ω) is given by β0(ω) = (ω/c)(−ε1(ω))−1/2.
The integral term on the right-hand side of equations (4a) and (4b) gives the scattered field,

consisting of the surface plasmon polariton reflected/transmitted by the periodic row of dots,
and volume waves radiated into the vacuum. Here β0(q‖) = [q2

‖
− (ω/c)2]1/2 with Re β0(q‖) >

0, Im β0(q‖) < 0 and the coefficients A‖(q‖) and A⊥(q‖) are the amplitudes of the p- and
s-polarized components of the scattered field with respect to the local sagittal plane defined
by the vectors q̂

‖
and x̂3. They are functions of the vector k‖(ω), but we do not indicate this

explicitly.
When we substitute equations (4) into equation (1) and make use of equation (2), we obtain

a pair of coupled integral equations for A‖(q‖) and A⊥(q‖), which can be written in the form[
i(c/ω)β0(p‖) − κ1(ω)

]
A‖(p‖) − (κ2(ω) − κ1(ω))

∫
d2q‖

(2π)2
Ŝ(p‖ − q‖)

×

{
(p̂‖ · q̂‖)A‖(q‖) − i(p̂‖ × q̂‖)3

c

ω
β0(q‖)A⊥(q‖)

}
= (κ2(ω) − κ1(ω))(p̂‖ · k̂‖)Ŝ(p‖ − k‖), (6a)
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[
−1 + i(c/ω)κ1(ω)β0(p‖)

]
A⊥(p‖) + (κ2(ω) − κ1(ω))

∫
d2q‖

(2π)2
Ŝ(p‖ − q‖)

×

{
(p̂‖ × q̂‖)3 A‖(q‖) + i(p̂‖ · q̂‖)

c

ω
β0(q‖)A⊥(q‖)

}
= −(κ2(ω) − κ1(ω))(p̂‖ × k̂‖)3 Ŝ(p‖ − k‖). (6b)

The vector p‖ = (p1, p2, 0) in these equations is an arbitrary vector in the plane x3 = 0.
The function Ŝ(Q‖) is defined by

Ŝ(Q‖) =

∫
d2x‖S(x‖) exp(−iQ‖ · x‖), (7)

and we have omitted the argument ω of the vector k‖(ω). Since in the present case S(x‖) is
defined by equation (3), we find that

Ŝ(Q‖) =

∞∑
m=−∞

2πδ(Q2 − (2πm/b))sm(Q1) (8a)

with

sm(Q1) =
2π R2

b

J1(
√

(Q2
1 + (2πm/b)2 R)√

Q2
1 + (2πm/b)2 R

, (8b)

where J1(x) is a Bessel function of the first kind and first order.
The vanishing of the coefficient of A‖(p‖) on the left-hand side of equation (6a) is the

dispersion relation for surface plasmon polaritons at the planar interface between vacuum and a
metal whose dielectric function is ε1(ω) (equation (5)). This means that the coefficient A‖(p‖)

has a resonant nature. It is preferable to work with integral equations for smoothly varying
functions rather than for resonant functions, so we introduce new amplitudes Ã‖(p‖) and Ã⊥(p‖)

by

A‖(p‖) =
Ã‖(p‖)

β0(p‖) + i(ω/c)κ1(ω)
, (9a)

A⊥(p‖) =
Ã⊥(p‖)

(ω/c) − iκ1(ω)β0(p‖)
. (9b)

Each of these new amplitudes is a smoothly varying function of p‖. The equations they satisfy
are

Ã‖(p‖) − b(ω)

∫
d2q‖

(2π)2
Ŝ(p‖ − q‖)

{
(p̂‖ · q̂‖)

β0(q‖) − a(ω)
Ã‖(q‖) −

i(p̂‖ × q̂‖)3β0(q‖)

(ω/c)2 + a(ω)β0(q‖)
Ã⊥(q‖)

}
= b(ω)(p̂‖ · k̂‖)Ŝ(p‖ − k‖), (10a)

Ã⊥(p‖) − b(ω)

∫
d2q‖

(2π)2
Ŝ(p‖ − q‖)

{
i(p̂‖ × q̂‖)3

β0(q‖) − a(ω)
Ã‖(q‖) −

(p̂‖ · q̂‖)β0(q‖)

(ω/c)2 + a(ω)β0(q‖)
Ã⊥(q‖)

}
= ib(ω)(p̂‖ × k̂‖)3 Ŝ(p‖ − k‖), (10b)
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where, to simplify the notation, we have defined a(ω) ≡ −i(ω/c)κ1(ω) and b(ω) ≡

−i(ω/c)(κ2(ω) − κ1(ω)).
Moreover, because of the periodicity of our system in the x2-direction, we introduce the

expansion

Ã‖,⊥(q‖) =

∞∑
n=−∞

2πδ(q2 − k2 − (2πn/b))a(n)

‖,⊥(q1) (11)

to ensure the satisfaction of the Floquet–Bloch theorem. On substituting equation (11) into
equation (10), we obtain the equations satisfied by the amplitudes {a(n)

‖,⊥(q1)}:

a(m)

‖
(p1) − b(ω)

∞∫
−∞

dq1

2π

∞∑
n=−∞

sm−n(p1 − q1)

×

[
p̂m · q̂n

βn(q1) − a(ω)
a(n)

‖
(q1) − i

(p̂m × q̂n)3βn(q1)

(ω/c)2 + a(ω)βn(q1)
a(n)

⊥
(q1)

]
= b(ω)p̂m · k̂‖sm(p1 − k1), m = 0, ±1, ±2, . . . , (12a)

a(m)

⊥
(p1) − b(ω)

∞∫
−∞

dq1

2π

∞∑
n=−∞

sm−n(p1 − q1)

×

[
i(p̂m × q̂n)3

βn(q1) − a(ω)
a(n)

‖
(q1) +

(p̂m · q̂n)βn(q1)

(ω/c)2 + a(ω)β(q1)
a(n)

⊥
(q1)

]
= ib(ω)(p̂m × k̂‖)3sm(p1 − k1), m = 0, ±1, ±2, . . . . (12b)

In writing these equations, we have introduced the definitions k2m = k2 + (2πm/b), pm =

(p1, k2m, 0), pm = (p2
1 + k2

2m)1/2, β0((p2
1 + k2

2m)1/2) = β0(pm) = βm(p1) and qn = (q1, k2n, 0),
qn = (q2

1 + k2
2n)

1/2, β0((q2
1 + k2

2n)
1/2) = β0(qn) = βn(q1).

Equations (12) are solved numerically by converting them into a pair of coupled matrix
equations by replacing the infinite range of integration by a finite range (−Q, Q), and evaluating
the resulting integrals by the extended midpoint method [7].

The electric vector of the scattered field is given by the second term on the right-hand side
of equation (4a). The contribution to this field from surface plasmon polaritons is given by the
residues of the poles of the integrand corresponding to the zeros of βn(q1) − a(ω). Thus in the
region x1 > 0, the electric field associated with surface plasmon polaritons becomes

E>(x|ω)spp =
c

ω
[ik̂‖β0(ω) − x̂3k‖] exp(ik‖ · x‖ − β0(ω)x3) + ia(ω) exp[−β0(ω)x3]

×

∑
n

c

ω

(
ik̂nβ0(ω) − x̂3k‖

) a(n)

‖
((k2

‖
− k2

2n)
1/2)

(k2
‖
− k2

2n)
1/2

exp [i(k2
‖
− k2

2n)
1/2x1 + ik2nx2],

(13)

where the sum runs over only those values of n for which |k2n| < k‖. The coefficients of x1 and
x2 in the exponential function in the summand define a vector whose magnitude is k‖ for each
value of n.
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Up to now we have considered the general case where the angle of incidence of the
incoming surface plasmon polariton has the nonzero value θ . We now specialize the preceding
results to the case of normal incidence, for which θ = 0, so that k2 = 0. It follows that
k2n = (2πn/b) in this case. Equation (13) then takes the form

E>(x|ω)spp =
c

ω
exp(ik‖x1 − β0(ω)x3)

(
iβ0(ω), 0, −k‖

)
+ ia(ω) exp(−β0(ω)x3)

∑
n

a(n)

‖
((k2

‖
− (2πn/b)2)1/2)

(k2
‖
− (2πn/b)2)1/2

× exp
[
i
(
k2

‖
− (2πn/b)2

)1/2
x1 + i(2πn/b)x2

]
×

c

ω

(
i
β0(ω)

k‖

(
k2

‖
− (2πn/b)2

)1/2
, i

β0(ω)

k‖

(2πn/b), −k‖

)
. (14)

If in the exponent in the summand in this expression we make the paraxial approximation
(k‖ � (2πn/b)), we can use the expansion (k2

‖
− (2πn/b)2)1/2

= k‖ − (2π2n2/k‖b2) + · · · to
simplify equation (14) to

E>(x|ω)spp =
c

ω
exp(ik‖x1 − β0(ω)x3)

(
iβ0(ω), 0, −k‖

)
+ ia(ω) exp[ik‖x1 − β0(ω)x3]

∑
n

a(n)

‖
((k2

‖
− (2πn/b)2)1/2)

(k2
‖
− (2πn/b)2)1/2

× exp
[
−i

(
2πn2/τ

)
x1 + i(2πn/b)x2

]
×

c

ω

(
i
β0(ω)

k‖

(
k2

‖
− (2πn/b)2

)1/2
, i

β0(ω)

k‖

(2πn/b), −k‖

)
, (15)

where τ = k‖b2/π is the Talbot distance. If we denote the vector defined by the sum in equation
(15) by F(x1, x2|ω), we see that it possesses the properties

F(0, x2|ω) = F(τ, x2|ω), (16a)

F(τ/2, x2|ω) = F(0, x2 − b/2|ω). (16b)

We note that the self-imaging effect described by equations (16) is strictly a consequence of
the paraxial approximation k‖ � (2πn/b). Nevertheless, as we will see, the effect survives to a
good approximation even when the condition for the paraxial approximation is slightly relaxed.

To illustrate these results, we consider the case where the frequency of the incident
surface plasmon polariton corresponds to a vacuum wavelength λ = 1.55 µm. The dielectric
function ε1(ω) at this wavelength is ε1(ω) = −130.83 + i3.32 (silver), so that the surface
plasmon wavelength λsp = 2π/Re(k‖(ω)) is λsp = 1.544 µm, and its energy propagation length
`sp = 1/(2 Im(k‖(ω)) is `sp ≈ 1.28 mm. We consider here two types of the dot material, namely,
gold dots (the dielectric function ε2(ω) = −95.92 + i10.76) and silicon dots (the dielectric
function ε2(ω) = 12). In figure 2, we present a color-level plot of |E>

3 (x|ω)spp| as a function
of x1 and x2 when x3 = 0 for the case where the surface plasmon polariton is scattered by a
row of dielectric dots with periods b = λsp (a), b = 10λsp (b) and b = 20λsp (c). In each case,
the radius of the dot is R = b/3. The Talbot distance is τ = 12.5 µm (a), τ = 1.26 mm (b) and
τ = 5 mm (c). In figure 3, we present a color-level plot of |E>

3 (x|ω)spp| as a function of x1 and

New Journal of Physics 11 (2009) 033004 (http://www.njp.org/)
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Figure 2. A color-level plot of |E>
3 (x|ω)spp| as a function of x1 and x2 when

x3 = 0 when a surface plasmon polariton propagates along a silver surface and
is scattered by a row of silicon dots of a period b = λsp (a), b = 10λsp (b) and
b = 20λsp (c). The radius of each dot is R = b/3.
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Figure 3. The same as in figure 2, but for the case where a surface plasmon
polariton propagates along a silver surface and is scattered by a row of gold dots.

x2 when x3 = 0 calculated for the same parameters as were used in obtaining figure 2, but for
the case where a surface plasmon polariton propagates along a silver surface and is scattered by
a row of gold dots.

The self-imaging effect described by equations (16) is clearly seen in both scattering
geometries, even for a period as small as b = 10λsp, as well as the formation of the Talbot
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carpet that results from sub-images formed at regular fractions of the Talbot length smaller
than 1

2 . The stronger the scattering the more pronounced is the complicated structure of
the diffraction pattern. In the scattering geometry considered here, the smaller the scatterers
the stronger the zero (specular)-order beam of the surface plasmon polaritons and, as a result, the
smaller the contrast of the Talbot carpet. The stronger scattering is also the reason for the much
more complicated pattern in the case of scattering by a row of dielectric dots than in the case
of a row of metallic dots. Since the propagation length of surface plasmon polaritons is about
the Talbot distance in the case where the period of the structure is b = 10λsp, in the case where
the period b = 20λsp the Talbot carpet is practically washed out on the scale of the Talbot
distance (figures 2(c) and 3(c)). We note here that in contrast to the results of Dennis et al [2]
only the contribution from the field of surface plasmon polaritons is taken into account in
calculations of the interference pattern. In the geometry considered in our paper, the conversion
of the incident surface plasmon polariton into the volume waves is weak. The color-level plots
presented in figures 2(a) and 3(a) show a period that is half of the Talbot distance. In this case,
the period of the surface structure is b = λsp, so that there are only the (0) and (±1) order
beams of the transmitted surface plasmon polariton, and the (±1) order beams propagate along
the x2-axis. Therefore, in this case, the period of the interference pattern is determined by the
wavelength λsp rather than by the Talbot distance, which is τ = 2λsp in this case.

Thus, on the basis of an impedance boundary condition approach, we have studied
theoretically the transmission of a surface plasmon polariton incident normally on a periodic
row of dots formed from either a metal that is different from the substrate or from a dielectric.
The transmitted surface plasmon polariton field displays periodic self-images of this row that are
separated from the original row by multiples of the characteristic Talbot distance, τ = k‖b2/π .
The approach used in obtaining this result can be useful in studies of the interaction of surface
plasmon polaritons with other surface structures.

Just as the Talbot effect for volume electromagnetic waves has been used in a variety of
applications (see for example [8]–[12]), it can be expected that its analogue for surface plasmon
polaritons will find applications in a variety of nanoscale plasmonic devices.

A structured surface of the kind studied here can be fabricated in the following manner. A
metal film (ε1(ω)) whose thickness is greater than the penetration depth of a surface plasmon
polariton into that metal is evaporated onto a glass substrate. A periodic row of holes of finite
depth and radius R is then drilled in the film at the points (0, nb, 0) with n = 0, ±1, ±2, . . . by,
e.g. a photon scanning tunneling microscope/direct-write lithography setup [13]. These holes
are then filled by a second medium (ε2(ω)) by vacuum deposition through a mask.

The incident surface plasmon polariton can be excited by a prism coupler [14], by a grating
coupler [15], or by illumination of the gap between the edge of a razor blade and the metal
surface [16], for example. An optical image of the near-field distribution of the intensity of the
transmitted surface plasmon polaritons can be obtained, e.g. by means of a photon scanning
tunneling microscope [13].
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